1
|
Pronoy TUH, Islam F, Gopalan V, Lam AKY. Surface Markers for the Identification of Cancer Stem Cells. Methods Mol Biol 2024; 2777:51-69. [PMID: 38478335 DOI: 10.1007/978-1-0716-3730-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cancer stem cells have genetic and functional characteristics which can turn them resistant to standard cancer therapeutic targets. Identification of these cells is challenging and is done mainly by detecting the expression of antigens specific to stem cells. Currently, there is a significant number of surface markers available which can detect cancer stem cells by directly targeting the specific antigens present in cells. These markers possess differential expression patterns and sub-localizations in cancer stem cells compared to nonneoplastic and somatic cells. In addition to these biomarkers, multiple analytical methods and techniques, including functional assays, cell sorting, filtration approaches, and xenotransplantation methods, are used to identify cancer stem cells. This chapter will overview the functional significance of cancer stem cells, their biological correlations, specific markers, and detection methods.
Collapse
Affiliation(s)
- Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
2
|
Hasan R, Srivastava G, Alyass A, Sharma R, Saraya A, Chattopadhyay TK, DattaGupta S, Walfish PG, Chauhan SS, Ralhan R. Prediction of recurrence free survival for esophageal cancer patients using a protein signature based risk model. Oncotarget 2022; 13:1020-1032. [PMID: 36128326 PMCID: PMC9477219 DOI: 10.18632/oncotarget.10656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Biomarkers to predict the risk of disease recurrence in Esophageal squamous cell carcinoma (ESCC) patients are urgently needed to improve treatment. We developed proteins expression-based risk model to predict recurrence free survival for ESCC patients. METHODS Alterations in Wnt pathway components expression and subcellular localization were analyzed by immunohistochemistry in 80 ESCCs, 61 esophageal dysplastic and 47 normal tissues; correlated with clinicopathological parameters and clinical outcome over 86 months by survival analysis. Significant prognostic factors were identified by multivariable Cox regression analysis. RESULTS Biomarker signature score based on cytoplasmic β-catenin, nuclear c-Myc, nuclear DVL and membrane α-catenin was associated with recurrence free survival [Hazard ratio = 1.11 (95% CI = 1.05, 1.17), p < 0.001, C-index = 0.68] and added significant prognostic value over clinical parameters (p < 0.001). The inclusion of Slug further improved prognostic utility (p < 0.001, C-index = 0.71). Biomarker Signature Scoreslug improved risk classification abilities for clinical outcomes at 3 years, accurately predicting recurrence in 79% patients in 1 year and 97% in 3 years in high risk group; 73% patients within low risk group did not have recurrence in 1 year, with AUC of 0.76. CONCLUSIONS Our comprehensive risk model predictive for recurrence allowed us to determine the robustness of our biomarker panel in stratification of ESCC patients at high or low risk of disease recurrence; high risk patients are stratified for more rigorous personalized treatment while the low risk patients may be spared from harmful side effects of toxic therapy.
