1
|
Pham DT, Park J, Vu PC, Tieu MV, Park S, Le HNT, Hoang TX, Kim JY, Cho S. Real-Time Impedimetric Monitoring of 3D Cancer Spheroids Using a PDA-Functionalized Microelectrode Platform Integrated with Graphene Quantum Dot-Based Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40408564 DOI: 10.1021/acsami.5c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
We describe a bioelectronic interface that combines indium tin oxide (ITO) microelectrode integrated with polydimethylsiloxane (PDMS) microwells to allow real-time monitoring of tumor responses in three dimensions (3D). This design combines PDMS microwells with an ITO microelectrode array that has been improved by polydopamine (PDA) polymerization to make it more biocompatible. The present study employed a unique nanocomposite, Cryptotanshinone (CPT) conjugated to graphene quantum dots (GQDs), exhibiting remarkable anticancer characteristics. The stability and targeted distribution of CPT were significantly enhanced by GQDs, hence amplifying its antiproliferative actions. Real-time resistance measurements revealed substantial differences in the half-maximal inhibitory concentrations (IC50) of the two-dimensional (2D) and 3D cancer models, with values of 0.62 ± 0.14 and 1.47 ± 0.16 μg/mL, respectively. Comprehensive materials characterization and biological validation through gene expression and flow cytometry confirmed the platform's reliability. This materials-centric approach establishes a robust interface between biological systems and electronic monitoring, offering possibilities for drug screening applications.
Collapse
Affiliation(s)
- Duc-Trung Pham
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - JaeHwan Park
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Phu Chi Vu
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Sungho Park
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hien Ngoc Thi Le
- Sersense, Inc., One Discovery Square, Rochester, Minnesota 55902, United States
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
2
|
McDonald TO, Bruno S, Roney JP, Zervantonakis IK, Michor F. BESTDR: Bayesian quantification of mechanism-specific drug response in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636681. [PMID: 39975018 PMCID: PMC11839102 DOI: 10.1101/2025.02.05.636681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding drug responses at the cellular level is essential for elucidating mechanisms of action and advancing preclinical drug development. Traditional dose-response models rely on simplified metrics, limiting their ability to quantify parameters like cell division, death, and transition rates between cell states. To address these limitations, we developed Bayesian Estimation of STochastic processes for Dose-Response (BESTDR), a novel framework modeling cell growth and treatment response dynamics to estimate concentration-response relationships using longitudinal cell count data. BESTDR quantifies rates in multi-state systems across multiple cell lines using hierarchical modeling to support high-throughput screening. We validated BESTDR with synthetic and experimental datasets, demonstrating its robustness and accuracy in estimating drug response. By integrating mechanistic modeling of cytotoxic, cytostatic and other effects, BESTDR enhances dose-response studies, facilitating robust drug comparisons and mechanism-specific analyses. BESTDR offers a versatile tool for early-stage preclinical research, paving the way for drug discovery and informed experimental design.
Collapse
Affiliation(s)
- Thomas O. McDonald
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simone Bruno
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James P. Roney
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, UPMC Hillman Cancer Center, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Söğüt F, Uzun C, Kibar D, Çömelekoğlu Ü. Investigation of the role of K ATP channels in the cytotoxic effect of cypermethrin on rat-derived aortic smooth muscle cells. Drug Chem Toxicol 2024; 47:1218-1225. [PMID: 38747368 DOI: 10.1080/01480545.2024.2352082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 11/21/2024]
Abstract
We investigate role of ATP sensitive potassium (KATP) channel in cytotoxic effect of cypermethrin on rat aortic smooth muscle cells. Cytotoxicity analysis was performed at 0, 0.1, 0.5, 10, 50, and 100 µM concentrations of cypermethrin and the cell index (CI) was calculated. KATP currents were recorded using patch clamp technique for 50 and 100 µM concentrations and channel conductivity was determined by obtaining current-voltage characteristics. No cytotoxic effect was observed in the first 72 hours. At the 96th hour, only at 100 µM concentration, the CI value decreased significantly compared to control group and at 120 and 144th hours, it was observed that the CI value decreased significantly at all concentrations. Currents and conductivities were significantly decreased at 50 and 100 µM concentrations. Results gave clues that cypermethrin causes a cytotoxic effect on vascular smooth muscles and that KATP channels may have a role in the emergence of this effect.
Collapse
Affiliation(s)
- Fatma Söğüt
- Department of Medical Services and Techniques, Vocational School of Medical Services, Mersin University, Mersin, Turkey
| | - Coşar Uzun
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Deniz Kibar
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Charmarke-Askar I, Spenlé C, Bagnard D. Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies. Expert Opin Drug Discov 2024; 19:1115-1124. [PMID: 39039755 DOI: 10.1080/17460441.2024.2382180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs. AREAS COVERED In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation. EXPERT OPINION None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.
Collapse
|
5
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping. ACS NANO 2024; 18:22874-22887. [PMID: 39148286 PMCID: PMC12020776 DOI: 10.1021/acsnano.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT6 give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Sarah Lyons
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| | - Amanda Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912 USA
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881 USA
| |
Collapse
|
6
|
Chan YJ, Dileep D, Rothstein SM, Cochran EW, Reuel NF. Single-Use, Metabolite Absorbing, Resonant Transducer (SMART) Culture Vessels for Label-Free, Continuous Cell Culture Progression Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401260. [PMID: 38900081 PMCID: PMC11348071 DOI: 10.1002/advs.202401260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Secreted metabolites are an important class of bio-process analytical technology (PAT) targets that can correlate to cell conditions. However, current strategies for measuring metabolites are limited to discrete measurements, resulting in limited understanding and ability for feedback control strategies. Herein, a continuous metabolite monitoring strategy is demonstrated using a single-use metabolite absorbing resonant transducer (SMART) to correlate with cell growth. Polyacrylate is shown to absorb secreted metabolites from living cells containing hydroxyl and alkenyl groups such as terpenoids, that act as a plasticizer. Upon softening, the polyacrylate irreversibly conformed into engineered voids above a resonant sensor, changing the local permittivity which is interrogated, contact-free, with a vector network analyzer. Compared to sensing using the intrinsic permittivity of cells, the SMART approach yields a 20-fold improvement in sensitivity. Tracking growth of many cell types such as Chinese hamster ovary, HEK293, K562, HeLa, and E. coli cells as well as perturbations in cell proliferation during drug screening assays are demonstrated. The sensor is benchmarked to show continuous measurement over six days, ability to track different growth conditions, selectivity to transducing active cell growth metabolites against other components found in the media, and feasibility to scale out for high throughput campaigns.
Collapse
Affiliation(s)
- Yee Jher Chan
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | - Dhananjay Dileep
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | | | - Eric W. Cochran
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | - Nigel F. Reuel
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
- Skroot Laboratory IncAmesIA50010USA
| |
Collapse
|
7
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning Assisted Spectral Fingerprinting for Immune Cell Phenotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583608. [PMID: 38496523 PMCID: PMC10942323 DOI: 10.1101/2024.03.05.583608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool, adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Through the use of Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages as compared to M2 and naïve phenotypes. NIR fluorescence data also indicate that distinctive intra-endosomal environments of these cell types give rise to significant differences in many optical features such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of > 95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications such as cell phenotyping or mapping intra-endosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT 6 give rise to more improved model accuracy (> 87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation. TOC Graphic
Collapse
|
8
|
Ciavolella G, Ferrand N, Sabbah M, Perthame B, Natalini R. A Model for Membrane Degradation Using a Gelatin Invadopodia Assay. Bull Math Biol 2024; 86:30. [PMID: 38347328 DOI: 10.1007/s11538-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
One of the most crucial and lethal characteristics of solid tumors is represented by the increased ability of cancer cells to migrate and invade other organs during the so-called metastatic spread. This is allowed thanks to the production of matrix metalloproteinases (MMPs), enzymes capable of degrading a type of collagen abundant in the basal membrane separating the epithelial tissue from the connective one. In this work, we employ a synergistic experimental and mathematical modelling approach to explore the invasion process of tumor cells. A mathematical model composed of reaction-diffusion equations describing the evolution of the tumor cells density on a gelatin substrate, MMPs enzymes concentration and the degradation of the gelatin is proposed. This is completed with a calibration strategy. We perform a sensitivity analysis and explore a parameter estimation technique both on synthetic and experimental data in order to find the optimal parameters that describe the in vitro experiments. A comparison between numerical and experimental solutions ends the work.
