1
|
Forman CA, Lipner SR. Biologics and Small Molecules for Inflammatory Nail Disorders: A Narrative Review. Indian Dermatol Online J 2025; 16:50-58. [PMID: 39850668 PMCID: PMC11753575 DOI: 10.4103/idoj.idoj_445_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/13/2024] [Indexed: 01/25/2025] Open
Abstract
Background Inflammatory dermatological conditions, including psoriasis, lichen planus, eczema, and alopecia areata, are frequently accompanied by nail findings and can have a significant impact on quality of life. Biologic and small-molecule medications have been approved over the past several decades in treating patients with these inflammatory nail disorders. They may be used in conjunction with longstanding mainstays of treatment (topical and intralesional corticosteroids, topical vitamin D3 analogs). Objectives Our objectives were to review biologic and small-molecule treatment efficacies for nail psoriasis and alopecia areata-associated nail dystrophy, including Janus kinase inhibitors, apremilast, tumor necrosis factor (TNF) inhibitors, interleukin (IL)-17 inhibitors, and IL-23 inhibitors. Materials and Methods A comprehensive PubMed literature review of clinical research studies, narrative reviews, systematic reviews, and meta-analyses was performed. Conclusion Many biologics and small molecules are effective in treating nail psoriasis and alopecia areata, with each requiring precautions for adverse events. Clinical trials for use of biologics and small molecules for nail lichen planus and atopic dermatitis have not been published to date.
Collapse
Affiliation(s)
- Carrie A. Forman
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Amargant F, Magalhaes C, Pritchard MT, Duncan FE. Systemic low-dose anti-fibrotic treatment attenuates ovarian aging in the mouse. GeroScience 2024:10.1007/s11357-024-01322-w. [PMID: 39285140 DOI: 10.1007/s11357-024-01322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The female reproductive system is one of the first to age in humans, resulting in infertility and endocrine disruptions. The aging ovary assumes a fibro-inflammatory milieu which negatively impacts gamete quantity and quality as well as ovulation. Here, we tested whether the systemic delivery of anti-inflammatory (Etanercept) or anti-fibrotic (Pirfenidone) drugs attenuates ovarian aging in mice. We first evaluated the ability of these drugs to decrease the expression of fibro-inflammatory genes in primary ovarian stromal cells treated with a pro-fibrotic or a pro-inflammatory stimulus. Whereas Etanercept did not block Tnf expression in ovarian stromal cells, Pirfenidone significantly reduced Col1a1 expression. We then tested Pirfenidone in vivo where the drug was delivered systemically via mini-osmotic pumps for 6 weeks. Pirfenidone mitigated the age-dependent increase in ovarian fibrosis without impacting overall health parameters. Ovarian function was improved in Pirfenidone-treated mice as evidenced by increased follicle and corpora lutea number, AMH levels, and improved estrous cyclicity. Transcriptomic analysis revealed that Pirfenidone treatment resulted in an upregulation of reproductive function-related genes at 8.5 months and a downregulation of inflammatory genes at 12 months of age. These findings demonstrate that reducing the fibroinflammatory ovarian microenvironment improves ovarian function, thereby supporting modulating the ovarian environment as a therapeutic avenue to extend reproductive longevity.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Carol Magalhaes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics and Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Gogulescu A, Blidisel A, Soica C, Mioc A, Voicu A, Jojic A, Voicu M, Banciu C. Neurological Side Effects of TNF-α Inhibitors Revisited: A Review of Case Reports. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1409. [PMID: 39336450 PMCID: PMC11433993 DOI: 10.3390/medicina60091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Over the past two decades, the use of tumor necrosis factor alpha (TNF-α) inhibitors has significantly improved the treatment of patients with immune-mediated inflammatory diseases. Firstly, introduced for rheumatoid arthritis, these inhibitors are currently approved and used for a variety of conditions, including ankylosing spondylitis, Crohn's disease, juvenile idiopathic arthritis, psoriasis, psoriatic arthritis, ulcerative colitis, and chronic uveitis. Despite their immense therapeutic efficacy, TNF-α inhibitors have been associated with neurological adverse effects that bring new clinical challenges. The present review collects data from multiple studies to evaluate the incidence and the relationship between TNF-α inhibitors and neurological side effects and to explore the potential underlying mechanisms of this association. Moreover, it highlights the importance of patient selection, particularly in the case of individuals with a history of demyelinating diseases, raises awareness for clinicians, and calls for ongoing research that will improve TNF-α targeting strategies and offer safer and more effective therapeutic options.
Collapse
Affiliation(s)
- Armand Gogulescu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alexandru Blidisel
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Alina Jojic
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| | - Christian Banciu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Wen ZH, Tang CC, Lin YY, Yao ZK, Hsieh SP, Gar-Hwa-Lai, Chen WF, Jean YH. Effects of Etanercept on Experimental Osteoarthritis in Rats: Role of Histone Deacetylases. Cartilage 2024:19476035241264012. [PMID: 39057748 PMCID: PMC11569629 DOI: 10.1177/19476035241264012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Mounting evidence suggests that histone deacetylases (HDAC) inhibitors reduce cartilage destruction in animal models of osteoarthritis (OA). Tumor necrosis factor (TNF)-α-blocking treatment for OA may provide effective joint protection by slowing joint damage. To investigate the effects of intraperitoneal administration of etanercept (a TNF-α inhibitor) on OA development in rats and changes in the nociceptive behavior of rats and expression of HDACs, RUNX2, and MMP13 in cartilage. METHODS Induction of OA in Wistar rats was accomplished through anterior cruciate ligament transection (ACLT). One or five milligrams (mg) of etanercept was administered intraperitoneally for 5 consecutive weeks after ACLT to the ACLT + etanercept (1 and 5 mg/kg) groups. Nociceptive behavior and changes in knee joint width were analyzed. Cartilage was evaluated histologically and immunohistochemically. RESULTS ACLT + etanercept significantly improved mechanical allodynia and weight-bearing distribution compared to ACLT alone. In OA rats treated with etanercept, cartilage degeneration and synovitis were significantly less pronounced than those in ACLT rats. OA-affected cartilage also showed reduced expression of HDAC 6, 7, RUNX-2, and MMP-13 in response to etanercept but increased expression of HDAC4. CONCLUSION Our study demonstrated that etanercept therapy (1) attenuated the development of OA and synovitis in rats, (2) reduced nociception, and (3) regulated chondrocyte metabolism, possibly by inhibiting cell HDAC6 and HDAC7, RUNX2, and MMP13 and increasing HDAC4 expression. Based on new evidence, etanercept may have therapeutic potential in OA.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chieh Tang
- Department of Early Childhood Education, National Pintung University, Pingtung, Taiwan
| | - Yen-You Lin
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shih-Peng Hsieh
- Section of Pathology, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Gar-Hwa-Lai
- Section of Orthopedic Surgery, Pingtung Veterans General Hospital, Pingtung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
| | - Yen-Hsuan Jean
- Section of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| |
Collapse
|
5
|
Amargant F, Vieira C, Pritchard MT, Duncan FE. Systemic low-dose anti-fibrotic treatment attenuates ovarian aging in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600035. [PMID: 38979191 PMCID: PMC11230292 DOI: 10.1101/2024.06.21.600035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The female reproductive system is one of the first to age in humans, resulting in infertility and endocrine disruptions. The aging ovary assumes a fibro-inflammatory milieu which negatively impacts gamete quantity and quality as well as ovulation. Here we tested whether the systemic delivery of anti-inflammatory (Etanercept) or anti-fibrotic (Pirfenidone) drugs attenuates ovarian aging in mice. We first evaluated the ability of these drugs to decrease the expression of fibro-inflammatory genes in primary ovarian stromal cells. Whereas Etanercept did not block Tnf expression in ovarian stromal cells, Pirfenidone significantly reduced Col1a1 expression. We then tested Pirfenidone in vivo where the drug was delivered systemically via mini-osmotic pumps for 6-weeks. Pirfenidone mitigated the age-dependent increase in ovarian fibrosis without impacting overall health parameters. Ovarian function was improved in Pirfenidone-treated mice as evidenced by increased follicle and corpora lutea number, AMH levels, and improved estrous cyclicity. Transcriptomic analysis revealed that Pirfenidone treatment resulted in an upregulation of reproductive function-related genes at 8.5 months and a downregulation of inflammatory genes at 12 months of age. These findings demonstrate that reducing the fibroinflammatory ovarian microenvironment improves ovarian function, thereby supporting modulating the ovarian environment as a therapeutic avenue to extend reproductive longevity.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carol Vieira
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics and Institute for Reproductive and Developmental Sciences University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Ejaz S, Gurugubelli S, Prathi SK, Palou Martinez Y, Arrey Agbor DB, Panday P, Yu AK. The Role of Etanercept in Controlling Clinical and Radiological Progression in Rheumatoid Arthritis: A Systematic Review. Cureus 2024; 16:e58112. [PMID: 38738082 PMCID: PMC11088797 DOI: 10.7759/cureus.58112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Etanercept (ETN) is a disease-modifying anti-rheumatic drug (DMARD) used in the treatment of rheumatoid arthritis (RA) that works as a tumor necrosis factor inhibitor (TNF inhibitor) by blocking the effects of naturally occurring TNF. This review will evaluate the effect of ETN as a monotherapy or combination therapy with methotrexate (MTX) in the treatment of RA. This systematic review was carried out in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines. A systematic search was done on PubMed and Google Scholar from 1999 to 2023. Predefined eligibility criteria were set for selected studies, which include: free full-text articles published; randomized control trials (RCTs); systematic reviews and meta-analyses; and observational studies in a patient with RA treated with ETN as initial therapy or as an add-on to conventional disease-modified therapy. Hence, the data had been extracted, and a quality assessment of each study was done by two individual authors. When comparing patients who received 15-25 mg of MTX with those who also received 25 mg of ETN in combination, 71% achieved American College of Rheumatology 20 (ACR20) by 24 weeks, compared to 27% in the MTX and placebo groups (p<0.001), and 39% achieved American College of Rheumatology 50 (ACR50), compared to 3% in the placebo + MTX group (p<0.001). Low disease activity (DAS 28) was more common in patients who had both MTX and ETN (64.5% with DAS <2.4 and 56.3% with DAS 28 <3.2) compared to patients who received only one medication (44.4% with DAS <2.4 and 33.2% with DAS 28 <3.2 for ETN and 38.6% with DAS <2.4 and 28.5% with DAS 28 <3.2 for MTX, with P<0.01). ETN demonstrated smaller changes from baseline in the modified Sharp score (TSS) and erosion scores (ES) at 12 months and two years, as well as a decreased change in the ES score at one year (with a trend of P value = 0.06 for the TSS score), in comparison to those receiving DMARD. Reactions at the injection site (42% vs. 7%, P<0.001) were the only events that occurred significantly more frequently in the ETN plus-MTX group. Combining ETN and MTX appears to help control RA symptoms by decreasing the American College of Rheumatology (ACR) response and DAS score, as well as halting the disease's progression on X-rays. The most common adverse effects were reactions to ETN administered alone at the injection site, likely because of patient awareness of the treatment received. There was also concern about tuberculosis and malignancy, but no recent data is available. Therefore, a larger clinical trial with longer follow-up is required to ascertain long-term safety and benefits.
