1
|
Gao Y, Chen X, Duan JA, Xiao P. A review of pharmacological mechanisms, challenges and prospects of macromolecular glycopeptides. Int J Biol Macromol 2025; 300:140294. [PMID: 39863220 DOI: 10.1016/j.ijbiomac.2025.140294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Macromolecular glycopeptides are natural products derived from various sources, distinguished by their structural diversity, multifaceted biological activities, and low toxicity. These compounds exhibit a wide range of biological functions, such as immunomodulation, antitumor effects, anti-inflammatory properties, antioxidant activity, and more. However, limited understanding of natural glycopeptides has hindered their development and practical application. To promote their advancement and utilization, it is crucial to thoroughly investigate the pharmacological mechanisms of glycopeptides and address the challenges in natural glycopeptide research. This review uniquely focuses on the primary biological activities and potential molecular mechanisms of glycopeptides as reported in recent literature. Moreover, we emphasize the current challenges in glycopeptide research, including extraction and isolation difficulties, purification challenges, structural analysis complexities, elucidation of structure-activity relationships, characterization of biosynthetic pathways, and ensuring bioavailability and stability. The future prospects for glycopeptide research are also explored. We argue that ongoing research into glycopeptides will significantly contribute to drug development and provide more effective therapeutic options and disease treatment alternatives for human health.
Collapse
Affiliation(s)
- Ye Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoyi Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Fernando PDSM, Piao MJ, Kang KA, Herath HMUL, Kim ET, Hyun CL, Kim YR, Hyun JW. Butin Protects Keratinocytes From Particulate Matter 2.5 and Ultraviolet B-Mediated Damages. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e13001. [PMID: 39368082 DOI: 10.1111/phpp.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Butin is a naturally occurring compound with a wide range of medicinal properties, including anti-inflammatory, anti-arthritic, and antioxidant properties. Particulate matter 2.5 (PM2.5) and ultraviolet B (UVB) radiation contribute to skin cell damage via the induction of oxidative stress. METHODS This study sought to assess the protective effects of butin against damage triggered by PM2.5 and UVB in human HaCaT keratinocytes. Assessments were performed to evaluate cell viability, apoptosis, and cellular component damage. RESULTS Butin exhibited its protective ability via the inhibition of PM2.5-induced reactive oxygen species generation, lipid peroxidation, DNA damage, protein carbonylation, and mitochondrial damage. Butin reduced the PM2.5-induced c-Fos and phospho-c-Jun protein levels as well as mitogen-activated protein kinase. Furthermore, butin mitigated PM2.5- and UVB-induced apoptosis. CONCLUSION Butin had the potential as a pharmaceutical candidate for treating skin damage caused by PM2.5 and UVB exposure.
Collapse
Affiliation(s)
- Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | | | - Eui Tae Kim
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Chang Lim Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, Jeju, Republic of Korea
- College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
3
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Dahiya A, Sharma S, Agrawala PK, Dutta A. Histone deacetylase inhibitor, Trichostatin A mitigates ionizing radiation induced redox imbalance by regulating NRF2/GPX4/PINK1/PARKIN signaling in mice intestine. Mol Biol Rep 2024; 51:943. [PMID: 39198316 DOI: 10.1007/s11033-024-09867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Gastrointestinal-acute radiation syndrome (GI-ARS) caused by moderate to high doses of ionizing radiation exposure contribute to early death in humans. GI injury is also a common adverse effect seen in cancer patients undergoing abdominal/pelvic radiotherapy. Currently, no countermeasure agents have been approved for medical management of GI-ARS. The present study aims to evaluate the mechanism of action of Trichostatin A(TSA), a pan histone deacetylase inhibitor, against radiation-induced GI injury. METHODS TSA (150 ng/kg bw) was administered to mice 1 h and 24 h after 15 Gy abdominal irradiation. Expression of various markers of oxidative stress, mitochondrial dysfunction, and apoptosis were checked in the jejunum, and their possible regulation through the Nrf2 signaling pathway was evaluated. RESULTS TSA administered post-irradiation (15 Gy + TSA) elevated intestinal total antioxidant and glutathione levels by regulating the expression of Slc7A11 and antioxidant proteins, GCLC, GPX4, and TXNRD1. Improved mitochondrial membrane potential, ATP levels, downregulation of mitochondrial quality control proteins, (PINK1 and PARKIN), and differential regulation of the apoptotic proteins, (BAX, PUMA and BCL2) with reduced intestinal epithelial cell apoptosis in the TSA-adminstered group were observed. TSA also upregulated Nrf2 in the presence of its specific inhibitor, ML385, suggesting its involvement in regulating Nrf2 signaling during oxidative stress induced by radiation in intestine. H & E stained jejunum cross-sections revealed that TSA mitigated radiation-mediated intestinal injury in mice. CONCLUSIONS Present findings indicate that TSA is beneficial in mitigating the damaging effects of ionizing radiation in the intestine.
Collapse
Affiliation(s)
- Akshu Dahiya
- Radiomitigation Research Department, Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig. S.K Mazumdar Marg, Delhi, 110054, India
| | - Suchitra Sharma
- Radiomitigation Research Department, Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig. S.K Mazumdar Marg, Delhi, 110054, India
| | - Paban K Agrawala
- Radiomitigation Research Department, Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig. S.K Mazumdar Marg, Delhi, 110054, India
| | - Ajaswrata Dutta
- Radiomitigation Research Department, Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig. S.K Mazumdar Marg, Delhi, 110054, India.
| |
Collapse
|
5
|
Huang K, Fu W, Wang A, Du G, Tang H, Yin L, Yin Z, Gao W. MSRB2 Ameliorates H 2O 2-induced Chondrocyte Oxidative Stress and Suppresses Apoptosis in Osteoarthritis. Immunol Invest 2024; 53:813-829. [PMID: 38638027 DOI: 10.1080/08820139.2024.2343898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
BACKGROUND Chondrocyte oxidative stress and apoptosis are critical factors contributing to the pathogenesis of osteoarthritis (OA). Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial protein that protects cells from oxidative stress and is involved in apoptosis. This study aimed to investigated the expression of MSRB2 in articular cartilage tissues and elucidated its effect on H2O2-stimulated chondrocytes. METHODS Human chondrocytes were cultured in Dulbecco's modified Eagle's medium (DMEM)/F12. MSRB2 overexpression in chondrocytes was achieved by transfecting with an MSRB2 overexpression plasmid. Western blot, quantitative RT-PCR, Immunofluorescence staining, and TUNEL assay were employed in this study. RESULTS MSRB2 expression was found to be reduced in OA patients. Furthermore, overexpression of MSRB2 in H2O2-induced chondrocytes mitigated apoptosis and enhanced cell viability. Elevated MSRB2 expression diminished chondrocyte ROS contents, decreased cytochrome C (Cyc) in the cytoplasm, and regulated mitochondrial membrane potential to maintain mitochondrial homeostasis. Interestingly, knockdown of charged multivesicular body protein 5 (CHMP5) led to a decreased inMSRB2 expression in chondrocytes. Additionally, protein levels of CHMP5 and MSRB2 were reduced in H2O2-stimulated chondrocytes, and silencing CHMP5 reduced MSRB2 expression. Knockdown of CHMP5 increased cleaved caspase-3 expression in H2O2-induced chondrocytes and elevated TUNEL-positive chondrocytes. CONCLUSION MSRB2 decreased in OA, and overexpression of MSRB2 alleviated oxidative stress and apoptosis of chondrocyte.
Collapse
Affiliation(s)
- Keke Huang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Gongwen Du
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Kiani M, Soleimani Mehranjani M, Ali Shariatzadeh M. Empagliflozin reduces the adverse effects of diabetes mellitus on testicular tissue in type 2 diabetic Rats: A stereological and biochemical study. Biochem Pharmacol 2024; 223:116135. [PMID: 38508421 DOI: 10.1016/j.bcp.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Empagliflozin as an antioxidant decreases blood glucose and insulin resistance in type 2 diabetes mellitus. Base on the empagliflozin antioxidant properties we decided to investigate the its effects on the testis histological changes through stereological techniques and biochemical evaluations in T2 diabetes mellitus rats. Rats were divided into: control, diabetes mellitus (DM, streptozotocin + nicotinamide) and diabetes mellitus + empagliflozin (DM + EMPA, 10 mg/kg/day) groups. 56 days after inducing diabetes mellitus testis histological changes and serum biochemical factors along with the level of Bax, Bcl2 and Nrf2 genes expression in the testicular tissue were assessed. A significant decrease in the mean total volume of testis and its components, the level of Bcl2 and Nrf2 gene expression (p < 0.001) along with a significant increase in the level of IL-6, TNF-α, MDA, Bax gene expression were observed in the DM group compared to the control group (p < 0.001). In the DM + EMPA group, the mean total volume of testis and its components, the level of Bcl2 gene expression (p< 0.01) and Nrf2 (p < 0.001) significantly increased whereas the mean level of IL-6 (p < 0.01), TNF-α (p < 0.001), MDA (p < 0.001), Bax (p < 0.001) gene expression significantly decreased compared to the DM group. Our results showed that empagliflozin, by improving the antioxidant defense system, can reduce testicular inflammation and apoptosis and partly prevent the adverse effects of diabetes mellitus on testicular tissue.
Collapse
Affiliation(s)
- Mina Kiani
- Department of Biology, Faculty of Science, Arak University, Arak 3815688138, Iran
| | | | | |
Collapse
|
7
|
Ding L, Wang K, Zhu H, Liu Z, Wang J. Protective effect of quercetin on cadmium-induced kidney apoptosis in rats based on PERK signaling pathway. J Trace Elem Med Biol 2024; 82:127355. [PMID: 38071864 DOI: 10.1016/j.jtemb.2023.127355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Cadmium (Cd) is a highly toxic environmental pollutant that can enter the body through bioaccumulation. The kidney is an important target organ for Cd poisoning. Quercetin (Que) is a natural flavonoid compound with free radical scavenging and antioxidant properties. Previous studies showed that Que can alleviate kidney damage caused by Cd poisoning in rats, but the specific mechanism is still unclear. METHODS Twenty-four male Sprague-Dawley (SD) rats were divided into four groups: normal saline-treated control group, Cd group treated by intraperitoneal injection of 2 mg/kg b.w. CdCl2, Cd + Que group treated by intraperitoneal injection of 2 mg/kg b.w. CdCl2 and 100 mg/kg b.w. Que, and Que group treated by 100 mg/kg b.w. Que. Four weeks later, the rats were anesthetized with diethyl ether, and blood was taken intravenously. The rats were executed with their necks cut off, and the kidneys were removed. Body weight, kidney organ weight, and glutathione (GSH) and malondialdehyde (MDA) levels were measured. The structure of kidney tissue was observed by hematoxylin and eosin staining, kidney cell apoptosis was detected by TUNEL assay, and the mRNA expression levels of genes related to the PERK signaling pathway were analyzed by RT-PCR. RESULTS Compared with the control group, the Cd-treated group exhibited a significant decrease in body weight (P < 0.01). Their kidneys showed a significant increase in the relative organ weight (P < 0.01). Moreover, the MDA and GSH levels increased. Kidney tissue damage and renal cell apoptosis were observed, and the mRNA expression levels of genes related to the PERK signaling pathway significantly increased (P < 0.01). Compared with the Cd-treated group, the Cd + Que group exhibited a significant increase in body weight (P < 0.01) and significant decreases in the relative organ weight, MDA and GSH levels, and mRNA expression levels of genes related to the PERK signaling pathway (P < 0.01). Furthermore, kidney tissue damage and renal cell apoptosis were observed. CONCLUSION Cd treatment resulted in rat weight loss, renal edema, and oxidative stress and caused renal tissue damage and cell apoptosis by activating the PERK signaling pathway. Que was able to restore the body weight and renal coefficient of rats. It also alleviated the oxidative stress and kidney tissue damage caused by Cd and the cell apoptosis caused by Cd through inhibiting the PERK signaling pathway. Thus, Que could be considered for the treatment of kidney diseases caused by Cd poisoning.