Collapse
Affiliation(s)
- Giorgia Ciavolella
- Inria Centre de l'Université de Bordeaux, Institut de Mathématiques de Bordeaux, CNRS UMR 5251, 351 cours de la Libération, 33405, Talence Cedex, France.
| | - Nathalie Ferrand
- Sorbonne Université Cancer Biology and Therapeutics, INSERM, CNRS, Institut Universitaire de Cancérologie, Saint- Antoine Research Center (CRSA), 75012, Paris, France
| | - Michéle Sabbah
- Sorbonne Université Cancer Biology and Therapeutics, INSERM, CNRS, Institut Universitaire de Cancérologie, Saint- Antoine Research Center (CRSA), 75012, Paris, France
| | - Benoît Perthame
- Sorbonne Université, Inria, Université de Paris, Laboratoire Jacques-Louis Lions, UMR7598, 4 place Jussieu, 75005, Paris, France
| | - Roberto Natalini
- Istituto per le Applicazioni del Calcolo 'M.Picone', Rome, Italy
| |
Collapse
|
9
|
He Y, Kam H, Wu X, Chen Q, Lee SMY. Dual effect of aucubin on promoting VEGFR2 mediated angiogenesis and reducing RANKL-induced bone resorption. Chin Med 2023; 18:108. [PMID: 37641047 PMCID: PMC10464038 DOI: 10.1186/s13020-023-00786-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Angiogenesis is regarded as a critical role in bone repair and regeneration, involving in pathological bone disorders such as osteoporosis. Aucubin, an iridoid glycoside primarily derived from Eucommia ulmoides, is reported to inhibit osteoclast activity, enhance bone formation and promote angiogenesis in osteoporosis models. Our study is to further investigate the anti-osteoporosis effect of aucubin in transgenic medaka, and the pro-angiogenic effect of aucubin and its mechanism of action both in vivo and in vitro. METHODS The anti-osteoporosis effect of aucubin was confirmed by using RANKL-stimulated bone resorption transgenic medaka. The pro-angiogenic effect of aucubin in vivo was investigated using vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor II (VRI)-induced vascular insufficient transgenic zebrafish model. Furthermore, endothelial cell proliferation, migration, tube formation and the mechanisms were evaluated to identify the pro-angiogenic effect of aucubin in normal and su5416-injured human umbilical vein endothelial cells (HUVECs). RESULTS Aucubin decreased the resorption of the mineralized bone matrix and centra degradation in heat-shocked transgenic col10α1:nlGFP/rankl:HSE:CFP medaka. Moreover, aucubin reversed VRI-induced vascular insufficiency in zebrafish through regulating flt1, kdr, kdrl, vegfaa, ang-1, ang-2, tie1 and tie2 mRNA expressions in Tg(fli1a:EGFP)y1 or AB wild type zebrafish. Aucubin promoted cell proliferation by upregulating p-mTOR, p-Src, p-MEK, p-Erk1/2, p-Akt and p-FAK in HUVECs. Furthermore, aucubin exhibited a pro-angiogenic effect on su5416-injured HUVECs by promoting their proliferation, migration, and tube formation through regulating the phosphorylation of VEGFR2, MEK, ERK and the ratio of Bcl2-Bax. CONCLUSION Aucubin could reduce bone resorption in RANKL-induced osteoporosis medaka by live imaging. Meanwhile, aucubin exhibited a protective effect in VRI-induced vascular insufficient zebrafish by regulating VEGF-VEGFR and Ang-Tie signaling pathways. Additionally, aucubin promoted the proliferation, migration and tube formation of HUVECs probably by mediating VEGFR2/MEK/ERK, Akt/mTOR and Src/FAK signalling pathways. This study further indicated the dual effect of aucubin on angiogenesis and osteogenesis which may be beneficial to its treatment of osteoporosis.
Collapse
Affiliation(s)
- Yulin He
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
| | - Xue Wu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
| | - Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| |
Collapse
|
10
|
Abd Talib FNA, Marzuki M, Hoe SLL. Analysis of NK-92 cytotoxicity in nasopharyngeal carcinoma cell lines and patient-derived xenografts using impedance-based growth method. Heliyon 2023; 9:e17480. [PMID: 37415945 PMCID: PMC10320316 DOI: 10.1016/j.heliyon.2023.e17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Natural killer (NK) cells are innate immune cells that can remove viral-infected tumour cells without antigen priming. This characteristic offers NK cells an edge over other immune cells as a potential therapy for nasopharyngeal carcinoma (NPC). In this study, we report how cytotoxicity was evaluated in target NPC cell lines and patient-derived xenograft (PDX) cells with effector NK-92, a commercially available NK cell line, by using xCELLigence RTCA system (a real-time, label-free impedance-based monitoring platform). Cell viability, proliferation and cytotoxicity were examined by RTCA. Cell morphology, growth and cytotoxicity were also monitored by microscopy. RTCA and microscopy showed that both target and effector cells were able to proliferate normally and to maintain original morphology in co-culture medium as they were in their own respective culture medium. As target and effector (T:E) cell ratios increased, cell viability as measured by arbitrary cell index (CI) values in RTCA decreased in all cell lines and PDX cells. NPC PDX cells were more sensitive to the cytotoxicity effect of NK-92 cells, than the NPC cell lines. These data were substantiated by GFP-based microscopy. We have shown how the RTCA system can be used for a high throughput screening of the effects of NK cells in cancer studies to obtain data such as cell viability, proliferation and cytotoxicity.
Collapse
|
11
|
Zhou Y, Fu R, Yang M, Liu W, Tong Z. Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells. J Nutr Biochem 2023; 116:109313. [PMID: 36871837 DOI: 10.1016/j.jnutbio.2023.109313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Gastric cancer is one of the leading causes of cancer-related death worldwide. Lycopene, a natural carotenoid, has potent antioxidant activity and anti-cancer effects against several types of cancers. However, the mechanism for the anti-gastric cancer effects of lycopene remains to be fully clarified. Normal gastric epithelial cell line GES-1 and gastric cancer cell line AGS, SGC-7901, Hs746T cells were treated with different concentrations of lycopene and the effects of lycopene were compared. Lycopene specifically suppressed cell growth monitored by Real-Time Cell Analyzer, induced cell cycle arrest and cell apoptosis detected by flow cytometry, and lowered mitochondrial membrane potentials assessed by JC-1 staining of AGS and SGC-7901 cells, while did not affect those of GES-1 cells. Lycopene did not affect the cell growth of Hs746T cells harboring TP53 mutation. Further bioinformatics analysis predicted 57 genes with up-regulated expression levels in gastric cancer and decreased function in cells after lycopene treatment. Quantitative PCR and Western Blot were used to check the critical factors in the cell cycle and apoptosis signaling pathway. Lycopene decreased the high expression levels of CCNE1 and increased the levels of TP53 in AGS and SGC-7901 cells without affecting those in GES-1 cells. In summary, lycopene could effectively suppress gastric cancer cells with CCNE1-amplification, which could be a promising target therapy reagent for gastric cancer.
Collapse
Affiliation(s)
- Ying Zhou
- TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, China
| | - Rishun Fu
- TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, China
| | - Mei Yang
- TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, China
| | - Weihuang Liu
- TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, China
| | - Zan Tong
- TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Serna-Salas SA, Soto-Gámez AA, Wu Z, Klaver M, Moshage H. Studying Hepatic Stellate Cell Senescence. Methods Mol Biol 2023; 2669:79-109. [PMID: 37247056 DOI: 10.1007/978-1-0716-3207-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) are the key effector cells in liver fibrosis. They are the main producers of excessive amounts of extracellular matrix components during fibrogenesis and therefore a potential target for the treatment of liver fibrosis. Induction of senescence in HSCs may be a promising strategy to slow down, stop, or even reverse fibrogenesis. Senescence is a complex and heterogeneous process linked to fibrosis and cancer, but the exact mechanism and relevant markers can be cell-type dependent. Therefore, many markers of senescence have been proposed, and many methods to detect senescence have been developed. In this chapter, we review relevant methods and biomarkers to detect cellular senescence in hepatic stellate cells.
Collapse
Affiliation(s)
- Sandra A Serna-Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Abel A Soto-Gámez
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Myrthe Klaver
- European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
14
|
Eghbal M, Rozman M, Kononenko V, Hočevar M, Drobne D. A549 Cell-Covered Electrodes as a Sensing Element for Detection of Effects of Zn 2+ Ions in a Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3493. [PMID: 36234621 PMCID: PMC9565818 DOI: 10.3390/nano12193493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.