Collapse
Affiliation(s)
- Samrah Ejaz
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Simhachalam Gurugubelli
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, Memorial Healthcare, Gulfport, USA
| | - Suviksh K Prathi
- General Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- General Medicine, St. George's University School of Medicine, St. Georges, GRD
| | - Yaneisi Palou Martinez
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Divine Besong Arrey Agbor
- Clinical Research and Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, Richmond University Medical Center, New York City, USA
| | - Priyanka Panday
- Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ann Kashmer Yu
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
7
|
Kim SJ, Kim OH, Hong HE, Ju JH, Lee DS. Etanercept-synthesizing adipose-derived stem cell secretome: A promising therapeutic option for inflammatory bowel disease. World J Gastrointest Surg 2024; 16:882-892. [PMID: 38577094 PMCID: PMC10989350 DOI: 10.4240/wjgs.v16.i3.882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, with tumor necrosis factor (TNF)-α playing a key role in its pathogenesis. Etanercept, a decoy receptor for TNF, is used to treat inflammatory conditions. The secretome derived from adipose-derived stem cells (ASCs) has anti-inflammatory effects, making it a promising therapeutic option for IBD.
AIM To investigate the anti-inflammatory effects of the secretome obtained from ASCs synthesizing etanercept on colon cells and in a dextran sulfate sodium (DSS)-induced IBD mouse model.
METHODS ASCs were transfected with etanercept-encoding mini-circle plasmids to create etanercept-producing cells. The secretory material from these cells was then tested for anti-inflammatory effects both in vitro and in a DSS-induced IBD mouse model.
RESULTS This study revealed promising results indicating that the group treated with the secretome derived from etanercept-synthesizing ASCs [Etanercept-Secretome (Et-Sec) group] had significantly lower expression levels of inflammatory mediators, such as interleukin-6, Monocyte Chemoattractant Protein-1, and TNF-α, when compared to the control secretome (Ct-Sec). Moreover, the Et-Sec group exhibited a marked therapeutic effect in terms of preserving the architecture of intestinal tissue compared to the Ct-Sec.
CONCLUSION These results suggest that the secretome derived from ASCs that synthesize etanercept has potential as a therapeutic agent for the treatment of IBD, potentially enhancing treatment efficacy by merging the anti-inflammatory qualities of the ASC secretome with etanercept's targeted approach to better address the multifaceted pathophysiology of IBD.
Collapse
Affiliation(s)
- Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ha-Eun Hong
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Do Sang Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
8
|
Wang C, Liu S, Yang Y, Kamronbek R, Ni S, Cheng Y, Zhou C, Yan H, Li L, Liu H, Wang Y, Qin Y, Yin C, Zhang M. Interleukin-4 and Interleukin-17 are associated with coronary artery disease. Clin Cardiol 2024; 47:e24188. [PMID: 38146141 PMCID: PMC10823557 DOI: 10.1002/clc.24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
INTRODUCTION The present study aimed to examine the correlation between serum cytokine levels and the incidence of coronary artery disease (CAD), a leading cause of mortality globally, which is known to have a strong association with inflammatory factors. The study further sought to determine the predictors of CAD to distinguish patients with coronary artery lesions from those suspected of having CAD. METHODS AND RESULTS In this study, 487 patients who underwent coronary angiography as a result of suspected CAD but without acute myocardial infarction (AMI) were recruited. The serum levels of the cytokines interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor necrosis factor-α, interferon (IFN)-α, and IFN-γ were measured using a multiplexed particle-based flow cytometric assay technique. The results of the study revealed that the levels of IL-4, IL-12p70, IL-17, IFN-α, and IFN-γ in the CAD group were significantly lower compared to those in the non-CAD group. Multivariate logistic regression analysis indicated that two serum cytokines (IL-4 and IL-17), one protective factor (high-density lipoprotein cholesterol [HDL-C]), and three risk factors (sex, smoking, and diabetes) were independently predictive of CAD. The receiver operating characteristic curve analysis showed that the combined use of these predictors in a multivariate model demonstrated good predictive performance for CAD, as evidenced by an area under the curve value of 0.826. CONCLUSION The results of the study indicated that serum IL-4 and IL-17 levels serve as independent predictors of CAD. The risk prediction model established in the research, which integrates these serum cytokines (IL-4 and IL-17) with relevant clinical risk factors (gender, smoking, and diabetes) and the protective factor HDL-C, holds the potential to differentiate patients with CAD from those suspected of having CAD but without AMI.
Collapse
Affiliation(s)
- Chenyang Wang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Sheng Liu
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunxiao Yang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Raimov Kamronbek
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Siyao Ni
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunjiu Cheng
- Department of Cardiology, Key Laboratory on Assisted Circulation, Ministry of Health, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Can Zhou
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Huiyuan Yan
- Department of CardiologyHangjinqi People's HospitalInner MongoliaChina
| | - Li Li
- Liver Research Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hao Liu
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Wang
- Key Laboratory of Upper Airway Dysfunction‐Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseaseCapital Medical UniversityBeijingChina
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction‐Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseaseCapital Medical UniversityBeijingChina
| | - Chengqian Yin
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ming Zhang
- Center for Coronary Heart Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Oberemok VV, Andreeva O, Laikova K, Alieva E, Temirova Z. Rheumatoid Arthritis Has Won the Battle but Not the War: How Many Joints Will We Save Tomorrow? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1853. [PMID: 37893571 PMCID: PMC10608469 DOI: 10.3390/medicina59101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Rheumatoid arthritis refers to joint diseases of unclear etiology whose final stages can lead to unbearable pain and complete immobility of the affected joints. As one of the most widely known diseases of the joints, it serves as a study target for a large number of research groups and pharmaceutical companies. Modern treatment with anti-inflammatory drugs, including janus kinase (JAK) inhibitors, monoclonal antibodies, and botanicals (polyphenols, glycosides, alkaloids, etc.) has achieved some success and hope for improving the course of the disease. However, existing drugs against RA have a number of side effects which push researchers to elaborate on more selective and effective drug candidates. The avant-garde of research, which aims to develop treatment of rheumatoid arthritis using antisense oligonucleotides along with nonsteroidal drugs and corticosteroids against inflammation, increases the chances of success and expands the arsenal of drugs. The primary goal in the treatment of this disease is to find therapies that allow patients with rheumatoid arthritis to move their joints without pain. The main purpose of this review is to show the victories and challenges for the treatment of rheumatoid arthritis and the tortuous but promising path of research that aims to help patients experience the joy of freely moving joints without pain.
