1
|
Trindade BLC, Coelho IB, Magalhães LL, Crepaldi LA, Man Fu FM, Da Glória LMR. Cosmetic Therapeutic Keratopigmentation. Clin Ophthalmol 2025; 19:527-534. [PMID: 39967784 PMCID: PMC11832349 DOI: 10.2147/opth.s507490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose To analyze indications safety and potential complications of cosmetic therapeutic corneal keratopigmentation to treat disfiguring aspect of opaque corneas. Methods Eight eyes of 8 consecutive patients were enrolled in therapeutic corneal keratopigmentation. Surgery was performed using manual technique, and a two-plane corneal dissection was performed. In the deeper pocket, brown pigment was injected to mimic iris color. In the more superficial and smaller pocket, black pigment was used to simulate pupillary opening. Results Seven out of 8 eyes had significant improvements in cosmesis after surgery. One patient did not have a major improvement due to significant superficial corneal neovascularization. In two eyes, there was pigment fading in the postoperative period, but no additional surgeries were performed. No complications were noted in any of the patients. Conclusion Therapeutic corneal keratopigmentation can lead to a significant change in ocular appearance and may improve self-esteem and overall life quality. Pigment fading and corneal neovascularization can be a potential problem. Careful patient selection and counseling are important to avoid patients seeking unachievable results.
Collapse
Affiliation(s)
- Bruno Lovaglio Cançado Trindade
- Cornea Department, Instituto de Olhos Ciências Médicas, Belo Horizonte, Brazil
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
- Cançado Trindade Eye Institute, Belo Horizonte, Brazil
| | | | | | - Letícia Arriel Crepaldi
- Cornea Department, Instituto de Olhos Ciências Médicas, Belo Horizonte, Brazil
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
2
|
Li S, Sun H, Chen L, Fu Y. Targeting limbal epithelial stem cells: master conductors of corneal epithelial regeneration from the bench to multilevel theranostics. J Transl Med 2024; 22:794. [PMID: 39198892 PMCID: PMC11350997 DOI: 10.1186/s12967-024-05603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
The cornea is the outermost layer of the eye and plays an essential role in our visual system. Limbal epithelial stem cells (LESCs), which are localized to a highly regulated limbal niche, are the master conductors of corneal epithelial regeneration. Damage to LESCs and their niche may result in limbal stem cell deficiency (LSCD), a disease confused ophthalmologists so many years and can lead to corneal conjunctivalization, neovascularization, and even blindness. How to restore the LESCs function is the hot topic for ocular scientists and clinicians around the world. This review introduced LESCs and the niche microenvironment, outlined various techniques for isolating and culturing LESCs used in LSCD research, presented common diseases that cause LSCD, and provided a comprehensive overview of both the diagnosis and multiple treatments for LSCD from basic research to clinical therapies, especially the emerging cell therapies based on various stem cell sources. In addition, we also innovatively concluded the latest strategies in recent years, including exogenous drugs, tissue engineering, nanotechnology, exosome and gene therapy, as well as the ongoing clinical trials for treating LSCD in recent five years. Finally, we highlighted challenges from bench to bedside in LSCD and discussed cutting-edge areas in LSCD therapeutic research. We hope that this review could pave the way for future research and translation on treating LSCD, a crucial step in the field of ocular health.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
3
|
Zekušić M, Bujić Mihica M, Skoko M, Vukušić K, Risteski P, Martinčić J, Tolić IM, Bendelja K, Ramić S, Dolenec T, Vrgoč Zimić I, Puljić D, Petric Vicković I, Iveković R, Batarilo I, Prosenc Zmrzljak U, Hoffmeister A, Vučemilo T. New characterization and safety evaluation of human limbal stem cells used in clinical application: fidelity of mitotic process and mitotic spindle morphologies. Stem Cell Res Ther 2023; 14:368. [PMID: 38093301 PMCID: PMC10720168 DOI: 10.1186/s13287-023-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Limbal stem cells (LSCs) are crucial for the regeneration of the corneal epithelium in patients with limbal stem cell deficiency (LSCD). Thus, LSCs during cultivation in vitro should be in highly homogeneous amounts, while potency and expression of stemness without tumorigenesis would be desirable. Therefore, further characterization and safety evaluation of engineered limbal grafts is required to provide safe and high-quality therapeutic applications. METHODS After in vitro expansion, LSCs undergo laboratory characterization in a single-cell suspension, cell culture, and in limbal grafts before transplantation. Using a clinically applicable protocol, the data collected on LSCs at passage 1 were summarized, including: identity (cell size, morphology); potency (yield, viability, population doubling time, colony-forming efficiency); expression of putative stem cell markers through flow cytometry, immunofluorescence, and immunohistochemistry. Then, mitotic chromosome stability and normal mitotic outcomes were explored by using live-cell imaging. Finally, impurities, bacterial endotoxins and sterility were determined. RESULTS Expression of the stemness marker p63 in single-cell suspension and in cell culture showed high values by different methods. Limbal grafts showed p63-positive cells (78.7 ± 9.4%), Ki67 proliferation (41.7 ± 15.9%), while CK3 was negative. Impurity with 3T3 feeder cells and endotoxins was minimized. We presented mitotic spindles with a length of 11.40 ± 0.54 m and a spindle width of 8.05 ± 0.55 m as new characterization in LSC culture. Additionally, live-cell imaging of LSCs (n = 873) was performed, and only a small fraction < 2.5% of aberrant interphase cells was observed; 2.12 ± 2.10% of mitotic spindles exhibited a multipolar phenotype during metaphase, and 3.84 ± 3.77% of anaphase cells had a DNA signal present within the spindle midzone, indicating a chromosome bridge or lagging chromosome phenotype. CONCLUSION This manuscript provides, for the first time, detailed characterization of the parameters of fidelity of the mitotic process and mitotic spindle morphologies of LSCs used in a direct clinical application. Our data show that p63-positive CK3-negative LSCs grown in vitro for clinical purposes undergo mitotic processes with extremely high fidelity, suggesting high karyotype stability. This finding confirms LSCs as a high-quality and safe therapy for eye regeneration in humans.
Collapse
Affiliation(s)
- Marija Zekušić
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Marina Bujić Mihica
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia.
| | - Marija Skoko
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Martinčić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, Laboratory of Immunology, University of Zagreb, Zagreb, Croatia
| | - Snježana Ramić
- Department of Oncological Pathology and Clinical Cytology 'Ljudevit Jurak', University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Tamara Dolenec
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Vrgoč Zimić
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dominik Puljić
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivanka Petric Vicković
- Clinical Department of Ophthalmology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Renata Iveković
- Clinical Department of Ophthalmology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivanka Batarilo
- Department of Microbiology, Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Uršula Prosenc Zmrzljak
- Molecular Biology Department, BIA Separations CRO, Labena d.O.O, Ljubljana, Slovenia
- Labena d.o.o, Zagreb, Croatia
| | | | - Tiha Vučemilo
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| |
Collapse
|
4
|
Pérez I, Galindo S, López-Miguel A, Nieto-Miguel T, de la Mata A, López-Paniagua M, Alberca M, Herreras JM, Calonge M. In Vivo Confocal Microscopy in Limbal Stem Cell Deficiency After Mesenchymal Stem Cell Transplantation: A Sub-analysis from a Phase I-II Clinical Trial. Ophthalmol Ther 2023; 12:3251-3262. [PMID: 37773479 PMCID: PMC10640524 DOI: 10.1007/s40123-023-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The aim of this work is to evaluate the effect of mesenchymal stem cell transplantation (MSCT) and cultivated limbal epithelial transplantation (CLET) therapies on the limbus of patients suffering from limbal stem cell deficiency (LSCD). METHODS A sub-analysis of a phase I-II randomized, controlled, and double-masked clinical trial was performed to assess the changes in the anatomical structures of the limbus. In vivo confocal microscopy (IVCM) analysis was carried out in LSCD eyes before and 12 months after allogeneic MSCT or CLET. Epithelial phenotype of the central cornea, as well as the presence of transition zones and palisades of Vogt in the limbus, were assessed using Wilcoxon test. RESULTS Twenty-three LSCD (14 MSCT and nine CLET) eyes were included. The epithelial phenotype of the central cornea improved significantly (p < 0.001) from 15 (eight MSCT, seven CLET) and eight (six MSCT, two CLET) LSCD eyes showing conjunctival and mixed phenotypes, respectively, to eight (five MSCT, three CLET), five (two MSCT, three CLET), and ten (seven MSCT, three CLET) eyes showing conjunctival, mixed, and corneal phenotypes, respectively. Transition areas and palisades of Vogt were observed in at least one quadrant in nine (five MSCT, four CLET) and 16 (nine MSCT, seven CLET), and in four (two MSCT, two CLET) and six (three MSCT, three CLET) LSCD eyes before and after surgery, respectively. Changes in the transition zones and palisades were solely significant (p = 0.046) for the nasal and inferior quadrants, respectively. CONCLUSIONS MSCT and CLET improved the central corneal epithelial phenotype despite only minor changes in the anatomical structures of the limbus, as detected by IVCM technology. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01562002.