Collapse
Affiliation(s)
- Raghibul Hasan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Gunjan Srivastava
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Akram Alyass
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha Univesity, Dwarka, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Tushar K. Chattopadhyay
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Siddartha DattaGupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Paul G. Walfish
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology – Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shyam S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ranju Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology – Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Otolaryngology – Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Cui MY, Yi X, Cao ZZ, Zhu DX, Wu J. Targeting Strategies for Aberrant Lipid Metabolism Reprogramming and the Immune Microenvironment in Esophageal Cancer: A Review. JOURNAL OF ONCOLOGY 2022; 2022:4257359. [PMID: 36106333 PMCID: PMC9467784 DOI: 10.1155/2022/4257359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
Esophageal cancer is of high importance to occurrence, development, and treatment resistance. As evidenced by recent studies, pathways (e.g., Wnt/β-catenin, AMPK, and Hippo) are critical to the proliferation, differentiation, and self-renewal of esophageal cancer. In addition, the above pathways play a certain role in regulating esophageal cancer and act as potential therapeutic targets. Over the past few years, the function of lipid metabolism in controlling tumor cells and immune cells has aroused extensive attention. It has been reported that there are intricate interactions between lipid metabolism reprogramming between immune and esophageal cancer cells, whereas molecular mechanisms should be studied in depth. Immune cells have been commonly recognized as a vital player in the esophageal cancer microenvironment, having complex crosstalk with cancer cells. It is increasingly evidenced that the function of immune cells in the tumor microenvironment (TME) is significantly correlated with abnormal lipid metabolism. In this review, the latest findings in lipid metabolism reprogramming in TME are summarized, and the above findings are linked to esophageal cancer progression. Aberrant lipid metabolism and associated signaling pathways are likely to serve as a novel strategy to treat esophageal cancer through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Meng-Ying Cui
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xing Yi
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Zhen-Zhen Cao
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Dan-Xia Zhu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Wu
- Department of Oncology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
4
|
Javid H, Afshari AR, Zahedi Avval F, Asadi J, Hashemy SI. Aprepitant Promotes Caspase-Dependent Apoptotic Cell Death and G2/M Arrest through PI3K/Akt/NF- κB Axis in Cancer Stem-Like Esophageal Squamous Cell Carcinoma Spheres. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8808214. [PMID: 34926694 PMCID: PMC8677400 DOI: 10.1155/2021/8808214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022]
Abstract
The antagonists of the neurokinin-1 receptor (NK1R) are known for their anti-inflammatory, anxiolytic, antiemetic, and anticancer activities. Aprepitant, a nonpeptide NK1R antagonist, is used in nausea and vomiting, the most common side effects of cancer chemotherapy in patients. It has been established that NK1R activation by substance P (SP), which links cancer promotion and progression to a neurokinin-mediated environment, became one mechanism that corresponds to the mitogenesis of tumor cells. Therefore, this study is aimed at explaining and evaluating the anticancer impacts of aprepitant on esophageal squamous cancer cell (ESCC) spheres by using in vitro experiments, such as resazurin, ROS, annexin-V binding, RT-PCR, and Western blot analysis. As a result, we showed that aprepitant had strong antiproliferative and cytotoxic effects on ESCC cell spheres. Also, aprepitant caused significant G2-M cell cycle arrest depending on concentration increase. Further, exposure of cells to this agent resulted in caspase -8/-9-dependent apoptotic pathway activation by modifying the expression of genes involved in apoptosis. Besides, treatment of the cells by aprepitant abrogates of the PI3K/Akt pathway, as shown by reducing the level of Akt, induces apoptotic cell death. In summary, pharmacological inhibition of NK1R with aprepitant seems to have a significant chance of treating ESCC as a single agent or in conjunction with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Laboratory Sciences Department, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, Reynolds JV. The tumour immune microenvironment in oesophageal cancer. Br J Cancer 2021; 125:479-494. [PMID: 33903730 PMCID: PMC8368180 DOI: 10.1038/s41416-021-01331-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.