Collapse
Grants
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
Collapse
Affiliation(s)
- Volodymyr V. Oberemok
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea; (O.A.); (K.L.); (E.A.); (Z.T.)
| | | | | | | | | |
Collapse
|
10
|
Sehnert B, Valero-Esquitino V, Schett G, Unger T, Steckelings UM, Voll RE. Angiotensin AT2 Receptor Stimulation Alleviates Collagen-Induced Arthritis by Upregulation of Regulatory T Cell Numbers. Front Immunol 2022; 13:921488. [PMID: 35874732 PMCID: PMC9304956 DOI: 10.3389/fimmu.2022.921488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The angiotensin AT2 receptor (AT2R) is a main receptor of the protective arm of the renin-angiotensin system and exerts for instance anti-inflammatory effects. The impact of AT2R stimulation on autoimmune diseases such as rheumatoid arthritis (RA) is not yet known. We investigated the therapeutic potential of AT2R-stimulation with the selective non-peptide AT2R agonist Compound 21 (C21) in collagen-induced arthritis (CIA), an animal model for inflammatory arthritis. Arthritis was induced by immunization of DBA/1J mice with collagen type II (CII). Prophylactic and therapeutic C21 treatment alleviates arthritis severity and incidence in CIA. Joint histology revealed significantly less infiltrates of IL-1 beta and IL-17A expressing cells and a well-preserved articular cartilage in C21- treated mice. In CIA, the number of CD4+CD25+FoxP3+ regulatory T (Treg) cells significantly increased upon C21 treatment compared to vehicle. T cell differentiation experiments demonstrated increased expression of FoxP3 mRNA, whereas IL-17A, STAT3 and IFN-gamma mRNA expression were reduced upon C21 treatment. In accordance with the mRNA data, C21 upregulated the percentage of CD4+FoxP3+ cells in Treg polarizing cultures compared to medium-treated controls, whereas the percentage of CD4+IL-17A+ and CD4+IFN-gamma+ T cells was suppressed. To conclude, C21 exerts beneficial effects on T cell-mediated experimental arthritis. We found that C21-induced AT2R-stimulation promotes the expansion of CD4+ regulatory T cells and suppresses IL-17A production. Thus, AT2R-stimulation may represent an attractive treatment strategy for arthritis.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Bettina Sehnert, ; Reinhard Edmund Voll,
| | | | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Unger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Ulrike Muscha Steckelings
- Institute of Molecular Medicine (IMM) – Department of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Reinhard Edmund Voll
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI) Freiburg, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Bettina Sehnert, ; Reinhard Edmund Voll,
| |
Collapse
|
11
|
Ridha A, Hussein S, AlJabban A, Gunay LM, Gorial FI, Al Ani NA. The Clinical Impact of Seropositivity on Treatment Response in Patients with Rheumatoid Arthritis Treated with Etanercept: A Real-World Iraqi Experience. Open Access Rheumatol 2022; 14:113-121. [PMID: 35756976 PMCID: PMC9215842 DOI: 10.2147/oarrr.s368190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the clinical impact of rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA)’s seropositivity on treatment response in patients with rheumatoid arthritis (RA) treated with etanercept. Patients and Methods A retrospective analysis of patients with RA registered in Baghdad Teaching Hospital Registry from May 2012 to August 2019 was conducted. Patients aged ≥18 years, meeting the ACR/EULAR 2010 criteria for RA, being treated with etanercept, and followed up at ≥1 year after etanercept initiation were included; patients who received any other biologics for RA were excluded. Patients were classified as seropositive (RF- and ACPA-positive), seronegative (RF- and ACPA-negative), RF-positive, RF-negative, ACPA-positive, and ACPA-negative. The primary outcomes included Clinical Disease Activity Index (CDAI) and Disease Activity Score 28 (DAS28) which were measured at one year after treatment initiation. Results At baseline, a total of 1318 (88.3%) patients were seropositive; 1122 (75.2%) and 1054 (70.6%) patients were RF- and ACPA-positive, respectively. Baseline mean CDAI scores were significantly (P = 0.001) higher among seropositive patients compared with seronegative patients. The baseline mean DAS28 score was also significantly higher in ACPA-positive group compared with the ACPA-negative group (P = 0.021). At baseline, the number of patients who had high CDAI scores was significantly higher among the seropositive, RF-positive, and ACPA-positive groups (P = 0.001, P = 0.001, and P = 0.002, respectively). After one year of treatment with etanercept, among seropositive versus seronegative and ACPA-positive versus ACPA-negative groups, there was a significant improvement in terms of the mean CDAI score (P = 0.004 and P = 0.017, respectively) and CDAI response (P = 0.011 and P = 0.048, respectively). At one year, the proportion of patients among the seropositive versus seronegative group who reached remission were 566 (42.9%) versus 78 (44.6%) and 642 (47.3%) versus 83 (47.4%), for CDAI and DAS28 response, respectively. Conclusion The results imply that seropositivity and ACPA-positivity may influence the treatment response in patients with RA, who were treated with etanercept.
Collapse
Affiliation(s)
- Asal Ridha
- Rheumatology Unit, Department of Medicine, Baghdad Teaching Hospital, Medical City, Baghdad, Iraq
| | - Saba Hussein
- Rheumatology Unit, Department of Medicine, Al-Kindy Teaching Hospital, Baghdad, Iraq
| | | | - Levent Mert Gunay
- Emerging Markets Medical Affairs Department, Pfizer Turkiye, Istanbul, Turkiye
| | - Faiq I Gorial
- Rheumatology Unit, Department of Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Nizar Abdulateef Al Ani
- Rheumatology Unit, Department of Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
12
|
Liu M, Tao G, Cao Y, Hu Y, Zhang Z. Silencing of IGF2BP1 restrains ox-LDL-induced lipid accumulation and inflammation by reducing RUNX1 expression and promoting autophagy in macrophages. J Biochem Mol Toxicol 2022; 36:e22994. [PMID: 35179253 DOI: 10.1002/jbt.22994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with the formation and accumulation of macrophage-derived foam cells in the subendothelial space of blood vessels as one major characteristic. Insulin-like growth factor 2 messenger RNA (mRNA) binding protein 1 (IGF2BP1) is an RNA-binding factor and its elevation has been reported to be associated with macrophage infiltration into the atherosclerotic vascular wall. This study aims to investigate the roles of IGF2BP1 in AS-associated foam cell formation. Herein, ApoE-/- mice fed with high-fat diet developed atherosclerotic lesions in the aorta, where IGF2BP1 expression was upregulated and autophagy was impaired. IGF2BP1 expressed in F4/80+ macrophages and coexisted with p62. In vitro, IGF2BP1 expression was upregulated in RAW264.7 macrophages exposed to oxidized low-density lipoprotein (ox-LDL) (100 μg/ml). Interestingly, silencing of IGF2BP1 ameliorated ox-LDL-induced lipid accumulation and inflammation, and enhanced autophagic flux in macrophages. Furthermore, the expression of RUNX family transcription factor 1 (RUNX1), a gene that is able to inhibit autophagy in multiple cell types, was elevated in atherosclerotic aortas and in ox-LDL-treated macrophages. In addition, RNA immunoprecipitation results revealed that IGF2BP1 is bound to RUNX1 mRNA. Alterations induced by IGF2BP1 knockdown in ox-LDL-treated macrophages were abolished by RUNX1 overexpression. Furthermore, after autophagy inhibitor 3-methyladenine administration, silencing of IGF2BP1-reduced lipid accumulation and inflammation were recovered in RAW264.7 cells. In summary, our study demonstrated that silencing of IGF2BP1 restrained ox-LDL-induced lipid accumulation and inflammation by reducing RUNX1 expression and facilitating autophagy in macrophages. IGF2BP1/RUNX1 axis may be considered as a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Guizhou Tao
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yiming Cao
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yu Hu
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Zhe Zhang
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
13
|
Co-Administration of Iron and Bioavailable Curcumin Reduces Levels of Systemic Markers of Inflammation and Oxidative Stress in a Placebo-Controlled Randomised Study. Nutrients 2022; 14:nu14030712. [PMID: 35277071 PMCID: PMC8838381 DOI: 10.3390/nu14030712] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ferrous sulphate (FS) is widely used as an iron supplement to treat iron deficiency (ID), but is known to induce inflammation causing gastric side-effects resulting in poor adherence to supplement regimens. Curcumin, a potent antioxidant, has been reported to suppress inflammation via down regulation of NF-κB. The aim of the present double blind, placebo-controlled randomised trial was to assess whether co-administration of FS with a formulated, bioavailable form of curcumin (HydroCurc™) could reduce systemic inflammation and/or gastrointestinal side-effects. This study recruited 155 healthy participants (79 males; 26.42 years ± 0.55 and 76 females; 25.82 years ± 0.54), randomly allocated to one of five different treatment groups: iron and curcumin placebo (FS0_Plac), low dose (18 mg) iron and curcumin placebo (FS18_Plac), low dose iron and curcumin (FS18_Curc), high dose (65 mg) iron and curcumin placebo (FS65_Plac), and high dose iron and curcumin (FS65_Curc). Completed questionnaires and blood samples were collected from all participants at baseline (day 1), mid-point (day 21), and at end-point (day 42). Results showed a significant reduction in IL-6 in the FS65_Curc group (0.06 pg/mL ± 0.02, p = 0.0073) between the mid-point and end-point. There was also a significant reduction in mean plasma TNF levels in the FS65_Curc (0.65 pg/mL ± 0.17, p = 0.0018), FS65_Plac (0.39 pg/mL ± 0.15, p = 0.0363), and FS18_Curc (0.35 pg/mL ± 0.13, p = 0.0288) groups from mid-point to end-point. A significant increase was observed in mean plasma TBARS levels (0.10 µM ± 0.04, p = 0.0283) in the F18_Plac group from baseline to end-point. There was a significant association with darker stools between FS0_Plac vs. FS65_Plac (p = 0.002, Fisher's exact test) suggesting that high iron dose in the absence of curcumin leads to darker stools. A reduction in inflammation-related markers in response to co-administering supplemental iron alongside formulated curcumin suggests a reduction in systemic inflammation. This supplementation approach may therefore be a more cost effective and convenient alternative to current oral iron-related treatments, with further research to be conducted.