Collapse
Affiliation(s)
- Mina Eghbal
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
In Vitro Growth Inhibition, Caspase-Dependent Apoptosis, and S and G2/M Phase Arrest in Breast Cancer Cells Induced by Fluorine-Incorporated Gold I Compound, Ph3PAu[SC(OMe)=NC6H4F-3]. Int J Breast Cancer 2022; 2022:7168210. [PMID: 35910309 PMCID: PMC9334116 DOI: 10.1155/2022/7168210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gold-based anticancer compounds have been attracting increasing research interest due to their ability to kill cancer cells resistant to platinum-based compounds. Gold I- and gold III-based complexes have shown satisfactory anticancer activities. In this study, two new fluorine-incorporated gold (I) compounds such as Ph3PAu[SC(OMe)=NC6H4F-3] and DPPFeAu2[(SC(OMe)=NC6H4F-3)]2 were evaluated for their in vitro activities against human breast cancer cell lines, primary breast cancer cells, and breast cancer stem cells (parental breast cancer stem cells, BCSC-P, and breast cancer stem cells, BCSC). Assays for growth inhibition and cytotoxicity, including real-time cell analysis, were carried out to screen effective antibreast cancer compounds. In addition, further in vitro assays such as apoptosis, caspase 3/7 activity, and cell cycle analysis were performed to observe the action and mechanism of killing breast cancer cells by the selected gold I compound, Ph3PAu[SC(OMe)=NC6H4F-3]. The gold (I) compound, Ph3PAu[SC(OMe)=NC6H4F-3], showed low toxicity to H9c2 normal cells and significant growth inhibition in MDA-MB-231 and MCF-7 cells, primary breast cancer cells, and breast cancer stem cells (BCSC-P and BCSC). The IC50 doses of the gold (I) compound Ph3PAu[SC(OMe)=NC6H4F-3] against the breast cancer cell lines MDA-MB-231 and MCF-7 were approximately 6-fold lower than that of cisplatin (cis-diamineplatinum (II) dichloride, CDDP). Moreover, the compound Ph3PAu[SC(OMe)=NC6H4F-3] induced caspase 3/7-dependent apoptosis and cell cycle arrest at S and G2/M phases. Ph3PAu[SC(OMe)=NC6H4F-3], a gold (I) compound incorporated with fluorine, is a potential candidate for the treatment of breast cancer.
Collapse
|
16
|
The Activity of Plant-Derived Ren’s Oligopeptides-1 against the Pseudorabies Virus. Animals (Basel) 2022; 12:ani12111341. [PMID: 35681806 PMCID: PMC9179334 DOI: 10.3390/ani12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized Ren’s oligopeptides-1 was found to have an antiviral effect in clinical trials, and the purpose of this study was to further demonstrate the antiviral activity of Ren’s oligopeptides-1 against the PRV 152-GFP strain. We used the real-time cell analysis system (RTCA) to detect the cytotoxicity of different concentrations of Ren’s oligopeptides-1. We then applied high content screening (HCS) to detect the antiviral activity of Ren’s oligopeptides-1 against PRV. Meanwhile, the fluorescence signal of the virus was collected in real time and the expression levels of the related genes in the PK15 cells infected with PRV were detected using real-time PCR. At the mRNA level, we discovered that, at a concentration of 6 mg/mL, Ren’s oligopeptides-1 reduced the expression of pseudorabies virus (PRV) genes such as IE180, UL18, UL54, and UL21 at a concentration of 6 mg/mL. We then determined that Ren’s oligopeptides-1 has an EC50 value of 6 mg/mL, and at this level, no cytotoxicity was observed.
Collapse
|
17
|
LPPR5 Expression in Glioma Affects Growth, Vascular Architecture, and Sunitinib Resistance. Int J Mol Sci 2022; 23:ijms23063108. [PMID: 35328529 PMCID: PMC8952597 DOI: 10.3390/ijms23063108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022] Open
Abstract
Despite intensive research, glioblastoma remains almost invariably fatal. Various promising drugs targeting specific aspects of glioma biology, in addition to or as an alternative to antiproliferative chemotherapy, were not successful in larger clinical trials. Further insights into the biology of glioma and the mechanisms behind the evasive-adaptive response to targeted therapies is needed to help identify new therapeutic targets, prognostics, or predictive biomarkers. As a modulator of the canonically oncogenic Rho-GTPase pathway, Lipid phosphate phosphatase-related protein type 5 (LPPR5) is pivotal in influencing growth, angiogenesis, and therapeutic resistance. We used a GL261 murine orthotopic allograft glioma model to quantify the tumor growth and to obtain tissue for histological and molecular analysis. Epicortical intravital epi-illumination fluorescence video microscopy of the tumor cell spheroids was used to characterize the neovascular architecture and hemodynamics. GL261-glioma growth was delayed and decelerated after LPPR5 overexpression (LPPR5OE). We observed increased tumor cell apoptosis and decreased expression and secretion of vascular endothelial growth factor A in LPPR5OE glioma. Hence, an altered micro-angioarchitecture consisting of dysfunctional small blood vessels was discovered in the LPPR5OE tumors. Sunitinib therapy eliminated these vessels but had no effect on tumor growth or apoptosis. In general, LPPR5 overexpression generated a more benign, proapoptotic glioma phenotype with delayed growth and a dysfunctional vascular architecture.
Collapse
|
18
|
Lisby AN, Carlson RD, Baybutt TR, Weindorfer M, Snook AE. Evaluation of CAR-T cell cytotoxicity: Real-time impedance-based analysis. Methods Cell Biol 2022; 167:81-98. [DOI: 10.1016/bs.mcb.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
PEDOT:PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells. Biosens Bioelectron 2021; 180:113101. [DOI: 10.1016/j.bios.2021.113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
|
20
|
Moe B, Berezowski KL, Huang DY, Dey I, Xie L, Ling ZC, Kinniburgh DW. A microelectric cell sensing technique for in vitro assessment of ocular irritation. Toxicol In Vitro 2021; 73:105124. [PMID: 33636280 DOI: 10.1016/j.tiv.2021.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The animal-based Draize test remains the gold standard for assessment of ocular irritation. However, subjective scoring methods, species differences, and animal welfare concerns have spurred development of alternative test methods. In this study, a novel in vitro method for assessing ocular irritancy was developed using a microelectric cell sensing technology, real-time cell analysis (RTCA). The cytotoxicity of sixteen compounds was assessed in two cell lines: ARPE-19 (human retina) and SIRC (rabbit cornea). In vitro inhibitory (IC50 and AUC50) values were determined at 6, 12, 24, 48, 72, and 96 h exposure, with a subset of values confirmed with MTT testing. The values displayed comparable predictivity of in vivo ocular irritation on the basis of a linear regression between the calculated values and each compounds' corresponding Draize-determined modified maximum average score (MMAS), but the ARPE-19 derived values were more strongly correlated than those from SIRC cells. Hence, IC50 values derived from ARPE-19 cells were used to predict the UN GHS/EU CLP classification of each test compound. The method was determined to have sensitivity of 90%, specificity of 50%, and overall concordance of 75%. Thus, RTCA testing may be best incorporated into a top-down tiered testing strategy for identification of ocular irritants in vitro.
Collapse
Affiliation(s)
- Birget Moe
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Kathryn L Berezowski
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Dorothy Yu Huang
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Indranil Dey
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Li Xie
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Zong-Chao Ling
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
21
|
Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat Protoc 2021; 16:1331-1342. [PMID: 33589826 DOI: 10.1038/s41596-020-00467-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
The antitumor efficacy of genetically engineered 'living drugs', including chimeric antigen receptor and T-cell receptor T cells, is influenced by their activation, proliferation, inhibition, and exhaustion. A sensitive and reproducible cytotoxicity assay that collectively reflects these functions is an essential requirement for translation of these cellular therapeutic agents. Here, we compare various in vitro cytotoxicity assays (including chromium release, bioluminescence, impedance, and flow cytometry) with respect to their experimental setup, appropriate uses, advantages, and disadvantages, and measures to overcome their limitations. We also highlight the US Food and Drug Administration (FDA) directives for a potency assay for release of clinical cell therapy products. In addition, we discuss advanced assays of repeated antigen exposure and simultaneous testing of combinations of immune effector cells, immunomodulatory antibodies, and targets with variable antigen expression. This review article should help to equip investigators with the necessary knowledge to select appropriate cytotoxicity assays to test the efficacy of immunotherapeutic agents alone or in combination.