Collapse
Affiliation(s)
- Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Robert Power
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
6
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Chivu-Economescu M, Necula LG, Matei L, Dragu DL, Neagu AI, Alexiu I, Bleotu C, Diaconu CC. Gastrointestinal cancer stem cells as targets for innovative immunotherapy. World J Gastroenterol 2020; 26:1580-1593. [PMID: 32327907 PMCID: PMC7167409 DOI: 10.3748/wjg.v26.i14.1580,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 03/14/2020] [Indexed: 01/27/2025] Open
Abstract
The role of cancer stem cells in gastrointestinal cancer-associated death has been widely recognized. Gastrointestinal cancer stem cells (GCSCs) are considered to be responsible for tumor initiation, growth, resistance to cytotoxic therapies, recurrence and metastasis due to their unique properties. These properties make the current therapeutic trials against GCSCs ineffective. Moreover, recent studies have shown that targeting stem cell surface markers or stemness associated pathways might have an additional off-target effect on the immune system. Recent advances in oncology and precision medicine have opened alternative therapeutic strategies in the form of cancer immunotherapy. This approach differs from classical anti-cancer therapy through its mechanism of action involving the activation and use of a functional immune system against tumor cells, instead of aiming physically destruction of cancer cells through radio- or chemotherapy. New immunological approaches for GCSCs targeting involve the use of different immune cells and various immune mechanisms like targeting specific surface antigens, using innate immune cells like the natural killer and T cells, T-cell chimeric antigen receptor technology, dendritic cell vaccine, or immune checkpoint inhibitors. In this respect, better understandings of immune regulatory mechanisms that govern anti-tumor response bring new hope in obtaining long-term remission for cancer therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cancer Vaccines/administration & dosage
- Combined Modality Therapy/methods
- Dendritic Cells/immunology
- Drug Resistance, Neoplasm/immunology
- Gastrointestinal Neoplasms/immunology
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/therapy
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tumor Escape/drug effects
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania.
| | - Laura G Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Denisa Laura Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Ana I Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Irina Alexiu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| |
Collapse
|
8
|
Chivu-Economescu M, Necula LG, Matei L, Dragu DL, Neagu AI, Alexiu I, Bleotu C, Diaconu CC. Gastrointestinal cancer stem cells as targets for innovative immunotherapy. World J Gastroenterol 2020; 26:1580-1593. [PMID: 32327907 PMCID: PMC7167409 DOI: 10.3748/wjg.v26.i14.1580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The role of cancer stem cells in gastrointestinal cancer-associated death has been widely recognized. Gastrointestinal cancer stem cells (GCSCs) are considered to be responsible for tumor initiation, growth, resistance to cytotoxic therapies, recurrence and metastasis due to their unique properties. These properties make the current therapeutic trials against GCSCs ineffective. Moreover, recent studies have shown that targeting stem cell surface markers or stemness associated pathways might have an additional off-target effect on the immune system. Recent advances in oncology and precision medicine have opened alternative therapeutic strategies in the form of cancer immunotherapy. This approach differs from classical anti-cancer therapy through its mechanism of action involving the activation and use of a functional immune system against tumor cells, instead of aiming physically destruction of cancer cells through radio- or chemotherapy. New immunological approaches for GCSCs targeting involve the use of different immune cells and various immune mechanisms like targeting specific surface antigens, using innate immune cells like the natural killer and T cells, T-cell chimeric antigen receptor technology, dendritic cell vaccine, or immune checkpoint inhibitors. In this respect, better understandings of immune regulatory mechanisms that govern anti-tumor response bring new hope in obtaining long-term remission for cancer therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cancer Vaccines/administration & dosage
- Combined Modality Therapy/methods
- Dendritic Cells/immunology
- Drug Resistance, Neoplasm/immunology
- Gastrointestinal Neoplasms/immunology
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/therapy
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Tumor Escape/drug effects
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Laura G Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
- Nicolae Cajal Institute, Titu Maiorescu University, Bucharest 040441, Romania
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Denisa Laura Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Ana I Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Irina Alexiu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| |
Collapse
|
9
|