Collapse
|
14
|
Wang Z, Huang J, Xie D, He D, Lu A, Liang C. Toward Overcoming Treatment Failure in Rheumatoid Arthritis. Front Immunol 2021; 12:755844. [PMID: 35003068 PMCID: PMC8732378 DOI: 10.3389/fimmu.2021.755844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation and bone erosion. The exact mechanism of RA is still unknown, but various immune cytokines, signaling pathways and effector cells are involved. Disease-modifying antirheumatic drugs (DMARDs) are commonly used in RA treatment and classified into different categories. Nevertheless, RA treatment is based on a "trial-and-error" approach, and a substantial proportion of patients show failed therapy for each DMARD. Over the past decades, great efforts have been made to overcome treatment failure, including identification of biomarkers, exploration of the reasons for loss of efficacy, development of sequential or combinational DMARDs strategies and approval of new DMARDs. Here, we summarize these efforts, which would provide valuable insights for accurate RA clinical medication. While gratifying, researchers realize that these efforts are still far from enough to recommend specific DMARDs for individual patients. Precision medicine is an emerging medical model that proposes a highly individualized and tailored approach for disease management. In this review, we also discuss the potential of precision medicine for overcoming RA treatment failure, with the introduction of various cutting-edge technologies and big data.
Collapse
Affiliation(s)
- Zhuqian Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Duoli Xie
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Sharma S, Sharma AK, Tapia N, Blumenthal D. Occurrence of Dedifferentiated Chondrosarcoma During Etanercept Treatment for Rheumatoid Arthritis. J Clin Rheumatol 2021; 27:S690-S691. [PMID: 33136693 DOI: 10.1097/rhu.0000000000001605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Sunita Sharma
- From the Department of Medicine, NYC Health + Hospitals/Woodhull, Brooklyn, NY
| | | | | | | |
Collapse
|
16
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021; 10:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by progressive degeneration of osteochondral tissues. Current treatment is restricted to the reduction of pain and loss of function of the joint. To better comprehend the OA pathophysiological conditions, several models are employed, however; there is no consensus on a suitable model. In this review, different in vitro models being developed for possible therapeutic intervention of OA are outlined. Herein, various in vitro OA models starting from 2D model, co-culture model, 3D models, dynamic culture model to advanced technologies-based models such as 3D bioprinting, bioassembly, organoids, and organ-on-chip-based models are discussed with their advantages and disadvantages. Besides, different growth factors, cytokines, and chemicals being utilized for induction of OA condition are reviewed in detail. Furthermore, there is focus on scrutinizing different molecular and possible therapeutic targets for better understanding the mechanisms and OA therapeutics. Finally, the underlying challenges associated with in vitro models are discussed followed by future prospective. Taken together, a comprehensive overview of in vitro OA models, factors to induce OA-like conditions, and intricate molecular targets with the potential to develop personalized osteoarthritis therapeutics in the future with clinical translation is provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Joseph Christakiran Moses
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Nandana Bhardwaj
- Department of Science and Mathematics Indian Institute of Information Technology Guwahati Bongora Guwahati Assam 781015 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
17
|
Timis TL, Florian IA, Vesa SC, Mitrea DR, Orasan RI. An updated guide in the management of psoriasis for every practitioner. Int J Clin Pract 2021; 75:e14290. [PMID: 33928703 DOI: 10.1111/ijcp.14290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Psoriasis is one of the most common chronic cutaneous skin disorders, having genetic and immunological components. It is currently unknown what exactly triggers it, or how far reaching are the etiological factors, although great strides have been made in uncovering the pathophysiological cascade. Presently, there is a wide diversity of treatment methods for psoriasis, yet not all are applicable for each patient. Selection of both drug and dosage depends on both the knowledge and experience of the treating dermatologist and also on the specific characteristics of each patient. Therefore, the treating physicians should be made aware of the management possibilities, their advantages and their side effects. METHODS We have performed a non-systematic literature review on the current treatment methods for psoriasis. We have included the studies, articles, and prescription information that provided the most relevant information regarding each therapeutic agent. Afterward, we divided the treatment methods according to delivery and illustrated the management protocols for adult, paediatric, and pregnant patients. DISCUSSION AND CONCLUSIONS Current therapies are divided into topical drugs, phototherapy, systemic and biological agents. Topical therapies and phototherapy are generally the first and second line of management respectively, being typically effective in treating mild to moderate forms of psoriasis. On the other hand, the chronic moderate to severe forms usually benefit from systemic drugs, whereas biologic agents are reserved for severe or unremitting cases, especially those suffering from psoriatic arthritis. Also of importance is the understanding of the pathophysiological mechanisms in psoriasis and how the selected drugs interfere in the pathological cascade. Furthermore, physicians should be able to recommend the appropriate therapy not only for adults but also for paediatric and pregnant patients as well. In the following manuscript, we present an updated version of these management options, alongside their indications, posology and most common side effects, a guide that may be useful for every practitioner in this field.
Collapse
Affiliation(s)
- Teodora-Larisa Timis
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stefan-Cristian Vesa
- Department of Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Rodica Mitrea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus-Ioan Orasan
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
19
|
Luo W, Ige OO, Beacon TH, Su RC, Huang S, Davie JR, Lakowski TM. The treatment of SARS-CoV2 with antivirals and mitigation of the cytokine storm syndrome: the role of gene expression. Genome 2020; 64:400-415. [PMID: 33197212 DOI: 10.1139/gen-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the absence of a vaccine, the treatment of SARS-CoV2 has focused on eliminating the virus with antivirals or mitigating the cytokine storm syndrome (CSS) that leads to the most common cause of death: respiratory failure. Herein we discuss the mechanisms of antiviral treatments for SARS-CoV2 and treatment strategies for the CSS. Antivirals that have shown in vitro activity against SARS-CoV2, or the closely related SARS-CoV1 and MERS-CoV, are compared on the enzymatic level and by potency in cells. For treatment of the CSS, we discuss medications that reduce the effects or expression of cytokines involved in the CSS with an emphasis on those that reduce IL-6 because of its central role in the development of the CSS. We show that some of the medications covered influence the activity or expression of enzymes involved in epigenetic processes and specifically those that add or remove modifications to histones or DNA. Where available, the latest clinical data showing the efficacy of the medications is presented. With respect to their mechanisms, we explain why some medications are successful, why others have failed, and why some untested medications may yet prove useful.
Collapse
Affiliation(s)
- Wenxia Luo
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Olufola O Ige
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, MB R3E 3R2, Canada
| | - Shujun Huang
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ted M Lakowski
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
20
|
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10:200161. [PMID: 33050789 PMCID: PMC7653352 DOI: 10.1098/rsob.200161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe fibrotic and thrombotic events permeate the healthcare system, causing suffering for millions of patients with inflammatory disorders. As late-state consequences of chronic inflammation, fibrosis and thrombosis are the culmination of pathological interactions of activated endothelium, neutrophils and platelets after vessel injury. Coupling of these three cell types ensures a pro-coagulant, cytokine-rich environment that promotes the capture, activation and proliferation of circulating immune cells and recruitment of key pro-fibrotic cell types such as myofibroblasts. As the first responders to sterile inflammatory injury, it is important to understand how endothelial cells, neutrophils and platelets help create this environment. There has been a growing interest in this intersection over the past decade that has helped shape the development of therapeutics to target these processes. Here, we review recent insights into how neutrophils, platelets and endothelial cells guide the development of pathological vessel repair that can also result in underlying tissue fibrosis. We further discuss recent efforts that have been made to translate this knowledge into therapeutics and provide perspective as to how a compound or combination therapeutics may be most efficacious when tackling fibrosis and thrombosis that is brought upon by chronic inflammation.
Collapse
Affiliation(s)
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, CA, USA
| |
Collapse
|
21
|
Martínez VPM, Tierrablanca-Sánchez L, Espinosa-de la Garza CE, Juárez-Bayardo LC, Piña-Lara N, Santoyo GG, Pérez NO. Functional analysis of glycosylation in Etanercept: Effects over potency and stability. Eur J Pharm Sci 2020; 153:105467. [PMID: 32682933 DOI: 10.1016/j.ejps.2020.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Etanercept is a biotechnological product that has a complex glycosylation profile. To elucidate Etanercept glycosylation effect over biological activity and stability, we deglycosylated sequentially this molecule. Sequential deglycosylation was performed to understand which glycans are critical for Etanercept folding and activity. Extended study showed that gross glycosylation differences, affect thermal stability, hydrodynamic radius, pI, CDC, ADCC, protection against oxidation and charge surface exposition with any effect (within biological assay dispersion) over TNFα neutralization, indicating which glycoforms have a critical effect over Etanercept ADCC, CDC and stability. In this regard, complete remotion of sialic acids have a predominant importance over pI, ADCC, CDC and surface charge while N and O glycosylation over thermal stability, hydrophobicity, aggregation and protection against oxidation. Our research suggest that gross differences in the glycosylation profile are relevant for the stability and biological main activities of Etanercept, and that significant differences that affect the activities related to this fusion protein could be detected with proper analytical methods and stability studies.