Collapse
|
22
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
23
|
Hlel TB, Belhadj F, Gül F, Altun M, Yağlıoğlu AŞ, Smaali I, Marzouki MN, Demirtaş I. The Molecular Characterization and Biological Assessment of the Leaves Extracts of Loofah Reveal their Nutraceutical Potential. Recent Pat Food Nutr Agric 2020; 12:63-72. [PMID: 33176671 DOI: 10.2174/2212798411999201110211931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Luffa cylindrica is a plant that is widely distributed in Africa and Asia and can be grown in regions with tropical or subtropical climates. Few patents dealt with Loofah biological properties, including some functional foods formulated from its leaves. OBJECTIVE This study aimed to structurally and functionally characterize the bioactive compounds of L. cylindrica leaves grown in two different environments. METHODS The extracts of L. cylindrica leaves collected from two Tunisian locations: Essouasi (LE), a semi-arid region and Medenine (LM), an arid region, were investigated for their phenolic compounds and fatty acids using HPLC/TOF-MS and GC-MS techniques, respectively. Furthermore, the antioxidant capacity was evaluated with DPPH, Chelating effect, Hydroxyl radical and Superoxide anion scavenging activities while the anticancer activity against HeLa cell lines was assessed using xCELLigence real time cell analyzer and lactate dehydrogenase cytotoxicity assay. RESULTS The antiproliferative capacity of both extracts was time and dose-dependent, with LE presenting the lowest HeLa cell index (CI = 0.035 ± 0.018, 250 μg/ml). LE also showed the best cytotoxic capacity (56.49 ± 0.8%) and antioxidant potential (IC50 = 54.41 ± 1.12 μg/ml for DPPH and 12.12 ± 0.07 μg/ml for chelating effect). 14 phenolic compounds were detected in LE, with ferulic acid being the major compound (5128.5 ± 4.09 μg Phenols/g), while LM had only 6 phenolics. GCMS analysis showed the presence of omega-3 fatty acids in LE. CONCLUSIONS Our findings suggest that L. cylindrica leaves, especially when collected from semiarid regions, are promising for formulating nutraceuticals of interest.
Collapse
Affiliation(s)
- Takoua Ben Hlel
- LIP-MB laboratory (LR11ES24), National Institute of Applied Sciences and Technology, Centre urbain nord de Tunis, Cedex Tunis - 1080, University of Carthage, Tunisia
| | - Feten Belhadj
- LIP-MB laboratory (LR11ES24), National Institute of Applied Sciences and Technology, Centre urbain nord de Tunis, Cedex Tunis - 1080, University of Carthage, Tunisia
| | - Fatih Gül
- Igdır University, Igdir Vocational School of Higher Education, Sehit Bulent Yurtseven Campus,Igdir 76000, Turkey
| | - Muhammed Altun
- Department of Chemistry, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Ayşe Şahin Yağlıoğlu
- Department of Chemistry and Chemical Process Technology, Technical Sciences Vocational School, Amasya University, Amasya 05186, Turkey
| | - Isaam Smaali
- LIP-MB laboratory (LR11ES24), National Institute of Applied Sciences and Technology, Centre urbain nord de Tunis, Cedex Tunis - 1080, University of Carthage, Tunisia
| | - Mohammad Nejib Marzouki
- LIP-MB laboratory (LR11ES24), National Institute of Applied Sciences and Technology, Centre urbain nord de Tunis, Cedex Tunis - 1080, University of Carthage, Tunisia
| | - Ibrahim Demirtaş
- Igdır University, Faculty of Arts and Sciences, Biochemistry Department, Sehit Bulent Yurtseven Campus, Igdir 76000, Turkey
| |
Collapse
|
24
|
Yah CS, Simate GS. Engineered nanoparticle bio-conjugates toxicity screening: The xCELLigence cells viability impact. ACTA ACUST UNITED AC 2020; 10:195-203. [PMID: 32793442 PMCID: PMC7416007 DOI: 10.34172/bi.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Introduction: The vast diverse products and applications of engineered nanoparticle bio-conjugates (ENPBCs) are increasing, and thus flooding the-markets. However, the data to support risk estimates of ENPBC are limited. While it is important to assess the potential benefits, acceptability and uptake, it is equally important to understand where ENPBCs safety is and how to expand and affirm consumer security concerns. Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes. Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo animal model studies indicated potential animal toxicity while the remaining results recommended ENPPCs as potential candidates for drug therapy though with limited information on toxicity. Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo animal model levels are still limited due to insufficient information and data. To keep pace with ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact analyses using xCELLigence are needed to provide significant data and information for further in vivo testing.
Collapse
Affiliation(s)
- Clarence S Yah
- Implementation Science Unit, Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, South Africa.,School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Geoffrey S Simate
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Liu H, Dilger JP, Lin J. Effects of local anesthetics on cancer cells. Pharmacol Ther 2020; 212:107558. [PMID: 32343985 DOI: 10.1016/j.pharmthera.2020.107558] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Local anesthetics are widely used during clinical cancer surgeries. Studies have suggested that the use and the type of anesthesia affect cancer outcomes. In vivo studies and clinical data show that the use of local anesthetics is potentially beneficial for cancer treatment. However, the effect of the use of local anesthetics on the survival rate of cancer patients following surgery is controversial and, so far, little is known about the direct effects of local anesthetics on cancer cells. This work reviews and summarizes the published literature regarding the preclinical research methods and findings on the influence of local anesthetics on cancer cells. We hope that a thorough understanding of this subject will help to define optimal anesthetic regimens that lead to better outcomes for clinical cancer patients.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
26
|
Somatic mTOR mutation in clonally expanded T lymphocytes associated with chronic graft versus host disease. Nat Commun 2020; 11:2246. [PMID: 32382059 PMCID: PMC7206083 DOI: 10.1038/s41467-020-16115-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Graft versus host disease (GvHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we report studies of a patient with chronic GvHD (cGvHD) carrying persistent CD4+ T cell clonal expansion harboring somatic mTOR, NFKB2, and TLR2 mutations. In the screening cohort (n = 134), we detect the mTOR P2229R kinase domain mutation in two additional cGvHD patients, but not in healthy or HSCT patients without cGvHD. Functional analyses of the mTOR mutation indicate a gain-of-function alteration and activation of both mTORC1 and mTORC2 signaling pathways, leading to increased cell proliferation and decreased apoptosis. Single-cell RNA sequencing and real-time impedance measurements support increased cytotoxicity of mutated CD4+ T cells. High throughput drug-sensitivity testing suggests that mutations induce resistance to mTOR inhibitors, but increase sensitivity for HSP90 inhibitors. Our findings imply that somatic mutations may contribute to aberrant T cell proliferations and persistent immune activation in cGvHD, thereby paving the way for targeted therapies. Chronic graft versus host disease (cGvHD) is a major cause of morbidity and mortality in allogeneic bone marrow transplantation. Here the authors identify a recurrent activating mTOR mutation in expanded donor T-cell clones of 3 cGvHD patients, which suggests somatic mutations may contribute to GvHD pathogenesis and opens avenues to targeted therapies.
Collapse
|
27
|
Gai X, Liu C, Wang G, Qin Y, Fan C, Liu J, Shi Y. A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis. Regen Biomater 2020; 7:321-329. [PMID: 32523733 PMCID: PMC7266667 DOI: 10.1093/rb/rbaa017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Degradable biomaterials have emerged as a promising type of medical materials because of their unique advantages of biocompatibility, biodegradability and biosafety. Owing to their bioabsorbable and biocompatible properties, magnesium-based biomaterials are considered as ideal degradable medical implants. However, the rapid corrosion of magnesium-based materials not only limits their clinical application but also necessitates a more specific biological evaluation system and biosafety standard. In this study, extracts of pure Mg and its calcium alloy were prepared using different media based on ISO 10993:12; the Mg2+ concentration and osmolality of each extract were measured. The biocompatibility was investigated using the MTT assay and xCELLigence real-time cell analysis (RTCA). Cytotoxicity tests were conducted with L929, MG-63 and human umbilical vein endothelial cell lines. The results of the RTCA highly matched with those of the MTT assay and revealed the different dynamic modes of the cytotoxic process, which are related to the differences in the tested cell lines, Mg-based materials and dilution rates of extracts. This study provides an insight on the biocompatibility of biodegradable materials from the perspective of cytotoxic dynamics and suggests the applicability of RTCA for the cytotoxic evaluation of degradable biomaterials.