Zhang W, Williams TA, Bhagwath AS, Hiermann JS, Peacock CD, Watkins DN, Ding P, Park JY, Montgomery EA, Forastiere AA, Jie C, Cantarel BL, Pham TH, Wang DH. GEAMP, a novel gastroesophageal junction carcinoma cell line derived from a malignant pleural effusion. J Transl Med 2020; 100:16-26. [PMID: 31292541 PMCID: PMC6920545 DOI: 10.1038/s41374-019-0278-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastroesophageal junction (GEJ) cancer remains a clinically significant disease in Western countries due to its increasing incidence, which mirrors that of esophageal cancer, and poor prognosis. To develop novel and effective approaches for prevention, early detection, and treatment of patients with GEJ cancer, a better understanding of the mechanisms driving pathogenesis and malignant progression of this disease is required. These efforts have been limited by the small number of available cell lines and appropriate preclinical animal models for in vitro and in vivo studies. We have established and characterized a novel GEJ cancer cell line, GEAMP, derived from the malignant pleural effusion of a previously treated GEJ cancer patient. Comprehensive genetic analyses confirmed a clonal relationship between GEAMP cells and the primary tumor. Targeted next-generation sequencing identified 56 nonsynonymous alterations in 51 genes including TP53 and APC, which are commonly altered in GEJ cancer. In addition, multiple copy-number alterations were found including EGFR and K-RAS gene amplifications and loss of CDKN2A and CDKN2B. Histological examination of subcutaneous flank xenografts in nude and NOD-SCID mice showed a carcinoma with mixed squamous and glandular differentiation, suggesting GEAMP cells contain a subpopulation with multipotent potential. Finally, pharmacologic inhibition of the EGFR signaling pathway led to downregulation of key downstream kinases and inhibition of cell proliferation in vitro. Thus, GEAMP represents a valuable addition to the limited number of bona fide GEJ cancer cell lines.
Collapse
Affiliation(s)
- Wei Zhang
- Esophageal Diseases Center and Division of Hematology-Oncology, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor A. Williams
- Esophageal Diseases Center and Division of Hematology-Oncology, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ankur S. Bhagwath
- Esophageal Diseases Center and Division of Hematology-Oncology, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jared S. Hiermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Craig D. Peacock
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - D. Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Peiguo Ding
- Esophageal Diseases Center and Division of Hematology-Oncology, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Y. Park
- Department of Pathology and the Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth A. Montgomery
- Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Arlene A. Forastiere
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA, USA
| | - Brandi L. Cantarel
- Bioinformatics Core Facility, Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thai H. Pham
- Esophageal Diseases Center and Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA,VA North Texas Health Care System, Dallas, TX, USA
| | - David H. Wang
- Esophageal Diseases Center and Division of Hematology-Oncology, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,VA North Texas Health Care System, Dallas, TX, USA
| |
Collapse
|
10
|
Yao F, Yu J, He Y, Liu J, Li H, Liu Q, Long H, Wu Q. Primary impact of Gli1 on radioresistance in esophageal cancer. Oncol Lett 2019; 18:4825-4833. [PMID: 31611993 PMCID: PMC6781776 DOI: 10.3892/ol.2019.10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/26/2019] [Indexed: 01/02/2023] Open
Abstract
Radioresistance is the primary cause for the low efficacy of radiotherapy in the treatment of esophageal cancer (EC). Increasing evidence has demonstrated that the Sonic Hedgehog (Shh) signaling pathway may be involved in the pathology of various tumors, including EC. The present study aimed to examine the association between radioresistance in EC and the Sonic Hedgehog pathway, and to determine whether a downstream transcription factor of the Shh pathway, glioma-associated oncogene family zinc finger 1 (Gli1), serves a primary role in radioresistance. The radiation-resistant cell line Eca109R was established by repeated low dose (cumulative dose 60 Gy) irradiation of the human EC cell line Eca109. The level of cell radiosensitivity was determined by colony formation assay, and the localization of Gli1 was detected using immunofluorescence. Western blotting was used to determine the protein expression levels of Gli1, Shh, patched 1 (Ptch) and smoothened frizzled class receptor (Smo) in the two cell lines. Significantly higher levels of Gli1 were identified in the Eca109R cell line compared with those inEca109 cells (P<0.05). Additionally, western blotting analysis demonstrated an increased expression level of the Gli1, Shh, Ptch and Smo proteins in Eca109R, compared with Eca109 cells (P<0.05). Overexpression of Gli1 in the parental cell line led to decreased levels of radiosensitivity and radiosensitivity of the radioresistant cell line was restored through knockdown of Gli1. The present study demonstrated that Gli1 may be associated with the development of radioresistance in EC.
