1
|
Naing MD, Tsume Y. Incorporating the biphasic system to GIS-α Improves In vivo prediction for low solubility drugs. Eur J Pharm Biopharm 2025; 211:114724. [PMID: 40280257 DOI: 10.1016/j.ejpb.2025.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The gastrointestinal simulator alpha (GIS-α) is an in vivo predictive transfer dissolution method that mimics the pH changes and peristalsis in the gastrointestinal tract, factors that are necessary in the biorelevant dissolution of drugs especially those that are under the Biopharmaceutics Classification System (BCS) class II and IV. It can be used to provide increased understanding to the dissolution, precipitation, and supersaturation of various low-solubility drugs, but lacks insights on absorption. Conducting experiments in the GIS-α with a biphasic system to add an absorptive phase in the jejunal compartment increased the observed dissolution and improved the overall in vivo prediction. In this study, the objective was to evaluate the improvement of dissolution on four representative BCS class II drugs using the biphasic format in the GIS-α. A customized double paddle was also used in the jejunal chamber to mix the aqueous buffer and organic layer simultaneously. This paddle floats in the organic layer as the aqueous volume increases and maintains the hydrodynamics in both the aqueous and organic phases. The combination of the biphasic system in the GIS-α and the moving double paddles resulted to increased dissolution profiles of fenofibrate, danazol, and celecoxib while not affecting that of ritonavir. Incorporating these dissolution profiles in a PBPK model using GastroPlus® improved the predictability of bioperformance of those oral medicines. Overall, this methodology considers both dissolution and absorption and proves to be a useful tool in predicting the in vivo performance of low-solubility drugs.
Collapse
Affiliation(s)
- Marvin D Naing
- Biologics Development and Biopharmaceutics, Sterile Product Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Yasuhiro Tsume
- Biologics Development and Biopharmaceutics, Sterile Product Development, Merck & Co., Inc, Rahway, NJ, USA.
| |
Collapse
|
2
|
Satapathy T, Minj A, Verma M. Impact of NSAIDs corticosteroids DMARDs biologics and their comparisons with natural products in C-reactive proteins (CRP) linked cardiovascular disorders. Inflammopharmacology 2025:10.1007/s10787-025-01767-1. [PMID: 40319427 DOI: 10.1007/s10787-025-01767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025]
Abstract
An important part of the pathophysiology of atherosclerosis is the involvement of inflammatory processes, which mediate various stages of the formation of atheroma, from the first leukocyte recruitment to the final rupture of the unstable atherosclerotic plaque. Acute phase reactant C-reactive protein (CRP), which represents varying degrees of inflammation, has been identified as a separate risk factor for several cardiovascular diseases (CVD), particularly unstable coronary syndrome. We hypothesize that CRP is a direct cause of CVD in addition to being an inflammatory marker. Therefore, therapies aimed at lowering CRP should be beneficial for both primary and secondary CVD prevention. It has been demonstrated that the use of many drugs, particularly statins, alters CRP levels while also lowering cardiovascular events. The use of inflammatory biomarkers aids in the discovery of CVDs and tracks the assessment, prognosis, and administration of treatment. An acute-phase protein called C-reactive protein (CRP) is created in response to pro-inflammatory cytokines. CRP is a key modulator of atherosclerosis and a biomarker of the inflammatory response. It is also regarded as a CVD risk factor since it actively promotes the growth of atherosclerotic plaque, instability, and consequent clot. Patients with intermediate risk for cardiovascular diseases have been using the plasma concentration of hsCRP (high sensitivity CRP) as a biomarker for disease prognosis since 2010.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur, CG, 493111, India
| | - Anjali Minj
- Department of Pharmacology, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur, CG, 493111, India.
| | - Mansi Verma
- Department of Pharmacology, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur, CG, 493111, India
| |
Collapse
|
3
|
Liu M, Li Y, Wang F, Lu S, Jiang L, Chen X. Light-triggered release of lenalidomide with fluorescent indication for inhibition of COX-2 enzyme activity in cancer cells. Chem Commun (Camb) 2025; 61:6518-6521. [PMID: 40190239 DOI: 10.1039/d5cc00695c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
In this work, we have developed a Sanger's reagent-based photocage, LNDA-NBD-Sanger, which releases the caged COX-2 inhibitor, lenalidomide (LNDA), under 400 nm UV irradiation while producing a fluorescent signal from the activated nitrobenzoxadiazole (NBD) derivative, realizing the monitoring of LNDA release in cancer cells and light-controlled anti-cancer therapy.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yajing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Long Jiang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Cerda IH, Jung H, Guerrero MC, Diez Tafur R, Yong RJ, Robinson CL, Hasoon JJ. Trends in Celecoxib Prescribing: A Single Institution 16-Month Review. J Clin Med 2025; 14:2823. [PMID: 40283653 PMCID: PMC12028116 DOI: 10.3390/jcm14082823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Celecoxib, a COX-2 selective nonsteroidal anti-inflammatory drug (NSAID), is widely prescribed for pain management due to its efficacy and improved gastrointestinal safety profile compared to traditional NSAIDs. Understanding prescription trends and their comparison to other NSAIDs provides valuable insight into prescribing behaviors in clinical settings. Methods: This retrospective study analyzed celecoxib prescriptions written by three pain management physicians in a single institution over a 16-month period from 1 January 2023 to 30 April 2024. Prescription data were collected and grouped into four 4-month intervals to assess temporal trends. Additionally, we compared celecoxib prescriptions to other commonly prescribed NSAIDs, including ibuprofen, meloxicam, naproxen, and diclofenac. Results: A total of 143 celecoxib prescriptions were identified during the study period, with a steady increase observed across consecutive intervals: 8 prescriptions from January-April 2023, 22 from May-August 2023, 46 from September-December 2023, and 67 from January-April 2024. In comparison, a total of 165 prescriptions were written for other NSAIDs over the same period, with 26 prescriptions from January-April 2023, 41 from May-August 2023, 45 from September-December 2023, and 53 from January-April 2024. While prescriptions for both celecoxib and other NSAIDs increased over time, the rate of celecoxib prescriptions showed a steeper rise. Conclusions: The findings demonstrate a notable increase in celecoxib prescriptions in this pain management clinic, outpacing the growth of other NSAIDs. This trend may reflect increasing provider preference for COX-2 selective inhibitors due to their favorable safety profile and efficacy. Further research is warranted to explore the underlying factors driving these prescribing patterns.
Collapse
Affiliation(s)
| | - Helen Jung
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria C. Guerrero
- Department of Physical Medicine & Rehabilitation, Larking Community Hospital, South Miami, FL 33143, USA
| | - Rodrigo Diez Tafur
- Pain Management Unit, Clínica Angloamericana, San Isidro 15073, Peru
- Centro MDRS: Sports, Spine & Pain Centers, Miraflores 15073, Peru
| | - Robert Jason Yong
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Boston, MA 02115, USA; (R.J.Y.); (C.L.R.)
| | - Christopher L. Robinson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Boston, MA 02115, USA; (R.J.Y.); (C.L.R.)