Collapse
Affiliation(s)
- Xiaoxiao Gai
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| | - Chenghu Liu
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| | - Guowei Wang
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| | - Yang Qin
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| | - Chunguang Fan
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| | - Jia Liu
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| | - Yanping Shi
- Department of Biological Evaluation, Shandong Quality Inspection Center for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Shandong Key Laboratory of Biological Evaluation for Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China.,Department of Biological Evaluation, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, NO.15166 Century Avenue, H-T Industrial Development Zone, Jinan 250101, China
| |
Collapse
|
28
|
Esim O, Sarper M, Ozkan CK, Oren S, Baykal B, Savaser A, Ozkan Y. Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity. Saudi Pharm J 2020; 28:465-472. [PMID: 32273806 PMCID: PMC7132609 DOI: 10.1016/j.jsps.2020.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance (MDR) is the most common problem of inadequate therapeutic response in tumor cells. Many trials has been developed to overcome drug efflux by P-glycoprotein (P-gp). For instance, co-administration of a number of drugs called chemosensitizers or MDR modulators with a chemotherapeutic agent to inhibit drug efflux. But for optimal synergy, the drug and inhibitor combination may need to be temporally colocalized in the tumor cells. In this study, we encapsulated the Ver and Dox in PLGA nanoparticles to inhibit the P-gp drug efflux in breast cancer. Moreover, the effect of either Dox solution (DoxS), Dox nanoparticles (DoxNP), DoxS + VerS, DoxNP + VerS, DoxNP + VerNP or Dox-VerNP was evaluated. It was found that co administration of DoxNP with VerNP (70.76%) showed similar cellular uptake of Dox to Dox/Ver combination solution (70.62%). However it is observed that DoxNP + VerNP has the highest apoptotic activity (early apoptotic 13.52 ± 0.06%, late apoptotic 53.94 ± 0.15%) on human breast adenocarcinoma (MCF 7) cells. Hence, it is suggested that DoxNP + VerNP is a promising administration for tumor therapy.
Collapse
Affiliation(s)
- Ozgur Esim
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Meral Sarper
- University of Health Sciences, Gulhane Institute of Health Sciences, Ankara, Turkey
| | - Cansel K Ozkan
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Sema Oren
- University of Health Sciences, Gulhane Institute of Health Sciences, Ankara, Turkey
| | - Baris Baykal
- University of Health Sciences, Gulhane Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Ayhan Savaser
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Yalcin Ozkan
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
29
|
Stefanowicz-Hajduk J, Ochocka JR. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol Rep 2020; 7:335-344. [PMID: 32090021 PMCID: PMC7025972 DOI: 10.1016/j.toxrep.2020.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
RTCA system allows to easily monitor cell adhesion and proliferation. The real-time impedance technique is widely used in many toxicological studies. RTCA results are generally comparable with results from tetrazolium salts assays. RTCA analysis should be limited when drugs with electroactive additives are tested. Tetrazolium salts assays should be avoided when colored compounds are studied.
Real-time cell analysis (RTCA) is a technique based on impedance and microsensor electrodes. RTCA system allows label-free, real-time, and continuous monitoring of cell adhesion, morphology, and rate of cell proliferation. The system offers a wide range of applications, mainly in toxicological studies, new drug screening, and microbiology. Here, we describe the usefulness of the system in different applications and compare this technology with conventional endpoint assays based on tetrazolium salts. We present advantages and disadvantages of the system and endpoint methods and their limitations in cytotoxicity investigations.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| | - J Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
30
|
Yu P, Wei R, Dong W, Zhu Z, Zhang X, Chen Y, Liu X, Guo C. CD163 ΔSRCR5 MARC-145 Cells Resist PRRSV-2 Infection via Inhibiting Virus Uncoating, Which Requires the Interaction of CD163 With Calpain 1. Front Microbiol 2020; 10:3115. [PMID: 32038556 PMCID: PMC6990145 DOI: 10.3389/fmicb.2019.03115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine alveolar macrophages without the CD163 SRCR5 domain are resistant to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, whether the deletion of CD163 SRCR5 in MARC-145 cells confers resistance to PRRSV and interaction of which of the host proteins with CD163 is involved in virus uncoating remain unclear. Here we deleted the SRCR5 domain of CD163 in MARC-145 cells using CRISPR/Cas9 to generate a CD163ΔSRCR5 MARC-145 cell line. The modification of CD163 had no impact on CD163 expression. CD163ΔSRCR5 cells were completely resistant to infection by PRRSV-2 strains Li11, CHR6, TJM, and VR2332. The modified cells showed no cytokine response to PRRSV-2 infection and maintained normal cell vitality comparable with the WT cells. The resistant phenotype of the cells was stably maintained through cell passages. There were no replication transcription complexes in the CD163ΔSRCR5 cells. SRCR5 deletion did not disturb the colocalization of CD163 and PRRSV-N in early endosomes (EE). However, the interaction of the viral proteins GP2a, GP3, or GP5 with CD163, which is involved in virus uncoating was affected. Furthermore, 77 CD163-binding cellular proteins affected by the SRCR5 deletion were identified by LC–MS/MS. Inhibition of calpain 1 trapped the virions in EE and forced then into late endosomes but did not block viral attachment and internalization, suggesting that calpain 1 is involved in the uncoating. Overall, CD163ΔSRCR5 MARC-145 cells are fully resistant to PRRSV-2 infection and calpain 1 is identified as a novel host protein that interacts with CD163 to facilitate PRRSV uncoating.
Collapse
Affiliation(s)
- Piao Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Ma X, Sun J, Zhong L, Wang Y, Huang Q, Liu X, Jin S, Zhang J, Liang XJ. Evaluation of Turning-Sized Gold Nanoparticles on Cellular Adhesion by Golgi Disruption in Vitro and in Vivo. NANO LETTERS 2019; 19:8476-8487. [PMID: 31711283 DOI: 10.1021/acs.nanolett.9b02826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In contrast to the booming production and application of nanomaterials, research on the toxicological impacts and possible hazards of nanoparticles to tissues and organs is still in its infancy. Golgi apparatus is one of the most important organelles in cells and plays a key role in intracellular protein processing. The structural integrity of Golgi is vital for its normal function, and Golgi disturbance could result in a wide range of diseases and disorders. In this study, for the first time we found gold nanoparticles (Au NPs) induced size-dependent cytoplasmic calcium increase and Golgi fragmentation, which hampers normal Golgi functions, leads to abnormal protein processing, and causes cellular adhesion decrease, while cell viability was not significantly compromised. Additionally, early renal pathological changes were induced in vivo. This work is significant to nanoparticle research because it illustrates the important role of size on Au NP-induced changes in Golgi morphology and their consequences in vitro and in vivo, which has important implications for the biological applications of nanomaterials.
Collapse
Affiliation(s)
- Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
- Beijing Municipal Institute of Labour Protection No. 55 Taoranting Road , Xicheng District, Beijing 100054 , P.R. China
| | - Jiadong Sun
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , P.R. China
| | - Lin Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
| | - Yufei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | | | - Xiaoli Liu
- The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , China
| | - Shubin Jin
- Beijing Municipal Institute of Labour Protection No. 55 Taoranting Road , Xicheng District, Beijing 100054 , P.R. China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , P.R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P.R. China
| |
Collapse
|
32
|
Yilmaz B, Bayrac AT, Bayrakci M. Evaluation of Anticancer Activities of Novel Facile Synthesized Calix[n]arene Sulfonamide Analogs. Appl Biochem Biotechnol 2019; 190:1484-1497. [PMID: 31782087 DOI: 10.1007/s12010-019-03184-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
Here, new calixarene sulfonamide analogs were synthesized from the reaction of chlorosulfonated calix[n]arene (n: 4, 6, and 8) with N,N'-dimethylethylenediamine or ethylenediamine for the first time and an excellent calixarene sulfonamide analog showing potent and selective cytotoxic activity on some cancer cell lines were discovered. Cytotoxicity of the prepared calix[n]arene sulfonamide analogs towards both cancer and healthy cell lines was assessed by performing cell growth inhibition assays. In cytotoxicity assay results, it was observed that while sulfonamide analog based calix[4]arene (9) was not affecting the growth of epithelial cell lines (HEK), and it was especially effective on inhibiting the growth of some human cancer cell lines (MCF-7 and MIA PaCa-2). These results highlight that sulfonamide analog-based calix [4] arene (9) can be further studied as a potential anticancer agent.
Collapse
Affiliation(s)
- Bahar Yilmaz
- Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Abdullah Tahir Bayrac
- Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mevlut Bayrakci
- Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey.
| |
Collapse
|
33
|
Evaluating CD8 + T Cell Responses In Vitro. Methods Mol Biol 2019. [PMID: 31147942 DOI: 10.1007/978-1-4939-9450-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The 51Cr-release assay described in the 1960s has been for decades the gold standard cytolytic assay but for safety reasons is no longer in use in many laboratories. Whereas other radioactive tests were later on described, they never ousted the 51Cr-release assay. More thorough understanding of CTL biology and killing pathways has more recently resulted in the design of reliable nonradioactive tests to analyze CD8+ T cell responses. Allowing for real-time evaluation of target cell viability, some of them are particularly attractive and are described here together with traditional assays.