Collapse
Affiliation(s)
- Fei Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Jinjing Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Yulin He
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jiaqi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Huan Li
- Department of Gastroenterology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qun Liu
- Department of Gastroenterology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Hui Long
- Department of Gastroenterology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qingming Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
11
|
Expression of FGF8, FGF18, and FGFR4 in Gastroesophageal Adenocarcinomas. Cells 2019; 8:cells8091092. [PMID: 31527546 PMCID: PMC6770911 DOI: 10.3390/cells8091092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/09/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Even though distinctive advances in the field of esophageal cancer therapy have occurred over the last few years, patients' survival rates remain poor. FGF8, FGF18, and FGFR4 have been identified as promising biomarkers in a number of cancers; however no data exist on expression of FGF8, FGF18, and FGFR4 in adenocarcinomas of the esophago-gastric junction (AEG). A preliminary analysis of the Cancer Genome Atlas (TCGA) database on FGF8, FGF18, and FGFR4 mRNA expression data of patients with AEG was performed. Furthermore, protein levels of FGF8, FGF18, and FGFR4 in diagnostic biopsies and post-operative specimens in neoadjuvantly treated and primarily resected patients using immunohistochemistry were investigated. A total of 242 patients was analyzed in this study: 87 patients were investigated in the TCGA data set analysis and 155 patients in the analysis of protein expression using immunohistochemistry. High protein levels of FGF8, FGF18, and FGFR4 were detected in 94 (60.7%), 49 (31.6%) and 84 (54.2%) patients, respectively. Multivariable Cox proportional hazard regression models revealed that high expression of FGF8 was an independent prognostic factor for diminished overall survival for all patients and for neoadjuvantly treated patients. By contrast, FGF18 overexpression was significantly associated with longer survival rates in neoadjuvantly treated patients. In addition, FGF8 protein level correlated with Mandard regression due to neoadjuvant therapy, indicating potential as a predictive marker. In summary, FGF8 and FGF18 are promising candidates for prognostic factors in adenocarcinomas of the esophago-gastric junction and new potential targets for new anti-cancer therapies.
Collapse
|
12
|
Su M, Xiao Y, Ma J, Cao D, Zhou Y, Wang H, Liao Q, Wang W. Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol 2018; 11:118. [PMID: 30223861 PMCID: PMC6142629 DOI: 10.1186/s13045-018-0663-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related death worldwide. The lack of early diagnostic biomarkers and effective prognostic indicators for metastasis and recurrence has resulted in the poor prognosis of EC. In addition, the underlying molecular mechanisms of EC development have yet to be elucidated. Accumulating evidence has demonstrated that lncRNAs play a vital role in the pathological progression of EC. LncRNAs may regulate gene expression through the recruitment of histone-modifying complexes to the chromatin and through interactions with RNAs or proteins. Recent evidence has demonstrated that the dysregulation of lncRNAs plays important roles in the proliferation, metastasis, invasion, angiogenesis, apoptosis, chemoradiotherapy resistance, and stemness of EC, which suggests potential clinical implications. In this review, we highlight the emerging roles and regulatory mechanisms of lncRNAs in the context of EC and discuss their potential clinical applications as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China. .,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, 410001, Hunan, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Deliang Cao
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Wang
- Department of Thoracic Radiotherapy, Key laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qianjin Liao
- Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Masuike Y, Tanaka K, Makino T, Yamasaki M, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Mori M, Doki Y. Esophageal squamous cell carcinoma with low mitochondrial copy number has mesenchymal and stem-like characteristics, and contributes to poor prognosis. PLoS One 2018; 13:e0193159. [PMID: 29447301 PMCID: PMC5814088 DOI: 10.1371/journal.pone.0193159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