Collapse
Affiliation(s)
- Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China; College of Veterinary Medicine, Yangzhou University, No. 12, East Wenhui Road, Yangzhou 225009, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China; Zhengzhou Medical College, No. 3, Chuangye Avenue, Zhengzhou 452370, PR China
| | - Huali Zhu
- Law Hospital, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No. 12, East Wenhui Road, Yangzhou 225009, PR China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, PR China.
| |
Collapse
|
8
|
Rostamzadeh P, Shokri‐Asl V, Torghabeh FM, Davoudi S, Haghzadeh A, Moradi S. Aubergine stem restores reproductive damages following diabetes mellitus induction in male mice. Food Sci Nutr 2024; 12:399-410. [PMID: 38268903 PMCID: PMC10804115 DOI: 10.1002/fsn3.3767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/26/2024] Open
Abstract
Diabetes mellitus unbalances cellular antioxidant levels. This phenomenon can potentially lead to cellular damage and apoptosis in the male reproductive system. Besides, herbal-based antioxidants can prevent these detrimental changes. Thus, we assessed the probable role of Aubergine stems with antioxidant and anti-hyperlipidemic characteristics on reproductive damage following diabetes mellitus induction. Forty male NMRI mice were categorized into groups of control and treatments. Diabetes was induced by a single dose of streptozotocin (60 mg/kg), and the extract was administered at various doses (100, 300, and 500 mg/kg) daily for 4 weeks. Antioxidative features of the extract were approved by phytochemical assays and ferric-reducing ability of plasma. Side-effects of diabetes were also assessed by the malondialdehyde (MDA) and Griess techniques. Sperm parameters, LH, FSH, and testosterone levels, the TUNEL assay, histopathologic alteration, and apoptotic genes (p53, caspase-3, Bcl-2) were evaluated. Results showed that diabetes increased oxidation levels and the extract accelerated total antioxidant capacity status. Sperm parameters and hormone levels were restored following extract administration in diabetic animals. Also, the apoptosis rate decreased following extract administration in diabetic animals. We concluded that diabetes can elevate the levels of oxidation and suppress the antioxidant power. These pathologic changes were restored by Aubergine stem, leading to decreased levels of apoptosis and normal serum levels of testosterone, LH, and FSH.
Collapse
Affiliation(s)
- Parsa Rostamzadeh
- Department of Anatomical Sciences, Medical SchoolKurdistan University of Medical SciencesSanandajIran
| | - Vahid Shokri‐Asl
- Department of Reproductive Biology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | | | - Samira Davoudi
- Department of Reproductive Biology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Ahmad Haghzadeh
- Student Research Committee, Faculty of Dentistry, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Shima Moradi
- Department of Anatomical Sciences, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
9
|
Chilukoti SR, Sahu C, Jena G. Protective role of eugenol against diabetes-induced oxidative stress, DNA damage, and apoptosis in rat testes. J Biochem Mol Toxicol 2024; 38:e23593. [PMID: 38047382 DOI: 10.1002/jbt.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Diabetes mellitus, a metabolic disorder alters gonadal development and spermatogenesis, reactive oxygen species production, DNA damage, and apoptosis, which subsequently lead to male subfertility. Eugenol is an antioxidant, traditionally used as medication for digestive disorders and antioxidant therapy, decrease transport of glucose from GIT to systemic circulation. This experiment was aimed to decipher cellular and molecular insights of eugenol in protecting diabetic germ cells in rats. Rats were assigned randomly into five groups: control, eugenol control (Eugenol 400; EUG), diabetic (DIA), diabetic + eugenol 100 (DIA + EUG 100), and diabetic + eugenol 400 (DIA + EUG 400). EUG 400 and DIA + EUG 400 groups received 400 mg/kg eugenol orally. DIA + EUG 100 group received 100 mg/kg eugenol. Treatment was conducted for 4 weeks. Type 1 diabetes was induced by injecting a single i.p. dose of streptozotocin (55 mg/kg). Morphometric, biochemical, sperm parameters, oxidative stress, hormonal levels, histopathology, and fibrosis in the testis and epididymis, were evaluated. DNA damage was evaluated using halo and comet assays; DNA fragmentation and apoptosis using TUNEL assay. Eugenol treatment significantly normalized biochemical parameters, reduced MDA while increased albumin and GSH levels in diabetes. Eugenol significantly increased sperm numbers, motility and attenuated abnormal sperm head morphology in diabetes. Moreover, eugenol significantly reversed diabetes-induced cellular damages, altered spermatogenesis, and collagen deposition in testis and epididymis. It also significantly attenuated diabetes-associated DNA breaks and apoptosis. These findings suggest that 4 weeks treatment with 400 mg/kg of eugenol could be beneficial for diabetic patients to prevent subfertility.
Collapse
Affiliation(s)
- Sri R Chilukoti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, Punjab, India
| | - Chittaranjan Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, Punjab, India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, Punjab, India
| |
Collapse
|
10
|
Meher MK, Unnikrishnan BS, Tripathi DK, Packirisamy G, Poluri KM. Baicalin functionalized PEI-heparin carbon dots as cancer theranostic agent. Int J Biol Macromol 2023; 253:126846. [PMID: 37717866 DOI: 10.1016/j.ijbiomac.2023.126846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
The worldwide prevalence of cancer and its significantly rising risks with age have garnered the attention of nanotechnology for prompt detection and effective therapy with minimal or no adverse effects. In the current study, heparin (HP) polymer derived heteroatom (N, S-) co-doped CDs were synthesized using hydrothermal synthesis method to efficiently deliver natural anticancer compound baicalin (BA). Heparin carbon dots (HCDs) were passivated with polyethylenimine (PEI) to improve its fluorescence quantum yield. The surface passivation of CDs by polycationic PEI polymer not only facilitated loading of BA, but also played a crucial role in the pH-responsive drug delivery. The sustained release of BA (up to 80 %) in mildly acidic pH (5.5 and 6.5) conditions endorsed its drug delivery potential for cancer-specific microenvironments. BA-loaded PHCDs exhibited enhanced anticancer activity as compared to BA/PHCDs indicating the effectiveness of the nanoformulation, Furthermore, the flow cytometry analysis confirmed that BA-PHCDs treated cells were arrested in the G2/M phase of cell cycle and had a higher potential for apoptosis. Bioimaging study demonstrated the excellent cell penetration efficiency of PHCDs with complete cytoplasmic localization. All this evidence comprehensively demonstrates the potency of BA-loaded PHCDs as a nanotheranostic agent for cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - B S Unnikrishnan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
11
|
Abdi M, Alizadeh F, Daneshi E, Abouzaripour M, Fathi F, Rahimi K. Ameliorative effect of Stevia rebaudiana Bertoni on sperm parameters, in vitro fertilization, and early embryo development in a streptozotocin-induced mouse model of diabetes. ZYGOTE 2023; 31:475-482. [PMID: 37415512 DOI: 10.1017/s0967199423000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Diabetes mellitus (DM) is a common metabolic disease characterized by high blood sugar levels. It is well known that men with diabetes frequently experience reproductive disorders and sexual dysfunction. In fact, sperm quality has a significant effect on fertilization success and embryo development. The current study aimed to investigate the effect of Stevia rebaudiana hydroalcoholic extract on serum testosterone levels, sperm parameters, in vitro fertilization (IVF) success, and in vitro embryonic developmental potential to reach the blastocyst stage in a streptozotocin (STZ)-induced mouse model of diabetes. In this research, 30 male mice were distributed randomly into control, diabetic (streptozotocin 150 mg/kg) and diabetic + Stevia (400 mg/kg) groups. The results revealed a decrease in body and testis weight and elevated blood fasting blood sugar (FBS) levels in the diabetic group, compared with the control. However, Stevia treatment significantly increased body and testis weight, while serum FBS levels were decreased compared with the diabetic group. In addition, Stevia significantly increased blood testosterone levels compared with the diabetic group. Moreover, sperm parameters were improved considerably by Stevia treatment compared with the diabetic group. Furthermore, Stevia administration significantly promoted IVF success rate and in vitro development of fertilized oocytes compared with the diabetic group. In summary, our data indicated that Stevia enhanced sperm parameters, IVF success, and in vitro embryonic developmental competency in diabetic mice, probably because of its antioxidant effects. Therefore, Stevia could ameliorate sperm parameters that, in turn, increase fertilization outcomes in experimental-induced diabetes.
Collapse
Affiliation(s)
- Mahdad Abdi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fathemeh Alizadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Daneshi
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Abouzaripour
- Department of Anatomy, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
12
|
Khosravi F, Hojati V, Mirzaei S, Hashemi M, Entezari M. Curcumin neuroprotective effects in Parkinson disease during pregnancy. Brain Res Bull 2023; 201:110726. [PMID: 37543296 DOI: 10.1016/j.brainresbull.2023.110726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Young onset Parkinson disease (YOPD) accounts for about 10% of PD patients, with the onset of symptoms between the ages of 21 and 40. At this age, the probability of pregnancy is high and there is a concern that the disease affects the fetuses. Therefore, in the present study, the effects of rotenone-induced PD on female mice as well as their fetuses and curcumin supplementation on the cerebral tissue of both female mice and their resulted fetuses were studied. METHODS The rotenone was injected subcutaneously to induce PD model of female mice. The different concentrations of curcumin were administrated every day i.p. for 3 weeks and the rotarod test was done on day 1 and 19. Cell viability was measured by MTT test and apoptosis and necrosis of cells were evaluate using flow cytometry technique. After primer design, the expressions of bax, bcl-2, miR-211 and circRNA 0001518 genes were measured using RT-PCR technique. RESULTS Curcumin administration were improved cerebral cell viability of both female PD mice and resulted fetuses by preventing cell apoptosis and necrosis. bax, miR-211 and circRNA 0001518 were downregulated and bcl-2 overexpressed in cerebral neurons of PD mice and their fetuses. CONCLUSION PD induction in mice affects their fetal brain, and curcumin can partially reduce the negative effects of PD on fetal brain cells by overexpressing bcl-2 and decreasing bax expression genes.
Collapse
Affiliation(s)
- Faramarz Khosravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Zheng X, Li X, Meng S, Shi G, Li H, Du H, Dai L, Yang H. Cascade amplification of tumor chemodynamic therapy and starvation with re-educated TAMs via Fe-MOF based functional nanosystem. J Nanobiotechnology 2023; 21:127. [PMID: 37041537 PMCID: PMC10088258 DOI: 10.1186/s12951-023-01878-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Tumor microenvironment is characterized by the high concentration of reactive oxygen species (ROS), which is an effective key used to open the Pandora's Box against cancer. Herein, a tumor-targeted nanosystem HFNP@GOX@PFC composed of ROS-cleaved Fe-based metal-organic framework, hyaluronic acid (HA), glucose oxidase (GOX) and perfluorohexane (PFC) has been developed for tumor cascade amplified starvation and chemodynamic therapy (CDT). In response to the high concentration of hydrogen peroxide (H2O2) intratumorally, HFNP@GOX@PFC endocytosed by tumor cells can specially be disassembled and release GOX, PFC and Fe2+, which can collectively starve tumor and self-produce additional H2O2 via competitively glucose catalyzing, supply oxygen to continuous support GOX-mediated starvation therapy, initiate CDT and cascade amplify oxidative stress via Fe2+-mediated Fenton reaction, leading to the serious tumor damage with activated p53 signal pathway. Moreover, HFNP@GOX@PFC also significantly initiates antitumor immune response via re-educating tumor-associated macrophages (TAMs) by activating NF-κB and MAPK signal pathways. In vitro and in vivo results collectively demonstrate that nanosystem not only continuously initiates starvation therapy, but also pronouncedly cascade-amplify CDT and polarize TAMs, consequently efficiently inhibiting tumor growth with good biosafety. The functional nanosystem combined the cascade amplification of starvation and CDT provides a new nanoplatform for tumor therapy.