Collapse
Affiliation(s)
- Inmaculada Pérez
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
| | - Sara Galindo
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Universidad de Valladolid, Valladolid, Spain
| | - Alberto López-Miguel
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain.
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.
| | - Teresa Nieto-Miguel
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Universidad de Valladolid, Valladolid, Spain
| | - Ana de la Mata
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
| | - Marina López-Paniagua
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Mercedes Alberca
- IBGM (Institute of Molecular Biology and Genetics) and University Scientific Park, Universidad de Valladolid, Valladolid, Spain
| | - José M Herreras
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén, 17, 47011, Valladolid, Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain
- Departamento de Cirugía, Oftalmología, Otorrinolaringología y Fisioterapia, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
5
|
Samelska K, Kupis M, Szymanek K, Izdebska J, Zaleska-Żmijewska A, Skopiński P. The immunology of corneal limbal stem cells: the up-to-date approach to stem cell transplantation. Cent Eur J Immunol 2023; 48:245-250. [PMID: 37901870 PMCID: PMC10604637 DOI: 10.5114/ceji.2023.132033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Limbal epithelial stem cells (LSC, LESC) are multipotent cells used as regenerative treatment of the cornea in patients with limbal epithelial stem cell deficiency (LSCD, LESCD). There are different types of stem cell grafting including cultivated limbal epithelial transplantation (CET) and simple limbal epithelial transplantation (SLET). The outcomes of the techniques have been assessed as similar, with differences in the sample size required during the procedures. The most important culture components for stem cell cultivation include 3T3 murine fibroblasts, human amniotic membrane (HAM), fibrin gel, and culture medium. The culture medium may be enriched with serum or not; however, xenobiotic-free materials are preferred because of the low risk of pathogen transmission. Multiple studies have defined molecules important for maintaining the function of LSC including C/EBP δ, Bmi-1, p63 α, interleukins (IL-6), epithelial structural proteins - keratins, and antibodies against epidermal growth factor receptor (EGFR). The cell phenotype of LSC has been described with factors of transplantation success rate such as a high percentage of p63 positive cells. The article emphasizes the role of recipient tissue preparation, modern cultivation techniques and pathophysiological processes in LSC transplantation effectiveness.
Collapse
Affiliation(s)
- Katarzyna Samelska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Magdalena Kupis
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Katarzyna Szymanek
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- ACL Vision Ophthalmologists – Specialized Ophthalmic Ambulatory, Warsaw, Poland
| | - Justyna Izdebska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Poland
- Laser Eye Microsurgery Centre, Clinic of Prof. Jerzy Szaflik, Warsaw, Poland
| | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
6
|
Aiello F, Gallo Afflitto G, Pocobelli G, Ponzin D, Nucci C. Effect of Covid-19 on Eye Banks and Corneal Transplantations: Current Perspectives. Clin Ophthalmol 2022; 16:4345-4354. [PMID: 36606249 PMCID: PMC9809163 DOI: 10.2147/opth.s379849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic exerted a great impact on medical practice, which was reframed according to the actual needs. Ophthalmological services and procedures including corneal transplantation did not represent an exception. The adoption and implementation of new standard operating procedures as well as of new technologies for remote consultation and smart-working reshaped daily activities of both eye bankers, physicians, researchers, and patients. Regulatory restrictions were issued redefining corneal donor eligibility criteria, as well as handling and harvesting procedures of donor ocular tissues. Surgical schedules underwent an abrupt contraction with prioritization of urgent procedures. Local lockdowns and confinement strategies resulted in both a reduction and redirection of research activities. The evaluation of SARS-CoV-2 colonization of ocular tissues, long-term corneal storage techniques, new disinfection strategies, split corneal transplants and cell-based therapies for the treatment of corneal disease peaked in the pipeline. Aim of this article is to summarizes the overall impact of the pandemic on the corneal transplantation machinery, and the current and future perspectives for the corneal transplant community.
Collapse
Affiliation(s)
- Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy,Correspondence: Francesco Aiello, Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, Rome, 00133, Italy, Email
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy,Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Giulio Pocobelli
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
7
|
Masood F, Chang JH, Akbar A, Song A, Hu WY, Azar DT, Rosenblatt MI. Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions. Cells 2022; 11:3247. [PMID: 36291115 PMCID: PMC9600167 DOI: 10.3390/cells11203247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
Limbal stem cells constitute an important cell population required for regeneration of the corneal epithelium. If insults to limbal stem cells or their niche are sufficiently severe, a disease known as limbal stem cell deficiency occurs. In the absence of functioning limbal stem cells, vision-compromising conjunctivalization of the corneal epithelium occurs, leading to opacification, inflammation, neovascularization, and chronic scarring. Limbal stem cell transplantation is the standard treatment for unilateral cases of limbal stem cell deficiency, but bilateral cases require allogeneic transplantation. Herein we review the current therapeutic utilization of limbal stem cells. We also describe several limbal stem cell markers that impact their phenotype and function and discuss the possibility of modulating limbal stem cells and other sources of stem cells to facilitate the development of novel therapeutic interventions. We finally consider several hurdles for widespread adoption of these proposed methodologies and discuss how they can be overcome to realize vision-restoring interventions.
Collapse
Affiliation(s)
- Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anosh Akbar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy Song
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Kate A, Basu S. A Review of the Diagnosis and Treatment of Limbal Stem Cell Deficiency. Front Med (Lausanne) 2022; 9:836009. [PMID: 35692544 PMCID: PMC9175008 DOI: 10.3389/fmed.2022.836009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) can cause significant corneal vascularization and scarring and often results in serious visual morbidity. An early and accurate diagnosis can help prevent the same with a timely and appropriate intervention. This review aims to provide an understanding of the different diagnostic tools and presents an algorithmic approach to the management based on a comprehensive clinical examination. Although the diagnosis of LSCD usually relies on the clinical findings, they can be subjective and non-specific. In such cases, using an investigative modality offers an objective method of confirming the diagnosis. Several diagnostic tools have been described in literature, each having its own advantages and limitations. Impression cytology and in vivo confocal microscopy (IVCM) aid in the diagnosis of LSCD by detecting the presence of goblet cells. With immunohistochemistry, impression cytology can help in confirming the corneal or conjunctival source of epithelium. Both IVCM and anterior segment optical coherence tomography can help supplement the diagnosis of LSCD by characterizing the corneal and limbal epithelial changes. Once the diagnosis is established, one of various surgical techniques can be adopted for the treatment of LSCD. These surgeries aim to provide a new source of corneal epithelial stem cells and help in restoring the stability of the ocular surface. The choice of procedure depends on several factors including the involvement of the ocular adnexa, presence of systemic co-morbidities, status of the fellow eye and the comfort level of the surgeon. In LSCD with wet ocular surfaces, autologous and allogeneic limbal stem cell transplantation is preferred in unilateral and bilateral cases, respectively. Another approach in bilateral LSCD with wet ocular surfaces is the use of an autologous stem cell source of a different epithelial lineage, like oral or nasal mucosa. In eyes with bilateral LSCD with significant adnexal issues, a keratoprosthesis is the only viable option. This review provides an overview on the diagnosis and treatment of LSCD, which will help the clinician choose the best option amongst all the therapeutic modalities currently available and gives a clinical perspective on customizing the treatment for each individual case.
Collapse
Affiliation(s)
- Anahita Kate
- The Cornea Institute, KVC Campus, LV Prasad Eye Institute, Vijayawada, India
| | - Sayan Basu
- The Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad, India
- Prof. Brien Holden Eye Research Centre (BHERC), LV Prasad Eye Institute, Hyderabad, Telangana, India
- *Correspondence: Sayan Basu
| |
Collapse
|
9
|
Krysik K, Miklaszewski P, Dobrowolski D, Lyssek-Boroń A, Grabarek BO, Wylęgała E. Ocular Surface Preparation Before Keratoprosthesis Implantation. Ophthalmol Ther 2022; 11:249-259. [PMID: 34811639 PMCID: PMC8770772 DOI: 10.1007/s40123-021-00420-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION This study aimed to evaluate the surgical treatment results for conjunctival limbal autograft (CLAU) and keratolimbal allograft (KLAL) in various types of limbal stem cell deficiency (LSCD) etiologies performed in order to achieve a stable ocular surface prior to KPro implantation. METHODS We analyzed the outcomes of the surgical treatment of 43 eyes of 39 patients with LSCD as an initial treatment preparing patients' ocular surface for KPro implantation. The most common causes were ocular trauma (50.7%), mainly alkali burns (77%); autoimmune causes, mainly ocular cicatricial pemphigoid (OCP; 17.4%); infection (15.9%) including Lyell's syndrome/Stevens-Johnson syndrome (LS/SJS; 16%). In all 17 eyes operated on with CLAU, this procedure was performed once. Similarly, one uncomplicated KLAL procedure in one eye was performed in 10 women and 19 men. In another one woman and three men, KLAL was performed in both eyes. In one man with Lyell's syndrome, the KLAL operation was performed three times in one eye. Follow-up was at least 12 months. RESULTS Visual acuity (VA) improved in 17 eyes (31%) and remained unchanged in 38 eyes (69%). VA improved from light perception to hand movements in three eyes (16%) from the CLAU group of patients and eight eyes (15%) from the KLAL group; VA improved from hand movements to finger counting in two eyes (12%) post CLAU and two eyes (4%) post KLAL operation. The most common complication of surgical treatment was persistent epithelial defect that was refractory to medical treatment in 32 eyes (58%), 5 eyes post CLAU and 27 post KLAL. Corneal conjunctivalization (19%) and neovascularization (29%) were present on the corneal edge of the graft. Symblephara recurred within 3 months in nine eyes (17.3%) after KLAL, including four eyes that had been chemically burned and five eyes with LS/SJS. DISCUSSION Pretreatment with CLAU or KLAL procedures in severely damaged ocular surfaces allows the ocular surface to be prepared for safe KPro implantation with sufficient tissue surroundings with less conjunctivalization and deeper conjunctival fornices.