| | - Jamal J. Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, UTHealth, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
5
|
Cho CK, Kang P, Jang CG, Lee YJ, Bae JW, Choi CI, Lee SY. Effects of fluconazole on the pharmacokinetics of celecoxib and its carboxylic acid metabolite in different CYP2C9 genotypes. Arch Pharm Res 2025; 48:224-233. [PMID: 39730940 DOI: 10.1007/s12272-024-01531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to investigate the effects of fluconazole, a moderate inhibitor of CYP2C9 and CYP3A4, on the pharmacokinetics of celecoxib and its carboxylic acid metabolite in different CYP2C9 genotypes. A total of thirty-nine healthy Korean male volunteers were divided into three different CYP2C9 genotype groups (CYP2C9*1/*1, *1/*3 and *3/*3 genotypes) and were enrolled in the celecoxib alone trial, celecoxib with fluconazole trial, or both. In the celecoxib alone trial, participants received a single oral dose of 200 mg celecoxib. In the celecoxib with fluconazole trial, participants received 300 mg fluconazole on day 1, 150 mg fluconazole once daily for four consecutive days (day 2-5), and a coadministration of 200 mg celecoxib with 150 mg fluconazole on day 6. Plasma concentrations of celecoxib and celecoxib carboxylic acid were determined by using HPLC-MS/MS. In the CYP2C9*1/*1 genotype group, fluconazole treatment increased AUCinf of celecoxib by 2.61-fold, and decreased CL/F by 60.4% (both p < 0.001). In the CYP2C9*1/*3 genotype group, fluconazole treatment increased AUCinf of celecoxib by 2.44-fold (p < 0.001), prolonged t1/2 by 1.36-fold (p < 0.05), and decreased CL/F by 60.4% (p < 0.001). Fluconazole treatment increased AUCinf of celecoxib by 2.23-fold, prolonged t1/2 by 1.64-fold, and decreased CL/F by 53.8% in the subject with CYP2C9*3/*3 genotype. Cmax of celecoxib carboxylic acid significantly decreased in CYP2C9*1/*1 and *1/*3 genotypes (p < 0.01 and p < 0.05, respectively), following fluconazole treatment, whereas AUCinf showed no significant changes in any CYP2C9 genotype group. In conclusion, fluconazole affected the pharmacokinetics of celecoxib in different CYP2C9 genotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Guedes M, Vieira de Castro J, Lima AC, M F Gonçalves V, Tiritan ME, L Reis R, Ferreira H, M Neves N. Fishroesomes show intrinsic anti-inflammatory bioactivity and ability as celecoxib carriers in vivo. Eur J Pharm Biopharm 2025; 207:114587. [PMID: 39645203 DOI: 10.1016/j.ejpb.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
According to the World Health Organization (WHO), chronic inflammatory-related diseases represent the greatest threat to human health. Indeed, failure in the resolution of inflammation leads to serious pathological conditions, such as cardiovascular diseases, arthritis, cancer, diabetes, autoimmune diseases, and neurodegenerative disorders that are often associated with extremely high human suffering and societal and economic burdens. Despite the number and efficacy of available therapeutic agents have been increased, the serious side effects associated with some of them often create a very high risk/benefit ratio for patients. Therefore, herein, a drug delivery system was engineered to overcome important drawbacks of conventional therapies and to have a synergistic action with the incorporated drug. Indeed, it will have an added beneficial role in controlling inflammation. For that, sardine (Sardina pilchardus) roe was used as the lipidic source to produce bioactive liposomes, namely fishroesomes. These spherical vesicles with ≈326 nm in size and a significant negative surface charge (≈-31 mV) were able to encapsulate and control the release of the anti-inflammatory drug celecoxib. Moreover, fishroesomes were cytocompatible for different cell types (chondrocytes and macrophages), at concentrations in which they present anti-inflammatory properties. Importantly, fishroesomes were more effective in reducing pro-inflammatory mediators than the free drug. We also demonstrated that a single intra-articular injection of the fishroesomes encapsulating or not celecoxib in an experimental rat model of inflammatory arthritis was safe and more effective in controlling the pain and reducing the synovial inflammation compared to the free drug. Notably, as the celecoxib concentration in the sardine roe-derived liposomes was less than half of the amount of free drug, this study demonstrates the value of fishroesomes in counteracting inflammation. Therefore, the developed formulations may be considered a promising therapeutic option for inflammatory conditions.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Virgínia M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Petrova SP, Gao C, Hiew TN, Edgar KJ, Taylor LS. ω-Carboxyl terminated cellulose esters are effective crystallization inhibitors for challenging drugs. J Pharm Sci 2025; 114:544-553. [PMID: 39481471 DOI: 10.1016/j.xphs.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
Polymeric additives are widely used to delay drug crystallization from supersaturated solutions, which is critical for enhancing oral bioavailability by amorphous solid dispersion (ASD). The efficacy of these polymers relies on their capacity to inhibit nucleation and subsequent crystal growth. Drug nucleation is pivotal to crystallization; therefore, effective polymers are essential for suppressing nucleation from supersaturated solutions. We studied the performance of cellulose ω-carboxyalkanoates designed as crystallization inhibitors by measuring their influence on nucleation induction times of poorly soluble drugs celecoxib, posaconazole, and enzalutamide, from supersaturated solutions. In the absence of polymers, crystallization occurred within 5 to 15 minutes for all three drugs. Polymer hydrophobicity strongly influenced effectiveness in crystallization inhibition. Hydrophobic polymers prolonged induction times for up to 8 hours, while hydrophilic polymers were less effective, except for cellulose acetate glutarate (CA1.18-GA1.21; degrees of substitution acetate 1.18, glutarate 1.21). The cellulose ω-carboxyalkanoates had glass transition temperatures well above 100 °C, outstanding for ASD stability requirements. We investigated the impact of these designed polymers on surface tension and found that it only weakly influenced crystallization inhibition. Among the nine crafted cellulose derivatives, water-soluble CA1.18-GA1.21 emerged as a highly promising ASD polymer, preventing crystallization for 2-8 hours for all fast-crystallizing model compounds.
Collapse
Affiliation(s)
- Stella P Petrova
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Department of Chemistry, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Chengzhe Gao
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Tze Ning Hiew
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Blichfeldt-Eckhardt MR, Varnum C, Lauridsen JT, Rasmussen LE, Mortensen WCP, Jensen HI, Vaegter HB, Lambertsen KL. Low-grade systemic inflammation, but not neuroinflammation, is associated with 12-month postoperative outcome after total hip arthroplasty in patients with painful osteoarthritis. Bone Joint Res 2024; 13:741-749. [PMID: 39637913 PMCID: PMC11620800 DOI: 10.1302/2046-3758.1312.bjr-2024-0103.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Aims Better prediction of outcome after total hip arthroplasty (THA) is warranted. Systemic inflammation and central neuroinflammation are possibly involved in progression of osteoarthritis and pain. We explored whether inflammatory biomarkers in blood and cerebrospinal fluid (CSF) were associated with clinical outcome, and baseline pain or disability, 12 months after THA. Methods A total of 50 patients from the Danish Pain Research Biobank (DANPAIN-Biobank) between January and June 2018 were included. Postoperative outcome was assessed as change in Oxford Hip Score (OHS) from baseline to 12 months after THA, pain was assessed on a numerical rating scale, and disability using the Pain Disability Index. Multiple regression models for each clinical outcome were included for biomarkers in blood and CSF, respectively, including age, sex, BMI, and Kellgren-Lawrence score. Results Change in OHS was associated with blood concentrations of tumour necrosis factor (TNF), interleukin-8 (IL-8), interleukin-6 receptor (IL-6R), glycoprotein 130 (gp130), and IL-1β (R2 = 0.28, p = 0.006), but not with CSF biomarkers. Baseline pain was associated with blood concentrations of lymphotoxin alpha (LTα), TNFR1, TNFR2, and IL-6R (R2 = 0.37, p < 0.001) and CSF concentrations of TNFR1, TNFR2, IL-6, IL-6R, and IL-1Ra (R2 = 0.40, p = 0.001). Baseline disability was associated with blood concentrations of TNF, LTα, IL-8, IL-6, and IL-1α (R2 = 0.53, p < 0.001) and CSF concentrations of gp130, TNF, and IL-1β (R2 = 0.26, p = 0.002). Thus, preoperative systemic low-grade inflammation predicted 12-month postoperative outcome after THA, and was associated with preoperative pain and disability. Conclusion This study highlights the importance of systemic inflammation in osteoarthritis, and presents a possible path for better patient selection for THA in the future. Preoperative central neuroinflammation was associated with preoperative pain and disability, but not change in OHS after THA.
Collapse
Affiliation(s)
- Morten R. Blichfeldt-Eckhardt
- Department of Anesthesiology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Pain Research Group, Department of Anesthesiology and Intensive Care Medicine, Odense University Hospital, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Claus Varnum
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Orthopaedic Surgery, Lillebaelt Hospital - Vejle, University Hospital of Southern Denmark, Vejle, Denmark
| | | | - Lasse E. Rasmussen
- Department of Orthopaedic Surgery, Lillebaelt Hospital - Vejle, University Hospital of Southern Denmark, Vejle, Denmark
| | - Winnie C. P. Mortensen
- Department of Anesthesiology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Hanne I. Jensen
- Department of Anesthesiology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Henrik B. Vaegter
- Pain Research Group, Department of Anesthesiology and Intensive Care Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kate L. Lambertsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research – Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Simmons R, Kameyama H, Kubota S, Sun Y, Langenheim JF, Ajeeb R, Shao TS, Ricketts S, Annan AC, Stratemeier N, Williams SJ, Clegg JR, Fung KM, Chervoneva I, Rui H, Tanaka T. Sustained delivery of celecoxib from nanoparticles embedded in hydrogel injected into the biopsy cavity to prevent biopsy-induced breast cancer metastasis. Breast Cancer Res Treat 2024; 208:165-177. [PMID: 38969944 PMCID: PMC11452511 DOI: 10.1007/s10549-024-07410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes. METHODS A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma. RESULTS A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice. CONCLUSION This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.