Collapse
|
34
|
Kocyigit-Kaymakcioglu B, Yazici SS, Tok F, Dikmen M, Engür S, Oruc-Emre EE, Iyidogan A. Synthesis and Anticancer Activity of New Hydrazide-hydrazones and Their Pd(II) Complexes. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180816124102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background:
Hydrazones, one of the important classes of organic molecules, are pharmaceutical
agents comprising –CO-NH-N=CH- group in the structure therefore and exhibiting significant
biological activity.
Methods:
5-Chloro-N’-[(substituted)methylidene] pyrazine-2-carbohydrazide (3a-g) and their Pd(II)
complexes (4a-h) were synthesized and investigated in vitro anticancer activity on A549, Caco2 cancer
and normal 3T3 fibroblast cell lines, using the MTT assay.
Results:
Anticancer activity screening results revealed that some compounds showed remarkable cytotoxic
effect. Among them, 5-chloro-N'-[(4-hydroxyphenyl)methylidene] pyrazine-2-carbohydrazide
(3c) displayed higher cytotoxic activity against A549 cancer cell line than the reference drug cisplatin.
Conclusion:
Compound 3c showed high cytotoxic activity against A549 cancer cell line but it showed
low cytotoxic effect against normal 3T3 fibroblast cell line. Antiproliferative and antimetastatic effects
of 3c were determined by the real-time monitoring of cell proliferative system (RTCA DP). The cell
proliferation, metastatic and invasive activities of A549 cells were decreased due to increased concentration
of 3c.
Collapse
Affiliation(s)
| | - Senem Sinem Yazici
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul-34668, Turkey
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul-34668, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir-26470, Turkey
| | - Selin Engür
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir-26470, Turkey
| | - Emine Elçin Oruc-Emre
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep-27310, Turkey
| | - Aysegul Iyidogan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep-27310, Turkey
| |
Collapse
|
35
|
Şeker Ş. Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods. Turk J Biol 2019; 42:435-446. [PMID: 30930627 PMCID: PMC6438124 DOI: 10.3906/biy-1802-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, the possible cellular effects of tin dioxide (SnO2) nanoparticles, together with its bulk form, on mouse dermal fibroblasts (DFs) were revealed using in vitro assays. Particle characterizations were carried out with AFM, Braun-Emmet-Teller, and DLS analyses. The cells were treated with nano and bulk SnO2 at concentrations of 0.1, 1, 10, 50, and 100 μg/mL for 6, 24, and 48 h. At the end of the exposure periods, the morphology, viability, particle uptake, and membrane leakage statuses of the cells were evaluated. Furthermore, real-time monitoring of cell responses was performed by using an impedance-based label-free system. Findings showed that at concentrations of 0.1-10 μg/mL, cells had similar doubling time to that of control cells (20.4 ± 2.6 h), while the doubling time of cells exposed to 100 μg/mL of nano and bulk SnO2 increased slightly (P ˃ 0.05) to 25.1 ± 3.9 h and 26.2 ± 5.9 h, respectively. The results indicated that DFs exhibited a similar toxicity response to nano and bulk SnO2; thus, 50 and 100 μg/mL of nano and bulk SnO2 had mild toxic effects on DFs. In conclusion, this study provides information and insight necessary for the safe use of SnO2 in medical and consumer products.
Collapse
Affiliation(s)
- Şükran Şeker
- Ankara University, Stem Cell Institute , Ankara , Turkey.,Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Ankara University , Ankara , Turkey
| |
Collapse
|
36
|
Improvement of K562 Cell Line Transduction by FBS Mediated Attachment to the Cell Culture Plate. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9540702. [PMID: 31032368 PMCID: PMC6457364 DOI: 10.1155/2019/9540702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/09/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
Lentiviral vectors have been used for gene therapy in the clinical phase in recent years. These vectors provide a tool for gene insertion, deletion, or modification in organisms. The K562 human cell line has been used extensively in hematopoietic research. Despite its broad application, it is hard-to-transfection and transduction. So, this study presents a simple method to increase the transduction efficiency of K562 cells with a low multiplicity of infection (MOI) of the virus particle. For this purpose, 24-well plate was coated by 300 μl fetal bovine serum (FBS) before seeding. Then 2×104 K562 cells were seeded in each FBS coated plate. After 24h, K562 cells were attached and doubled. Different amount of lentivirus-based GFP vector according to MOI (5, 10, 15, and 20) along with 8 μg polybrene was added to the attached K562 cells and after 6h cells and viral particle complex were spinfected. Then cells were returned to the plate and incubated in 37°C overnight. After 48h transduction efficiency was established by measuring the GFP-expressing cells by flow cytometry. Flow cytometry analysis showed that, after plate treatment by FBS, 64.5% transduction rate in K562 cells was achieved at MOI=20. Therefore, this method can be an effective and simple way to increase the lentiviral transduction rate for suspended cells such as K562.
Collapse
|
37
|
Stolwijk JA, Wegener J. Impedance-Based Assays Along the Life Span of Adherent Mammalian Cells In Vitro: From Initial Adhesion to Cell Death. BIOANALYTICAL REVIEWS 2019. [DOI: 10.1007/11663_2019_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Sylvain M, Lehoux F, Morency S, Faucher F, Bharucha E, Tremblay DM, Raymond F, Sarrazin D, Moineau S, Allard M, Corbeil J, Messaddeq Y, Gosselin B. The EcoChip: A Wireless Multi-Sensor Platform for Comprehensive Environmental Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1289-1300. [PMID: 30387742 DOI: 10.1109/tbcas.2018.2878404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents the EcoChip, a new system based on the state-of-the-art electro-chemical impedance (EIS) technologies allowing the growth of single strain organisms isolated from northern habitats. This portable system is a complete and autonomous wireless platform designed to monitor and cultivate microorganisms directly sampled from their natural environment, particularly from harsh northern environments. Using 96-well plates, the EcoChip can be used in the field for real-time monitoring of bacterial growth. Manufactured with high-quality electronic components, this new EIS monitoring system is designed to function at a low excitation voltage signal to avoid damaging the cultured cells. The high-precision calibration network leads to high-precision results, even in the most limiting contexts. Luminosity, humidity, and temperature can also be monitored with the addition of appropriate sensors. Access to robust data storage systems and power supplies is an obvious limitation for northern research. That is why the EcoChip is equipped with a flash memory that can store data over long periods of time. To resolve the power issue, a low-power micro-controller and a power management unit control and supply all electronic building blocks. Data stored in the EcoChip's flash memory can be transmitted through a transceiver whenever a receiver is located within the functional transmission range. In this paper, we present the measured performance of the system, along with results from laboratory tests in vitro and from two field tests. The EcoChip has been utilized to collect bio-environemental data in the field from the northern soils and ecosystems of Kuujjuarapik and Puvirnituq, during two expeditions, in 2017 and 2018, respectively. We show that the EcoChip can effectively carry out EIS analyses over an excitation frequency ranging from 750 Hz to 10 kHz with an accuracy of 2.35%. The overall power consumption of the system was 140.4 mW in normal operating mode and 81 μW in sleep mode. The proper development of the isolated bacteria was confirmed through deoxyribonucleic acid sequencing, indicating that bacteria thrive in the EcoChip's culture wells while the growing conditions are successfully gathered and stored.
Collapse
|
39
|
Gomez IJ, Arnaiz B, Cacioppo M, Arcudi F, Prato M. Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B 2018; 6:5540-5548. [PMID: 32254964 DOI: 10.1039/c8tb01796d] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon nanodots (CNDs) hold great potential in imaging and drug delivery applications. In this study, nitrogen-doped CNDs (NCNDs) were coupled to the anticancer agent paclitaxel (PTX) through a labile ester bond. NCNDs showed excellent cell viability and endowed the NCND-PTX conjugate with good water solubility. The hybrid integrates the optical properties of the nanodots with the anticancer function of the drug into a single unit. Cytotoxicity was evaluated in breast, cervix, lung, and prostate cancer cell lines by the MTT assay while the cellular uptake was monitored using confocal microscopy. NCND-PTX induced apoptosis in cancer cells exhibiting slightly better anticancer activity compared to the drug alone. Moreover, the course of the NCND-PTX interaction with cancer cells was monitored using an xCELLigence system. The NCND-based conjugate represents a promising platform for bioimaging and drug delivery.