Collapse
Affiliation(s)
- Katarzyna Krysik
- Department of Ophthalmology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800, Zabrze, Poland
- Department of Ophthalmology with Paediatric Unit, 5th Regional Hospital in Sosnowiec, 41-200, Sosnowiec, Poland
| | - Piotr Miklaszewski
- Department of Ophthalmology with Paediatric Unit, 5th Regional Hospital in Sosnowiec, 41-200, Sosnowiec, Poland
| | - Dariusz Dobrowolski
- Department of Ophthalmology with Paediatric Unit, 5th Regional Hospital in Sosnowiec, 41-200, Sosnowiec, Poland
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia in Katowice, 40-760, Katowice, Poland
| | - Anita Lyssek-Boroń
- Department of Ophthalmology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800, Zabrze, Poland
- Department of Ophthalmology with Paediatric Unit, 5th Regional Hospital in Sosnowiec, 41-200, Sosnowiec, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800, Zabrze, Poland.
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia in Katowice, 40-760, Katowice, Poland
| |
Collapse
|
10
|
Valdivia E, Bertolin M, Breda C, Carvalho Oliveira M, Salz AK, Hofmann N, Börgel M, Blasczyk R, Ferrari S, Figueiredo C. Genetic Modification of Limbal Stem Cells to Decrease Allogeneic Immune Responses. Front Immunol 2021; 12:747357. [PMID: 34956181 PMCID: PMC8696204 DOI: 10.3389/fimmu.2021.747357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Limbal stem cell (LSC) transplantation is the only efficient treatment for patients affected by LSC deficiency (LSCD). Allogeneic LSC transplantation is one of the most successful alternative for patients with bilateral LSCD. Nevertheless, the high variability of the human leukocyte antigens (HLA) remains a relevant obstacle to long-term allogeneic graft survival. This study characterized the immunologic properties of LSCs and proposed a genetic engineering strategy to reduce the immunogenicity of LSCs and of their derivatives. Hence, LSC HLA expression was silenced using lentiviral vectors encoding for short hairpin (sh) RNAs targeting β2-microglobulin (β2M) or class II major histocompatibility complex transactivator (CIITA) to silence HLA class I and II respectively. Beside the constitutive expression of HLA class I, LSCs showed the capability to upregulate HLA class II expression under inflammatory conditions. Furthermore, LSCs demonstrated the capability to induce T-cell mediated immune responses. LSCs phenotypical and functional characteristics are not disturbed after genetic modification. However, HLA silenced LSC showed to prevent T cell activation, proliferation and cytotoxicity in comparison to fully HLA-expressing LSCs. Additionally; HLA-silenced LSCs were protected against antibody-mediated cellular-dependent cytotoxicity. Our data is a proof-of-concept of the feasibility to generate low immunogenic human LSCs without affecting their typical features. The use of low immunogenic LSCs may support for long-term survival of LSCs and their derivatives after allogeneic transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | | |
Collapse
|
11
|
Holland G, Pandit A, Sánchez-Abella L, Haiek A, Loinaz I, Dupin D, Gonzalez M, Larra E, Bidaguren A, Lagali N, Moloney EB, Ritter T. Artificial Cornea: Past, Current, and Future Directions. Front Med (Lausanne) 2021; 8:770780. [PMID: 34869489 PMCID: PMC8632951 DOI: 10.3389/fmed.2021.770780] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal diseases are a leading cause of blindness with an estimated 10 million patients diagnosed with bilateral corneal blindness worldwide. Corneal transplantation is highly successful in low-risk patients with corneal blindness but often fails those with high-risk indications such as recurrent or chronic inflammatory disorders, history of glaucoma and herpetic infections, and those with neovascularisation of the host bed. Moreover, the need for donor corneas greatly exceeds the supply, especially in disadvantaged countries. Therefore, artificial and bio-mimetic corneas have been investigated for patients with indications that result in keratoplasty failure. Two long-lasting keratoprostheses with different indications, the Boston type-1 keratoprostheses and osteo-odonto-keratoprostheses have been adapted to minimise complications that have arisen over time. However, both utilise either autologous tissue or an allograft cornea to increase biointegration. To step away from the need for donor material, synthetic keratoprostheses with soft skirts have been introduced to increase biointegration between the device and native tissue. The AlphaCor™, a synthetic polymer (PHEMA) hydrogel, addressed certain complications of the previous versions of keratoprostheses but resulted in stromal melting and optic deposition. Efforts are being made towards creating synthetic keratoprostheses that emulate native corneas by the inclusion of biomolecules that support enhanced biointegration of the implant while reducing stromal melting and optic deposition. The field continues to shift towards more advanced bioengineering approaches to form replacement corneas. Certain biomolecules such as collagen are being investigated to create corneal substitutes, which can be used as the basis for bio-inks in 3D corneal bioprinting. Alternatively, decellularised corneas from mammalian sources have shown potential in replicating both the corneal composition and fibril architecture. This review will discuss the limitations of keratoplasty, milestones in the history of artificial corneal development, advancements in current artificial corneas, and future possibilities in this field.
Collapse
Affiliation(s)
- Gráinne Holland
- School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM Science Foundation Ireland Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Laura Sánchez-Abella
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Andrea Haiek
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | | | | | - Aritz Bidaguren
- Ophthalmology Department, Donostia University Hospital, San Sebastián, Spain
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Elizabeth B. Moloney
- School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
- CÚRAM Science Foundation Ireland Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- School of Medicine, College of Medicine, Nursing and Health Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
- CÚRAM Science Foundation Ireland Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
13
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|
14
|
Prinz J, Mehta JS, Walter P, Fuest M. [Simple limbal epithelial transplantation (SLET) : A simple technique for the treatment of unilateral complete limbal stem cell deficiency. Video article]. Ophthalmologe 2021; 118:404-412. [PMID: 33683425 DOI: 10.1007/s00347-021-01346-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of simple limbal epithelial transplantation (SLET) is the regeneration of the corneal surface in unilateral complete limbal stem cell deficiency (LSCD). INDICATIONS SLET is indicated for unilateral complete LSCD. CONTRAINDICATIONS Contraindications include bilateral LSCD, severe corneal thinning, pronounced keratoconjunctivitis sicca, chronic inflammatory condition of the ocular surface, malposition of the eyelids and pronounced adhesions of the conjunctiva with trichiasis. SURGICAL TECHNIQUE A 1‑h biopsy is obtained from the superior limbus of the healthy donor eye. A 360° peritomy is performed on the LSCD eye and pannus tissue covering the cornea is removed. An amniotic membrane (AM) is glued to the corneal surface with fibrin. The donor tissue is then divided into 8-10 small pieces, which are placed on the AM sparing the visual axis and fixed by fibrin glue. A contact lens is placed on the eye. A surgical video, which is available online, shows the surgical technique in detail. FOLLOW-UP Examinations are necessary within the first postoperative week and 1 month after SLET, then every 3 months within the first postoperative year. Antibiotic eye drops should be applied 5 times daily until complete epithelialization. Topical steroids should be applied 6 times daily in the early postoperative period and can be tapered thereafter. Artificial tears can improve epithelial healing. Ideally, all eye drops should be preservative-free. The contact lens can be removed after 7-10 days. The AM dissolves within a few weeks. An epithelialization of the corneal surface can be observed by the second postoperative week. EVIDENCE A recent systematic review reported a stable epithelialized corneal surface in 78% of SLET cases after 1.5 years. An improvement of visual acuity of at least two lines was found in 69% of SLET cases.