Collapse
Affiliation(s)
| | - Lilia Tierrablanca-Sánchez
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Tenancingo, Estado de México, México. C. P. 52400
| | | | - Laura C Juárez-Bayardo
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Tenancingo, Estado de México, México. C. P. 52400
| | - Nelly Piña-Lara
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Tenancingo, Estado de México, México. C. P. 52400
| | | | - Néstor O Pérez
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Tenancingo, Estado de México, México. C. P. 52400.
| |
Collapse
|
22
|
Wang JL, Cai F, Liu XH, Li LM, He X, Hu XM, Kang CM, Bai HL, Zhang RY, Wu CM, Wu LM, Wang J, Zheng L, Ping BH, Hu YW, Wang Q. Lipopolysaccharide Promotes Inflammatory Response via Enhancing IFIT1 Expression in Human Umbilical Vein Endothelial Cells. DNA Cell Biol 2020; 39:1274-1281. [PMID: 32551893 DOI: 10.1089/dna.2020.5454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jia-Li Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Linyi People's Hospital of Shandong Province, Linyi, China
| | - Fen Cai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Xue-Hui Liu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Li-Min Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Mei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ru-Yi Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Meng Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Jia Wang
- Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bao-Hong Ping
- Department of Hui Qiao, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Choi DH, Lee D, Jo BS, Park KS, Lee KE, Choi JK, Park YJ, Lee JY, Park YS. A Synthetic Cell-Penetrating Heparin-Binding Peptide Derived from BMP4 with Anti-Inflammatory and Chondrogenic Functions for the Treatment of Arthritis. Int J Mol Sci 2020; 21:4251. [PMID: 32549254 PMCID: PMC7352680 DOI: 10.3390/ijms21124251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
We report dual therapeutic effects of a synthetic heparin-binding peptide (HBP) corresponding to residues 15-24 of the heparin binding site in BMP4 in a collagen-induced rheumatic arthritis model (CIA) for the first time. The cell penetrating capacity of HBP led to improved cartilage recovery and anti-inflammatory effects via down-regulation of the iNOS-IFNγ-IL6 signaling pathway in inflamed RAW264.7 cells. Both arthritis and paw swelling scores were significantly improved following HBP injection into CIA model mice. Anti-rheumatic effects were accelerated upon combined treatment with Enbrel® and HBP. Serum IFNγ and IL6 concentrations were markedly reduced following intraperitoneal HBP injection in CIA mice. The anti-rheumatic effects of HBP in mice were similar to those of Enbrel®. Furthermore, the combination of Enbrel® and HBP induced similar anti-rheumatic and anti-inflammatory effects as Enbrel®. We further investigated the effect of HBP on damaged chondrocytes in CIA mice. Regenerative capacity of HBP was confirmed based on increased expression of chondrocyte biomarker genes, including aggrecan, collagen type II and TNFα, in adult human knee chondrocytes. These findings collectively support the utility of our cell-permeable bifunctional HBP with anti-inflammatory and chondrogenic properties as a potential source of therapeutic agents for degenerative inflammatory diseases.
Collapse
Affiliation(s)
- Da Hyeon Choi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| | - Dongwoo Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
| | - Beom Soo Jo
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
| | - Kwang-Sook Park
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Kyeong Eun Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| | - Ju Kwang Choi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Jue-Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
| | - Yoon Shin Park
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| |
Collapse
|
24
|
Ghule BV, Kotagale NR, Patil KS. Inhibition of the pro-inflammatory mediators in rat neutrophils by shanzhiside methyl ester and its acetyl derivative isolated from Barleria prionitis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112374. [PMID: 31704416 DOI: 10.1016/j.jep.2019.112374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/21/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aerial parts of Barleria prionitis Linn. (BP) (Acanthaceae) plant has long been used to treat inflammatory disorders such as toothache, swellings, arthritis and gout. AIM OF THE STUDY The purpose of this study was to evaluate the effects of shanzhiside methyl ester (SME), 8-O-acetyl shanzhiside methyl ester (ASME) and iridoid glycosides rich monoterpenoidal fraction (IFBp), isolated from the aerial part of BP, on the pro-inflammatory mediators in stimulated rat neutrophils. MATERIALS AND METHODS Rat neutrophils were incubated with or without test drugs. The influence of laboratory isolated and identified SME, ASME and IFBp on the production and release of pro-inflammatory mediators i.e. myeloperoxidase (MPO), elastase, matrix metalloproteinase-9 (MMP-9), interleukin 8 (IL-8), tumor necrosis factor alpha (TNF-α) and leukotriene B4 (LTB4) was evaluated in the formyl-met-leu-phenylalanine (f-MLP) and lipopolysaccharide (LPS) stimulated rat neutrophils using enzyme-linked immunosorbent assay (ELISA) methods. IFBp was also standardized with the high performance thin layer chromatography by simultaneous determination of SME and ASME marker compounds. RESULTS SME, ASME and IFBp displayed concentration-dependent inhibitory effects on the MPO, elastase and MMP-9 enzymes release, and IL-8, TNF-α and LTB4 cytokines production in the f-MLP and LPS stimulated rat neutrophils. The content of SME and ASME was found to be 17.32 ± 1.98 and 11.30 ± 1.06% w/w, respectively, in IFBp by HPTLC method. CONCLUSION Altogether, the present results suggest that the iridoidal glycosides of BP may be considered as therapeutic strategy against neutrophil-mediated inflammatory diseases. Developed and validated HPTLC method for the standardization of IFBp of BP can be used as a quality control tool for the routine qualitative and quantitative analysis of Barleria species containing SME and/or ASME.
Collapse
Affiliation(s)
- B V Ghule
- Government College of Pharmacy, Kathora Naka, Amravati, 444 604, Maharashtra State, India; Institute of Pharmaceutical Education and Research, Wardha, 442 001, Maharashtra State, India.
| | - N R Kotagale
- Government College of Pharmacy, Kathora Naka, Amravati, 444 604, Maharashtra State, India.
| | - K S Patil
- Government College of Pharmacy, Kathora Naka, Amravati, 444 604, Maharashtra State, India; Institute of Pharmaceutical Education and Research, Wardha, 442 001, Maharashtra State, India.
| |
Collapse
|
25
|
Bufan B, Jančić I, Stojić-Vukanić Z. Inhibitors of tumor necrosis factor-a and mechanisms of their action. ARHIV ZA FARMACIJU 2020. [DOI: 10.5937/arhfarm2003109b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Mazzoni A, Maggi L, Liotta F, Cosmi L, Annunziato F. Biological and clinical significance of T helper 17 cell plasticity. Immunology 2019; 158:287-295. [PMID: 31566706 DOI: 10.1111/imm.13124] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Mature T helper (Th) effector cells originate following antigen recognition by naive T precursors. The maturation process is accompanied by the acquisition of specific effector functions that distinguish at least three different T helper subsets: Th1, Th2 and Th17. In general, maturation of somatic cells is accompanied by terminal differentiation. However, accumulating evidence shows that effector T cells retain a certain degree of plasticity. This is especially true for Th17 cells, which have been shown to converge towards other phenotypes in response to specific microenvironmental pressure. In this review we will discuss the experimental evidence that supports the hypothesis of Th17 plasticity, with particular emphasis on the generation of Th17-derived 'non-classic' Th1 cells, and the molecular networks that control it. Moreover, we will consider why Th17 plasticity is important for host protection, but also why it can have pathogenic functions during chronic inflammation. Regarding the last point, we will discuss a possible role for biological drugs in the control of Th17 plasticity and disease course.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
27
|
Xu JZ, Kumar R, Gong H, Liu L, Ramos-Solis N, Li Y, Derbigny WA. Toll-Like Receptor 3 Deficiency Leads to Altered Immune Responses to Chlamydia trachomatis Infection in Human Oviduct Epithelial Cells. Infect Immun 2019; 87:e00483-19. [PMID: 31383744 PMCID: PMC6759307 DOI: 10.1128/iai.00483-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Reproductive tract pathology caused by Chlamydia trachomatis infection is an important global cause of human infertility. To better understand the mechanisms associated with Chlamydia-induced genital tract pathogenesis in humans, we used CRISPR genome editing to disrupt Toll-like receptor 3 (TLR3) function in the human oviduct epithelial (hOE) cell line OE-E6/E7 in order to investigate the possible role(s) of TLR3 signaling in the immune response to Chlamydia Disruption of TLR3 function in these cells significantly diminished the Chlamydia-induced synthesis of several inflammation biomarkers, including interferon beta (IFN-β), interleukin-6 (IL-6), interleukin-6 receptor alpha (IL-6Rα), soluble interleukin-6 receptor beta (sIL-6Rβ, or gp130), IL-8, IL-20, IL-26, IL-34, soluble tumor necrosis factor receptor 1 (sTNF-R1), tumor necrosis factor ligand superfamily member 13B (TNFSF13B), matrix metalloproteinase 1 (MMP-1), MMP-2, and MMP-3. In contrast, the Chlamydia-induced synthesis of CCL5, IL-29 (IFN-λ1), and IL-28A (IFN-λ2) was significantly increased in TLR3-deficient hOE cells compared to their wild-type counterparts. Our results indicate a role for TLR3 signaling in limiting the genital tract fibrosis, scarring, and chronic inflammation often associated with human chlamydial disease. Interestingly, we saw that Chlamydia infection induced the production of biomarkers associated with persistence, tumor metastasis, and autoimmunity, such as soluble CD163 (sCD163), chitinase-3-like protein 1, osteopontin, and pentraxin-3, in hOE cells; however, their expression levels were significantly dysregulated in TLR3-deficient hOE cells. Finally, we demonstrate using hOE cells that TLR3 deficiency resulted in an increased amount of chlamydial lipopolysaccharide (LPS) within Chlamydia inclusions, which is suggestive that TLR3 deficiency leads to enhanced chlamydial replication and possibly increased genital tract pathogenesis during human infection.