Collapse
Affiliation(s)
- Reese Simmons
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Seiko Kubota
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John F Langenheim
- Department of Pharmacology, Physiology & Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rana Ajeeb
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Tristan S Shao
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Samantha Ricketts
- Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anand C Annan
- Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Natalie Stratemeier
- Department of Radiological Sciences, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sophie J Williams
- Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - John R Clegg
- Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, 73019, USA
| | - Kar-Ming Fung
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology, Physiology & Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hallgeir Rui
- Department of Pharmacology, Physiology & Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Pathology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Pathology, Stephenson Cancer Center, School of Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC-W, Rm 1415, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
10
|
Naing MD, Tsume Y. Dissolution profiles of BCS class II drugs generated by the gastrointestinal simulator alpha has an edge over the compendial USP II method. Eur J Pharm Biopharm 2024; 203:114436. [PMID: 39111581 DOI: 10.1016/j.ejpb.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 09/14/2024]
Abstract
The poor water solubility of orally administered drugs leads to low dissolution in the GI tract, resulting to low oral bioavailability. Traditionally, in vitro dissolution testing using the compendial dissolution apparatuses I and II has been the gold-standard method for evaluating drug dissolution and assuring drug quality. However, these methods don't accurately represent the complex physiologies of the GI tract, making it difficult to predict in vivo behavior of these drugs. In this study, the in vivo predictive method, gastrointestinal simulator alpha (GIS-α), was used to study the dissolution profiles of commercially available BCS Class II drugs, danazol, fenofibrate, celecoxib, and ritonavir. This biorelevant transfer method utilizes multiple compartments alongside peristaltic pumps, to effectively model the transfer of material in the GI tract. In all cases, the GIS-α with biorelevant buffers gave superior dissolution profiles. In silico modeling using GastroPlusTM yielded better prediction when utilizing the results from the GIS-α as input compared to the dissolution profiles obtained from the USP II apparatus. This gives the GIS-α an edge over compendial methods in generating drug dissolution profiles and is especially useful in the early stages of drug and formulation development. This information gives insight into the dissolution behavior and potential absorption patterns of these drugs which can be crucial for formulation development, as it allows for the optimization of drug delivery systems to enhance solubility, dissolution, and ultimately, bioavailability.
Collapse
Affiliation(s)
- Marvin D Naing
- Biopharmaceutics-Sterile Speciality Products, Merck & Co., Inc., Rahway, NJ, USA
| | - Yasuhiro Tsume
- Biopharmaceutics-Sterile Speciality Products, Merck & Co., Inc., Rahway, NJ, USA.
| |
Collapse
|
11
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Khan M, Gul S, Rehman I, Leghari QA, Badar R, Zille-Huma. Protective effect of lycopene against celecoxib induced fat deposition and glycogen reduction in liver cells. J Taibah Univ Med Sci 2024; 19:856-866. [PMID: 39253362 PMCID: PMC11381757 DOI: 10.1016/j.jtumed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Objective Oxidative stress develops because of a shift in the prooxidant-antioxidant balance toward the former, because of disturbances in redox signaling and control. Celecoxib (Cb), a selective COX-2 inhibitor, is a drug that effectively decreases pain and inflammation. However, Cb causes oxidative injury to hepatic tissues via enhanced lipid peroxidation, thus resulting in excessive production of reactive oxygen species. Consequently, frequent or long-term Cb use may lead to hepatic, renal, and other noticeable adverse effects. Lycopene (lyco), a potent antioxidant naturally occurring in pigmented fruits and vegetables, actively eradicates singlet oxygen and other free radicals, thereby protecting cells against destruction of the plasma membrane by free radicals. Methods We hypothesized that lyco might protect rat liver cells against Cb-induced oxidative stress, thus reducing fatty infiltration and glycogen depletion. Rats were randomized into three groups (with ten rats each) receiving control (group A, saline only), Cb (group B, 50 mg/kg, orally), or Cb + lyco (group C, 50 mg/kg, orally) for 30 days. Subsequently, liver tissues were examined, and the average liver weight and histological changes in fat and glycogen content were determined. Results Lyco mitigated hepatocyte damage in Cb-treated rats, reducing fat accumulation and glycogen loss, probably through its antioxidant properties. Concomitant lyco and Cb intake prevented hepatotoxic adverse effects due to oxidative injury, as well as non-alcoholic fatty liver disease (NAFLD), a key component of metabolic syndrome. Moreover, the binding orientation of lyco in the binding site of COX-2 enzyme revealed that the docked complex had noteworthy binding strength. Conclusion In conclusion, our study revealed lyco's protective effects against Cb-induced hepatic damage by reducing fat and glycogen depletion.
Collapse
Affiliation(s)
- Maria Khan
- Department of Anatomy, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Somia Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Iqra Rehman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Qurratul-Ain Leghari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Rabia Badar
- Department of Botany, Faculty of Science, Jinnah University for Women, Karachi, Pakistan
| | - Zille-Huma
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
13
|
Won H, Kim E, Chae J, Lee H, Cho J, Jang I, Chung J, Kim M, Lee S. Pharmacokinetic interactions between fexuprazan, a potassium-competitive acid blocker, and nonsteroidal anti-inflammatory drugs in healthy males. Clin Transl Sci 2024; 17:e13798. [PMID: 38700290 PMCID: PMC11067709 DOI: 10.1111/cts.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
Fexuprazan, a novel potassium-competitive acid blocker, is expected to be used for the prevention of nonsteroidal anti-inflammatory drugs (NSAIDs) induced ulcer. This study aimed to evaluate pharmacokinetic (PK) interactions between fexuprazan and NSAIDs in healthy subjects. A randomized, open-label, multicenter, six-sequence, one-way crossover study was conducted in healthy male subjects. Subjects randomly received one of the study drugs (fexuprazan 40 mg BID, celecoxib 200 mg BID, naproxen 500 mg BID, or meloxicam 15 mg QD) for 5 or 7 days in the first period followed by the combination of fexuprazan and one of NSAIDs for the same days and the perpetrator additionally administered for 1-2 days in the second period. Serial blood samples for PK analysis were collected until 48- or 72-h post-dose at steady state. PK parameters including maximum plasma concentration at steady state (Cmax,ss) and area under plasma concentration-time curve over dosing interval at steady state (AUCτ,ss) were compared between monotherapy and combination therapy. The PKs of NSAIDs were not significantly altered by fexuprazan. For fexuprazan, differences in PK parameters (22% in Cmax, 19% in AUCτ,ss) were observed when co-administered with naproxen, but not clinically significant. The geometric mean ratio (90% confidence interval) of combination therapy to monotherapy for Cmax,ss and AUCτ,ss was 1.22 (1.02-1.46) and 1.19 (1.00-1.43), respectively. There were no significant changes in the systemic exposure of fexuprazan by celecoxib and meloxicam. Fexuprazan and NSAIDs did not show clinically meaningful PK interactions.