Collapse
Affiliation(s)
- Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiang Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huiping Du
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
14
|
Lalrinzuali S, Khushboo M, Dinata R, Bhanushree B, Nisa N, Bidanchi RM, Laskar SA, Manikandan B, Abinash G, Pori B, Roy VK, Gurusubramanian G. Long-term consumption of fermented pork fat-based diets differing in calorie, fat content, and fatty acid levels mediates oxidative stress, inflammation, redox imbalance, germ cell apoptosis, disruption of steroidogenesis, and testicular dysfunction in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52446-52471. [PMID: 36840878 DOI: 10.1007/s11356-023-26018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
There is a dearth of experimental evidence available as to whether the consumption of fermented pork fat (FPF) food has any harmful effects on metabolism and reproduction due to its excessive calories, high fat content, and fatty acid methyl ester (FAME) levels. We hypothesized that exposure to a FPF-diet with excessive calories, a high fat content, and high FAME levels alters testicular physiology and metabolism, leading to permanent damage to the testicular system and its function. Thirteen-week-old male rats (n = 20) were assigned to a high-calorie, high-fat diet (FPF-H, fat-60%, 23 kJ/g), a moderate-calorie, moderate-fat diet (FPF-M, fat-30%, 17.5 kJ/g), a low-calorie and low-fat diet (FPF-L, fat-15%, 14.21 kJ/g) compared to the standard diet (Control, fat-11%, 12.56 kJ/g) orally for 90 days. GC-MS analysis of the three FPF-diets showed high quantities of saturated fatty acids (SFAs) and polyunsaturated fatty acids-ω6 (PUFA-ω6) and low levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids-ω3 (PUFA-ω3) compared to the control diet. Consequently, the levels of serum FAMEs of the FPF-diet fed rats were significantly increased. In addition, a high level of n-6:n-3 PUFA towards PUFA-ω6 was observed in the serum of FPF-diet fed rats due to the high content of linoleic, γ-linolenic, and arachidonic acid. Long-term consumption of FPF-diets disturbed the anthropometrical, nutritional, physiological, and metabolic profiles. Furthermore, administration of FPF-diets generated metabolic syndrome (dyslipidemia, leptinemia, insulin resistance, obesity, hepato-renal disorder and function), increased the cardiovascular risk factors, and triggered serum and testis inflammatory markers (interleukin-1↑, interleukin-6↑, interleukin-10↓, leukotriene B4↑, prostaglandin↑, nitric oxide↑, myeloperoxidase↑, lactate dehydrogenase↑, and tumor necrosis factor-α↑). Activated testis oxidative stress (conjugated dienes↑, lipid hydroperoxides↑, malondialdehyde↑, protein carbonyl↑, and fragmented DNA↑) and depleted antioxidant reserve (catalase↓, superoxide dismutase↓, glutathione S-transferase↓, reduced glutathione↓, glutathione disulfide↑, and GSH:GSSG ratio↓) were observed in FPF-diet fed rats. Disrupted testis histoarchitecture, progressive deterioration of spermatogenesis, poor sperm quality and functional indices, significant alterations in the reproductive hormones (serum and testis testosterone↓, serum estradiol↑, serum luteinizing hormone↓, and follicle-stimulating hormone↑), were noted in rats fed with FPF diets than in the control diet. Severe steroidogenic impairment (steroidogenic acute regulatory protein, StAR↓; 3β-hydroxysteroid dehydrogenase, 3β-HSD↓; and luteinizing hormone receptor, LHR↓), deficiency in germ cells proliferation (proliferating cell nuclear antigen, PCNA↓), and abnormally enhanced testicular germ cell apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL assay↑; B-cell lymphoma-2, BCL-2↓; Bcl-2-associated X protein, BAX↑; and BAX/BCL-2 ratio↑) were remarked in the FPF-diet administered rats in comparison with the control diet. In conclusion, the long-term feeding of an FPF-diet with excessive calories, a high fat content, and high FAME levels induced oxidative stress, inflammation, and apoptosis, resulting in metabolic syndrome and hampering male reproductive system and functions. Therefore, the adoption of FPF diets correlates with irreversible changes in testis metabolism, steroidogenesis, germ cell proliferation, and apoptosis, which are related to permanent damage to the testicular system and function later in life.
Collapse
Affiliation(s)
- Sailo Lalrinzuali
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Saeed-Ahmed Laskar
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | |
Collapse
|
15
|
Shafiee A, Athar MMT, Shahid A, Ghafoor MS, Ayyan M, Zahid A, Cheema HA. Curcumin for the treatment of COVID-19 patients: A meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1167-1175. [PMID: 36640146 DOI: 10.1002/ptr.7724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Curcumin is a low-cost and easily accessible therapeutic option for COVID-19 patients. We aimed to conduct a meta-analysis to assess the effect of curcumin on clinical outcomes in COVID-19 patients. Various databases, including PubMed, the Cochrane Library and Embase were searched from inception until October 2022 for randomized controlled trials (RCTs) evaluating curcumin use in COVID-19 patients. Results from 13 RCTs were pooled using R software version 4.1.0. Curcumin reduced the risk of all-cause mortality (RR 0.38; 95% CI: 0.20-0.72; moderate certainty of evidence), and patients with no recovery status (RR 0.54; 95% CI: 0.42-0.70; moderate certainty of evidence) but had no effect on the incidence of mechanical ventilation and hospitalization, and the rate of a positive viral PCR test. The results of subgroup analysis suggested a higher benefit with early administration of curcumin (within 5 days of onset of symptoms) and with the use of combination regimens. Curcumin is likely to be of benefit in mild-to-moderate COVID-19 patients, but large-scale RCTs are needed to confirm these findings. The limitations of our meta-analysis include the small sample sizes of the included RCTs and the variable formulations of curcumin used across the studies.
Collapse
Affiliation(s)
- Arman Shafiee
- Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran.,Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Abia Shahid
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | - Muhammad Ayyan
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Afra Zahid
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
16
|
Buhur A, Gürel Ç, Kuşçu GC, Yiğittürk G, Oltulu F, Karabay Yavaşoğlu NÜ, Uysal A, Yavaşoğlu A. Is losartan a promising agent for the treatment of type 1 diabetes-induced testicular germ cell apoptosis in rats? Mol Biol Rep 2023; 50:2195-2205. [PMID: 36565418 DOI: 10.1007/s11033-022-08172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is common metabolic disease that poses a major risk to public health and fertility. Previous studies indicate that DM may cause male infertility by triggering oxidative stress and germ cell apoptosis in the testis. Due to the undesirable effects of known antidiabetic drugs, scientists have begun to investigate the use of alternative drugs to control infertility complications observed in men. In this context, present study aimed to investigate the possible antiapoptotic effect of losartan against DM-induced testicular germ cell apoptosis. METHODS AND RESULTS Expreimental DM model was induced by intraperitoneal injection of streptozocin (STZ, 55 mg/kg) to 28 rats, which were then randomly assigned to 4 groups; 1 mL saline solution was given to DM + saline group by oral gavage, 5 mg/kg/day oral losartan was given to DM + low-dose losartan, 20 mg/kg/day oral losartan was given to DM + mid-dose losartan and, 80 mg/kg/day oral losartan was given to DM + high-dose losartan group for 4 weeks. Bax, Bcl-2 and cleaved-Caspase 3 immunoexpression, terminal-deoxynucleotidyl transferase dutp nick end labeling (TUNEL), Annexin-V and Real Time PCR analyses performed to evaluate antiapoptotic effects of losartan on diabetic rats' testis. In addition, biochemical analyzes carried out to evaluate change in oxidative stress. CONCLUSION The results showed that losartan may have dose-related antiapoptotic effects on rats' testis via decreasing oxidative stress.
Collapse
Affiliation(s)
- Aylin Buhur
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | - Çevik Gürel
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey. .,Faculty of Medicine, Department of Histology and Embryology, Harran University, Sanliurfa, Turkey.
| | - Gökçe Ceren Kuşçu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | - Gürkan Yiğittürk
- Faculty of Medicine, Department of Histology and Embryology, Muğla Sıtkı Kocman University, Muğla, Turkey
| | - Fatih Oltulu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | | | - Ayşegül Uysal
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| | - Altuğ Yavaşoğlu
- Faculty of Medicine, Department of Histology and Embryology, Ege University, 35100, Izmir, Izmir, Turkey
| |
Collapse
|
17
|
Ranjbar A, Kheiripour N, Shateri H, Sameri A, Ghasemi H. Protective Effect of Curcumin and Nanocurcumin on Sperm Parameters and Oxidant-antioxidants System of Rat Testis in Aluminium Phosphide Subacute Poisoning. Pharm Nanotechnol 2023; 11:355-363. [PMID: 36927427 DOI: 10.2174/2211738511666230316101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Aluminum phosphide (AlP) as an effective pesticide may contribute to oxidative stress and adversely influence sperm parameters. This study aimed to investigate the protective role of curcumin and nanocurcumin on oxidative damage in the testis of rats with AlP toxicity. METHODS A total of 42 adult male Wistar rats were equally randomized into the following study groups (n = 7): Control, Control+Curcumin, Control+Nanocurcumin, AlP, AlP+Curcumin, and AlP+Nanocurcumin. The testis tissue was used to investigate the levels of testicular malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and reduced glutathione (GSH) as well as the Catalase (CAT) and superoxide dismutase (SOD) enzyme activity. Epididymal sperm was used to perform sperm analysis. RESULTS AlP administration led to a significant increase in MDA, and TOS levels and also markedly decreased the SOD activity and the levels of TAC and GSH in testis tissue (p <0.001). Moreover, the motility and viability of sperms were significantly reduced (p <0.001). Curcumin and Nanocurcumin co-administration with AlP remarkably decreased the MDA and TOS level (p <0.001) and significantly increased the GSH and TAC levels as well as the activity of SOD in AlP intoxicated groups (p<0.001). Our findings demonstrated that Nanocurcumin administration has significantly enhanced the sperm quality in AlP intoxicated rats as compared to the control group (p <0.001). CONCLUSION According to the results of this study, Curcumin as a potential antioxidant could be an effective attenuative agent against AlP-induced oxidative damage in testis, especially when it is used in encapsulated form, nanocurcumin.