Alterations in mitochondrial DNA (mtDNA) copy numbers in various human cancers have been studied, but any such changes in esophageal squamous cell carcinoma (ESCC) are not established. In the present study, we investigated the correlation of mtDNA copy number with clinicopathologic features, prognosis, and malignant potential of ESCC. MtDNA copy numbers of resected specimens from 80 patients treated with radical esophagectomy were measured by quantitative real-time PCR analyses. Human ESCC cells, TE8 and TE11, were cultured, and depletion of mtDNA content was induced by knockdown of mitochondrial transcription factor A expression or treatment with ethidium bromide. The mRNA and protein expression, proliferation, invasion, and cell cycle were investigated. The results showed that the mtDNA copy number of cancerous portions was 56.0 (37.4-234.5) percent that of non-cancerous parts and significantly lower (p<0.01). Low mtDNA copy number in resected cancerous tissues was significantly correlated with pathological depth of tumor invasion (p = 0.045) and pathological stage (p = 0.025). Patients with lower mtDNA copy number had significantly poorer 5-year overall survival compared to patients with higher levels (p<0.01). The mtDNA-depleted TE8 and TE11 cells had morphological changes and proliferated more slowly than control cells under normoxia but proliferated at almost the same rate under hypoxic conditions. In mtDNA-depleted cells, E-cadherin mRNA expression was decreased, and N-cadherin, vimentin, zeb-1, and cd44 mRNA expression was increased. Immunoblotting and flow cytometry analysis also showed downregulated E-cadherin and upregulated N-cadherin and CD44 protein in mtDNA-depleted cells. Moreover, mtDNA-depleted cells had enhanced invasion, migration, and sphere formation abilities, and the cell cycle arrest at G0/G1 phase was induced in these cells. These results suggested that mtDNA-depleted ESCC cells had mesenchymal characteristics, cancer stemness, and tolerance to hypoxia, which played important role in cancer progression. In conclusion, a low copy number of mtDNA is associated with tumor progression in ESCC.
Collapse
Affiliation(s)
- Yasunori Masuike
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Maehara O, Suda G, Natsuizaka M, Ohnishi S, Komatsu Y, Sato F, Nakai M, Sho T, Morikawa K, Ogawa K, Shimazaki T, Kimura M, Asano A, Fujimoto Y, Ohashi S, Kagawa S, Kinugasa H, Naganuma S, Whelan KA, Nakagawa H, Nakagawa K, Takeda H, Sakamoto N. Fibroblast growth factor-2-mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma. Carcinogenesis 2017; 38:1073-1083. [PMID: 28927233 PMCID: PMC5862278 DOI: 10.1093/carcin/bgx095] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/11/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022] Open
Abstract
In esophageal squamous cell carcinoma (ESCC), a subset of cells defined by high expression of CD44 and low expression of CD24 has been reported to possess characteristics of cancer stem-like cells (CSCs). Novel therapies directly targeting CSCs have the potential to improve prognosis of ESCC patients. Although fibroblast growth factor-2 (FGF-2) expression correlates with recurrence and poor survival in ESCC patients, the role of FGF-2 in regulation of ESCC CSCs has yet to be elucidated. We report that FGF-2 is significantly upregulated in CSCs and significantly increases CSC content in ESCC cell lines by inducing epithelial-mesenchymal transition (EMT). Conversely, the FGFR inhibitor, AZD4547, sharply diminishes CSCs via induction of mesenchymal-epithelial transition. Further experiments revealed that MAPK/Erk kinase (Mek)/extracellular signal-regulated kinases (Erk) pathway is crucial for FGF-2-mediated CSC regulation. Pharmacological inhibition of FGF receptor (FGFR)-mediated signaling via AZD4547 did not affect CSCs in Ras mutated cells, implying that Mek/Erk pathway, downstream of FGFR signaling, might be an important regulator of CSCs. Indeed, the Mek inhibitor, trametinib, efficiently suppressed ESCC CSCs even in the context of Ras mutation. Consistent with these findings in vitro, xenotransplantation studies demonstrated that inhibition of FGF-2-mediated FGFR/Erk signaling significantly delayed tumor growth. Taken together, these findings indicate that FGF-2 is an essential factor regulating CSCs via Mek/Erk signaling in ESCC. Additionally, inhibition of FGFR and/or Mek signaling represents a potential novel therapeutic option for targeting CSCs in ESCC.