Collapse
Affiliation(s)
- Heejae Won
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Eunwoo Kim
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulKorea
| | - Jihye Chae
- Daewoong Pharmaceutical Co., Ltd.SeoulKorea
| | | | - Joo‐Youn Cho
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - In‐Jin Jang
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulKorea
| | - Jae‐Yong Chung
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and Bundang HospitalSeongnamKorea
| | - Min‐Gul Kim
- Department of Pharmacology, School of MedicineJeonbuk National UniversityJeonjuKorea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and TherapeuticsSeoul National University College of Medicine and HospitalSeoulKorea
| |
Collapse
|
14
|
Helal NI, El-Khodary NM, Omran GA, El-Masry SM. Effects of Resveratrol Co-Administration on Celecoxib Disposition and Pharmacokinetics in Healthy Volunteers. Drug Res (Stuttg) 2023; 73:520-527. [PMID: 37935204 DOI: 10.1055/a-2160-2186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The objective of the current study was to investigate the effects of resveratrol (RSV), a natural herbal remedy used as an adjacent anti-inflammatory supplement on, the pharmacokinetics of celecoxib in healthy male volunteers. Twelve healthy human participants were involved in two-period open-labeled trial. Celecoxib (200 mg) was given as a single oral dose under fasting conditions as a control phase. Afterward, RSV (500 mg) commenced as a single oral dose for ten days as a treatment phase. Blood samples were collected during the control and treatment phases and analyzed using the validated High-performance liquid chromatography (HPLC) method. RSV pre-exposure significantly increased the area under the curve (AUC0-24), peak plasma concentration (Cmax), absorption rate constant (ka), and prolongated half-life (t1/2), along with a decrease in elimination rate constant (ke). Meanwhile, the volume of distribution (Vd/F) and apparent total body clearance (CL/F) were significantly decreased for celecoxib. There was no significant change in the time it takes for celecoxib to reach the maximum concentration (tmax) was observed. The obtained results suggested the presence of a beneficial pharmacokinetic interaction between RSV and celecoxib. Consequently, combining resveratrol as an herbal remedy and celecoxib as an anti-inflammatory drug may synergistically reduce inflammation and osteoarthritis with minimal side effects.
Collapse
Affiliation(s)
- Nagwa I Helal
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy Damanhour University, Damanhour City, Egypt
| | - Noha M El-Khodary
- Department of Clinical Pharmacy, Faculty of Pharmacy Kafrelsheikh University, Kafrelsheikh City, Egypt
| | - Gamal A Omran
- Department of Biochemistry, Faculty of Pharmacy Damanhour University, Damanhour City, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy Damanhour University, Damanhour City, Egypt
| |
Collapse
|
15
|
Porat D, Dukhno O, Partook-Maccabi M, Vainer E, Cvijić S, Dahan A. Selective COX-2 inhibitors after bariatric surgery: Celecoxib, etoricoxib and etodolac post-bariatric solubility/dissolution and pharmacokinetics. Int J Pharm 2023; 645:123347. [PMID: 37633536 DOI: 10.1016/j.ijpharm.2023.123347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Anatomical/physiological gastrointestinal changes after bariatric surgery may influence the fate of orally administered drugs.Since non-selective NSAIDs are not well-tolerated post-surgery, selective cyclooxygenase-2 (COX-2) inhibitors may be important for these patients. In this work we investigated celecoxib, etoricoxib and etodolac, for impaired post-bariatric solubility/dissolution and absorption. Solubility was studied in-vitro, and ex-vivoin aspirated gastric contents from patients pre- vs. post-surgery. Dissolution was studied in conditions simulating pre- vs. post-surgery stomach. Finally, the experimental solubility data were used in physiologically-based biopharmaceutics model (PBBM) (GastroPlus®) to simulate pre- vs. post-surgery celecoxib/etoricoxib/etodolac pharmacokinetic (PK) profiles.For etoricoxib and etodolac (but not celecoxib), pH-dependent solubility was demonstrated: etoricoxib solubility decreased ∼1000-fold, and etodolac solubility increased 120-fold, as pH increased from 1 to 7, which was also confirmed ex-vivo. Hampered etoricoxib dissolution and improved etodolac dissolution post-surgery was revealed. Tablet crushing, clinically recommended after surgery, failed to improve post-bariatric dissolution. PBBM simulations revealed significantly impaired etoricoxib absorption post-surgery across all conditions; for instance, 79% lower Cmax and 53% decreased AUC was simulated post-gastric bypass procedure, after single 120 mg dose. Celecoxib and etodolac maintained unaffected absorption after bariatric surgery.This mechanistically-based analysis suggests to prefer the acidic drug etodolac or the neutral celecoxib as selective COX-2 inhibitors, over the basic drug etoricoxib, after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Mazal Partook-Maccabi
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
16
|
Lambi AG, Popoff SN, Benhaim P, Barbe MF. Pharmacotherapies in Dupuytren Disease: Current and Novel Strategies. J Hand Surg Am 2023; 48:810-821. [PMID: 36935324 PMCID: PMC10440226 DOI: 10.1016/j.jhsa.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 03/21/2023]
Abstract
Dupuytren disease is a benign, progressive fibroproliferative disorder of the hands. To date, only one pharmacotherapy (clostridial collagenase) has been approved for use in Dupuytren disease. There is a great need for additional nonsurgical methods that can be used to either avoid the risks of invasive treatments or help minimize recurrence rates following treatment. A number of nonsurgical modalities have been discussed in the past and continue to appear in discussions among hand surgeons, despite highly variable and often poor or no long-term clinical data. This article reviews many of the pharmacotherapies discussed in the treatment of Dupuytren disease and novel therapies used in inflammation and fibrosis that offer potential treatment options.
Collapse
Affiliation(s)
- Alex G Lambi
- Department of Orthopedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM.
| | - Steven N Popoff
- Department of Orthopaedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Prosper Benhaim
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Mary F Barbe
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
17
|
Silva A, Costa B, Castro I, Mourão J, Vale N. New Perspective for Drug-Drug Interaction in Perioperative Period. J Clin Med 2023; 12:4810. [PMID: 37510925 PMCID: PMC10381519 DOI: 10.3390/jcm12144810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we aim to discuss current information on drug interactions in the perioperative period. During this period, patients receive several drugs that may interact with each other and affect the efficacy and safety of the treatment. There are three types of drug interactions: pharmacodynamic, pharmacokinetic, and pharmaceutical. It is important to recognize that drug interactions may increase the toxicity of the drug or reduce its efficacy, increasing the risk of complications in the perioperative period. This review describes the most commonly used perioperative drugs approved by the FDA and some of the described interactions between them. Thoroughly reviewing a patient's medication list and identifying potential interactions are essential steps in minimizing risks. Additionally, vigilant monitoring of patients during and after surgery plays a pivotal role in early detection of any signs of drug interactions. This article emphasizes the significance of addressing DDIs in the perioperative period to ensure patient well-being and advocates for the implementation of careful monitoring protocols to promptly identify and manage potential interactions.
Collapse
Affiliation(s)
- Abigail Silva
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Irene Castro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Anesthesiology and Intensive Care Medicine, Instituto Português de Oncologia do Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Joana Mourão
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Anesthesiology, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
18
|
Khaleel A, El-Sheakh AR, Suddek GM. Celecoxib abrogates concanavalin A-induced hepatitis in mice: Possible involvement of Nrf2/HO-1, JNK signaling pathways and COX-2 expression. Int Immunopharmacol 2023; 121:110442. [PMID: 37352567 DOI: 10.1016/j.intimp.2023.110442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
Concanavalin A (ConA) is an established model for inducing autoimmune hepatitis (AIH) in mice, mimicking clinical features in human. The aimof the current study is to explore the possible protective effect of celecoxib, a cyclooxygenase-2 inhibitor,on immunological responses elicited in the ConA model of acute hepatitis. ConA (20 mg/kg) was administered intravenously to adult male mice for 6 h. Prior to ConA intoxication, mice in the treatedgroups received daily doses of celecoxib (30 and 60 mg/kg in CMC) for 7 days. Results revealed that administration of celecoxib 60 mg/kg for 7 days significantly protected the liver from ConA-induced liver damage revealed by significant decrease in ALT and AST serum levels. Celecoxib 30 and 60 mg/kg pretreatment enhanced oxidant/antioxidant hemostasis by significantreduction of MDA and NO content and increase hepatic GSH contents and SOD activity. In addition, celecoxib 30 and 60 mg/kg caused significant increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and the stress protein heme oxygenase-1 (HO-1) levels. Moreover, celecoxib 30 and 60 mg/kg inhibited the release of proinflammatory markers including IL-1β and TNF-α along with significant decrease in p-JNK, AKT phosphorylation ratio and caspase-3 expression. Besides, Con A was correlated to high expression of cyclooxygenase COX-2 and this increasing was improved by administration of celecoxib. These changes were in good agreement with improvement in histological deterioration. The protective effect of celecoxib was also associated with significant reduction of autophagy biomarkers (Beclin-1 and LC3II). In conclusion, celecoxib showed antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagy activity against Con A-induced immune-mediated hepatitis. These effects could be produced by modulation of Nrf2/HO-1, IL-1B /p-JNK/p-AKT, JNK/caspase-3, and Beclin-1/LC3II signaling pathways.