Collapse
Affiliation(s)
- Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Shateri
- Department of Clinical Biochemistry, Hamadan School of Medical Sciences, Hamadan, Iran
| | - Amirhossein Sameri
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Hadi Ghasemi
- Department of Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S. Cordycepin mitigates spermatogenic and redox related expression in H 2O 2-exposed Leydig cells and regulates testicular oxidative apoptotic signalling in aged rats. PHARMACEUTICAL BIOLOGY 2022; 60:404-416. [PMID: 35175170 PMCID: PMC8863333 DOI: 10.1080/13880209.2022.2033275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Cordycepin (COR), from Cordyceps militaris L., (Cordycipitaceae), is a valuable agent with immense health benefits. OBJECTIVE The protective effects of COR in ageing-associated oxidative and apoptosis events in vivo and hydrogen peroxide (H2O2)-exposed spermatogenesis gene alterations in TM3 Leydig cells was investigated. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into young control (YC), aged control (AC) and COR treated (COR-20) aged groups. COR-20 group received daily doses of COR (20 mg/kg) for 6 months. Cell viability and hormone levels were analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and enzyme immunoassay kits with COR treated at 1, 5, and 10 μg/mL. Oxidative enzymes, spermatogenic, and apoptotic expression in testis tissues were evaluated by Western blotting and real-time RT-PCR. RESULTS COR treatment (1, 5, and 10 μg/mL) significantly (p < 0.05 ∼ p < 0.001) inhibited the H2O2-induced decrease in the percentage of viable cells (from 63.27% to 71.25%, 85.67% and 93.97%, respectively), and reduced the malondialdehyde (MDA) content (from 4.28 to 3.98, 3.14 and 1.78 nM MDA/mg protein, respectively). Further, the decreased antioxidant enzymes (glutathione-S-transferase mu5, glutathione peroxidase 4 and peroxiredoxin 3), spermatogenesis-related factors (nectin-2 and inhibin-α) and testosterone levels in H2O2-exposed TM3 cells were significantly (p < 0.05 ∼ p < 0.001) ameliorated by COR. In aged rats, COR (20 mg/kg) restored the altered enzymatic and non-enzymatic antioxidative status and attenuated the apoptotic p53 and Bax/Bcl-2 expression significantly (p < 0.05). CONCLUSION COR might be developed as a potential agent against ageing-associated and oxidative stress-induced male infertility.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Kyu-Min Cha
- Business Incubator Center 406, D&L Biochem, Chungju-Si, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-Kwan Kim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
- CONTACT Sushruta Koppula Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju27381, Republic of Korea
| |
Collapse
|
19
|
Shaman AA, Zidan NS, Atteia HH, Alalawy AI, Alzahrani S, AlBishi LA, Helal AI, Braiji SH, Farrag F, Shukry M, Sakran MI. Arthrospira platensis nanoparticles defeat against diabetes-induced testicular injury in rat targeting, oxidative, apoptotic, and steroidogenesis pathways. Andrologia 2022; 54:e14456. [PMID: 35560246 DOI: 10.1111/and.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Varieties of studies have been used to investigate the health benefits of Spirulina (Arthrospira platensis); however, more research is needed to examine if its nano form may be utilized to treat or prevent several chronic diseases. So, we designed this study to explore the effect and the cellular intracellular mechanisms by which Arthrospira platensis Nanoparticles (NSP) alleviates the testicular injury induced by diabetes in male Wistar rats. Eighty Wistar male rats (n = 80) were randomly allocated into eight groups. Group 1 is untreated rats (control), Group 2 including STZ-induced diabetic rats with 65 mg/kg body weight STZ (STZ-diabetic), Group 3-5: including diabetic rats treated with NSP1, NSP2, and NSP3 at 0.25, 0.5, and 1 mg/kg body weight, respectively, once daily orally by the aid of gastric gavage for 12 consecutive weeks and groups 6-8 include normal rats received NSP (0.25, 0.5, and 1 mg/kg body weight once daily orally. The identical volume of normal saline was injected into both control and diabetic rats. After 12 weeks of diabetes induction, the rats were killed. According to our findings, NSP administration to diabetic rats enhances the total body weight and the weight of testes and accessory glands; in addition, NSP significantly reduced nitric oxide and malondialdehyde in testicular tissue improved sperm parameters. Intriguingly, it raises testicular GSH and SOD activity by a significant amount (p < 0.05). As well, Oral administration of NSP to diabetic rats resulted in a decrease in the blood glucose levels, HA1C, induced in the diabetic group, which overcame the diabetic complications NSP caused down-regulation of apoptotic genes with upregulation of BCL-2 mRNA expression (p < 0.05) and prominent up-regulation of steroidogenesis genes expression level in testes in comparison to the diabetic rats which resulted in improving the decreased levels of testosterone hormone, FSH, and LH induced by diabetes. In the same way, our histopathological findings support our biochemical and molecular findings; in conclusion, NSP exerted a protective effect against reproductive dysfunction induced by diabetes not only through its high antioxidant and hypoglycemic action but also through its down-regulation of Apoptotic genes and up-regulation of steroidogenesis regulatory genes expression level in diabetic testes.
Collapse
Affiliation(s)
- Amani Ali Shaman
- Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Nahla S Zidan
- Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
- Department of nutrition and food science Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Sharifa Alzahrani
- Pharmacilogy Department, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Laila A AlBishi
- Pediatric Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Azza I Helal
- Faculty of Medicine, Histology and Cell Biology Department, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | | | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Wang J, Ding L, Wang K, Huang R, Yu W, Yan B, Wang H, Zhang C, Yang Z, Liu Z. Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113772. [PMID: 35714484 DOI: 10.1016/j.ecoenv.2022.113772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of the most toxic environmental pollutants. Quercetin (Que) is a kind of natural flavonoid with neuroprotective, antioxidant, and free-radical scavenging pharmacological activities. However, whether Que has the protective effect of on Cd-induced rat hepatocyte injury is unclear. This study aimed to determine the protective effect of Que on Cd-induced hepatotoxicity in vivo and in vitro. For in vivo, 36 4-week-old male SD rats were randomly divided into six groups and were treated with CdCl2 (2 mg/kg b.w.) and/or Que (50 or 100 mg/kg b.w.). Four weeks later, the rats were sacrificed and livers were collected. The levels of alanine aminotransferase, aspartate aminotransferase, glutathione, malondialdehyde, catalase, and superoxide dismutase were measured. Liver histopathological sections were made, and TUNEL method was performed to detect cell apoptosis. The mRNA and protein expression levels of endoplasmic reticulum stress (ERS) signaling pathway-related factors and apoptosis-related factors were detected. For in vitro, BRL-3A rat cells were treated with CdCl2 (12.5 μM) and/or Que (5 μM Que). The mRNA and protein expression levels of ERS signaling pathway-related factors and apoptosis-related factors were detected. Results showed that Cd led to liver injury, disorder of hepatocyte morphology and structure, decreased BRL-3A cells viabilities, increased oxidative damage. The mRNA and protein expression levels of ERS related factors GRP78, PERK, eIF2α, ATF4, CHOP, IRE1α, XBP1, and ATF6 increased. The mRNA and protein levels of apoptosis related factors Caspase12, Caspase3, and Bax increased, whereas Bcl2 decreased. It indicated that cadmium could activate PERK-eIF2α-ATF4-CHOP, IRE1α-XBP1, and ATF6-CHOP ERS-related signal pathways and lead to apoptosis. Moreover, Que can improve the vitality of hepatocytes, and effectively reduce hepatocytes damage, and reduce oxidative damage by Cd. As a result, the mRNA and protein expression levels of ERS related factors were reduced and hepatocyte apoptosis related factors decreased. Therefore, Que can be used as an effective component in daily diet to prevent Cd toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China.
| | - Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, PR China
| |
Collapse
|
21
|
Nazanin M, Tolouei-Azar J, Razi M. Running exercise training-induced impact on oxidative stress and mitochondria-related apoptosis in rat's testicles. Andrologia 2022; 54:e14520. [PMID: 35818990 DOI: 10.1111/and.14520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
The current study has been designed to explore the effects of running exercise training protocols (ETPs), with different intensities, on testicular redox and antioxidant capacities. Moreover, the crosstalk between oxidative stress (OS) and mitochondria-related apoptosis was analysed. To this end, 24 Wistar rats were subdivided into sedentary control, low- (LICT), moderate- (MICT), and high (HICT)-intensity continuous running ETP groups. Following 8 weeks, the Johnsen score, sperm count, testicular malondialdehyde (MDA) content, total oxidant status (TOS), and redox biomarkers, including glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) levels were evaluated. Additionally, the expression levels of Bcl-2, Bax, caspase-3, proteins involving in the mitochondria-related apoptosis, and the apoptotic index were analysed. The LICT and MICT running ETPs did not affect the spermatogenesis development, sperm count, and antioxidant and redox capacities. Accordingly, no significant changes were revealed in Bcl-2, Bax, and caspase-3 expression levels and apoptosis index compared to sedentary rats. In contrast, the HICT-induced rats showed a significant (p < 0.05) reduction in spermatogenesis development, sperm count, antioxidant and redox capacities versus control, LICT, and MICT groups. Moreover, the expression of Bcl-2 was decreased, while the Bax and caspase-3 expression levels were increased in the HICT-induced group. Finally, the apoptosis index was increased in the HICT group. In conclusion, the suppressed redox system after HICT can trigger the mitochondria-mediated ROS overload, result in OS condition in the testicular tissue, and reversely target the mitochondrial membrane permeability. All of these molecular alterations are suspected to initiate progressive mitochondria-related apoptosis after HICT.
Collapse
Affiliation(s)
- Mozaffari Nazanin
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Javad Tolouei-Azar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of basic Sciences, Division of Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
22
|
Ismail OI, El-Meligy MMS. Curcumin ameliorated low dose-Bisphenol A induced gastric toxicity in adult albino rats. Sci Rep 2022; 12:10201. [PMID: 35715475 PMCID: PMC9206026 DOI: 10.1038/s41598-022-14158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common worldwide chemicals involved in the industry of polycarbonate plastics, medical devices, and pharmaceuticals. Forty three-month-old albino rats were randomly classified into four groups. Group Ӏ received a daily corn oil dose (5 mL/kg/ body weight, BW) through a gastric tube for one month, Group ӀӀ received a daily dose of Curcumin (200 mg/kg body weight (B.W.) through a gastric tube for one month, Group ӀӀӀ received a daily dose of BPA (0.5 μg/kg B.W.) through a gastric tube for one month and Group ӀV received concomitant daily doses of Bisphenol A and Curcumin as the regimen described in groups ӀӀ and ӀӀӀ. The rats were sacrificed, and glandular portion of stomach was dissected and processed for light, immunohistochemical and ultrastructural study. BPA induced destructed gastric glands, dilated congested blood vessels, submucosal oedema, decreased PAS-positive reactivity, increased collagen fibres deposition, decrease in the positive BCL2 immunoexpression, increased positive PCNA immunoexpression, reduction in the gastric mucosal height and destructive changes in the enteroendocrine, chief and parietal cells. Curcumin coadministration provoked an obvious improvement in the gastric structure. BPA exposure has toxic effects on the glandular portion of the stomach in rats. Otherwise, Curcumin coadministration has exhibited protective impact on the architecture of the stomach.
Collapse
Affiliation(s)
- Omnia Ibrahim Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
23
|
Ameliorative Effect of Ocimum forskolei Benth on Diabetic, Apoptotic, and Adipogenic Biomarkers of Diabetic Rats and 3T3-L1 Fibroblasts Assisted by In Silico Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092800. [PMID: 35566151 PMCID: PMC9101318 DOI: 10.3390/molecules27092800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.