Collapse
Affiliation(s)
- Julia Prinz
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Jodhbir S Mehta
- Singapore National Eye Centre, Singapur, Singapur
- Singapore Eye Research Institute, Singapur, Singapur
| | - Peter Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Matthias Fuest
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
15
|
Sun C, Wang H, Ma Q, Chen C, Yue J, Li B, Zhang X. Time-course single-cell RNA sequencing reveals transcriptional dynamics and heterogeneity of limbal stem cells derived from human pluripotent stem cells. Cell Biosci 2021; 11:24. [PMID: 33485387 PMCID: PMC7824938 DOI: 10.1186/s13578-021-00541-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cell-derived limbal stem cells (hPSC-derived LSCs) provide a promising cell source for corneal transplants and ocular surface reconstruction. Although recent efforts in the identification of LSC markers have increased our understanding of the biology of LSCs, much more remains to be characterized in the developmental origin, cell fate determination, and identity of human LSCs. The lack of knowledge hindered the establishment of efficient differentiation protocols for generating hPSC-derived LSCs and held back their clinical application. RESULTS Here, we performed a time-course single-cell RNA-seq to investigate transcriptional heterogeneity and expression changes of LSCs derived from human embryonic stem cells (hESCs). Based on current protocol, expression heterogeneity of reported LSC markers were identified in subpopulations of differentiated cells. EMT has been shown to occur during differentiation process, which could possibly result in generation of untargeted cells. Pseudotime trajectory analysis revealed transcriptional changes and signatures of commitment of hESCs-derived LSCs and their progeny-the transit amplifying cells. CONCLUSION Single-cell RNA-seq revealed time-course expression changes and significant transcriptional heterogeneity during hESC-derived LSC differentiation in vitro. Our results demonstrated candidate developmental trajectory and several new candidate markers for LSCs, which could facilitate elucidating the identity and developmental origin of human LSCs in vivo.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Hailun Wang
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Qiwang Ma
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Chao Chen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China
| | - Jianhui Yue
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| | - Xi Zhang
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518082, China.
| |
Collapse
|
16
|
Yazdani M, Shahdadfar A, Reppe S, Sapkota D, Vallenari EM, Lako M, Connon CJ, Figueiredo FC, Utheim TP. Response of human oral mucosal epithelial cells to different storage temperatures: A structural and transcriptional study. PLoS One 2020; 15:e0243914. [PMID: 33326470 PMCID: PMC7744058 DOI: 10.1371/journal.pone.0243914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Seeking to improve the access to regenerative medicine, this study investigated the structural and transcriptional effects of storage temperature on human oral mucosal epithelial cells (OMECs). METHODS Cells were stored at four different temperatures (4°C, 12°C, 24°C and 37°C) for two weeks. Then, the morphology, cell viability and differential gene expression were examined using light and scanning electron microscopy, trypan blue exclusion test and TaqMan gene expression array cards, respectively. RESULTS Cells stored at 4°C had the most similar morphology to non-stored controls with the highest viability rate (58%), whereas the 37°C group was most dissimilar with no living cells. The genes involved in stress-induced growth arrest (GADD45B) and cell proliferation inhibition (TGFB2) were upregulated at 12°C and 24°C. Upregulation was also observed in multifunctional genes responsible for morphology, growth, adhesion and motility such as EFEMP1 (12°C) and EPHA4 (4°C-24°C). Among genes used as differentiation markers, PPARA and TP53 (along with its associated gene CDKN1A) were downregulated in all temperature conditions, whereas KRT1 and KRT10 were either unchanged (4°C) or downregulated (24°C and 12°C; and 24°C, respectively), except for upregulation at 12°C for KRT1. CONCLUSIONS Cells stored at 12°C and 24°C were stressed, although the expression levels of some adhesion-, growth- and apoptosis-related genes were favourable. Collectively, this study suggests that 4°C is the optimal storage temperature for maintenance of structure, viability and function of OMECs after two weeks.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Evan M. Vallenari
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Che J. Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
| | - Francisco C. Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Bioscience West Building, Newcastle upon Tyne, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary & Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
17
|
Gupta N, Farooqui JH, Dziasko MA, Daniels JT, Mathur U, Sangwan VS. Reappearance of limbal pigmentation post-simple limbal epithelial transplant. Indian J Ophthalmol 2020; 68:927-929. [PMID: 32317494 PMCID: PMC7350484 DOI: 10.4103/ijo.ijo_155_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022] Open
Abstract
We report the repigmentation at the limbus in patients who underwent simple limbal epithelial transplant (SLET) for uniocular chemical injury. The first case is of an 8-year-old child who presented with grade 4 chemical injury, with limbal stem cell deficiency (LSCD) corresponding to 6 o' clock till 11 o' clock. He was managed by amniotic membrane graft in the acute stage and SLET after 6 months of the initial injury. The second case is of a 15-year-old female who presented with lime injury, which had resulted in 6 o' clock of limbal involvement (10 o' clock till 4 o' clock). The patient was managed on similar lines with amniotic membrane graft (AMG) in the acute phase and SLET after 6 months of injury. The ocular surface was stable in both the patients post-SLET. The effected limbus showed pigmentation at 8 months of follow-up which eventually became distinct and remained stable. We speculate that the pigmentation at limbus could be attributed to proliferation and movement of melanocytes from limbal biopsy in SLET. These may be capable of supporting the proliferation of limbal epithelial cells and modulation of corneal wound healing.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Cornea, Refractive Surgery and Ocular Surface Disorders, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Javed H Farooqui
- Department of Cornea, Refractive Surgery and Ocular Surface Disorders, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | | | | | - Umang Mathur
- Department of Cornea, Refractive Surgery and Ocular Surface Disorders, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Virender S Sangwan
- Department of Cornea, Refractive Surgery and Ocular Surface Disorders, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| |
Collapse
|
18
|
Samoila O, Gocan D. Clinical Outcomes From Cultivated Allogenic Stem Cells vs. Oral Mucosa Epithelial Transplants in Total Bilateral Stem Cells Deficiency. Front Med (Lausanne) 2020; 7:43. [PMID: 32133365 PMCID: PMC7040221 DOI: 10.3389/fmed.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
Total bilateral limbal stem cell deficiency results from various pathologies, from burns (either chemical or physical) to Sjogren Syndrome, aniridia or ocular cicatricial pemphigoid. After the loss of stem cells, normal corneal epithelium is replaced by a more opaque and vascularized conjunctival epithelium, causing loss of vision. After 1997, cultivation techniques for limbal stem cells became possible. In parallel, cultivation techniques for oral mucosa epithelial cells were also available. The aim of our review was to summarize the clinical outcomes following allogenic cultured limbal stem cell transplant (allogenic CLET), and on the other hand, oral mucosa derived epithelium transplant (cultivated oral mucosa epithelial transplant-COMET or cultivated autologous oral mucosal epithelial cell sheet-CAOMECS), in the case of total bilateral limbal stem cell loss. Thirty studies matching the inclusion criteria were found. The clinical improvement in both methods was reported similar, with percentages higher than 50% of the treated cases. However, the comparison between studies was difficult to achieve due to the lack of a universal and objective grading tool for assessing post-operative results. The definition of clinical improvement was problematic, because success was defined differently, depending on the study. Moreover, some of the studies followed both autologous and allogenic CLET, but described the results together, for both procedures, and therefore it was impossible to analyze them separately. COMET presented some advantages compared to CLET. By using autologous cells, there was no risk of immune activation and no immunosuppression was needed. COMET, however, might be associated with increased risk of persistent epithelial defects and graft failure, compared with allogenic CLET.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Department of Ophthalmology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
19
|
Clinical Trials of Limbal Stem Cell Deficiency Treated with Oral Mucosal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020411. [PMID: 31936462 PMCID: PMC7014181 DOI: 10.3390/ijms21020411] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
The corneal surface is an essential organ necessary for vision, and its clarity must be maintained. The corneal epithelium is renewed by limbal stem cells, located in the limbus and in palisades of Vogt. Palisades of Vogt maintain the clearness of the corneal epithelium by blocking the growth of conjunctival epithelium and the invasion of blood vessels over the cornea. The limbal region can be damaged by chemical burns, physical damage (e.g., by contact lenses), congenital disease, chronic inflammation, or limbal surgeries. The degree of limbus damage is associated with the degree of limbal stem cells deficiency (partial or total). For a long time, the only treatment to restore vision was grafting part of the healthy cornea from the other eye of the patient or by transplanting a cornea from cadavers. The regenerative medicine and stem cell therapies have been applied to restore normal vision using different methodologies. The source of stem cells varies from embryonic stem cells, mesenchymal stem cells, to induced pluripotent stem cells. This review focuses on the use of oral mucosa epithelial stem cells and their use in engineering cell sheets to treat limbal stem cell deficient patients.