Collapse
Affiliation(s)
- Jerry Z Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Haoli Gong
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luyao Liu
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Zhang B, Jiang W. IL-1β, IL-17A, CRP and biologics history might serve as potential markers for clinical response to etanercept in rheumatoid arthritis patients. Inflammopharmacology 2019; 27:1123-1130. [DOI: 10.1007/s10787-019-00624-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/28/2023]
|
29
|
Bodkhe R, Balakrishnan B, Taneja V. The role of microbiome in rheumatoid arthritis treatment. Ther Adv Musculoskelet Dis 2019; 11:1759720X19844632. [PMID: 31431810 PMCID: PMC6685117 DOI: 10.1177/1759720x19844632] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder with multifactorial etiology; both genetic and environmental factors are known to be involved in pathogenesis. Treatment with disease-modifying antirheumatic drugs (DMARDs) plays an essential role in controlling disease progression and symptoms. DMARDs have immunomodulatory properties and suppress immune response by interfering in various pro-inflammatory pathways. Recent evidence has shown that the gut microbiota directly and indirectly modulates the host immune system. RA has been associated with dysbiosis of the gut microbiota. Patients with RA treated with DMARDs show partial restoration of eubiotic gut microbiome. Hence, it is essential to understand the impact of DMARDs on the microbial composition and its consequent influences on the host immune system to identify novel therapies for RA. In this review, we discuss the importance of antirheumatic-drug-induced host microbiota modulations and possible probiotics that can generate eubiosis.
Collapse
Affiliation(s)
- Rahul Bodkhe
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Veena Taneja
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Relating glycoprotein structural heterogeneity to function - insights from native mass spectrometry. Curr Opin Struct Biol 2019; 58:241-248. [PMID: 31326232 PMCID: PMC7104348 DOI: 10.1016/j.sbi.2019.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most complex and prevalent protein modification that influences attributes ranging from cellular localization and signaling to half-life and proteolysis. Glycoconjugates are fundamental for cellular function and alterations in their structure are often observed in pathological states. Most biotherapeutic proteins are glycosylated, which influences drug safety and efficacy. Therefore, the ability to characterize glycoproteins is important in all areas of biomolecular and medicinal research. Here we discuss recent advances in native mass spectrometry that have significantly improved our ability to characterize heterogeneous glycoproteins and to relate glycan structure to protein function.
Collapse
|
31
|
Hell D. Self-Adjusting Cytokine Neutralizer Cells as a Closed-Loop Delivery System of Anti-Inflammatory Biologicals. ACS Synth Biol 2018; 7:2518-2528. [PMID: 30358982 DOI: 10.1021/acssynbio.8b00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytokines tumor necrosis factor α (TNFα) and interleukin 1 β (IL-1β) are both strong NF-κB activators and some of the first cytokines to be released in an inflammatory process. TNFα and IL-1β are present in many autoimmune diseases, such as rheumatoid arthritis (RA). TNFα and IL-1β-blocking therapies are quite successful and established in the treatment of RA, but may also be promising in other diseases. For the treatment of recurring autoimmune diseases, strong controlled sensor-effector cells inhibiting TNFα or IL-1β appear highly predestined. Such cells detect a disease biomarker and autonomously react with the dose-dependent production of therapeutic proteins. Hence, we aim to harness and assemble the interactions of TNFα, IL-1β, and NF-κB, which are an ideal match for synthetic biology-based circuits to rewire the transmission to approved TNFα- or IL-1β-blocking biologicals. Considering the high impact of environmental influences on the dynamics of cell-based systems, we established closed-loop controllable cytokine neutralizer cells, monitoring cytokine levels and autonomously delivering powerful biologicals. This real-time processing system may provide dose-dependent drug delivery, which may be tailored for prospective cell and gene therapies against RA, and may offer a more personalized medicine than calculated drug dosing based on body weight.
Collapse
Affiliation(s)
- Dennis Hell
- University Hospital Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
32
|
Yap HY, Tee SZY, Wong MMT, Chow SK, Peh SC, Teow SY. Pathogenic Role of Immune Cells in Rheumatoid Arthritis: Implications in Clinical Treatment and Biomarker Development. Cells 2018; 7:cells7100161. [PMID: 30304822 PMCID: PMC6211121 DOI: 10.3390/cells7100161] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, systemic, inflammatory disorder that affects synovial joints, both small and large joints, in a symmetric pattern. This disorder usually does not directly cause death but significantly reduces the quality of life and life expectancy of patients if left untreated. There is no cure for RA but, patients are usually on long-term disease modifying anti-rheumatic drugs (DMARDs) to suppress the joint inflammation, to minimize joint damage, to preserve joint function, and to keep the disease in remission. RA is strongly associated with various immune cells and each of the cell type contributes differently to the disease pathogenesis. Several types of immunomodulatory molecules mainly cytokines secreted from immune cells mediate pathogenesis of RA, hence complicating the disease treatment and management. There are various treatments for RA depending on the severity of the disease and more importantly, the patient’s response towards the given drugs. Early diagnosis of RA and treatment with (DMARDs) are known to significantly improve the treatment outcome of patients. Sensitive biomarkers are crucial in early detection of disease as well as to monitor the disease activity and progress. This review aims to discuss the pathogenic role of various immune cells and immunological molecules in RA. This review also highlights the importance of understanding the immune cells in treating RA and in exploring novel biomarkers.
Collapse
Affiliation(s)
- Hooi-Yeen Yap
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Sabrina Zi-Yi Tee
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Magdelyn Mei-Theng Wong
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Sook-Khuan Chow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
- Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Suat-Cheng Peh
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
- Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
33
|
Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H, Vazir A, Hasham MG, Cleland JGF, Rosenthal NA, Harding SE, Sattler S. Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc Res 2018; 114:1445-1461. [PMID: 30010800 PMCID: PMC6106100 DOI: 10.1093/cvr/cvy145] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies.
Collapse
Affiliation(s)
- Mona Panahi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Angelos Papanikolaou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Azam Torabi
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ji-Gang Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Habib Khan
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Ali Vazir
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | | | - John G F Cleland
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| | - Nadia A Rosenthal
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
34
|
Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018; 8:biom8030080. [PMID: 30142970 PMCID: PMC6163673 DOI: 10.3390/biom8030080] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.
Collapse
|
35
|
Shallis RM, Chokr N, Stahl M, Pine AB, Zeidan AM. Immunosuppressive therapy in myelodysplastic syndromes: a borrowed therapy in search of the right place. Expert Rev Hematol 2018; 11:715-726. [PMID: 30024293 DOI: 10.1080/17474086.2018.1503049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) encompass a heterogenous collection of clonal hematopoietic stem cell disorders defined by dysregulated hematopoiesis, peripheral cytopenias, and a risk of leukemic progression. Increasing data support the role of innate and adaptive immune pathways in the pathogenesis and disease course of MDS. The role of immunosuppressive therapy has an established role in the treatment of other hematologic diseases, such as aplastic anemia whose pathogenesis is postulated to reflect that of MDS with regards to many aspects of immune activation. Areas covered: This paper discusses the current understanding of immune dysregulation as it pertains to MDS, the clinical experience with immunosuppressive therapy in the management of MDS, as well as future prospects which will likely improve therapeutic options and outcomes for patients with MDS. Expert commentary: Though limited by paucity of high quality data, immunomodulatory and immunosuppressive therapies for the treatment of MDS have shown meaningful clinical activity in selected patients. Continued clarification of the immune pathways that are dysregulated in MDS and establishing predictors for clinical benefit of immunosuppressive therapy are vital to improve the use and outcomes with these therapies.