Collapse
|
24
|
Anti-aging effect of phlorizin on D-galactose-induced aging in mice through antioxidant and anti-inflammatory activity, prevention of apoptosis, and regulation of the gut microbiota. Exp Gerontol 2022; 163:111769. [PMID: 35337894 DOI: 10.1016/j.exger.2022.111769] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Aging is an inevitable and complicated process involving many physiological changes. Screening of natural biologically active anti-aging substances is a current research hotspot. Phlorizin (PZ), an important dihydrochalcone phytoconstituent, has been demonstrated to have antioxidant and anti-tumor effects. In this paper, different doses of PZ (20 and 40 mg/kg) were used to research the protective effect on D-galactose (D-gal)-induced aging mice. Following hematoxylin and eosin staining and by observing the hippocampus, we found that PZ alleviated the damage caused by D-gal in neuronal cells, while PZ enhanced the learning and memory abilities of aging mice in a radical eight-arm maze. In order to explain the reasons for these anti-aging effects, we tested the antioxidant enzyme activity and malonic dialdehyde concentration in mouse serum, liver, and brain tissue. The contents of proteins related to anti-inflammation and apoptosis in brain tissue were analyzed, and the gut microbiota was also analyzed. The results indicated that PZ improved antioxidant enzyme activity while significantly reducing the malonic dialdehyde content. Western blotting analysis suggested that PZ effectively alleviated neuro-apoptosis via regulating the expressions of Bax, Bcl-2, and caspase-3. PZ also exerted anti-inflammation effects by regulating the interleukin-1β/inhibitor of nuclear factor kappa B alpha/nuclear factor kappa-light-chain-enhancer of activated B-cells signaling pathways in brain tissues. Importantly, PZ improved the structure and diversity of the gut microbiota, and the microbiota-gut-brain axis may hold a key role in PZ-induced anti-aging effects. In conclusion, PZ can be used as a potential drug candidate to combat aging.
Collapse
|
25
|
Soberanes-Gutiérrez CV, León-Ramírez C, Sánchez-Segura L, Cordero-Martínez E, Vega-Arreguín JC, Ruiz-Herrera J. Cell death in Ustilago maydis: comparison with other fungi and the effect of metformin and curcumin on its chronological lifespan. FEMS Yeast Res 2021; 20:5908381. [PMID: 32945857 DOI: 10.1093/femsyr/foaa051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ustilago maydis is a Basidiomycota fungus, in which very little is known about its mechanisms of cell survival and death. To date, only the role of metacaspase1, acetate and hydrogen peroxide as inducers of cell death has been investigated. In the present work, we analyzed the lifespan of U. maydis compared with other species like Sporisorium reilianum, Saccharomyces cerevisiae and Yarrowia lipolytica, and we observed that U. maydis has a minor lifespan. We probe the addition of low concentrations metformin and curcumin to the culture media, and we observed that both prolonged the lifespan of U. maydis, a result observed for the first time in a phytopathogen fungus. However, higher concentrations of curcumin were toxic for the cells, and interestingly induced the yeast-to-mycelium dimorphic transition. The positive effect of metformin and curcumin appears to be related to an inhibition of the mechanistic Target of Rapamycin (mTOR) pathway, increase expression of autophagy genes and reducing of reactive oxygen species. These data indicate that U. maydis may be a eukaryotic model organism to elucidate the molecular mechanism underlying apoptotic and necrosis pathways, and the lifespan increase caused by metformin and curcumin.
Collapse
Affiliation(s)
- Cinthia V Soberanes-Gutiérrez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México.,Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Claudia León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| | - Emmanuel Cordero-Martínez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Blv. UNAM 2011, Col. Predio el Saucillo y El Potrero, Comunidad de Los Tepetates, 37684, León Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km. 9.6 Libramiento Norte Carr. Irapuato-León 36824 Irapuato Gto., México
| |
Collapse
|
26
|
Dai L, Li X, Zheng X, Fu Z, Yao M, Meng S, Zhang J, Han B, Gao Q, Chang J, Cai K, Yang H. TGF-β blockade-improved chemo-immunotherapy with pH/ROS cascade-responsive micelle via tumor microenvironment remodeling. Biomaterials 2021; 276:121010. [PMID: 34247042 DOI: 10.1016/j.biomaterials.2021.121010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Immunosuppressive tumor microenvironment and low delivery efficiency severely impede the tumor chemotherapy effect. To address this issue, we develop a pH/ROS cascade-responsive prodrug micelle to deliver siTGF-β with size-shrinkage and charge-reversal property, leading to synergistical tumor microenvironment remodeling. The nanosystem highly improved endocytosis efficiency and tumor penetration depth through charge reversal and size reduction upon exposure to weakly acidic tumor microenvironment. Moreover, the nanocarrier would rapidly escape from endo/lysosome, disassemble and release siTGF-β and hydroxycamptothecin in response to high intracellular ROS. Furthermore, the nanosystem significantly boosted antitumor immune response and reduced immune tolerance with remodeling tumor microenvironment, which significantly prolonged the survival time of tumor-bearing mice (75% survival rate upon 35 days). It is realized by the combined effects of chemotherapy-enhanced immunogenicity and recruitment of effector T cells, TGF-β-blockade immunotherapy-activated inhibition immunosuppressive tumor microenvironment and epithelial-to-mesenchymal transition (EMT), and regulation physical tumor microenvironment via reducing the dense tumor extracellular matrix and the high tumor interstitial pressure obstacles. To this end, the nanosystem not only overcame biobarriers and reinforced antitumor immune response, but also effectively inhibited tumor growth, metastasis and recurrence in vivo.
Collapse
Affiliation(s)
- Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Xiang Li
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xinmin Zheng
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenxiang Fu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mengjiao Yao
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiangong Zhang
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Binbin Han
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Quanli Gao
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Jing Chang
- Affiliated Cancer Hospital of Zhengzhou University, Henan, 450008, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Hui Yang
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
27
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
28
|
Zhang H, Wang S, Wang Y, Lu A, Hu C, Yan C. DHA ameliorates MeHg‑induced PC12 cell apoptosis by inhibiting the ROS/JNK signaling pathway. Mol Med Rep 2021; 24:558. [PMID: 34109428 PMCID: PMC8188641 DOI: 10.3892/mmr.2021.12197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies have reported that methylmercury (MeHg) induces neuronal apoptosis, which is accompanied by abnormal neurological development. Despite the important role of docosahexaenoic acid (DHA) in maintaining the structure and function of the brain, as well as improving neuronal apoptosis induced by MeHg, the exact mechanism remains unknown. The present study hypothesized that the reactive oxygen species (ROS)-mediated JNK signaling pathway may be associated with the protective effect of DHA against MeHg-induced PC12 cell apoptosis. Cell Counting Kit-8, TUNEL staining, flow cytometry, ROS detection, PCR and western blot analysis were performed. The results demonstrated that MeHg inhibited the activity of PC12 cells, causing oxidative damage and promoting apoptosis; however, DHA significantly attenuated this effect. Mechanistic studies revealed that MeHg increased intracellular ROS levels and JNK protein phosphorylation, and decreased the expression levels of the anti-apoptotic protein Bcl-2, whereas DHA reduced ROS levels and JNK phosphorylation, and increased Bcl-2 expression. In addition, the ROS inhibitor N-acetyl-l-cysteine (NAC) was used to verify the experimental results. After pretreatment with NAC, expression levels of Bcl-2, Bax, phosphorylated-JNK and JNK were assessed. Bcl-2 protein expression was increased and the Bcl-2/Bax ratio was increased. Moreover, the high expression levels of phosphorylated-JNK induced by MeHg were significantly decreased. Based on the aforementioned results, the present study indicated that the effects of DHA against MeHg-induced PC12 cell apoptosis may be mediated via the ROS/JNK signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Ministry of Education‑Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Susu Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Anxin Lu
- Ministry of Education‑Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chunping Hu
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chonghuai Yan
- Ministry of Education‑Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
29
|
Niu J, Wang Y, Hu Y, Li C, Fang Y. Mechanisms of miR-195-5p and FOXK1 in rat xenograft models of non-small cell lung cancer. Am J Transl Res 2021; 13:2528-2536. [PMID: 34017411 PMCID: PMC8129418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the roles and mechanisms of miR-195-5p and forkhead box K1 (FOXK1) in rat xenograft models of non-small cell lung cancer (NSCLC). METHODS Rat xenograft models of NSCLC were established. Evaluations of morphology of NSCLC cells and levels of Ki67 and P53 were detected by hematoxylin-eosin (HE) staining and immunohistochemistry (IHC), respectively. The miR-195-5p level in NSCLC was measured by quantitative real-time RT-PCR (qRT-PCR), and FOXK1, Bax, Caspase-3 and Bal-2 levels were quantified by Western blot. And the regulatory relation between miR-195-5p and FOXK1 was determined by dual-luciferase reporter (DLR) assay. RESULTS HE staining and IHC demonstrated successful establishment of NSCLC models in which miR-195-5p was downregulated and FOXK1 was upregulated. Pearson correlation showed that miR-195-5p and FOXK1 were inversely associated (r=0.551, P=0.012). DLR assay confirmed the targeted regulatory relation between miR-195-5p and FOXK1, and upregulation of miR-195-5p accelerated apoptosis of tumor cells. CONCLUSION miR-195-5p is inversely associated with FOXK1 in NSCLC in rats. Upregulation of miR-195-5p suppresses FOXK1 and accelerates apoptosis of tumor cells, which may serve as an therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiguo Niu
- Department of Nuclear Medicine, Gansu Provincial Cancer HospitalLanzhou 730050, Gansu Province, China
| | - Yiwen Wang
- Department of Clinical Laboratory, Gansu Provincial Cancer HospitalLanzhou 730050, Gansu Province, China
| | - Yonghua Hu
- Gansu University of Chinese MedicineLanzhou 730000, Gansu Province, China
| | - Caili Li
- School of Medicine of Northwest Minzu UniversityLanzhou 730030, Gansu Province, China
| | - Yue Fang
- Gansu Provincial Hospital of TCMLanzhou 730050, Gansu Province, China
| |
Collapse
|
30
|
Ma B, Guan G, Lv Q, Yang L. Curcumin Ameliorates Palmitic Acid-Induced Saos-2 Cell Apoptosis Via Inhibiting Oxidative Stress and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5563660. [PMID: 33833814 PMCID: PMC8018866 DOI: 10.1155/2021/5563660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We aimed to determine the effects of curcumin on palmitic acid- (PA-) induced human osteoblast-like Saos-2 cell apoptosis and to explore the potential molecular mechanisms in vitro level. METHODS Saos-2 cell were cultured with PA with or without curcumin, N-acetylcysteine (NAC, anti-oxidant), 3-methyladenine (3-MA, autophagy inhibitor) AY-22989 (autophagy agonist) or H2O2. Then, the effects of PA alone or combined with curcumin on viability, apoptosis, oxidative stress, and autophagy in were detected by CCK-8, flow cytometry assay and western blot. RESULTS We found that autophagy was induced, oxidative stress was activated, and apoptosis was promoted in PA-induced Saos-2 cells. Curcumin inhibited PA-induced oxidative stress, autophagy, and apoptosis in Saos-2 cells. NAC successfully attenuated oxidative stress and apoptosis, and 3-MA attenuated oxidative stress and apoptosis in palmitate-induced Saos-2 cells. Interestingly, NAC inhibited PA-induced autophagy, but 3-MA had no obvious effects on oxidative stress in PA-treated Saos-2 cells. In addition, curcumin inhibited H2O2 (oxidative stress agonist)-induced oxidative stress, autophagy, and apoptosis, but curcumin had no obvious effect on AY-22989 (autophagy agonist)-induced autophagy and apoptosis. CONCLUSION The present study demonstrated that oxidative stress is an inducer of autophagy and that curcumin can attenuate excess autophagy and cell apoptosis by inhibiting oxidative stress in PA-induced Saos-2 cells.