Collapse
|
20
|
Systemic Immunosuppression for Limbal Allograft and Allogenic Limbal Epithelial Cell Transplantation. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:23-32. [PMID: 31976340 PMCID: PMC6969562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bilateral limbal stem cell deficiency (LSCD) treatment requires the need to obtain allogenic limbal tissue for transplantation. Outcomes of different surgical techniques depend on multiple factors, including the underlying etiology, ocular surface, eyelid status and used surgical intervention. Some of the management options for bilateral LSCD include cadaveric, living related or living non-related conjunctival limbal allograft (CLAL), keratolimbal allograft (KLAL), allogenic cultured limbal epithelial transplantation (CLET) and allogenic simple limbal epithelial transplantation (SLET). Systemic immunosuppressive therapy plays a pivotal role in survival of transplanted tissue. The present review focuses on different systemic immunosuppression protocols for limbal allograft and allogenic limbal epithelial cell transplantation, with specific emphasis on different surgical techniques and their outcomes. We included all reports with details of different systemic immunosuppression protocols for limbal allograft and allogenic limbal epithelial cell transplantation. Oral cyclosporine A at different doses is the most commonly used immunosuppressive agent in limbal allograft and allogenic limbal epithelial cell transplantation. However, different studies using oral mycophenolate mofetil and tacrolimus also reported good results. In conclusion, systemic immunosuppression protocols for limbal allograft and allogenic limbal epithelial cell transplantation are not standardized. Further studies regarding different surgical techniques should assess outcomes and adverse effects of such protocols.
Collapse
|
21
|
Nieto-Nicolau N, Martínez-Conesa EM, Velasco-García AM, Aloy-Reverté C, Vilarrodona A, Casaroli-Marano RP. Xenofree generation of limbal stem cells for ocular surface advanced cell therapy. Stem Cell Res Ther 2019; 10:374. [PMID: 31801638 PMCID: PMC6894225 DOI: 10.1186/s13287-019-1501-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Limbal stem cells (LSC) sustain the corneal integrity and homeostasis. LSC deficiency (LSCD) leads to loss of corneal transparency and blindness. A clinical approach to treat unilateral LSCD comprises autologous cultured limbal epithelial stem cell transplantation (CLET). CLET uses xenobiotic culture systems with potential zoonotic transmission risks, and regulatory guidelines make necessary to find xenofree alternatives. Methods We compared two xenofree clinical grade media and two feeder layers. We used CnT07, a defined commercial medium for keratinocytes, and a modified xenofree supplemented hormonal epithelial medium with human serum (XSHEM). Optimal formulation was used to compare two feeder layers: the gold standard 3T3 murine fibroblasts and human processed lipoaspirate cells (PLA). We tested the expressions of ΔNp63α and cytokeratin 3 and 12 by qPCR and immunofluorescence. Morphology, viability, clonogenicity, proliferation, and cell growth assays were carried out. We also evaluated interleukin 6 (IL-6) and stromal-derived factor 1 (SDF-1) by qPCR and ELISA. Results XSHEM maintained better LSC culture viability and morphology than CnT07. Irradiated PLA feeder cells improved the undifferentiated state of LSC and enhanced their growth and clonogenicity stimulating IL-6 secretion and SDF-1 expression, as well as increased proliferation and cell growth when compared with irradiated 3T3 feeder cells. Conclusions The combination of XSHEM and PLA feeder cells efficiently sustained LSC xenofree cultures for clinical application. Moreover, PLA feeder layers were able to improve the LSC potential characteristics. Our results would have direct clinical application in CLET for advanced therapy. Graphical abstract ![]()
Collapse
Affiliation(s)
- Nuria Nieto-Nicolau
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Eva M Martínez-Conesa
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Alba M Velasco-García
- Department of Surgery, School of Medicine & Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Caterina Aloy-Reverté
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Anna Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Institute of Biomedical Research (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Ricardo P Casaroli-Marano
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain. .,Institute of Biomedical Research (IIB-Sant Pau; SGR1113), Barcelona, Spain. .,Department of Surgery, School of Medicine & Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Masterton S, Ahearne M. Influence of polydimethylsiloxane substrate stiffness on corneal epithelial cells. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191796. [PMID: 31903218 PMCID: PMC6936283 DOI: 10.1098/rsos.191796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 05/10/2023]
Abstract
Many cell types are known to modulate their behaviour in response to changes in material stiffness; however, little is known about how stiffness affects corneal epithelial cells. This study aims to investigate the response of a corneal epithelial cell line to polydimethylsiloxane (PDMS) substrates with a range of Young's moduli from 10 to 1500 kPa. Cellular morphology, proliferation, differentiation and mechanobiology were examined. Cells grown on PDMS adopted the typical cobblestone morphology exhibited by the corneal epithelium. Proliferative markers pERK and Ki67 were higher in cells cultured on stiffer substrates compared with those on softer substrates. Material stiffness was also found to influence the cell phenotype with cells on stiffer substrates having higher cytokeratin 3 gene expression, a mature epithelial marker, while cells on softer substrates expressed more cytokeratin 14, a basal epithelial marker. Cells grown on softer substrates also displayed higher levels of focal adhesions and intermediate filaments compared with cells on stiff substrates. This research will aid in designing novel biomaterials for the culture and transplantation of corneal epithelial cells.
Collapse
Affiliation(s)
- Sophia Masterton
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Adil MT, Simons CM, Sonam S, Henry JJ. Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus. Exp Eye Res 2019; 187:107767. [PMID: 31437439 DOI: 10.1016/j.exer.2019.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Limbal Stem Cell Deficiency (LSCD) is a painful and debilitating disease that results from damage or loss of the Corneal Epithelial Stem Cells (CESCs). Therapies have been developed to treat LSCD by utilizing epithelial stem cell transplants. However, effective repair and recovery depends on many factors, such as the source and concentration of donor stem cells, and the proper conditions to support these transplanted cells. We do not yet fully understand how CESCs heal wounds or how transplanted CESCs are able to restore transparency in LSCD patients. A major hurdle has been the lack of vertebrate models to study CESCs. Here we utilized a short treatment with Psoralen AMT (a DNA cross-linker), immediately followed by UV treatment (PUV treatment), to establish a novel frog model that recapitulates the characteristics of cornea stem cell deficiency, such as pigment cell invasion from the periphery, corneal opacity, and neovascularization. These PUV treated whole corneas do not regain transparency. Moreover, PUV treatment leads to appearance of the Tcf7l2 labeled subset of apical skin cells in the cornea region. PUV treatment also results in increased cell death, immediately following treatment, with pyknosis as a primary mechanism. Furthermore, we show that PUV treatment causes depletion of p63 expressing basal epithelial cells, and can stimulate mitosis in the remaining cells in the cornea region. To study the response of CESCs, we created localized PUV damage by focusing the UV radiation on one half of the cornea. These cases initially develop localized stem cell deficiency characteristics on the treated side. The localized PUV treatment is also capable of stimulating some mitosis in the untreated (control) half of those corneas. Unlike the whole treated corneas, the treated half is ultimately able to recover and corneal transparency is restored. Our study provides insight into the response of cornea cells following stem cell depletion, and establishes Xenopus as a suitable model for studying CESCs, stem cell deficiency, and other cornea diseases. This model will also be valuable for understanding the nature of transplanted CESCs, which will lead to progress in the development of therapeutics for LSCD.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Claire M Simons
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Surabhi Sonam
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Huang Y, Shi C, Li J. The protective effect of zeaxanthin on human limbal and conjunctival epithelial cells against UV-induced cell death and oxidative stress. Int J Ophthalmol 2019; 12:369-374. [PMID: 30918802 DOI: 10.18240/ijo.2019.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023] Open
Abstract
AIM To explore the protective effect of zeaxanthin on human limbal and conjunctival epithelial cells against UV-radiation and excessive oxidative stress. METHODS Human limbal and conjunctival epithelial cells were isolated from cadaver and cultured in vitro. They were challenged with UVB radiation and H2O2 with and without zeaxanthin pretreatment. Cell viability, p38 and c-JUN NH(2)-terminal kinase (JNK) phosphorylation, IL-6, IL-8 and MCP-1 secretion and malondialdehyde (MDA) content were measured. RESULTS Zeaxanthin had no measurable cytotoxicity on limbal or conjunctival epithelial cells when used at concentrations of 5 µg/mL and below. At 30 mJ/cm2 UVB, the pretreatment of zeaxanthin increased the percentage of live cells from 50% to 69% (P=0.01) and from 66% to 75% (P=0.05) for limbal and conjunctival epithelial cells, respectively. The concentrations of IL-6, IL-8 and MCP-1 in the culture medium reduced to 66% (for IL-6 and MCP-1) and 56% (for IL-8) of the levels without zeaxanthin. This was accompanied by reduced p38 and JNK protein phosphorylation. Pretreatment of zeaxanthin also reduced intracellular MDA content caused by H2O2 stimulation from 0.86 µmol/L to 0.52 µmol/L (P=0.02) in limbal epithelial cells and from 0.96 µmol/L to 0.56 µmol/L in conjunctival epithelial cells (P=0.03). However, zeaxanthin did not have significant effect on H2O2-induced cell death in limbal or conjunctival epithelial cells. CONCLUSION Zeaxanthin is an effective reagent in reducing the detrimental effect of UV-radiation and oxidative stress on ocular surface epithelial cells.