Collapse
Affiliation(s)
- Aya Khaleel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future Studies and Risks Management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
19
|
Adachi K, Ohyama K, Tanaka Y, Nakano H, Sato T, Murayama N, Shimizu M, Saito Y, Yamazaki H. Plasma and hepatic exposures of celecoxib and diclofenac prescribed alone in patients with cytochrome P450 2C9*3 modeled after virtual oral administrations and likely associated with adverse drug events reported in a Japanese database. Biol Pharm Bull 2023. [PMID: 37062721 DOI: 10.1248/bpb.b23-00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The impacts of polymorphic cytochrome P450 (P450 or CYP) 2C9 on drug interactions and the pharmacokinetics of cyclooxygenase inhibitors have attracted considerable attention. In this survey, the prescribed dosage was reduced or discontinued in 150 and 56 patients, respectively, receiving celecoxib and diclofenac prescribed alone, as recorded in a Japanese database of adverse drug events. Among the factors underlying adverse events, intrinsic drug clearance rates may be a contributing factor. The pharmacokinetically modeled plasma concentrations of celecoxib after an oral 200-mg dose increased in CYP2C9*3 homozygotes: the area under the plasma concentration curve was 4.7-fold higher than that in CYP2C9*1 homozygotes. In patients with CYP2C9*3/*3, the virtual hepatic concentrations of diclofenac after three daily 25-mg doses for a week were 11-fold higher than the plasma concentrations in subjects with CYP2C9*1/*1. The in vivo and in vitro fractions of the victim drug metabolized by a specific polymorphic P450 form is an important determining factor for estimating drug-drug interactions. Virtual hepatic and plasma exposures estimated by pharmacokinetic modeling in patients harboring the impaired CYP2C9*3 allele could represent a causal factor for adverse events induced by celecoxib or diclofenac in a manner similar to that for drug interactions.
Collapse
Affiliation(s)
| | - Katsuhiro Ohyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hannam JA, Murto KT, Anderson BJ, Dembo G, Kharasch ED. Modeling adult COX-2 cerebrospinal fluid pharmacokinetics to inform pediatric investigation. Paediatr Anaesth 2023; 33:291-302. [PMID: 36318604 DOI: 10.1111/pan.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AIM Hysteresis is reported between plasma concentration and analgesic effect from nonsteroidal anti-inflammatory drugs. It is possible that the temporal delay between plasma and CSF nonsteroidal anti-inflammatory drugs mirrors this hysteresis. The temporal relationship between plasma and CSF concentrations of COX-inhibitors (celecoxib, rofecoxib, valdecoxib) has been described. The purpose of this secondary data analysis was to develop a compartmental model for plasma and CSF disposition of these COX-2 inhibitors. METHODS Plasma and CSF concentration-time profiles and protein binding data in 10 adult volunteers given oral celecoxib 200 mg, valdecoxib 40 mg and rofecoxib 50 mg were available for study. Nonlinear mixed effects models with a single plasma compartment were used to link a single CSF compartment with a transfer factor and an equilibration rate constant (Keq). To enable predictive modeling in pediatrics, celecoxib pharmacokinetics were standardized using allometry. RESULTS Movement of all three unbound plasma COX-2 drugs into CSF was characterized by a common equilibration half-time (T1/2 keq) of 0.84 h. Influx was faster than efflux and a transfer scaling factor of 2.01 was required to describe conditions at steady-state. Estimated celecoxib clearance was 49 (95% CI 34-80) L/h/70 kg and the volume of distribution was 346 (95% CI 237-468) L/70 kg. The celecoxib absorption half-time was 0.35 h with a lag time of 0.62 h. Simulations predicted a 70-kg adult given oral celecoxib 200 mg with maintenance 100 mg twice daily would have a mean steady-state total (bound and unbound) plasma concentration of 174 μg L-1 and CSF concentration of 1.1 μg L-1 . A child (e.g., 25 kg, typically 7 years) given oral celecoxib 6 mg kg-1 with maintenance of 3 mg kg-1 twice daily would have 282 and 1.7 μg L-1 mean plasma and CSF concentrations, respectively. CONCLUSIONS Transfer of unbound COX-2 inhibitors from plasma to CSF compartment can be described with a delayed effect model using an equilibration rate constant to collapse observed hysteresis. An additional transfer factor was required to account for passage across the blood-brain barrier. Use of a target concentration strategy for dose and consequent plasma (total and unbound) and CSF concentration prediction could be used to inform pediatric clinical studies.
Collapse
Affiliation(s)
- Jacqueline A Hannam
- Department Pharmacology & Clinical Pharmacology, Faculty Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kimmo T Murto
- Department Anesthesiology and Pain Medicine, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Brian J Anderson
- Department Anaesthesiology, Faculty Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gregory Dembo
- Department of Anesthesiology, University of Washington, Seattle, Washington, USA
| | - Evan D Kharasch
- Department of Anesthesiology and Clinical Chemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
21
|
Selenocoxib-3, a novel anti-inflammatory therapeutic effectively resolves colitis. Mol Cell Biochem 2023; 478:621-636. [PMID: 36001205 DOI: 10.1007/s11010-022-04532-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic and relapsing colonic inflammatory disease. Despite the involvement of diverse intricate mechanisms, COX mediated inflammatory pathway is crucial in the pathophysiology of colitis. Thus, COX inhibition is imperative for managing colitis-associated inflammation. However, the use of COX inhibitory classical non-steroidal anti-inflammatory drugs (NSAIDs) for inflammation resolution has been linked to sudden increased flare-ups. Therefore, considering the anti-inflammatory and pro-resolution effects of antioxidant and essential trace element Selenium (Se), a Seleno-derivative of Celecoxib called Selenocoxib-3 was characterized and evaluated for its favourable pharmacokinetics, safety margins and anti-inflammatory therapeutic potential in DSS-induced experimental colitis. The serum pharmacokinetic profiling [elimination rate constant (K) and clearance (Cl) and toxicity profiling suggested enhanced efficacy, therapeutic potential and lesser toxicity of Selenocoxib-3 as compared to its parent NSAID Celecoxib. In vivo studies demonstrated that Selenocoxib-3 efficiently resolves the gross morphological signs of DSS-induced colitis such as diarrhoea, bloody stools, weight loss and colon shortening. Further, intestinal damage evaluated by H & E staining and MPO activity suggested of histopathological disruptions, such as neutrophil infiltration, mucodepletion and cryptitis, by Selenocoxib-3. The expression profiles of COX-1/2 demonstrated mitigation of pro-inflammatory mediators thereby promoting anti-inflammatory efficacy of Selenocoxib-3 when compared with Celecoxib. The current study suggests translational applicability of Se-containing novel class of COX inhibitors for efficiently managing inflammatory disorders such as UC.