Collapse
Affiliation(s)
- Baicheng Ma
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang 332000, Jiangxi, China
| | - Gaopeng Guan
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang 332000, Jiangxi, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, Guangxi, China
| | - Lei Yang
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, Jiangxi, China
| |
Collapse
|
31
|
Effect of miR-195-5p on cardiomyocyte apoptosis in rats with heart failure by regulating TGF-β1/Smad3 signaling pathway. Biosci Rep 2021; 40:222764. [PMID: 32329515 PMCID: PMC7218219 DOI: 10.1042/bsr20200566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose: The present study set out to investigate the effect of miR-195-5p on cardiomyocyte apoptosis in rats with heart failure (HF) and its mechanism. Methods: HF rat model and hypoxia/reoxygenation (H/R) cardiomyocyte model were established. miR-195-5p expression and transforming growth factor-β1 (TGF-β1)/signal transduction protein (Smad)3 signaling pathway in HF rats and H/R cardiomyocytes were interfered. miR-195-5p expression was tested by Rt-PCR, TGF-β1/Smad3 signaling pathway related proteins were detected by Western Blot, apoptosis of HF rat cardiomyocytes was tested by TUNEL, and apoptosis of cardiomyocytes induced by H/R was checked by flow cytometry. Results: miR-195-5p was lowly expressed in myocardium of HF rats, while TGF-β1 and Smad3 proteins were high-expressed. Up-regulating miR-195-5p expression could obviously inhibit cardiomyocyte apoptosis of HF rats, improve their cardiac function, and inhibit activation of TGF-β1/Smad3 signaling pathway. Up-regulation of miR-195-5p expression or inhibition of TGF-β1/Smad3 signaling pathway could obviously inhibit H/R-induced cardiomyocyte apoptosis. Dual-luciferase reporter enzyme verified the targeted relationship between miR-195-5p and Smad3. Conclusion: miR-195-5p can inhibit cardiomyocyte apoptosis and improve cardiac function in HF rats by regulating TGF-β1/Smad3 signaling pathway, which may be a potential target for HF therapy.
Collapse
|
32
|
Zhao LL, Makinde EA, Olatunji OJ. Protective effects of ethyl acetate extract from Shorea roxburghii against diabetes induced testicular damage in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:374-385. [PMID: 33058396 DOI: 10.1002/tox.23043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 05/06/2023]
Abstract
Diabetic mellitus is a chronic metabolic disorder that is associated with several complications including testicular dysfunction. This research investigated the protective action of the ethyl acetate extract from Shorea roxburghii (SRE) on diabetes induced testicular damage in rats. Diabetic rats were orally administered with SRE at doses of 100 and 400 mg/kg for 4 weeks. SRE improved the body weight gain, testes weight, testes index and increased serum concentration of testosterone. Furthermore, SRE increased the testicular antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase. In addition, SRE ameliorated testicular inflammatory mediators such as myeloperoxidase, tumor necrosis factor alpha, interleukin 6, p38 MAPK and nuclear factor kappa B activation and decreased testicular cell apoptosis in the treated diabetic rats. SRE also raised sperm parameters after treatment of diabetic rats. Conclusively, our results suggested that SRE ameliorated diabetes induced testicular damage by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | | | | |
Collapse
|
33
|
Zhang L, Pan X, Xu L, Zhang L, Huang H. Mitochondria-targeted curcumin loaded CTPP–PEG–PCL self-assembled micelles for improving liver fibrosis therapy. RSC Adv 2021; 11:5348-5360. [PMID: 35423083 PMCID: PMC8694685 DOI: 10.1039/d0ra09589c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, originating from activated hepatic stellate cells (HSCs), is receiving much attention in the treatment of clinical liver disease. In this study, mitochondria-targeted curcumin (Cur) loaded 3-carboxypropyl-triphenylphosphonium bromide–poly(ethylene glycol)–poly(ε-caprolactone) (CTPP–PEG–PCL) micelles were constructed to prolong the systemic circulation of Cur, improve the bioavailability of Cur and play a precise role in anti-fibrosis. The prepared Cur–CTPP–PEG–PCL micelles with a spherical shape had satisfactory dispersion, low critical micelle concentration (CMC) and high encapsulation efficiency (92.88%). The CTPP modification endowed good endosomal escape ability to the CTPP–PEG–PCL micelles, and micelles could be selectively accumulated in mitochondria, thereby inducing the enhanced cell proliferation inhibition of HSC-T6 cells. Mitochondrial Membrane Potential (MMP) was greatly reduced due to the mitochondrial-targeting of Cur. Moreover, the system circulation of Cur was extended and bioavailability was significantly enhanced in vivo. As expected, Cur loaded CTPP–PEG–PCL micelles were more effective in improving liver fibrosis compared with Cur and Cur–mPEG–PCL micelles. In conclusion, the Cur–CTPP–PEG–PCL based micelles can be a potential candidate for liver fibrosis treatment in future clinical applications. A mitochondria-targeting micelle system based on CTPP–PEG–PCL polymer was designed to deliver curcumin to active HSC-T6 cells and prolong the systemic circulation and bioavailability of curcumin in vivo for effective treatment of liver fibrosis.![]()
Collapse
Affiliation(s)
- Liqiao Zhang
- Department of Pharmacy
- Chengdu Women's and Children's Central Hospital
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 611731
| | - Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lixing Xu
- College of Pharmacy
- Nantong University
- Nantong 226001
- PR China
| | - Linlin Zhang
- Nanjing Chia Tai Tianqing Pharmaceutical CO., Ltd
- Nanjing 210000
- PR China
| | - Haiqin Huang
- College of Pharmacy
- Nantong University
- Nantong 226001
- PR China
| |
Collapse
|
34
|
Sena-Júnior AS, Aidar FJ, de Oliveira e Silva AM, Estevam CDS, de Oliveira Carvalho CR, Lima FB, dos Santos JL, Marçal AC. Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review. Nutrients 2020; 13:nu13010124. [PMID: 33396291 PMCID: PMC7823559 DOI: 10.3390/nu13010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is one of the most prevalent chronic diseases in the world; one of its main characteristics is chronic hyperglycemia. Pharmacotherapy and other alternatives such as regular exercise are among the therapeutic methods used to control this pathology and participate in glycemic control, as well as the ingestion of plant extracts with antioxidant effects. Among the different plants used for this purpose, curcumin has potential to be used to attenuate the hyperglycemic condition triggered by diabetes mellitus (DM). Some prior studies suggest that this plant has antioxidant and hypoglycemic potential. This review aims to evaluate the antioxidant and hypoglycemic potential of curcumin supplementation in Type 1 DM (T1DM) and Type 2 DM (T2DM). The search considered articles published between 2010 and 2019 in English and Portuguese, and a theoretical survey of relevant information was conducted in the main databases of scientific publications, including the Virtual Health Library and its indexed databases, PubMed, LILACS (Latin American and Caribbean Literature on Health Sciences-Health Information for Latin America and the Caribbean-BIREME/PAHO/WHO), and Scientific Electronic Library Online (SciELO). The associated use of turmeric and physical exercise has demonstrated antioxidant, anti-inflammatory, and hypoglycemic effects, suggesting that these could be used as potential therapeutic methods to improve the quality of life and survival of diabetic patients.
Collapse
Affiliation(s)
- Ailton Santos Sena-Júnior
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
| | - Felipe José Aidar
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
| | - Ana Mara de Oliveira e Silva
- Nutrition Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-100, Brazil
| | - Charles dos Santos Estevam
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
- Postgraduate in Biotechnology, Northeast Network in Biotechnology (RENORBIO), Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - Carla Roberta de Oliveira Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo CEP 05508-000, Brazil; (C.R.d.O.C.); (F.B.L.)
| | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo CEP 05508-000, Brazil; (C.R.d.O.C.); (F.B.L.)
| | - Jymmys Lopes dos Santos
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Correspondence:
| |
Collapse
|
35
|
Nna VU, Bakar ABA, Ahmad A, Mohamed M. Diabetes-induced testicular oxidative stress, inflammation, and caspase-dependent apoptosis: the protective role of metformin. Arch Physiol Biochem 2020; 126:377-388. [PMID: 30513216 DOI: 10.1080/13813455.2018.1543329] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Context: Metformin's effect on glycaemic control is well documented, but its effect on diabetes-induced testicular impairment has been scarcely reported.Objective: To investigate the effects of metformin on testicular oxidative stress, inflammation, and apoptosis, which largely contribute to fertility decline in diabetic state.Methods: Male Sprague-Dawley rats were divided into 3 groups (n = 6/group) namely: normal control (NC), diabetic control (DC), and metformin (300 mg/kg b.w./d)-treated diabetic groups. Metformin was administrated for 4 weeks.Results: Decreased mRNA expressions and activities of antioxidant enzymes were seen in the testes of DC group. mRNA and protein expressions of pro-inflammatory and pro-apoptotic markers increased, while interleukin-10 and proliferating cell nuclear antigen (PCNA) decreased in the testes of DC group. Treatment with metformin up-regulated antioxidant enzymes, down-regulated inflammation, and apoptosis and increased PCNA immunoexpression in the testes.Conclusions: Metformin protects the testes from diabetes-induced impairment and may improve male reproductive health in diabetic state.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Azlina Ahmad
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
36
|
Soliman GA, Abdel-Rahman RF, Ogaly HA, Althurwi HN, Abd-Elsalam RM, Albaqami FF, Abdel-Kader MS. Momordica charantia Extract Protects against Diabetes-Related Spermatogenic Dysfunction in Male Rats: Molecular and Biochemical Study. Molecules 2020; 25:molecules25225255. [PMID: 33187275 PMCID: PMC7698202 DOI: 10.3390/molecules25225255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
More than 90% of diabetic patients suffer from sexual dysfunction, including diminished sperm count, sperm motility, and sperm viability, and low testosterone levels. The effects of Momordica charantia (MC) were studied by estimating the blood levels of insulin, glucose, glycosylated hemoglobin (HbA1c), testosterone (TST), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in diabetic rats treated with 250 and 500 mg/kg b.w. of the total extract. Testicular antioxidants, epididymal sperm characteristics, testicular histopathology, and lesion scoring were also investigated. Testicular mRNA expression of apoptosis-related markers such as antiapoptotic B-cell lymphoma-2 (Bcl-2) and proapoptotic Bcl-2-associated X protein (Bax) were evaluated by real-time PCR. Furthermore, caspase-3 protein expression was evaluated by immunohistochemistry. MC administration resulted in a significant reduction in blood glucose and HbA1c and marked elevation of serum levels of insulin, TST, and gonadotropins in diabetic rats. It induced a significant recovery of testicular antioxidant enzymes, improved histopathological changes of the testes, and decreased spermatogenic and Sertoli cell apoptosis. MC effectively inhibited testicular apoptosis, as evidenced by upregulation of Bcl-2 and downregulation of Bax and caspase-3. Moreover, reduction in apoptotic potential in MC-treated groups was confirmed by reduction in the Bax/Bcl-2 mRNA expression ratio.
Collapse
Affiliation(s)
- Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
| | - Reham M. Abd-Elsalam
- Department of Pathology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- Correspondence: ; Tel.: +966-545539145
| |
Collapse
|
37
|
Oxidative Stress Induces Chondrocyte Apoptosis through Caspase-Dependent and Caspase-Independent Mitochondrial Pathways and the Antioxidant Mechanism of Angelica Sinensis Polysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3240820. [PMID: 33224431 PMCID: PMC7669361 DOI: 10.1155/2020/3240820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
Introduction Chondrocyte apoptosis is considered one of the pathogenic factors of osteoarthritis (OA), but its importance in the pathogenesis of OA remains unclear. Recent research adds progress to the knowledge that the mitochondrial signaling pathway mediates chondrocyte apoptosis in OA. Method Rat chondrocyte exposed to H2O2 was used as the experimental oxidative stress model. Chondrocyte viability was tested by cell counting kit-8 (CCK-8) assay. Cell apoptosis and ROS were tested by flow cytometry. Contents of malondialdehyde (MDA), catalase (CAT), caspase-3, caspase-9, cytochrome C, superoxide dismutase (SOD)-2, and adenosine triphosphate (ATP) were evaluated by biochemical detection. The expressions of related genes and proteins were assessed by quantitative polymerase chain reaction (qPCR) and western blot. Results H2O2 provokes oxidative stress and decreases the viability of chondrocyte, which leads to the release of cytochrome C and inhibition of SOD-2 activity. The damage of mitochondrion disturbs the energy metabolism of chondrocyte and eventually induces chondrocyte apoptosis through the mitochondrial pathway. Furthermore, pretreated with anglicasinensis polysaccharide (ASP) or caspase inhibitors increase the expression of Bcl-2 and Bcl-xL but do not work for the expression of Bax and Bad. Conclusion Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways. ASP protects chondrocyte from H2O2-induced oxidative stress and subsequent cell injury through its antioxidant effect by inhibiting the caspase pathway.