Collapse
Affiliation(s)
- Yue Huang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Ophthalmology, Xinhua Hospital, Chong Ming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 202150, China
| | - Chun Shi
- Department of Ophthalmology, Jiangwan Hospital of Hongkou District, Shanghai 200434, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
25
|
Yazdani M, Shahdadfar A, Jackson CJ, Utheim TP. Hyaluronan-Based Hydrogel Scaffolds for Limbal Stem Cell Transplantation: A Review. Cells 2019; 8:E245. [PMID: 30875861 PMCID: PMC6468750 DOI: 10.3390/cells8030245] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA), also termed hyaluronic acid or hyaluronate, is a major component of the extracellular matrix. This non-sulfated glycosaminoglycan plays a key role in cell proliferation, growth, survival, polarization, and differentiation. The diverse biological roles of HA are linked to the combination of HA's physicochemical properties and HA-binding proteins. These unique characteristics have encouraged the application of HA-based hydrogel scaffolds for stem cell-based therapy, a successful method in the treatment of limbal stem cell deficiency (LSCD). This condition occurs following direct damage to limbal stem cells and/or changes in the limbal stem cell niche microenvironment due to intrinsic and extrinsic insults. This paper reviews the physical properties, synthesis, and degradation of HA. In addition, the interaction of HA with other extracellular matrix (ECM) components and receptor proteins are discussed. Finally, studies employing HA-based hydrogel scaffolds in the treatment of LSCD are reviewed.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Maxillofacial Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3019 Drammen, Norway.
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway.
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway.
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway.
- National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, University of South Eastern Norway, 3603 Kongsberg, Norway.
| |
Collapse
|
26
|
Strategies for reconstructing the limbal stem cell niche. Ocul Surf 2019; 17:230-240. [PMID: 30633966 DOI: 10.1016/j.jtos.2019.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
The epithelial cell layer that covers the surface of the cornea provides a protective barrier while maintaining corneal transparency. The rapid and effective turnover of these epithelial cells depends, in part, on the limbal epithelial stem cells (LESCs) located in a specialized microenvironment known as the limbal niche. Many disorders affecting the regeneration of the corneal epithelium are related to deficiency and/or dysfunction of LESCs and the limbal niche. Current approaches for regenerating the corneal epithelium following significant injuries such as burns and inflammatory attacks are primarily aimed at repopulating the LESCs. This review summarizes and assesses the clinical feasibility and efficacy of current and emerging approaches for reconstruction of the limbal niche. In particular, the application of mesenchymal stem cells along with appropriate biological scaffolds appear to be promising strategies for long-term revitalization of the limbal niche.
Collapse
|
27
|
Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol 2018; 11:2004-2010. [PMID: 30588437 DOI: 10.18240/ijo.2018.12.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness caused by limbal stem cell deficiency (LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered by the shortage of donors. Pluripotent stem cell technology including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have opened new avenues for treating this disease. iPSCs-derived corneal epithelial cells provide an autologous and unlimited source of cells for the treatment of LSCD. On the other hand, iPSCs of LSCD patients can be used for iPSCs-corneal disease model and new drug discovery. However, prior to clinical trial, the efficacy and safety of these cells in patients with LSCD should be proved. Here we focused on the current status of iPSCs-derived corneal epithelial cells used for cell therapy as well as for corneal disease modeling. The challenges and potential of iPSCs-derived corneal epithelial cells as a choice for clinical treatment in corneal disease were also discussed.
Collapse
Affiliation(s)
- Jie Zhu
- Queen Mary School, Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mark Slevin
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Bao-Qiang Guo
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom.,Research Institute of Brain Vascular Disease, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Shou-Rong Zhu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261000, Shandong Province, China
| |
Collapse
|
28
|
Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int 2018; 2018:8086269. [PMID: 30405723 PMCID: PMC6201383 DOI: 10.1155/2018/8086269] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) is a clinical condition characterized by damage of cornea limbal stem cells, which results in an impairment of corneal epithelium turnover and in an invasion of the cornea by the conjunctival epithelium. In these patients, the conjunctivalization of the cornea is associated with visual impairment and cornea transplantation has poor prognosis for recurrence of the conjunctivalization. Current treatments of LSCD are aimed at replacing the damaged corneal stem cells in order to restore a healthy corneal epithelium. The autotransplantation of limbal tissue from the healthy, fellow eye is effective in unilateral LSCD but leads to depauperation of the stem cell reservoir. In the last decades, novel techniques such as cultivated limbal epithelial transplantation (CLET) have been proposed in order to reduce the damage of the healthy fellow eye. Clinical and experimental evidence showed that CLET is effective in inducing long-term regeneration of a healthy corneal epithelium in patients with LSCD with a success rate of 70%–80%. Current limitations for the treatment of LSCD are represented by the lack of a marker able to unequivocally identify limbal stem cells and the treatment of total, bilateral LSCD which requires other sources of stem cells for ocular surface reconstruction.
Collapse
|
29
|
Yang L, Zhang S, Duan H, Dong M, Hu X, Zhang Z, Wang Y, Zhang X, Shi W, Zhou Q. Different Effects of Pro-Inflammatory Factors and Hyperosmotic Stress on Corneal Epithelial Stem/Progenitor Cells and Wound Healing in Mice. Stem Cells Transl Med 2018; 8:46-57. [PMID: 30302939 PMCID: PMC6312447 DOI: 10.1002/sctm.18-0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation and severe dry eye are two important adverse factors for the successful transplant of cultured limbal stem cells. The aim of this study was to investigate the effects of inflammation and hyperosmotic stress (a key pathological factor in dry eye) on corneal epithelial stem cells (CESCs) and corneal epithelial wound healing. We observed that the CESCs exhibited significant morphological changes when treated with interleukin‐1 beta (IL‐1β), tumor necrosis factor alpha (TNF‐α), or hyperosmotic stress. Colony‐forming efficiency or colony‐forming size was decreased with the increasing concentrations of IL‐1β, TNF‐α, or hyperosmotic stress, which was exacerbated when treated simultaneously with pro‐inflammatory factors and hyperosmotic stress. However, the colony‐forming capacity of CESCs recovered more easily from pro‐inflammatory factor treatment than from hyperosmotic stress treatment. Moreover, when compared with pro‐inflammatory factors treatment, hyperosmotic stress treatment caused a more significant increase of apoptotic and necrotic cell numbers and cell cycle arrest in the G2/M phase. Furthermore, the normal ability of corneal epithelial wound healing in the mice model was suppressed by both pro‐inflammatory factors and hyperosmotic stress treatment, and especially severely by hyperosmotic stress treatment. In addition, inflammation combined with hyperosmotic stress treatment induced more serious epithelial repair delays and apoptosis in corneal epithelium. Elevated levels of inflammatory factors were found in hyperosmotic stress‐treated cells and mice corneas, which persisted even during the recovery period. The results suggested that pro‐inflammatory factors cause transient inhibition, while hyperosmotic stress causes severe apoptosis and necrosis, persistent cell cycle arrest of CESCs, and severe corneal wound healing delay. Stem Cells Translational Medicine2019;8:46–57
Collapse
Affiliation(s)
- Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Songmei Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Muchen Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Zhaohua Zhang
- Shandong Lunan Eye Hospital, Linyi, People's Republic of China
| | - Yao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Xiaoping Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| |
Collapse
|
30
|
Genova RM, Meyer KJ, Anderson MG, Harper MM, Pieper AA. Neprilysin inhibition promotes corneal wound healing. Sci Rep 2018; 8:14385. [PMID: 30258206 PMCID: PMC6158251 DOI: 10.1038/s41598-018-32773-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Neprilysin (NEP), an ectoenzyme that modulates inflammation by degrading neuropeptides, was recently identified in the human corneal epithelium. The cornea expresses many NEP substrates, but the function of NEP in homeostatic maintenance and wound healing of the cornea is unknown. We therefore investigated the role of this enzyme under naive and injured conditions using NEP-deficient (NEP-/-) and wild type (WT) control mice. In vivo ocular surface imaging and histological analysis of corneal tissue showed no differences in limbal vasculature or corneal anatomy between naive NEP-/- and WT mice. Histological examination revealed increased corneal innervation in NEP-/- mice. In an alkali burn model of corneal injury, corneal wound healing was significantly accelerated in NEP-/- mice compared to WT controls 3 days after injury. Daily intraperitoneal administration of the NEP inhibitor thiorphan also accelerated corneal wound healing after alkali injury in WT mice. Collectively, our data identify a previously unknown role of NEP in the cornea, in which pharmacologic inhibition of its activity may provide a novel therapeutic option for patients with corneal injury.