Collapse
Affiliation(s)
- I Jennifer Gomez
- Carbon Bionanotechnology Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | | | | | | | | |
Collapse
|
40
|
Kordaß T, Weber CEM, Eisel D, Pane AA, Osen W, Eichmüller SB. miR-193b and miR-30c-1 * inhibit, whereas miR-576-5p enhances melanoma cell invasion in vitro. Oncotarget 2018; 9:32507-32522. [PMID: 30197759 PMCID: PMC6126698 DOI: 10.18632/oncotarget.25986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023] Open
Abstract
In cancer cells, microRNAs (miRNAs) are often aberrantly expressed resulting in impaired mRNA translation. In this study we show that miR-193b and miR-30c-1* inhibit, whereas miR-576-5p accelerates invasion of various human melanoma cell lines. Using Boyden chamber invasion assays the effect of selected miRNAs on the invasive capacity of various human melanoma cell lines was analyzed. Upon gene expression profiling performed on transfected A375 cells, CTGF, THBS1, STMN1, BCL9, RAC1 and MCL1 were identified as potential targets. For target validation, qPCR, Western blot analyses or luciferase reporter assays were applied. This study reveals opposed effects of miR-193b / miR-30c-1* and miR-576-5p, respectively, on melanoma cell invasion and on expression of BCL9 and MCL1, possibly accounting for the contrasting invasive phenotypes observed in A375 cells transfected with these miRNAs. The miRNAs studied and their targets identified fit well into a model proposed by us explaining the regulation of invasion associated genes and the observed opposed phenotypes as a result of networked direct and indirect miRNA / target interactions. The results of this study suggest miR-193b and miR-30c-1* as tumor-suppressive miRNAs, whereas miR-576-5p appears as potential tumor-promoting oncomiR. Thus, miR-193b and miR-30c-1* mimics as well as antagomiRs directed against miR-576-5p might become useful tools in future therapy approaches against advanced melanoma.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Claudia E M Weber
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Eisel
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Antonino A Pane
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Study on the Quality Evaluation of Compound Danshen Preparations Based on the xCELLigence Real-Time Cell-Based Assay and Pharmacodynamic Authentication. Molecules 2018; 23:molecules23092090. [PMID: 30134517 PMCID: PMC6225219 DOI: 10.3390/molecules23092090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022] Open
Abstract
Objective: To perform a preliminary study on the quality evaluation of compound Danshen preparations based on the xCELLigence Real-Time Cell-based Assay (RTCA) system and make a pharmacodynamics verification. Methods: The compound Danshen was discussed as a methodological example, and the bioactivity of the compound Danshen preparations were evaluated by real-time cell electronic analysis technology. Meanwhile, an in vivo experiment on an acute blood stasis rat model was performed in order to verify this novel evaluation through the curative effect of dissipating blood stasis. Results: We determined the cell index (CI) and IC50 of the compound Danshen preparations and produced time/dose-dependent cell response profiles (TCRPs). The quality of the three kinds of compound Danshen preparations was evaluated through the RTCA data. The trend of CI and TCRPs reflected the effect of drugs on the cell (promoting or inhibiting), and it was verified that the results correlated with the biological activity of the drugs using a pharmacodynamics experiment. Conclusion: The RTCA system can be used to evaluate the quality of compound Danshen Preparations, and it can provide a new idea and new method for quantitatively characterizing the biological activity of traditional Chinese medicines (TCMs).
Collapse
|
42
|
Protective Role of Agrimonia eupatoria L. in Heavy Metal Induced Nephrotoxicity. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to evaluate the potential protective role of Agrimonia eupatoria L. in heavy metal induced nephrotoxicity. Rabbit kidney epithelial cells (RK13) were used as the model cell line. They were exposed to three different heavy metal compounds: cadmium chloride dihydrate CdCl2.2H2O (15 and 20 mg.l−1), potassium dichromate K2Cr2O7 (1, 10 mg.l−1), and zinc sulfate heptahydrate ZnSO4.7H2O (50, 150 mg.l−1) simultaneously with agrimony (ethanolic extract, 100 mg.l−1). The cell response was recorded using the xCELLigence system or real-time cell analysis (RTCA) as a cell index (CI) and expressed as cell adherence (%) compared to control cells without treatment. The potential nephroprotective effects were recorded in cells treated with chromium (1 a 10 mg.l−1) and agrimony, where the cell adherence increased from 95.11 ± 11.25 % and 7.24 ± 0.33 % to 103.26 ± 1.23 % and 68.54 ± 4.89 % (P < 0.05) respectfully and also with a combination of agrimony and zinc (150 mg.l−1), where the adherence increased from 57.45 ± 1.98 % to 95.4 ± 6.95 %. During the cell exposure to cadmium in combination with agrimony, the protective effect was not recorded; the adherence of cells was even decreased (P < 0.05).
Collapse
|
43
|
Gonçalves GD, Semprebon SC, Biazi BI, Mantovani MS, Fernandes GSA. Bisphenol A reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reprod Toxicol 2018; 76:26-34. [DOI: 10.1016/j.reprotox.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
|
44
|
Muckova L, Pejchal J, Jost P, Vanova N, Herman D, Jun D. Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem Toxicol 2018; 42:252-256. [DOI: 10.1080/01480545.2018.1432641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska, Hradec Kralove, Czech Republic
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska, Hradec Kralove, Czech Republic
| | - Nela Vanova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska, Hradec Kralove, Czech Republic
| | - David Herman
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska, Hradec Kralove, Czech Republic
| |
Collapse
|
45
|
Hlel TB, Belhadj F, Gül F, Altun M, Yağlıoğlu AŞ, Demirtaş I, Marzouki MN. Variations in the Bioactive Compounds Composition and Biological Activities of Loofah (Luffa cylindrica
) Fruits in Relation to Maturation Stages. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Takoua Ben Hlel
- LIP-MB Laboratory (LR11ES24); National Institute of Applied Sciences and Technology; Centre urbain nord de Tunis; University of Carthage; B.P. 676 Cedex Tunis 1080 Tunisia
- Department of Biology; Faculty of Sciences of Tunis; University of Tunis El Manar; 2092 El Manar Tunis Tunisia
| | - Feten Belhadj
- LIP-MB Laboratory (LR11ES24); National Institute of Applied Sciences and Technology; Centre urbain nord de Tunis; University of Carthage; B.P. 676 Cedex Tunis 1080 Tunisia
| | - Fatih Gül
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - Muhammed Altun
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - Ayşe Şahin Yağlıoğlu
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - Ibrahim Demirtaş
- Department of Chemistry; Faculty of Science; Çankırı Karatekin University; 18100 Çankırı Turkey
| | - M. Nejib Marzouki
- LIP-MB Laboratory (LR11ES24); National Institute of Applied Sciences and Technology; Centre urbain nord de Tunis; University of Carthage; B.P. 676 Cedex Tunis 1080 Tunisia
| |
Collapse
|
46
|
Zhang Y, Wang X, Li X, Peng S, Wang S, Huang CZ, Huang CZ, Zhang Q, Li D, Jiang J, Ouyang Q, Zhang Y, Li S, Qiao Y. Identification of a specific agonist of human TAS2R14 from Radix Bupleuri through virtual screening, functional evaluation and binding studies. Sci Rep 2017; 7:12174. [PMID: 28939897 PMCID: PMC5610306 DOI: 10.1038/s41598-017-11720-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/29/2017] [Indexed: 12/03/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) have attracted a great deal of interest because of their recently described bronchodilator and anti-inflammatory properties. The aim of this study was to identify natural direct TAS2R14 agonists from Radix Bupleuri that can inhibit mast cell degranulation. A ligand-based virtual screening was conducted on a library of chemicals contained in compositions of Radix Bupleuri, and these analyses were followed by cell-based functional validation through a HEK293-TAS2R14-G16gust44 cell line and IgE-induced mast cell degranulation assays, respectively. Saikosaponin b (SSb) was confirmed for the first time to be a specific agonist of TAS2R14 and had an EC50 value of 4.9 μM. A molecular docking study showed that SSb could directly bind to a TAS2R14 model through H-bond interactions with Arg160, Ser170 and Glu259. Moreover, SSb showed the ability to inhibit IgE-induced mast cell degranulation, as measured with a β-hexosaminidase release model and real-time cell analysis (RTCA). In a cytotoxicity bioassay, SSb showed no significant cytotoxicity to HEK293 cells within 24 hours. This study demonstrated that SSb is a direct TAS2R14 agonist that inhibit IgE-induced mast cell degranulation. Although the target and in vitro bioactivity of SSb were revealed in this study, it still need in vivo study to further verify the anti-asthma activity of SSb.