Collapse
|
38
|
Xia ZH, Zhang SY, Chen YS, Li K, Chen WB, Liu YQ. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem Toxicol 2020; 146:111803. [PMID: 33035629 DOI: 10.1016/j.fct.2020.111803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023]
Abstract
This study aimed to investigate the therapeutic effect of curcumin on type 2 diabetes and its underlying mechanisms. A type 2 diabetes mellitus rat model was established by providing high-fat diet and low doses of streptozotocin. Type 2 diabetes mellitus rats were treated with low dose and high dose of curcumin for 8 weeks. The results showed that high-dose curcumin significantly reduced fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase, liver coefficient, and malondialdehyde levels, and BCL2-Associated X expression in the type 2 diabetes mellitus rats. High-dose curcumin increased the levels of liver superoxide dismutase, catalase, and glutathione; as well as the expression of liver B-cell lymphoma-2, phosphatidylinositol 3-kinase, phosphorylated phosphatidylinositol 3-kinase, protein kinase B, and phosphorylated protein kinase B in type 2 diabetes mellitus rats. Furthermore, it ameliorated the histological structure of the liver and pancreas in diabetes mellitus model rats. However, low-dose curcumin had no significant effect on diabetes mellitus model rats. The results suggest that adequate doses of curcumin controls type 2 diabetes mellitus development as well as the mechanism involved in its anti-apoptotic actions and phosphatidylinositol 3-hydroxy kinase/protein kinase B signal pathway regulation in the liver.
Collapse
Affiliation(s)
- Zhen-Hong Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sai-Ya Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Si Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ke Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
39
|
Xu H, Nie B, Liu L, Zhang C, Zhang Z, Xu M, Mei Y. Curcumin Prevents Brain Damage and Cognitive Dysfunction During Ischemic-reperfusion Through the Regulation of miR-7-5p. Curr Neurovasc Res 2020; 16:441-454. [PMID: 31660818 DOI: 10.2174/1567202616666191029113633] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study was to investigate the potential protective effects of curcumin in cerebral ischemia-reperfusion (CIR) and its regulation of miR-7. METHODS Rats were occluded by middle cerebral artery occlusion (MCAO) for 1.5 h and reperfused for 2 h to establish a local CIR model. After 24 hours of model establishment, MCAO rats were given curcumin for 3 days by intragastric administration. PC12 cells were cultured for 6 h in oxygen-glucose deprivation medium and then reoxygenated for 24 h to establish an oxygenglucose deprivation/reoxygenation (OGD/R) model. The OGD/R model cells were treated with curcumin for 48 h. RESULTS Curcumin inhibited the decrease of miR-7-5p expression and an increase of RelA p65 expression induced by CIR and ODG/R. RelA p65 was a target of miR-7-5p. MiR-7-5p antagonists were able to counteract the effect of curcumin on the expression of RelA p65 in ischemic brain tissue of MCAO rats and OGD/R model cells. Curcumin improved OGD/R-induced inhibition of cell activity, necrosis and apoptosis. Curcumin significantly reduced the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the activity of superoxide dismutases (SOD) and catalase (CAT) in OGD/R-induced cells. Curcumin may inhibit OGD/R-induced cell damage by regulating miR-7-5p. Curcumin improved cerebral infarction, nerve damage and cognitive dysfunction in rats with CIR, which may be related to the regulation of miR-7-5p/RelA p65 axis. CONCLUSION Curcumin exerts cerebral protection by attenuating cell necrosis and apoptosis, inflammatory response and oxidative stress following CIR, which may be related to its regulation of the miR-7/RELA p65 axis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Fundamental Nursing, The Nursing & Health College of Zhengzhou University, Zhengzhou City, 450001, China
| | - Beibei Nie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450000, China
| | - Lamei Liu
- Department of Clinical Nursing, The Nursing & Health College of Zhengzhou University, Zhengzhou City, 450001, China
| | - Chunhui Zhang
- Department of Clinical Nursing, The Nursing & Health College of Zhengzhou University, Zhengzhou City, 450001, China
| | - Zhenxiang Zhang
- Department of Fundamental Nursing, The Nursing & Health College of Zhengzhou University, Zhengzhou City, 450001, China
| | - Mengya Xu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450000, China
| | - Yongxia Mei
- Department of Public Nursing, The Nursing & Health College of Zhengzhou University, Zhengzhou City, 450001, China
| |
Collapse
|
40
|
Albasher G. Modulation of reproductive dysfunctions associated with streptozocin-induced diabetes by Artemisia judaica extract in rats fed a high-fat diet. Mol Biol Rep 2020; 47:7517-7527. [PMID: 32920759 DOI: 10.1007/s11033-020-05814-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
We investigated the palliative effect of Artemisia judaica extract (AjE) on testicular deterioration induced by DM in high-fat diet/streptozocin (HFD/STZ)-injected rats. Forty rats were allocated to the following five groups: control, AjE, HFD/STZ, HFD/STZ-AjE, and HFD/STZ-metformin. HFD/STZ-diabetic rats showed a marked decrease in testicular weight and male sex hormones. There was significant suppression of testicular antioxidant enzymes and glutathione content in HFD/STZ-diabetic rats. However, rats that had received the STZ injection and the high-fat diet displayed increased malondialdehyde content and nitric oxide levels as well as tumour necrosis factor-alpha. High levels of Bax and low levels of Bcl-2 were detected after the STZ injection. Obvious pathological alterations were found in the testicular tissue of the HFD/STZ-diabetic rats. Thus, the administration of AjE attenuated the biochemical, molecular, and histopathological changes in the testes of the diabetic rats. The obtained findings showed that AjE treatment attenuated the diabetes-induced reprotoxicity in male rats via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
41
|
Abdel Latif H, Abdel Khalek R, AbdelGalil W, AbdAllah H, Fawzy A, AbdelFattah S. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium-induced testicular injury: A crosstalk between oxidative and apoptotic markers. Andrologia 2020; 52:e13760. [PMID: 32692431 DOI: 10.1111/and.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd), a grave occupational pollutant, can result in; testicular damage. This study was designed to distinguish the potential effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) versus that of curcumin nanoemulsion on Cd-induced testicular damage. Fifty adult male Sprague Dawley rats were distributed into five groups; control, sham control, Cd-treated, stem cell-treated and nanocurcumin-treated groups. Histological, immune histochemical; caspase 3 and proliferating cell nuclear antigen (PCNA) and CD 68, testosterone levels, nitric oxide, malondialdehyde (MDA)/glutathione (GSH) superoxide, dismutase (SOD), Western blot; B-cell lymphoma (Bcl-2), BCL2-Associated X Protein (BAX), BAX/Bcl-2 ratio and morphometry were done. Cadmium-treated group showed degenerated, detached seminiferous tubules, vacuolations and wide interstitial spaces containing fluid exudates. The same group revealed increased expression of BAX, BAX/Bcl-2 ratio, caspase 3, CD 68 and increased mean values of MDA, NO. Concomitantly, Cd has significant reduction in PCNA, Bcl-2 and sperm cell count when compared to control group. BM-MSCs- and nanocurcumin-treated groups revealed well-structured tubules and were perceived to expressively enhance the deleterious changes induced by Cd. The injurious changes on the testis induced by Cd were obviously improved when treated with either MSCs or nano-curcumin. BM-MSCs exerted more ameliorative changes.
Collapse
Affiliation(s)
- Hany Abdel Latif
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdel Khalek
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walid AbdelGalil
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend AbdAllah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Fawzy
- Medical Physiology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen AbdelFattah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Ghazipour AM, Shirpoor A, Ghiasi R, Pourheydar B, Khalaji N, Naderi R. Cyclosporine A induces testicular injury via mitochondrial apoptotic pathway by regulation of mir-34a and sirt-1 in male rats: The rescue effect of curcumin. Chem Biol Interact 2020; 327:109180. [PMID: 32569592 DOI: 10.1016/j.cbi.2020.109180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Abstract
Testicular damage contributes to cyclosporine A (CsA) induced male infertility. However, the exact underlying molecular mediators involved in CsA-induced testis disorder remains unclear. The present study aimed to characterize the role of mir-34a/sirt-1 in CsA induced testicular injury alone or in combination with curcumin. A total of twenty-eight male Wistar rats were subdivided into four groups: control (Con), sham, cyclosporine A (CsA), cyclosporineA + curcumin (CsA + cur). The animals received cyclosporine A (30 mg/kg) and curcumin (40 mg/kg) for 28 days by oral gavage. At the end of the experiment, CsA administration significantly resulted in a decrease in testis weight and testis coefficient. The molecular analysis demonstrated that CsA exposure increased 8-OHdg and Nox4 protein contents in the testis tissue. TUNEL staining indicated that CsA caused the number of apoptotic cells to increase in the testes of male rats. In addition, exposure to CsA resulted in an increased expression of Bax, and a decreased expresion in that of Bcl-2, with a concomitant up-regulation of the Bax/Bcl-2, c-Caspase-3/p-Caspase-3 ratio and cytochrome c level. Meanwhile, exposure to CsA increased the expression of mir-34a and decreased sirt-1 protein level in the testis tissue samples compared to the control group. Taken together, our findings suggested that CsA can cause damage to testicular germ cells via oxidative stress and mitochondrial apoptotic pathway, and probably mir-34a/sirt-1 play a crucial role in this process. It also demonstrates that these negative effects of CsA can be reduced by using curcumin as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz Faculty of Medical Science Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
43
|
Ren X, Wang S, Zhang C, Hu X, Zhou L, Li Y, Xu L. Selenium ameliorates cadmium-induced mouse leydig TM3 cell apoptosis via inhibiting the ROS/JNK /c-jun signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110266. [PMID: 32058163 DOI: 10.1016/j.ecoenv.2020.110266] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Despite the well-known acknowledgement of both the toxicity of cadmium (Cd) and the ameliorative effect of selenium (Se), the mechanism of the protective effect of selenium on cadmium-induced Mouse Leydig (TM3) cell apoptosis remains unknown. In this study, we hypothesized that the reactive oxygen species (ROS)-mediated c-jun N-terminal kinase (JNK) signaling pathway is involved in anti-apoptosis of selenium against cadmium in TM3 cells. We found that exposure to cadmium caused evident cytotoxicity, in which cell viability was inhibited, followed by inducement of apoptosis. Moreover, the level of ROS generation was elevated, leading to the phosphorylation of JNK. In addition, following cadmium exposure, the nuclear transcription factor c-jun was significantly activated, which led to increased expression of downstream gene c-jun, resulting in downstream activation of the apoptosis-related protein Caspase3 and upregulation of Cleaved-PARP, as well as inhibition of the anti-apoptosis protein Bcl-2. However, pretreatment with selenium remarkably suppressed cadmium-induced TM3 cell apoptosis. Furthermore, the level of ROS declined, and the JNK signaling pathway was blocked. Following this, the gene expression of c-jun decreased while Bcl-2 increased, which was consistent with the effects on proteins, that Caspase3 activity and Cleaved-PARP were inhibited while Bcl-2 level was restored. In order to explain the relationship between molecules of the signaling pathway, N-acetyl-L-cysteine (NAC), the ROS inhibitor, and JNK1/2 siRNA were administered, which further indicated the mediatory role of the ROS/JNK/c-jun signaling pathway in regulating anti-apoptosis of selenium against cadmium-induced TM3 cell apoptosis.