Collapse
Affiliation(s)
- Rachel M Genova
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew M Harper
- Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Andrew A Pieper
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA.
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Harrington Discovery Institute, University Hospital Case Medical Center, Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH, USA.
| |
Collapse
|
31
|
Guo ZH, Zhang W, Jia YYS, Liu QX, Li ZF, Lin JS. An Insight into the Difficulties in the Discovery of Specific Biomarkers of Limbal Stem Cells. Int J Mol Sci 2018; 19:ijms19071982. [PMID: 29986467 PMCID: PMC6073450 DOI: 10.3390/ijms19071982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Keeping the integrity and transparency of the cornea is the most important issue to ensure normal vision. There are more than 10 million patients going blind due to the cornea diseases worldwide. One of the effective ways to cure corneal diseases is corneal transplantation. Currently, donations are the main source of corneas for transplantation, but immune rejection and a shortage of donor corneas are still serious problems. Graft rejection could cause transplanted cornea opacity to fail. Therefore, bioengineer-based corneas become a new source for corneal transplantation. Limbal stem cells (LSCs) are located at the basal layer in the epithelial palisades of Vogt, which serve a homeostatic function for the cornea epithelium and repair the damaged cornea. LSC-based transplantation is one of the hot topics currently. Clinical data showed that the ratio of LSCs to total candidate cells for a transplantation has a significant impact on the effectiveness of the transplantation. It indicates that it is very important to accurately identify the LSCs. To date, several putative biomarkers of LSCs have been widely reported, whereas their specificity is controversial. As reported, the identification of LSCs is based on the characteristics of stem cells, such as a nuclear-to-cytoplasm ratio (N/C) ≥ 0.7, label-retaining, and side population (SP) phenotype. Here, we review recently published data to provide an insight into the circumstances in the study of LSC biomarkers. The particularities of limbus anatomy and histochemistry, the limits of the current technology level for LSC isolation, the heterogeneity of LSCs and the influence of enzyme digestion are discussed. Practical approaches are proposed in order to overcome the difficulties in basic and applied research for LSC-specific biomarkers.
Collapse
Affiliation(s)
- Zhi Hou Guo
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Wei Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | | | - Qing Xiu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Zhao Fa Li
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Jun Sheng Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| |
Collapse
|
32
|
Gupta N, Joshi J, Farooqui JH, Mathur U. Results of simple limbal epithelial transplantation in unilateral ocular surface burn. Indian J Ophthalmol 2018; 66:45-52. [PMID: 29283122 PMCID: PMC5778581 DOI: 10.4103/ijo.ijo_602_17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purpose: This study aimed to report the long-term outcomes of autologous Simple Limbal Epithelial Transplantation (SLET) performed for unilateral limbal stem cell deficiency (LSCD) following chemical burn at a tertiary eye center in North India. Methods: This was a single-center prospective interventional case series of patients who developed unilateral LSCD after suffering from ocular surface burns and who underwent SLET between October 2012 and May 2016 with a follow-up period of at least 6 months. The primary outcome measure was restoration of a completely epithelized, stable, and avascular corneal surface. The secondary outcome measure was percentage of eyes, which reported visual gain. Results: The study included 30 eyes of 30 patients, 18 adults and 12 children, at a median follow-up of 1.1 years (range: 6 months to 3.5 years), 21 of 30 eyes (70%; 95% confidence interval, 53.6%–86.2%) maintained successful outcome. Visual acuity gain was seen in 71.4% of successful cases. The clinical factors associated with failure were identified as acid injury, severe symblepharon at the time of presentation, and SLET combined with penetrating keratoplasty (PK). Conclusion: Autologous SLET is an effective limbal cell transplantation technique for the treatment of unilateral LSCD. It is especially beneficial for centers where cell cultivation laboratory is unavailable. Presence of severe symblepharon, which requires PK peroperatively, has poor outcome.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Cornea, External Diseases and Refractive Surgery, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Jagdish Joshi
- Department of Cornea, External Diseases and Refractive Surgery, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Javed Hussain Farooqui
- Department of Cornea, External Diseases and Refractive Surgery, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Umang Mathur
- Department of Cornea, External Diseases and Refractive Surgery, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| |
Collapse
|
33
|
Generation and characterisation of decellularised human corneal limbus. Graefes Arch Clin Exp Ophthalmol 2018; 256:547-557. [PMID: 29392398 DOI: 10.1007/s00417-018-3904-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Limbal epithelial stem cells (LESC) reside in a niche in the corneo-scleral transition zone. Deficiency leads to pain, corneal opacity, and eventually blindness. LESC transplantation of ex-vivo expanded human LESC on a carrier such as human amniotic membrane is a current treatment option. We evaluated decellularised human limbus (DHL) as a potential carrier matrix for the transplantation of LESC. METHODS Human corneas were obtained from the local eye bank. The limbal tissue was decellularised by sodium desoxychelate and DNase solution and sterilised by γ-irradiation. Native limbus- and DHL-surface structures were assessed by scanning electron microscopy and collagen ultrastructure using transmission electron microscopy. Presence and preservation of limbal basement membrane proteins in native limbus and DHL were analysed immunohistochemically. Absence of DNA after decellularisation was assessed by Feulgen staining and DNA quantification. Presence of immune cells was explored by CD45 staining, and potential cytotoxicity was tested using a cell viability assay. RESULTS In the DHL, the DNA content was reduced from 1.5 ± 0.3 μg/mg to 0.15 ± 0.01 μg/mg; the three-dimensional structure and the arrangement of the collagen fibrils were preserved. Main basement membrane proteins such as collagen IV, laminin, and fibronectin were still present after decellularisation and γ-irradiation. CD45-expressing cells were evident neither in the native limbus nor in the DHL. DHL did not convey cytotoxicity. CONCLUSIONS The extracellular matrix (ECM) of the limbus provides a tissue specific morphology and three-dimensionality consisting of particular ECM proteins. It therefore represents a substantial component of the stem cell niche. The DHL provides a specific limbal niche surrounding, and might serve as an easily producible carrier matrix for LESC transplantation.
Collapse
|
34
|
Hynds RE, Bonfanti P, Janes SM. Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol Med 2018; 10:139-150. [PMID: 29288165 PMCID: PMC5801505 DOI: 10.15252/emmm.201708213] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
More than 40 years ago, Howard Green's laboratory developed a method for long-term expansion of primary human epidermal keratinocytes by co-culture with 3T3 mouse embryonic fibroblasts. This was a breakthrough for in vitro cultivation of cells from human skin and later for other epithelia: it led to the first stem cell therapy using cultured cells and has vastly increased our understanding of epithelial stem cell biology. In recent years, new methods to expand epithelial cells as three-dimensional organoids have provided novel means to investigate the functions of these cells in health and disease. Here, we outline the history of stratified epithelial stem cell culture and the application of cultured epithelial cells in clinical therapies. We further discuss the derivation of organoids from other types of epithelia and the challenges that remain for the translation of novel stem cell therapies toward clinical use.