Collapse
Affiliation(s)
- Yuxin Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China
| | - Xing Wang
- Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, China
| | - Xi Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China
| | - Sha Peng
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China
| | - Shifeng Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China
| | - Christopher Z Huang
- Chinese International School, 1 Hau Yuen Path, Braemar Hill, Hong Kong, SAR, China
| | - Corine Z Huang
- Chinese International School, 1 Hau Yuen Path, Braemar Hill, Hong Kong, SAR, China
| | - Qiao Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China
| | - Dai Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beichen West Road, No. 1, Chaoyang District, Beijing, 100101, China
| | - Jun Jiang
- HD Biosciences, Co., Ltd. 590 Ruiqing Road, Zhangjiang Hi-Tech Park East Campus, Pudong New Area, Shanghai, 201201, China
| | - Qin Ouyang
- School of Pharmacy, The Third Military Medical University, Gaotanyan Street, No. 30, Chongqing, 400038, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China
| | - Shiyou Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beichen West Road, No. 1, Chaoyang District, Beijing, 100101, China.
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 6, Central Ring South Road, Wangjing, Beijing, 100102, China.
| |
Collapse
|
47
|
Zong C, Venot A, Li X, Lu W, Xiao W, Wilkes JSL, Salanga CL, Handel TM, Wang L, Wolfert MA, Boons GJ. Heparan Sulfate Microarray Reveals That Heparan Sulfate-Protein Binding Exhibits Different Ligand Requirements. J Am Chem Soc 2017; 139:9534-9543. [PMID: 28651046 PMCID: PMC5588662 DOI: 10.1021/jacs.7b01399] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heparan sulfates (HS) are linear sulfated polysaccharides that modulate a wide range of physiological and disease-processes. Variations in HS epimerization and sulfation provide enormous structural diversity, which is believed to underpin protein binding and regulatory properties. The ligand requirements of HS-binding proteins have, however, been defined in only a few cases. We describe here a synthetic methodology that can rapidly provide a library of well-defined HS oligosaccharides. It is based on the use of modular disaccharides to assemble several selectively protected tetrasaccharides that were subjected to selective chemical modifications such as regioselective O- and N-sulfation and selective de-sulfation. A number of the resulting compounds were subjected to enzymatic modifications by 3-O-sulfotransferases-1 (3-OST1) to provide 3-O-sulfated derivatives. The various approaches for diversification allowed one tetrasaccharide to be converted into 12 differently sulfated derivatives. By employing tetrasaccharides with different backbone compositions, a library of 47 HS-oligosaccharides was prepared and the resulting compounds were used to construct a HS microarray. The ligand requirements of a number of HS-binding proteins including fibroblast growth factor 2 (FGF-2), and the chemokines CCL2, CCL5, CCL7, CCL13, CXCL8, and CXCL10 were examined using the array. Although all proteins recognized multiple compounds, they exhibited clear differences in structure-binding characteristics. The HS microarray data guided the selection of compounds that could interfere in biological processes such as cell proliferation. Although the library does not cover the entire chemical space of HS-tetrasaccharides, the binding data support a notion that changes in cell surface HS composition can modulate protein function.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Andre Venot
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Wenyuan Xiao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Jo-Setti L. Wilkes
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Catherina L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California—San Diego, 9500 Gilman Drive MC0684, La Jolla, California 92093, United States
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California—San Diego, 9500 Gilman Drive MC0684, La Jolla, California 92093, United States
| | - Lianchun Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
48
|
Collins DM, Gately K, Hughes C, Edwards C, Davies A, Madden SF, O'Byrne KJ, O'Donovan N, Crown J. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines. Cell Immunol 2017; 319:35-42. [PMID: 28735814 DOI: 10.1016/j.cellimm.2017.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. METHODS HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. RESULTS HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. CONCLUSIONS In the presence of effector cells with high cytotoxic capacity, TKIs have the ability to augment the passive immunotherapeutic potential of trastuzumab in SKBR3, a model of HER2+ breast cancer. ADCC levels detected by LDH release assays are extremely low in MCF-7; the flow cytometry-based CFSE/7-AAD method is more sensitive and consistent for the determination of ADCC in HER2-low models.
Collapse
Affiliation(s)
- Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Kathy Gately
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Clare Hughes
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Connla Edwards
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Anthony Davies
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Stephen F Madden
- Data Science Center, Royal College of Surgeons in Ireland, Dublin, Dublin 2, Ireland
| | - Kenneth J O'Byrne
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland; Department of Medical Oncology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
49
|
Türker Şener L, Albeniz G, Dinç B, Albeniz I. iCELLigence real-time cell analysis system for examining the cytotoxicity of drugs to cancer cell lines. Exp Ther Med 2017; 14:1866-1870. [PMID: 28962095 PMCID: PMC5609197 DOI: 10.3892/etm.2017.4781] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
The recently developed iCELLigence™ real-time cell analyzer (RTCA) can be used for the label-free real-time monitoring of cancer cell proliferation, viability, invasion and cytotoxicity. The RTCA system uses 16-well microtiter plates with a gold microelectrode biosensor array that measures impedance when cells adhere to the microelectrodes causing an alternating current. By measuring the electric field generated in this process, the RTCA system can be used for the analysis of cell proliferation, viability, morphology and migration. The present review aimed to summarize the working method of the RTCA system, in addition to discussing the research performed using the system for various applications, including cancer drug discovery via measuring cytotoxicity.
Collapse
Affiliation(s)
- Leyla Türker Şener
- Department of Biophysics, Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Gürcan Albeniz
- Department of General Surgery, Cerrahpaşa Faculty of Medicine, Istanbul University, 34096 Istanbul, Turkey
| | - Bircan Dinç
- Department of Basic Sciences, School of Engineering and Architecture, Istanbul Kemerburgaz University, 34394 Istanbul, Turkey
| | - Işil Albeniz
- Department of Biophysics, Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
50
|
Llorent-Martínez EJ, Zengin G, Fernández-de Córdova ML, Bender O, Atalay A, Ceylan R, Mollica A, Mocan A, Uysal S, Guler GO, Aktumsek A. Traditionally Used Lathyrus Species: Phytochemical Composition, Antioxidant Activity, Enzyme Inhibitory Properties, Cytotoxic Effects, and in silico Studies of L. czeczottianus and L. nissolia. Front Pharmacol 2017; 8:83. [PMID: 28289386 PMCID: PMC5326780 DOI: 10.3389/fphar.2017.00083] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Members of the genus Lathyrus are used as food and as traditional medicines. In order to find new sources of biologically-active compounds, chemical and biological profiles of two Lathyrus species (L. czeczottianus and L. nissolia) were investigated. Chemical profiles were evaluated by HPLC-ESI-MSn, as well as by their total phenolic and flavonoid contents. In addition, antioxidant, enzyme inhibitory, and cytotoxic effects were also investigated. Antioxidant properties were tested by using different assays (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation). Cholinesterases (AChE and BChE), tyrosinase, α-amylase, and α-glucosidase were used to evaluate enzyme inhibitory effects. Moreover, vitexin (apigenin-8-C-glucoside) and 5-O-caffeoylquinic acid were further subjected to molecular docking experiments to provide insights about their interactions at molecular level with the tested enzymes. In vitro cytotoxic effects were examined against human embryonic kidney cells (HEK293) by using iCELLigence real time cell analysis system. Generally, L. czeczottianus exhibited stronger antioxidant properties than L. nissolia. However, L. nissolia had remarkable enzyme inhibitory effects against cholinesterase, amylase and glucosidase. HPLC-ESI-MSn analysis revealed that flavonoids were major components in these extracts. On the basis of these results, Lathyrus extracts were rich in biologically active components; thus, these species could be utilized to design new phytopharmaceutical and nutraceutical formulations.
Collapse
Affiliation(s)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University Konya, Turkey
| | | | - Onur Bender
- Biotechnology Institute, Ankara University Ankara, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University Ankara, Turkey
| | - Ramazan Ceylan
- Department of Biology, Science Faculty, Selcuk University Konya, Turkey
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara Chieti, Italy
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hatieganu" University of Medicine and PharmacyCluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-NapocaCluj-Napoca, Romania
| | - Sengul Uysal
- Department of Biology, Science Faculty, Selcuk University Konya, Turkey
| | - Gokalp O Guler
- Department of Biological Education, Ahmet Kelesoglu Education Faculty, Necmettin Erbakan University Konya, Turkey
| | | |
Collapse
|