Collapse
Affiliation(s)
- Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China.
| | - Susu Wang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Lichun Xu
- Department of Hygiene, School of Public Health, Xuzhou Medical University, China
| |
Collapse
|
44
|
Ghaffari SB, Sarrafzadeh MH, Salami M, Khorramizadeh MR. A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. Int J Biol Macromol 2020; 151:428-440. [PMID: 32068061 DOI: 10.1016/j.ijbiomac.2020.02.141] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Inherent selective cytotoxicity, antibacterial activity and unique physicochemical properties of ZnO nanostructures and chitosan (CS) make them promising candidates for drug delivery. In this study, ZnO nanoparticles functionalized by N-succinyl chitosan as a pH-sensitive delivery system were synthesized to enhance the therapeutic potential of curcumin (CUR). CS coated-ZnO nanoparticles were synthesized by a co-precipitation method in the presence of CS. Chemical modification of CS-ZnO particles was performed by succinic anhydride for introducing -COOH functional groups which were then activated using 1,1'‑carbonyldiimidazole for CUR conjugation. The spherical-like CUR-conjugated system (CUR-CS-ZnO) with the average particle size of 40 nm presented significantly enhanced water dispersibility versus free CUR. The experimental study of CUR release from the system showed a pH-sensitive release profile, which enabled drug delivery to tumors and infection sites. MTT and Annexin-V FITC/PI assays revealed the superior anticancer activity of CUR-CS-ZnO compared to free CUR against breast cancer cells (MDA-MB-231) by inducing the apoptotic response with no cytotoxic effects on HEK293 normal cells. Moreover, CUR conjugation to the system notably dropped the MIC (25 to 50-fold) and MBC values (10 to 40-fold) against S. aureus and E. coli. The features qualify the formulation for anticancer and antimicrobial applications in the future.
Collapse
Affiliation(s)
- Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | | - Maryam Salami
- Transport Laboratory Phenomena (TPL), Department of Food Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - M Reza Khorramizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Yang Y, Ma S, Ye Z, Zhou X. MCM7 silencing promotes cutaneous melanoma cell autophagy and apoptosis by inactivating the AKT1/mTOR signaling pathway. J Cell Biochem 2020; 121:1283-1294. [PMID: 31535400 DOI: 10.1002/jcb.29361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
Cutaneous melanoma (CM) has become a major public health concern. Studies illustrate that minichromosome maintenance protein 7 (MCM7) participate in various diseases including skin disease. Our study aimed to study the effects of MCM7 silencing on CM cell autophagy and apoptosis by modulating the AKT threonine kinase 1 (AKT1)/mechanistic target of rapamycin kinase (mTOR) signaling pathway. Initially, microarray analysis was used to screen the CM-related gene expression data as well as differentially expressed genes. Subsequently, MCM7 expression vector and lentivirus RNA used for MCM7 silencing (LV-shRNA-MCM7) were constructed, and these vectors, dimethyl sulfoxide (DMSO) and AKT activator SC79 were then introduced into CM cell line SK-MEL-2 to validate the role of MCM7 in cell autophagy, viability, apoptosis, cell cycle, migration, and invasion. To further investigate the regulatory mechanisms of MCM7 in CM progress, the expression of MCM7, AKT1, mTOR, cyclin D1, as well as autophagy and apoptosis relative factors, such as LC3B, SOD2, DJ-1, p62, Bcl-2, Bax, and caspase-3 in melanoma cells was determined. MCM7 might mediate the AKT1/mTOR signaling pathway to influence the progress of melanoma. MCM7 silencing contributed to the increased expression of Bax, capase-3, and autophagy-related genes (LC3B, SOD2, and DJ-1), but decreased the expression of Bcl-2, which suggested that MCM7 silencing promoted autophagy and cell apoptosis. At the same time, MCM7 silencing also attenuated cell viability, invasion, and migration, and reduced the cyclin D1 expression and protein levels of p-AKT1 and p-mTOR. Taken together, MCM7 silencing inhibited CM via inactivation of the AKT1/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yemei Yang
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shengfang Ma
- Department of Dermatology, Baoshihua Hospital of Gansu Province, Lanzhou, China
| | - Zi Ye
- College of Information and Sciences, The Pennsylvania State University, Pennsylvania
| | - Xianyi Zhou
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Xiang L, Zhang Q, Chi C, Wu G, Lin Z, Li J, Gu Q, Chen G. Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of high-fat-diet and streptozotocin-induced diabetic rats. Diabetol Metab Syndr 2020; 12:1. [PMID: 31921358 PMCID: PMC6947902 DOI: 10.1186/s13098-019-0485-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diabetes mellitus is an important risk factor for cardiomyopathy. Increasing oxidative stress may be one of the main factors of diabetic cardiomyopathy. A13, a newly synthesized curcumin analog, was proved to be superior to curcumin in biological activity. However, little know about how A13 performed in diabetic models. In this study, we evaluated the ability of curcumin analog A13 to alleviate oxidative stress and ameliorate fibrosis in the myocardium, and explore the underlying mechanisms. METHODS Intraperitoneal injection of streptozotocin (30 mg/kg in 0.1 M sodium citrate buffer, pH 4.5) induced diabetes in high-fat fed rats. The rats were respectively treated with a daily dose of curcumin or A13 via intragastric intubation for 8 weeks. Myocardial tissue sections were stained with hematoxylin-eosin; oxidative stress was detected by biochemical assays; activation of the Nrf2/ARE pathway was detected by Western blot, immunohistochemical staining and RT-qPCR; myocardial fibrosis was identified by Western blot and Masson trichrome staining. RESULTS Treatment with curcumin analog A13 reduced the histological lesions of the myocardium in diabetic rats. Curcumin and A13 treatment decreased the malondialdehyde level and increased the activity of superoxide dismutase in the myocardium of diabetic rats. Molecular analysis and immunohistochemical staining demonstrated that dose of 20 mg/kg of A13 could activate the Nrf2/ARE pathway. Molecular analysis and Masson staining showed that curcumin analog A13 treatment significantly ameliorated fibrosis in myocardium of these diabetic rats. CONCLUSION Treatment with curcumin analog A13 protects the morphology of myocardium, restores the MDA levels and SOD activity, activates the Nrf2/ARE pathway and ameliorates myocardial fibrosis in diabetic rats. It may be a useful therapeutic agent for some aspects of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lanting Xiang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Chen Chi
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Gu Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Zhongmin Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| | - Qianru Gu
- Department of Pathology, Sir Run Run Shaw Hospital affiliated To Zhejiang University School of Medicine, Hangzhou, Zhejiang People’s Republic of China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang People’s Republic of China
| |
Collapse
|
47
|
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165577. [DOI: 10.1016/j.bbadis.2019.165577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
48
|
Dietary Supplementation of the Antioxidant Curcumin Halts Systemic LPS-Induced Neuroinflammation-Associated Neurodegeneration and Memory/Synaptic Impairment via the JNK/NF- κB/Akt Signaling Pathway in Adult Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7860650. [PMID: 31827700 PMCID: PMC6885271 DOI: 10.1155/2019/7860650] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/30/2022]
Abstract
Curcumin is a natural polyphenolic compound widely known to have antioxidant, anti-inflammatory, and antiapoptotic properties. In the present study, we explored the neuroprotective effect of curcumin against lipopolysaccharide- (LPS-) induced reactive oxygen species- (ROS-) mediated neuroinflammation, neurodegeneration, and memory deficits in the adult rat hippocampus via regulation of the JNK/NF-κB/Akt signaling pathway. Adult rats were treated intraperitoneally with LPS at a dose of 250 μg/kg for 7 days and curcumin at a dose of 300 mg/kg for 14 days. After 14 days, the rats were sacrificed, and western blotting and ROS and lipid peroxidation assays were performed. For immunohistochemistry and confocal microscopy, the rats were perfused transcardially with 4% paraformaldehyde. In order to verify the JNK-dependent neuroprotective effect of curcumin and to confirm the in vivo results, HT-22 neuronal and BV2 microglial cells were exposed to LPS at a dose of 1 μg/ml, curcumin 100 μg/ml, and SP600125 (a specific JNK inhibitor) 20 μM. Our immunohistochemical, immunofluorescence, and biochemical results revealed that curcumin inhibited LPS-induced oxidative stress by reducing malondialdehyde and 2,7-dichlorofluorescein levels and ameliorating neuroinflammation and neuronal cell death via regulation of the JNK/NF-κB/Akt signaling pathway both in vivo (adult rat hippocampus) and in vitro (HT-22/BV2 cell lines). Moreover, curcumin markedly improved LPS-induced memory impairment in the Morris water maze and Y-maze tasks. Taken together, our results suggest that curcumin may be a potential preventive and therapeutic candidate for LPS-induced ROS-mediated neurotoxicity and memory deficits in an adult rat model.
Collapse
|
49
|
Amanpour P, Khodarahmi P, Salehipour M. Protective effects of vitamin E on cadmium-induced apoptosis in rat testes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:349-358. [DOI: 10.1007/s00210-019-01736-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
|
50
|
El-Wakf AM, El-Habibi ESM, Ali DA, Abd El-Ghany E, Elmougy R. Marjoram and sage oils protect against testicular apoptosis, suppressed Ki-67 expression and cell cycle arrest as a therapy for male infertility in the obese rats. J Food Biochem 2019; 44:e13080. [PMID: 31612531 DOI: 10.1111/jfbc.13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023]
Abstract
Alterations in testicular apoptosis, cell cycle progression and proliferation rate in dietary-induced obese male rats and role of oral administration of marjoram (0.16 ml/kg BW) and sage (0.05 ml/kg BW) oils were evaluated. Results showed increased body weight, serum leptin, testicular lipid peroxidation, protein oxidation and nitric oxide, with reduction in serum testosterone, sperm count and endogenous enzymatic and non-enzymatic antioxidants in testis of the obese rats. Flow cytometry results revealed increased number of annexin-V (+ve) cells with activation of apoptotic proteins (Bax, caspase-3) and reduction of anti-apoptotic Bcl-2. Cell cycle arrest at phases S and G2/M with decline in expression of Bcl-2 and germ cell proliferation marker ki-67 was also validated, indicating lowered spermatogenesis in the obese rats. Supplementation of marjoram or sage oils displayed normalized body weight, sperm count, germ cells apoptosis and proliferation, suggesting the two oils as a new therapeutic approach against obesity promoted male infertility. PRACTICAL APPLICATIONS: Obese men have a greater chance of fertility problems compared to those with normal weight. Obesity-associated oxidative stress and free radicals production have shown to adversely affect sperm quality with activation of pro-apoptotic pathways, allowing germ cell death. Marjoram and sage essential oils are now being widely studied due to their antioxidant and radical scavenging properties. Our findings indicated effectiveness of the two oils for combating body weight gain, testicular oxidative stress, and apoptosis, which seemed to aid in increasing sperm count. The outcomes of this study may help scientists to formulate novel medications for improving fertility problems in men.
Collapse
Affiliation(s)
- Azza M El-Wakf
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Doaa A Ali
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Eman Abd El-Ghany
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Rehab Elmougy
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|