Collapse
Affiliation(s)
- Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Paola Bonfanti
- The Francis Crick Institute, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| |
Collapse
|
35
|
Sun J, Liu WH, Deng FM, Luo YH, Wen K, Zhang H, Liu HR, Wu J, Su BY, Liu YL. Differentiation of rat adipose-derived mesenchymal stem cells into corneal-like epithelial cells driven by PAX6. Exp Ther Med 2018; 15:1424-1432. [PMID: 29434727 PMCID: PMC5774412 DOI: 10.3892/etm.2017.5576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Corneal integrity, transparency and vision acuity are maintained by corneal epithelial cells (CECs), which are continuously renewed by corneal limbal stem cells (LSCs). Deficiency of CECs and/or LSCs is associated with numerous ocular diseases. Paired box (PAX)6 is an eye development-associated transcription factor that is necessary for cell fate determination and differentiation of LSCs and CECs. In the present study, the PAX6 gene was introduced into adipose-derived rat mesenchymal stem cells (ADMSCs) to investigate whether PAX6-transfected cells were able to transdifferentiate into corneal-like epithelial cells and to further verify whether the cells were suitable as a cell source for corneal transplantation. The ADMSCs were isolated from the bilateral inguinal region of healthy Sprague Dawley rats. The characteristics of ADMSCs were identified using flow cytometric analysis. After subculture, ADMSCs underwent transfection with recombinant plasmid containing either PAX6-enhanced green fluorescent protein (EGFP) complementary (c)DNA or EGFP cDNA (blank plasmid group), followed by selection with G418 and determination of the transfection efficiency. Subsequently, the morphology of the ADMSCs and the expression profiles of corneal-specific markers CK3/12 and epithelial-specific adhesion protein were determined. E-cadherin was detected using immunofluorescence staining and western blot analysis at 21 days following transfection. An MTT cell proliferation and a colony formation assay were performed to assess the proliferative activity and clonogenicity of PAX6-transfected ADMSCs. Finally, the PAX6-expressing ADMSCs were transplanted onto the cornea of a rabbits with limbal stem cell deficiency (LSCD). At 21 days after transfection, the ADMSCs with PAX6 transfection exhibited a characteristic flagstone-like appearance with assembled corneal-like epithelial cells, and concomitant prominent expression of the corneal-specific markers cytokeratin 3/12 and E-cadherin. Furthermore, the proliferation and colony formation ability of PAX6-overexpressing ADMSCs was significantly retarded. The transplantation experiment indicated that PAX6-reprogramed ADMSCs attached to and replenished the damaged cornea via formation of stratified corneal epithelium. Taken together, these results suggested that conversion of ADMSCs into corneal-like epithelium may be driven by PAX6 transfection, which makes ADMSCs a promising cell candidate for the treatment of LSCD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei-Hua Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Feng-Mei Deng
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yong-Hui Luo
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ke Wen
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hong Zhang
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hai-Rong Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jiang Wu
- Department of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing-Yin Su
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yi-Lun Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
36
|
Islam MM, Buznyk O, Reddy JC, Pasyechnikova N, Alarcon EI, Hayes S, Lewis P, Fagerholm P, He C, Iakymenko S, Liu W, Meek KM, Sangwan VS, Griffith M. Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. NPJ Regen Med 2018; 3:2. [PMID: 29423280 PMCID: PMC5792605 DOI: 10.1038/s41536-017-0038-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
The severe worldwide shortage of donor organs, and severe pathologies placing patients at high risk for rejecting conventional cornea transplantation, have left many corneal blind patients untreated. Following successful pre-clinical evaluation in mini-pigs, we tested a biomaterials-enabled pro-regeneration strategy to restore corneal integrity in an open-label observational study of six patients. Cell-free corneal implants comprising recombinant human collagen and phosphorylcholine were grafted by anterior lamellar keratoplasty into corneas of unilaterally blind patients diagnosed at high-risk for rejecting donor allografts. They were followed-up for a mean of 24 months. Patients with acute disease (ulceration) were relieved of pain and discomfort within 1–2 weeks post-operation. Patients with scarred or ulcerated corneas from severe infection showed better vision improvement, followed by corneas with burns. Corneas with immune or degenerative conditions transplanted for symptom relief only showed no vision improvement overall. However, grafting promoted nerve regeneration as observed by improved touch sensitivity to near normal levels in all patients tested, even for those with little/no sensitivity before treatment. Overall, three out of six patients showed significant vision improvement. Others were sufficiently stabilized to allow follow-on surgery to restore vision. Grafting outcomes in mini-pig corneas were superior to those in human subjects, emphasizing that animal models are only predictive for patients with non-severely pathological corneas; however, for establishing parameters such as stable corneal tissue and nerve regeneration, our pig model is satisfactory. While further testing is merited, we have nevertheless shown that cell-free implants are potentially safe, efficacious options for treating high-risk patients. A biomaterial implant supports the regeneration of severely damaged corneas in patients at high risk for rejecting conventional transplantation. An international team from Canada, China, India, Sweden, Ukraine and United Kingdom used mini-pigs to confirm the safety of implanting cell-free corneas made from recombinant human collagen and a synthetic lipid, before examining the effects of implantation on human vision in seven patients. The implants were well-tolerated and led to significant vision improvement in patients with damaged corneas due to infection. Furthermore, within two weeks of surgery the implants had relieved pain. Over two years, sensitivity to touch improved, suggesting an ability to promote nerve regeneration. This study supports the use of animal models to test biomaterials designed for medical applications and describes a safe and promising option for treating patients that not treatable by conventional corneal transplantation.
Collapse
Affiliation(s)
- M Mirazul Islam
- 1Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,2Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA USA
| | - Oleksiy Buznyk
- 1Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, Odessa, Ukraine
| | - Jagadesh C Reddy
- 4Tej Kohli Cornea Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Nataliya Pasyechnikova
- Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, Odessa, Ukraine
| | - Emilio I Alarcon
- 5Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON Canada
| | - Sally Hayes
- 6School of Optometry and Vision Sciences College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.,7Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff, UK
| | - Philip Lewis
- 6School of Optometry and Vision Sciences College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.,7Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff, UK
| | - Per Fagerholm
- 1Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Chaoliang He
- 8Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Stanislav Iakymenko
- Filatov Institute of Eye Diseases and Tissue Therapy of the NAMS of Ukraine, Odessa, Ukraine
| | - Wenguang Liu
- 9School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Keith M Meek
- 6School of Optometry and Vision Sciences College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.,7Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff, UK
| | | | - May Griffith
- 1Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,4Tej Kohli Cornea Institute, LV Prasad Eye Institute, Hyderabad, India.,10Department of Ophthalmology and Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Canada
| |
Collapse
|
37
|
Wilson SE, Medeiros CS, Santhiago MR. Pathophysiology of Corneal Scarring in Persistent Epithelial Defects After PRK and Other Corneal Injuries. J Refract Surg 2018; 34:59-64. [PMID: 29315443 PMCID: PMC5788463 DOI: 10.3928/1081597x-20171128-01] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To analyze corneal persistent epithelial defects that occurred at 3 to 4 weeks after -4.50 diopter (D) photorefractive keratectomy (PRK) in rabbits and apply this pathophysiology to the treatment of persistent epithelial defects that occur after any corneal manipulations or diseases. METHODS Two of 168 corneas that had -4.50 D PRK to study epithelial basement membrane regeneration developed spontaneous persistent epithelial defects that did not heal at 3 weeks after PRK. These were studied with slit-lamp photographs, immunohistochemistry for the myofibroblast marker alpha-smooth muscle actin (α-SMA), and transmission electron microscopy. RESULTS Myofibroblasts developed at the stromal surface within the persistent epithelial defect and for a short distance peripheral to the leading edge of the epithelium. No normal epithelial basement membrane was detectable within the persistent epithelial defect or for up to 0.3 mm behind the leading edge of the epithelium, although epithelial basement membrane had normally regenerated in other areas of the zone ablated by an excimer laser where the epithelium healed promptly. CONCLUSIONS A persistent epithelial defect in the cornea results in the development of myofibroblasts and disordered extracellular matrix produced by these cells that together cause opacity within, and a short distance beyond, the persistent epithelial defect. Clinicians should treat persistent epithelial defects within 10 days of non-closure of the epithelium to facilitate epithelial healing to prevent long-term stromal scarring (fibrosis). [J Refract Surg. 2018;34(1):59-64.].
Collapse
|
38
|
Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther 2017; 8:291. [PMID: 29284513 PMCID: PMC5747074 DOI: 10.1186/s13287-017-0738-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) provide a promising cell source for ocular cell replacement therapy, but often lack standardized and xenogeneic-free culture and differentiation protocols. We aimed to develop a xeno- and feeder cell-free culture system for undifferentiated hPSCs along with efficient methods to derive ocular therapy target cells: retinal pigment epithelial (RPE) cells and corneal limbal epithelial stem cells (LESCs). METHODS Multiple genetically distinct hPSC lines were adapted to a defined, xeno-, and feeder-free culture system of Essential 8™ medium and laminin-521 matrix. Thereafter, two-stage differentiation methods toward ocular epithelial cells were established utilizing xeno-free media and a combination of extracellular matrix proteins. Both differentiation methods shared the same basal elements, using only minor inductive modifications during early differentiation towards desired cell lineages. The resulting RPE cells and LESCs were characterized after several independent differentiation experiments and recovery after xeno-free cryopreservation. RESULTS The defined, xeno-, and feeder-free culture system provided a robust means to generate high-quality hPSCs with chromosomal stability limited to early passages. Inductive cues introduced during the first week of differentiation had a substantial effect on lineage specification, cell survival, and even mature RPE properties. Derivative RPE formed functional epithelial monolayers with mature tight junctions and expression of RPE genes and proteins, as well as phagocytosis and key growth factor secretion capacity after 9 weeks of maturation on inserts. Efficient LESC differentiation led to cell populations expressing LESC markers such as p40/p63α by day 24. Finally, we established xeno-free cryobanking protocols for pluripotent hPSCs, hPSC-RPE cells, and hPSC-LESCs, and demonstrated successful recovery after thawing. CONCLUSIONS We propose methods for efficient and scalable, directed differentiation of high-quality RPE cells and LESCs. The two clinically relevant cell types are generated with simple inductive modification of the same basal method, followed by adherent culture, passaging, and cryobanking.
Collapse
Affiliation(s)
- Heidi Hongisto
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Tanja Ilmarinen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Meri Vattulainen
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Alexandra Mikhailova
- Department of Ophthalmology, SILK, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Finnish Federation of the Visually Impaired, Helsinki, Finland
| | - Heli Skottman
- BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
39
|
Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017; 35:2105-2114. [PMID: 28748596 PMCID: PMC5637932 DOI: 10.1002/stem.2667] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Andrei A. Kramerov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
| | - Clive N. Svendsen
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Alexander V. Ljubimov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|