Collapse
|
22
|
Jahani V, Yazdani M, Badiee A, Jaafari MR, Arabi L. Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. J Control Release 2023; 354:453-464. [PMID: 36649743 DOI: 10.1016/j.jconrel.2023.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Cancer vaccine efficacy is limited by the immunosuppressive nature of the tumor microenvironment created by inflammation, immune inhibitory factors, and regulatory T cells (Tregs). Inspired by the role of cyclooxygenase-2 (COX-2) in inflammation in the tumor site, we proposed that normalization of the tumor microenvironment by celecoxib as a COX-2 inhibitor might improve the efficacy of Dendritic Cell (DC) therapy in a melanoma model. In the present study, liposomal celecoxib (Lip-CLX) was combined with ex vivo generated DC vaccines pulsed with gp100 peptide (in liposomal and non-liposomal forms) for prophylactic and therapeutic evaluation in the B16F10 melanoma model. Tumor site analysis by flow cytometry demonstrated that intravenous administration of Lip-CLX at a dose of 1 mg/kg in four doses effectively normalized the tumor microenvironment by reducing Tregs and IL-10 production. Furthermore, in combination with DC vaccination (DC + Lip-peptide+Lip-CLX), it significantly increased tumor-infiltrating CD4+ and CD8+ T cells and secretion of IFN-γ. This combinatorial strategy produced an effective prophylactic and therapeutic antitumor response, which reduced tumor growth and prolonged the overall survival. In conclusion, our findings suggest that the liposomal celecoxib targets the inhibitory mechanisms of the tumor microenvironment and broadens the impact of DC therapy to improve the outcome of immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Vajiheh Jahani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Co-carrier-based solid dispersion of celecoxib improves dissolution rate and oral bioavailability in rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Transethosomal Gel for the Topical Delivery of Celecoxib: Formulation and Estimation of Skin Cancer Progression. Pharmaceutics 2022; 15:pharmaceutics15010022. [PMID: 36678651 PMCID: PMC9864437 DOI: 10.3390/pharmaceutics15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The topical delivery of therapeutics is a promising strategy for managing skin conditions. Cyclooxygenase-2 (COX-2) inhibitors showed a possible target for chemoprevention and cancer management. Celecoxib (CXB) is a selective COX-2 inhibitor that impedes cell growth and generates apoptosis in different cell tumors. Herein, an investigation proceeded to explore the usefulness of nano lipid vesicles (transethosomes) (TES) of CXB to permit penetration of considerable quantities of the drug for curing skin cancer. The prepared nanovesicles were distinguished for drug encapsulation efficiency, vesicle size, PDI, surface charge, and morphology. In addition, FT-IR and DSC analyses were also conducted to examine the influence of vesicle components. The optimized formulation was dispersed in various hydrogel bases. Furthermore, in vitro CXB release and ex vivo permeability studies were evaluated. A cytotoxicity study proceeded using A431 and BJ1 cell lines. The expression alteration of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and DNA damage and fragmentation using qRT-PCR and comet assays were also investigated. Optimized CXB-TES formulation was spherically shaped and displayed a vesicle size of 75.9 ± 11.4 nm, a surface charge of -44.7 ± 1.52 mV, and an entrapment efficiency of 88.8 ± 7.2%. The formulated TES-based hydrogel displayed a sustained in vitro CXB release pattern for 24 h with an enhanced flux and permeation across rat skin compared with the control (free drug-loaded hydrogel). Interestingly, CXB-TES hydrogel has a lower cytotoxic effect on normal skin cells compared with TES suspension and CXB powder. Moreover, the level of expression of the CDKN2A gene was significantly (p ≤ 0.01, ANOVA/Tukey) decreased in skin tumor cell lines compared with normal skin cell lines, indicating that TES are the suitable carrier for topical delivery of CXB to the cancer cells suppressing their progression. In addition, apoptosis demonstrated by comet and DNA fragmentation assays was evident in skin cancer cells exposed to CXB-loaded TES hydrogel formulation. In conclusion, our results illustrate that CXB-TES-loaded hydrogel could be considered a promising carrier and effective chemotherapeutic agent for the management of skin carcinoma.
Collapse
|
25
|
Yang L, Shen Q, Hu C, Wang Y, Zhu X, Shu S, Luo Z. Comparative Pharmacokinetics and Safety of Imrecoxib, a Novel Selective Cyclooxygenase-2 Inhibitor, in Elderly Healthy Subjects. Drug Des Devel Ther 2022; 16:3865-3876. [PMID: 36388081 PMCID: PMC9653025 DOI: 10.2147/dddt.s387508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background Imrecoxib is a novel and moderately selective cyclooxygenase-2 inhibitor with properties of anti-inflammation and alleviating pain, which is widely applied in osteoarthritis patients. The pharmacokinetic data supporting imrecoxib’s rational use in elderly population are not available. Purpose The study aims to investigate the pharmacokinetics of imrecoxib and its main metabolites and explore the safety of imrecoxib in elderly healthy subjects. Methods A total of 19 healthy subjects including 10 non-elderly and 9 elderly subjects received single dose of 100 mg imrecoxib under fasting condition. Pharmacokinetics, safety and tolerability profiles were assessed. Results After oral administration of single dose of 100 mg imrecoxib, it was absorbed into plasma with median time to reach peak concentration (Tmax) around 2 hours. The concentration–time curves of imrecoxib (M0) showed higher interindividual variability in elderly subjects compared with non-elderly subjects. Peak concentration (Cmax) of M0, its hydroxyl metabolite M1 and carboxylated metabolite M2 in plasma increased by 39%, 21% and 17%, and area under concentration–time curve from time 0 to time t (AUC0-t) of M0, M1 and M2 in plasma increased by 34%, 13% and 27%, respectively, in elderly subjects compared with non-elderly subjects. The 90% CIs of geometric mean ratios of Cmax, AUC0-t and AUC0-∞ of M0, M1 and M2 between the two groups were not located within 80–125%, indicating Cmax, AUC0-t and AUC0-∞ were not completely equivalent between non-elderly and elderly healthy subjects. However, comparison of pharmacokinetic data of M0, M1 and M2 between the two groups showed no significant difference (P>0.05). Imrecoxib was well tolerated in both non-elderly and elderly healthy subjects, especially with favorable gastrointestinal and cardiovascular safety profiles. Conclusion Pharmacokinetic and safety profiles of imrecoxib in elderly healthy subjects indicated that no dose adjustment should be required for elderly population.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
| | - Qi Shen
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
| | - Chao Hu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
| | - Ying Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
| | - Xiaohong Zhu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
| | - Shiqing Shu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
| | - Zhu Luo
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Zhu Luo, Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital Sichuan University, No. 37 Guoxue Lane, Chengdu, Sichuan, 610044, People’s Republic of China, Tel +86 28 85422707, Email
| |
Collapse
|
26
|
In Vitro Safety, Off-Target and Bioavailability Profile of the Antiviral Compound Silvestrol. Pharmaceuticals (Basel) 2022; 15:ph15091086. [PMID: 36145307 PMCID: PMC9502993 DOI: 10.3390/ph15091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
We characterized the in vitro safety and bioavailability profile of silvestrol, a compound effective against various viruses, such as corona- and Ebolaviruses, with an EC50 value of about 5 nM. The cytotoxic profile of silvestrol was assessed in various cancer cell lines, as well as the mutagenic and genotoxic potential with Ames and micronuclei tests, respectively. To identify off-target effects, we investigated whether silvestrol modulates G-protein coupled receptor (GPCR) signaling pathways. To predict the bioavailability of silvestrol, its stability, permeability and cellular uptake were determined. Silvestrol reduced viability in a cell-type-dependent manner, mediated no off-target effects via GPCRs, had no mutagenic potential and minor genotoxic effects at 50 nM. Silvestrol did not disturb cell barrier integrity, showed low membrane permeability, was stable in liver microsomes and exhibited good cellular uptake. Efficient cellular uptake and increased cytotoxicity were observed in cell lines with a low expression level of the transport protein P-glycoprotein, the known efflux transporter of silvestrol. In conclusion, silvestrol showed low permeability but good cellular uptake and high stability. Cell-type-dependent cytotoxicity seems to be caused by the accumulation of silvestrol in cells lacking the ability to expel silvestrol due to low P-glycoprotein levels.