Collapse
Affiliation(s)
- Osamu Maehara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Internal Medicine, Natsuizaka clinic, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshito Komatsu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Fumiyuki Sato
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoe Shimazaki
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ayaka Asano
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Yoshiyuki Fujimoto
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Kagawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi, Japan
| | - Kelly A Whelan
- Gastroenterology Division, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Koji Nakagawa
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Hokkaido University Graduate School of Pharmaceutical Science, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
15
|
Wang J, Zhang B, Meng J, Xiao G, Li X, Li G, Qin S, Du N, Zhang J, Zhang J, Xu C, Tang SC, Liang R, Ren H, Sun X. Analysis of risk factors for post-operative complications and prognostic predictors of disease recurrence following definitive treatment of patients with esophageal cancer from two medical centers in Northwest China. Exp Ther Med 2017; 14:2584-2594. [PMID: 28962198 PMCID: PMC5609247 DOI: 10.3892/etm.2017.4835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Evaluating the clinicopathological features of patients receiving definitive treatment for esophageal cancer may facilitate the identification of patterns and factors associated with post-operative complications, and enable the development of a surveillance strategy for surviving patients at a higher risk of disease recurrence. In the present study, clinical data from 579 patients with esophageal cancer that underwent radical resection of esophagus were collected. These patients were admitted to two medical centers in Northwest China, and information regarding the presence or absence of basic chronic diseases and post-operative results were retrospectively analyzed. The level of selected stem cell markers, including aldehyde dehydrogenase 1, CD133, integrin subunit α 6, integrin subunit β 4 and T-cell factor-4, were determined in esophageal cancer tissue samples in order to determine whether these markers may be useful predictors of disease prognosis and recurrence. Post-operative complications in patients receiving radical resection of the esophagus included respiratory system complications, cardiovascular abnormalities and esophageal anastomotic fistulae. Diabetes, basic respiratory disease and lower pre-surgical serum albumin levels were observed to be individual risk factors associated with post-operative complications, including respiratory system complications of acute respiratory failure and pulmonary infection, cardiovascular abnormalities of atrial fibrillation and arrhythmia, as well as the development of esophageal anastomotic fistulae. Diagnosis of esophageal cancer at later stage was significantly correlated with anastomotic fistula. Molecular detection of stem cell markers for prognosis prediction was achieved by immunohistochemical and immunofluorescence staining assays. The results demonstrated that the presence of stem-like cells in cancer tissues was associated with poor disease prognosis and a high recurrence ratio. In conclusion, the results of the current study suggested that post-operative complications were more likely to occur in patients with diabetes, basic respiratory disease or lower serum albumin levels prior to surgery. Therefore, sufficient intensive peri-operative care, rigorous operative risk assessments, and the selection of the patients with early or mid-stage esophageal cancer, may decrease the risk of post-surgical complications in patients receiving radical resection of the esophagus. In addition, a high ratio of esophageal cancer stem-like cells was associated with cancer recurrence. These results suggest that an intensive surveillance strategy should be implemented in order to facilitate early detection of disease recurrence and improve the clinical management of these patients post-surgery.
Collapse
Affiliation(s)
- Jichang Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Boxiang Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinying Meng
- Department of Surgery Oncology, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, P.R. China
| | - Guodong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Solid Tumor Clinical Trials, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cancer Biology, Cancer Institute and Hospial, Tianjin Medical University, Tianjin, Hebei 300060, P.R. China
| | - Rui Liang
- Department of Hepatobiliary Chest Surgery, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710066, P.R. China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|