Collapse
Affiliation(s)
- Rory M Shallis
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Nora Chokr
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Maximilian Stahl
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Alexander B Pine
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA
| | - Amer M Zeidan
- a Division of Hematology/Medical Oncology, Department of Medicine , Yale University School of Medicine , New Haven , USA.,b Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center , Yale University , New Haven , USA
| |
Collapse
|
36
|
Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol 2018; 104:114-124. [PMID: 29378168 DOI: 10.1016/j.yexmp.2018.01.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation is a central pathogenic mechanism of atherosclerosis induction and progression. Vascular inflammation is associated with accelerated onset of late atherosclerosis complications. Atherosclerosis-related inflammation is mediated by a complex cocktail of pro-inflammatory cytokines, chemokines, bioactive lipids, and adhesion molecules, and blocking the key pro-atherogenic inflammatory mechanisms can be beneficial for treatment of atherosclerosis. Therapeutic agents that specifically target some of the atherosclerosis-related inflammatory mechanisms have been evaluated in preclinical and clinical studies. The most promising anti-inflammatory compounds for treatment of atherosclerosis include non-specific anti-inflammatory drugs, phospholipase inhibitors, blockers of major inflammatory cytokines, leukotrienes, adhesion molecules, and pro-inflammatory signaling pathways, such as CCL2-CCR2 axis or p38 MAPK pathway. Ongoing studies attempt evaluating therapeutic utility of these anti-inflammatory drugs for treatment of atherosclerosis. The obtained results are important for our understanding of atherosclerosis-related inflammatory mechanisms and for designing randomized controlled studies assessing the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Neurochemistry, Division of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow 119991, Russia
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow 109240, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
| |
Collapse
|
37
|
Muzaffer U, Paul VI, Rajendra Prasad N. Molecular docking of selected phytoconstituents with signaling molecules of Ultraviolet-B induced oxidative damage. In Silico Pharmacol 2018; 5:17. [PMID: 29308353 DOI: 10.1007/s40203-017-0035-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Abstract The signaling molecules TNF-α, AP-1, and NF-κB act to integrate multiple stress signals into a series of diverse antiproliferative responses. Disruption of these processes can promote tumor progression and chemoresistance. Naturally occurring plant derived compounds are considered as attractive candidates for cancer treatment and prevention. Phytoconstituents can control and modify various biological activities by interacting with molecules involved in concerned signaling pathways. The aim of this study was to find binding conformations between phytoconstituents and these signaling molecules responsible for multiple stress signals of UVB induced photodamage. Induced fit docking was carried out for understanding the binding interactions of pantothenic acid (vitamin B5); 3,4,5-trihydroxy benzoic acid (gallic acid); madecassic acid and hexadecanoic acid, ethyl ester (palmitic acid) with TNF-α, AP-1, and NF-κB. Favorable binding conformations between these signaling molecules and the four phytoconstituents were observed. A number of poses were generated to evaluate the binding conformations and common interacting residues between the ligands and proteins. Among them, the best ligands against TNF-α, AP-1, and NF-κB are reported. The present investigation strongly suggests the probable use of these flavonoids for the amelioration of UVB induced photodamage. Graphical abstract
Collapse
Affiliation(s)
- Umar Muzaffer
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002 India
| | - V I Paul
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002 India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002 India
| |
Collapse
|
38
|
Park YE, Cheon JH. Updated treatment strategies for intestinal Behçet's disease. Korean J Intern Med 2018; 33:1-19. [PMID: 29207867 PMCID: PMC5768550 DOI: 10.3904/kjim.2017.377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Behçet's disease (BD) is a chronic, idiopathic, relapsing immune-mediated disease involving multiple organs, and is characterized by recurrent oral and genital ulcers, ocular disease, gastrointestinal ulcers, vascular diseases, and skin lesions. In particular, gastrointestinal involvement in BD is followed by severe complications, including massive bleeding, bowel perforation, and fistula, which can lead to significant morbidity and mortality. However, the management of intestinal BD has not yet been properly established. Intestinal BD patients with a severe clinical course experience frequent disease aggravations and often require recurrent corticosteroid and/or immunomodulatory therapies, or even surgery. However, a considerable number of patients with intestinal BD are often refractory to conventional therapies such as corticosteroids and immunomodulators. Recently, there has been a line of evidence suggesting that biologics such as infliximab and adalimumab are effective in treating intestinal BD. Moreover, new biologics targeting proteins other than tumor necrosis factor α are emerging and are under active investigation. Therefore, in this paper, we review the current therapeutic strategies and new clinical data for the treatment of intestinal BD.
Collapse
Affiliation(s)
- Yong Eun Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Strand V, Girolomoni G, Schiestl M, Ernst Mayer R, Friccius-Quecke H, McCamish M. The totality-of-the-evidence approach to the development and assessment of GP2015, a proposed etanercept biosimilar. Curr Med Res Opin 2017; 33:993-1003. [PMID: 28133979 DOI: 10.1080/03007995.2017.1288612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this review is to describe the inherent variability that is natural to biologics and, using the proposed etanercept biosimilar (GP2015) as an example, provide details on the "totality-of-the-evidence" concept, whereby all physicochemical, biologic, preclinical, and clinical data for a biosimilar and reference medicine are evaluated in an iterative, stepwise manner and shown to be highly similar. METHODS This review was carried out by a search of published articles, reviews, abstracts and patents in PubMed/Medline and Google Scholar up to November 2016. RESULTS Analytical, functional, preclinical, and clinical data provide a comprehensive understanding of both GP2015 and reference etanercept, and demonstrate a high level of similarity between the two products in accordance with regulatory requirements. The totality of the evidence from all analyses and performed trials provides a robust scientific bridge between the biosimilar and clinical experience with the reference medicine, and is used to justify the use of the biosimilar in all indications for which the reference medicine is approved. CONCLUSION Biologic therapies have revolutionized the treatment of immune-mediated inflammatory diseases. The availability of biosimilars has the potential to improve patient access to biologic medicines and stimulate innovation. Physicians may be unfamiliar with the totality-of-the-evidence concept; therefore education and information on this unique approach to developing biosimilars is required to facilitate the use of biosimilars in clinical practice and allow physicians to make informed treatment decisions.
Collapse
Affiliation(s)
- Vibeke Strand
- a Division of Immunology/Rheumatology , Stanford University School of Medicine , Palo Alto , California , USA
| | - Giampiero Girolomoni
- b Dermatology and Venereology Section , University of Verona School of Medicine , Verona , Italy
| | - Martin Schiestl
- c Sandoz Biopharmaceuticals, Sandoz International GmbH , Kundl , Austria
| | - Robert Ernst Mayer
- c Sandoz Biopharmaceuticals, Sandoz International GmbH , Kundl , Austria
| | - Hilke Friccius-Quecke
- d Global Biopharmaceutical Development, Sandoz International GmbH , Holzkirchen , Germany
| | - Mark McCamish
- d Global Biopharmaceutical Development, Sandoz International GmbH , Holzkirchen , Germany
| |
Collapse
|
40
|
Bae SC, Kim J, Choe JY, Park W, Lee SH, Park YB, Shim SC, Lee SS, Sung YK, Choi CB, Lee SR, Park H, Ahn Y. A phase III, multicentre, randomised, double-blind, active-controlled, parallel-group trial comparing safety and efficacy of HD203, with innovator etanercept, in combination with methotrexate, in patients with rheumatoid arthritis: the HERA study. Ann Rheum Dis 2017; 76:65-71. [PMID: 26905864 DOI: 10.1136/annrheumdis-2015-207613] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To evaluate equivalence in efficacy for rheumatoid arthritis (RA) and compare the safety of the biosimilar HD203 with innovator etanercept (ETN) plus methotrexate (MTX) (ClinicalTrials.gov NCT01270997). METHODS Patients with active RA received 25 mg HD203 or ETN subcutaneously twice-weekly with MTX for 48 weeks in a phase III, multicentre, randomised, double-blind, parallel-group design. The primary end point was the proportion of patients achieving the American College of Rheumatology 20% response (ACR20) at week 24 for per-protocol study completer set (PPS). Secondary end points included ACR response criteria, ACRn, European League against Rheumatism (EULAR) response, change in Disease Activity Score 28 (DAS28), patient-reported outcomes, safety and immunogenicity. RESULTS Of the 294 randomised patients (HD203, n=147; ETN, n=147), 233 comprised the 24-week PPS (n=115 and 118, respectively). ACR20 at week 24 was achieved by 83.48% and 81.36% of PPS patients, respectively, demonstrating equivalent efficacy within predefined margins of ±20% (treatment difference 2.12%, 95% CI -7.65% to 11.89%). Outcomes for secondary end points were consistent with the primary efficacy findings. Groups were comparable for overall incidences of treatment-emergent (all-causality) adverse events (AEs) (HD203 113 (76.9%) vs ETN 114 (78.1%) (p=0.804)), adverse drug reactions, serious AEs and discontinuations due to AEs. Few patients (HD203, n=8; ETN, n=3) tested positive for anti-drug antibodies. CONCLUSION The study met the primary objective of demonstrating equivalent efficacy of HD203 and ETN. HD203 was well tolerated, with safety comparable with ETN in this population of patients with RA. TRIAL REGISTRATION NUMBER NCT01270997; Results.