Collapse
|
27
|
Pharmacokinetic Interactions Between Tegoprazan and Naproxen, Aceclofenac, and Celecoxib in Healthy Korean Male Subjects. Clin Ther 2022; 44:930-944.e1. [PMID: 35787943 DOI: 10.1016/j.clinthera.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Tegoprazan is a potassium-competitive acid blocker used for gastric acid suppression and may be used with NSAIDs to reduce gastrointestinal adverse effects. The aim of this study was to evaluate the pharmacokinetic interaction between tegoprazan and commonly used NSAIDS, namely, naproxen, aceclofenac, and celecoxib. METHODS An open-label, 3-cohort, randomized, multiple-dose, 3-way crossover study was conducted in healthy male subjects. In cohort 1, tegoprazan (50-mg tablet, once daily) and naproxen (500-mg tablet, twice daily) were administered separately or concurrently for 7 days in each period. In cohort 2, tegoprazan and aceclofenac (100-mg tablet, twice daily) were administered separately or concurrently for 7 days in each period. In cohort 3, tegoprazan and celecoxib (200-mg capsule, twice daily) were administered separately or concurrently for 7 days in each period. Pharmacokinetic blood samples were collected up to 24 hours after the last dose. FINDINGS Seventeen subjects from cohort 1, sixteen subjects from cohort 2, and thirteen subjects from cohort 3 were included in the pharmacokinetic analysis. In cohort 1, the geometric least squares mean ratios (90% CIs) for AUCτ (AUC profiles over the dosing interval) and Css,max (Cmax at steady state) were 1.01 (0.91-1.12) and 0.99 (0.83-1.17) for tegoprazan, and 1.00 (0.97-1.03) and 1.04 (0.99-1.09) for naproxen, respectively. The values in cohort 2 were 1.03 (0.93-1.13) and 0.94 (0.86-1.04) for tegoprazan, and 1.06 (1.00-1.12) and 1.31 (1.08-1.60) for aceclofenac. The values in cohort 3 were 1.01 (0.86-1.18) and 1.02 (0.87-1.19) for tegoprazan, and 1.08 (0.96-1.22) and 1.18 (0.97-1.43) for celecoxib. IMPLICATIONS Changes in the maximum aceclofenac or celecoxib concentrations were detected after concurrent administration with tegoprazan, which were considered mainly due to the pharmacodynamic effect of tegoprazan. Because systemic drug exposure (shown as AUCτ) was unchanged after concurrent administration of any 3 NSAIDs with tegoprazan, the increase in aceclofenac or celecoxib Css,max when administered with tegoprazan would not be clinically significant in practice. CLINICALTRIALS gov Identifier: NCT04639804.
Collapse
|
28
|
Pharmacogenetics and Pain Treatment with a Focus on Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Antidepressants: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14061190. [PMID: 35745763 PMCID: PMC9228102 DOI: 10.3390/pharmaceutics14061190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This systematic review summarizes the impact of pharmacogenetics on the effect and safety of non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants when used for pain treatment. Methods: A systematic literature search was performed according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines regarding the human in vivo efficacy and safety of NSAIDs and antidepressants in pain treatment that take pharmacogenetic parameters into consideration. Studies were collected from PubMed, Scopus, and Web of Science up to the cutoff date 18 October 2021. Results: Twenty-five articles out of the 6547 initially detected publications were identified. Relevant medication–gene interactions were noted for drug safety. Interactions important for pain management were detected for (1) ibuprofen/CYP2C9; (2) celecoxib/CYP2C9; (3) piroxicam/CYP2C8, CYP2C9; (4) diclofenac/CYP2C9, UGT2B7, CYP2C8, ABCC2; (5) meloxicam/CYP2C9; (6) aspirin/CYP2C9, SLCO1B1, and CHST2; (7) amitriptyline/CYP2D6 and CYP2C19; (8) imipramine/CYP2C19; (9) nortriptyline/CYP2C19, CYP2D6, ABCB1; and (10) escitalopram/HTR2C, CYP2C19, and CYP1A2. Conclusions: Overall, a lack of well powered human in vivo studies assessing the pharmacogenetics in pain patients treated with NSAIDs or antidepressants is noted. Studies indicate a higher risk for partly severe side effects for the CYP2C9 poor metabolizers and NSAIDs. Further in vivo studies are needed to consolidate the relevant polymorphisms in NSAID safety as well as in the efficacy of NSAIDs and antidepressants in pain management.
Collapse
|
29
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
30
|
Noor N, LaChute C, Root M, Rogers J, Richard M, Varrassi G, Urits I, Viswanath O, Khater N, Kaye AD. A Comprehensive Review of Celecoxib Oral Solution for the Acute Treatment of Migraine. Health Psychol Res 2022; 10:34265. [DOI: 10.52965/001c.34265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nazir Noor
- Mount Sinai Medical Center, Miami Beach, FL
| | - Courtney LaChute
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA
| | - Mathew Root
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA
| | - Jasmine Rogers
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA
| | - Madeleine Richard
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA
| | | | - Ivan Urits
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA
| | - Omar Viswanath
- Innovative Pain and Wellness, Scottsdale, AZ; Department of Anesthesiology, University of Arizona College of Medicine – Phoenix, Phoenix, AZ; Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE; Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Nazih Khater
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA
| | - Alan D. Kaye
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA
| |
Collapse
|
31
|
Begum MY, M. Osmani RA, Alqahtani A, Ghazwani M, Hani U, Ather H, Atiya A, Rahamathulla M, Siddiqua A. Development of stealth liposomal formulation of celecoxib: In vitro and in vivo evaluation. PLoS One 2022; 17:e0264518. [PMID: 35472207 PMCID: PMC9041753 DOI: 10.1371/journal.pone.0264518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/12/2022] [Indexed: 11/19/2022] Open
Abstract
Celecoxib (CLB) is a highly hydrophobic selective cyclo-oxygenase inhibitor with high plasma protein binding and undergoes extensive hepatic metabolism. CLB is highly effective in the treatment of osteo and rheumatoid arthritis as first line therapy but produces severe gastro-intestinal toxicities and cardiovascular side effects. In this research, stealth liposomes of CLB were developed with the intention to reduce the side effects and increase the accumulation of drug in the sites of inflammation. Stealth liposomes were prepared by thin film hydration technique using distearoylphosphatidylcholine and PE-PEG 2000 with variable amounts of cholesterol and characterized. The effects of various lipids such as hydrogenated soy phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoylphosphatidylcholine and cholesterol content on % drug encapsulation was investigated. The optimized stealth liposomes were characterized by FT-IR and DSC for possible drug excipients interaction. Pharmacokinetics, pharmacodynamics and biodistribution studies were carried out for the stealth liposomes. The results revealed that the stealth liposomes reduced the inflammation to the larger magnitude and have also sustained the magnitude when compared to free drug along with maximum analgesic response. Higher elimination half-life, AUC, MRT and lowered clearance rate denotes the extended bioavailability of the drug in blood. Biodistribution studies revealed that stealth liposomes extend the circulation time of liposomes in blood by decreasing opsonisation and be less concentrated in kidney, thereby reducing the toxicities to RES and renal organs and facilitate the drug accumulation in the area of inflammation. Our results indicated that CLB, without the requirement of modifications to enhance solubilisation, can be encapsulated and released from liposomal formulations. This new-fangled drug delivery approach may be used to circumvent the low bioavailability and toxic side effects of oral CLB formulations.
Collapse
Affiliation(s)
- M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- * E-mail: ,
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
32
|
Organocatalytic atroposelective construction of axially chiral N, N- and N, S-1,2-azoles through novel ring formation approach. Nat Commun 2022; 13:1933. [PMID: 35410417 PMCID: PMC9001698 DOI: 10.1038/s41467-022-29557-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract1,2-Azoles are privileged structures in ligand/catalyst design and widely exist in many important natural products and drugs. In this report, two types of axially chiral 1,2-azoles (naphthyl-isothiazole S-oxides with a stereogenic sulfur center and atropoisomeric naphthyl pyrazoles) are synthesized via modified vinylidene ortho-quinone methide intermediates. Diverse products are acquired in satisfying yields and good to excellent enantioselectivities. The vinylidene ortho-quinone methide intermediates bearing two hetero atoms at 5-position have been demonstrated as a platform molecule for the atroposelective synthesis of axially chiral 1,2-azoles. This finding not only enrich our knowledge of vinylidene ortho-quinone methide chemistry but also provide the easy preparation method for diverse atropisomeric heterobiaryls that were inaccessible by existing methodologies. The obtained chiral naphthyl-isothiazole S-oxides and naphthyl-pyrazoles have demonstrated their potential application in further synthetic transformations and therapeutic agents.