Collapse
Affiliation(s)
- Sang-Cheol Bae
- Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Jinseok Kim
- Jeju National University Hospital, Jeju, Republic of Korea
| | - Jung-Yoon Choe
- Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Won Park
- Inha University Hospital, Incheon, Republic of Korea
| | - Sang-Heon Lee
- Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Cheol Shim
- Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Shin-Seok Lee
- Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yoon-Kyoung Sung
- Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Chan-Bum Choi
- Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - So-Ra Lee
- Hanwha Chemical Biologics, Seoul, Republic of Korea
| | - HanYu Park
- Hanwha Chemical Biologics, Seoul, Republic of Korea
| | - Yongho Ahn
- Hanwha Chemical Biologics, Daejeon, Republic of Korea
| |
Collapse
|
41
|
Matucci A, Cammelli D, Cantini F, Goletti D, Marino V, Milano GM, Scarpa R, Tocci G, Maggi E, Vultaggio A. Influence of anti-TNF immunogenicity on safety in rheumatic disease: a narrative review. Expert Opin Drug Saf 2016; 15:3-10. [DOI: 10.1080/14740338.2016.1221398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Daniele Cammelli
- Immunoallergology Unit, Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Fabrizio Cantini
- Division of Rheumatology, Misericordia e Dolce Hospital, Prato, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | | | - Giuseppe Maria Milano
- Department of Pediatric Hematology, Oncology and Transplant Unit, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuliano Tocci
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant’Andrea Hospital, Rome, Italy
- IRCCS Neuromed, Pozzilli, Rome, Italy
| | - Enrico Maggi
- Center for Research, Transfer and High Education DENOTHE, University of Florence, Florence, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
42
|
Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016; 6:2458-2487. [PMID: 27877247 PMCID: PMC5118607 DOI: 10.7150/thno.16183] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a photochemistry based treatment modality that involves the generation of cytotoxic species through the interactions of a photosensitizer molecule with light irradiation of an appropriate wavelength. PDT is an approved therapeutic modality for several cancers globally and in several cases has proved to be effective where traditional treatments have failed. The key parameters that determine PDT efficacy are 1. the photosensitizer (nature of the molecules, selectivity, and macroscopic and microscopic localization etc.), 2. light application (wavelength, fluence, fluence rate, irradiation regimes etc.) and 3. the microenvironment (vascularity, hypoxic regions, stromal tissue density, molecular heterogeneity etc.). Over the years, several groups aimed to monitor and manipulate the components of these critical parameters to improve the effectiveness of PDT treatments. However, PDT is still misconstrued to be a surface treatment primarily due to the limited depths of light penetration. In this review, we present the recent advances, strategies and perspectives in PDT approaches, particularly in cancer treatment, that focus on increasing the 'damage zone' beyond the reach of light in the body. This is enabled by a spectrum of approaches that range from innovative photosensitizer excitation strategies, increased specificity of phototoxicity, and biomodulatory approaches that amplify the biotherapeutic effects induced by photodynamic action. Along with the increasing depth of understanding of the underlying physical, chemical and physiological mechanisms, it is anticipated that with the convergence of these strategies, the clinical utility of PDT will be expanded to a powerful modality in the armamentarium for the management of cancer.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815
- The University of Texas School of Medicine at San Antonio, San Antonio, TX 78229
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
43
|
Chen M, Peng D, Zhang Z, Zuo G, Zhao G. Efficacy of etanercept for treating the active rheumatoid arthritis: an updated meta-analysis. Int J Rheum Dis 2015; 19:1132-1142. [PMID: 26354025 DOI: 10.1111/1756-185x.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meng Chen
- Department of Orthopedics; Shandong Qianfoshan Hospital; Shandong University; Jinan Shandong China
| | - Dayong Peng
- Department of Orthopedics; Shandong Qianfoshan Hospital; Shandong University; Jinan Shandong China
| | - Zongzheng Zhang
- Department of Orthopedics; Taishan Medical University; Jinan Shandong China
| | - Guilai Zuo
- Department of Emergency Surgery; Shandong Qianfoshan Hospital; Shandong University; Jinan Shandong China
| | - Gang Zhao
- Department of Emergency Surgery; Shandong Qianfoshan Hospital; Shandong University; Jinan Shandong China
| |
Collapse
|
44
|
Osteoarticular Expression of Musashi-1 in an Experimental Model of Arthritis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:681456. [PMID: 26064941 PMCID: PMC4433648 DOI: 10.1155/2015/681456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
Background. Collagen-induced arthritis (CIA), a murine experimental disease model induced by immunization with type II collagen (CII), is used to evaluate novel therapeutic strategies for rheumatoid arthritis. Adult stem cell marker Musashi-1 (Msi1) plays an important role in regulating the maintenance and differentiation of stem/precursor cells. The objectives of this investigation were to perform a morphological study of the experimental CIA model, evaluate the effect of TNFα-blocker (etanercept) treatment, and determine the immunohistochemical expression of Msi1 protein. Methods. CIA was induced in 50 male DBA1/J mice for analyses of tissue and serum cytokine; clinical and morphological lesions in limbs; and immunohistochemical expression of Msi1. Results. Clinically, TNFα-blocker treatment attenuated CIA on day 32 after immunization (P < 0.001). Msi1 protein expression was significantly higher in joints damaged by CIA than in those with no lesions (P < 0.0001) and was related to the severity of the lesions (Spearman's rho = 0.775, P = 0.0001). Conclusions. Treatment with etanercept attenuates osteoarticular lesions in the murine CIA model. Osteoarticular expression of Msi1 protein is increased in joints with CIA-induced lesion and absent in nonlesioned joints, suggesting that this protein is expressed when the lesion is produced in order to favor tissue repair.
Collapse
|
45
|
Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI. Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 2014; 19:260-70. [PMID: 24942612 PMCID: PMC4270961 DOI: 10.1002/ejp.544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Background Mounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo. Methods TNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity. Results TNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity. Conclusions Here we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation.
Collapse
Affiliation(s)
- D B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Armuzzi A, Lionetti P, Blandizzi C, Caporali R, Chimenti S, Cimino L, Gionchetti P, Girolomoni G, Lapadula G, Marchesoni A, Marcellusi A, Mennini FS, Salvarani C, Cimaz R. anti-TNF agents as therapeutic choice in immune-mediated inflammatory diseases: focus on adalimumab. Int J Immunopathol Pharmacol 2014; 27:11-32. [PMID: 24774504 DOI: 10.1177/03946320140270s102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The complex pathogenesis of immune-mediated inflammatory diseases (IMIDs) has been extensively investigated and dysregulation of cytokines, such as tumour necrosis factor (TNF) has been shown to play a dominant role in the pathogenesis of various IMIDs, such as rheumatoid arthritis, ankylosing spondylitis, Crohn's disease, ulcerative colitis, psoriasis and psoriatic arthritis. The subsequent development of biological agents capable of blocking TNF has led to important advances in the pharmacotherapy of such diseases and confirmed the concept of a common pathophysiology among IMIDs with TNF having a predominant role. Five TNF inhibitors have currently been approved for treatment of one or more IMIDs; these include infliximab, etanercept, adalimumab, golimumab and certolizumab pegol. Given the similarities in the pathogenic background of IMIDs, one could expect that anti-TNF agents be similarly effective and with comparable tolerability profiles; however, this may not be the case. Structural and pharmacological differences among the anti-TNF drugs are likely to result in differences in efficacy and tolerability among the agents in the different IMIDs, together with differences in potency, therapeutic dose ranges, dosing regimens, administration routes, and propensity for immunogenicity. Among the five TNF inhibitors approved for treatment of IMIDs, adalimumab has the widest range of indications. Data from controlled clinical trials of adalimumab, showing its excellent efficacy and tolerability in a wide range of indications, are supported by real-world long-term data from observational studies, which confirm the value of adalimumab as a suitable choice in the management of IMIDs.
Collapse
Affiliation(s)
- A Armuzzi
- IBD Unit, Complesso Integrato Columbus, Catholic University, Rome, Italy
| | - P Lionetti
- Gastroenterology Unit, Anna Meyer Childrens Hospital, Department of Paediatrics, University of Firenze, Firenze, Italy
| | - C Blandizzi
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - R Caporali
- Chair and Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - S Chimenti
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - L Cimino
- Ocular Immunology Unit, Ophthalmology, Unit, Arcispedale S Maria Nuova Reggio, Reggio, Emilia, Italy
| | - P Gionchetti
- IBD Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | - G Girolomoni
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - G Lapadula
- Rheumatology Unit, Interdisciplinary Department of Medicine, Medical School, University of Bari, Bari, Italy
| | | | - A Marcellusi
- CEIS Economic Evaluation and HTA (EEHTA), IGF Department, University of Tor Vergata, Rome, Italy
| | - F S Mennini
- CEIS Economic Evaluation and HTA (EEHTA), IGF Department, University of Tor Vergata, Rome, Italy
| | - C Salvarani
- Rheumatology Unit, Department of Internal Medicine, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy
| | - R Cimaz
- Department of Paediatrics, Rheumatology Unit, Anna Meyer Childrens Hospital, University of Florence, Firenze, Italy
| |
Collapse
|