Collapse
|
33
|
Thompson PA, Martinez JA. The Importance of Drug Concentration at the Site of Action: Celecoxib and Colon Polyp Prevention as a Case Study. Cancer Prev Res (Phila) 2022; 15:205-208. [PMID: 35373257 DOI: 10.1158/1940-6207.capr-21-0524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Celecoxib is among the more potent and better clinically studied, nonsteroidal anti-inflammatory drugs (NSAID) for use as a chemoprevention agent for colorectal cancer. Its use is associated with a 40% to 50% response rate for reduction in adenomatous polyps. However, rare serious cardiovascular effects and even death with celecoxib and other NSAIDs make it important to understand why some patients respond and others do not. Celecoxib is a selective inhibitor of COX-2. Its anticancer mechanism has largely been attributed to the inhibition of COX-2. Celecoxib also shows activity to induce apoptosis in cancer cells not expressing COX-2. This includes activity to upregulate 15-lipoxygenase-1 (15-LOX-1) independent of COX-2 and increase the synthesis of 13-S-hydroxyoctadecadienoic acid (13-S-HODE) from linoleic acid (LA) to downregulate PPAR-δ and induce apoptosis in colorectal cancer models. In examining the effect of celecoxib on 15-LOX-1 for reducing adenomatous polyps in patients with familial adenomatous polyposis (FAP), Yang and colleagues point out the potential importance of drug bioavailability in blood, normal, and neoplastic colorectal tissue in patient response. See related article, p. 217.
Collapse
Affiliation(s)
- Patricia A Thompson
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles California
| | - Jessica A Martinez
- Department of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
34
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Faramarzi M, Roosta S, Eghbal MH, Nouri Rahmatabadi B, Faramarzi A, Mohammadi‐Samani S, Shishegar M, Sahmeddini MA. Comparison of celecoxib and acetaminophen for pain relief in pediatric day case tonsillectomy: A randomized double-blind study. Laryngoscope Investig Otolaryngol 2021; 6:1307-1315. [PMID: 34938867 PMCID: PMC8665471 DOI: 10.1002/lio2.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Post-tonsillectomy pain is a common morbidity in children. The aim of this study was to compare the efficacy of celecoxib with acetaminophen on pain relief in pediatric day-case tonsillectomy. METHODS We compared the analgesic effect of celecoxib (99 patients) with acetaminophen (100 patients) for the management of post-tonsillectomy pain. Post-tonsillectomy pain score was evaluated three times a day for 7 days. In addition, the incidence of post-tonsillectomy bleeding and the rate of patients who returned to regular diet were evaluated. RESULTS In the first day, we observed lower mean pain score in the celecoxib group, than the acetaminophen group (P = 0.013). The overall pain score in other days was not significantly different between the two groups. In the celecoxib group, more patients resumed regular amount of oral intake within the first 3 days. Also, the rate of post-tonsillectomy bleeding in the two groups was not statistically different. CONCLUSION We recommend celecoxib as a more suitable choice than acetaminophen for post-tonsillectomy pain management in the first day and resuming regular diet within 3 days.Level of Evidence: 1b.
Collapse
Affiliation(s)
- Mohammad Faramarzi
- Department of Otorhinolaryngology – Head & Neck surgeryShiraz University of Medical SciencesShirazIran
- Otolaryngology Research CenterShiraz University of Medical SciencesShirazIran
| | - Sareh Roosta
- Otolaryngology Research CenterShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Mohammad Hossein Eghbal
- Shiraz Anesthesiology and Critical Care Research CenterShiraz University of Medical SciencesShirazIran
| | - Bahar Nouri Rahmatabadi
- Shiraz Anesthesiology and Critical Care Research CenterShiraz University of Medical SciencesShirazIran
| | - Ali Faramarzi
- Otolaryngology Research CenterShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | | | - Mahmood Shishegar
- Department of Otorhinolaryngology – Head & Neck surgeryShiraz University of Medical SciencesShirazIran
- Otolaryngology Research CenterShiraz University of Medical SciencesShirazIran
| | - Mohammad Ali Sahmeddini
- Shiraz Anesthesiology and Critical Care Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
36
|
Schultz KP, Kaplan J, Rappaport NH. The Nuts and Bolts of a Successful Non-Narcotic Perioperative Enhanced Recovery After Surgery Protocol. Aesthet Surg J 2021; 41:NP1769-NP1774. [PMID: 34272963 DOI: 10.1093/asj/sjab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enhanced recovery after surgery (ERAS) protocols are widely utilized approaches to perioperative care that advocate preoperative counseling, multimodal perioperative medication management, and early postoperative mobilization to improve post-surgical patient outcomes and satisfaction. OBJECTIVES The authors aimed to elucidate the mechanism by which each medication utilized in the senior author's ERAS protocol acts, determine the efficacy of this protocol in postoperative pain management, and reveal other factors that may play a role in patients' degree of postoperative pain. METHODS A literature review was performed on the medications utilized in the senior author's ERAS protocol. Evidence from the author's previous study on the efficacy of this regimen and anecdotal evidence regarding the psychological component of pain was also compiled. RESULTS There is evidence that an ERAS protocol is as effective if not more effective than regimens involving opioid medications in management of postoperative pain. These medications act synergistically to block perception of pain by multiple pathways, while minimizing adverse effects that may be associated with high doses of a single medication and are affordable for both the patient and the surgeon. CONCLUSIONS ERAS protocols effectively manage postoperative pain while avoiding the adverse effects associated with opioid medications. Although an emphasis has often been placed on the medications involved in various protocols and avoidance of opioid medications, appropriate counseling on patients' expectations concerning postoperative "pain" or discomfort and a systemic shift in the approach to perioperative pain are perhaps the most important components to holistic non-narcotic postoperative care.
Collapse
Affiliation(s)
- Kelly P Schultz
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jordan Kaplan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
37
|
Macías Y, García-Menaya JM, Martí M, Cordobés C, Jurado-Escobar R, Cornejo-García JA, Torres MJ, Blanca-López N, Canto G, Blanca M, Laguna JJ, Bartra J, Rosado A, Fernández J, García-Martín E, Agúndez JAG. Lack of Major Involvement of Common CYP2C Gene Polymorphisms in the Risk of Developing Cross-Hypersensitivity to NSAIDs. Front Pharmacol 2021; 12:648262. [PMID: 34621165 PMCID: PMC8490926 DOI: 10.3389/fphar.2021.648262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cross-hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs) is a relatively common, non-allergic, adverse drug event triggered by two or more chemically unrelated NSAIDs. Current evidence point to COX-1 inhibition as one of the main factors in its etiopathogenesis. Evidence also suggests that the risk is dose-dependent. Therefore it could be speculated that individuals with impaired NSAID biodisposition might be at increased risk of developing cross-hypersensitivity to NSAIDs. We analyzed common functional gene variants for CYP2C8, CYP2C9, and CYP2C19 in a large cohort composed of 499 patients with cross-hypersensitivity to NSAIDs and 624 healthy individuals who tolerated NSAIDs. Patients were analyzed as a whole group and subdivided in three groups according to the main enzymes involved in the metabolism of the culprit drugs as follows: CYP2C9, aceclofenac, indomethacin, naproxen, piroxicam, meloxicam, lornoxicam, and celecoxib; CYP2C8 plus CYP2C9, ibuprofen and diclofenac; CYP2C19 plus CYP2C9, metamizole. Genotype calls ranged from 94 to 99%. No statistically significant differences between patients and controls were identified in this study, either for allele frequencies, diplotypes, or inferred phenotypes. After patient stratification according to the enzymes involved in the metabolism of the culprit drugs, or according to the clinical presentation of the hypersensitivity reaction, we identified weak significant associations of a lower frequency (as compared to that of control subjects) of CYP2C8*3/*3 genotypes in patients receiving NSAIDs that are predominantly CYP2C9 substrates, and in patients with NSAIDs-exacerbated cutaneous disease. However, these associations lost significance after False Discovery Rate correction for multiple comparisons. Taking together these findings and the statistical power of this cohort, we conclude that there is no evidence of a major implication of the major functional CYP2C polymorphisms analyzed in this study and the risk of developing cross-hypersensitivity to NSAIDs. This argues against the hypothesis of a dose-dependent COX-1 inhibition as the main underlying mechanism for this adverse drug event and suggests that pre-emptive genotyping aiming at drug selection should have a low practical utility for cross-hypersensitivity to NSAIDs.
Collapse
Affiliation(s)
- Yolanda Macías
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jesús M García-Menaya
- Allergy Service, Badajoz University Hospital, Badajoz, Spain.,ARADyAL Instituto de Salud Carlos III, Badajoz, Spain
| | - Manuel Martí
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Concepción Cordobés
- Allergy Service, Badajoz University Hospital, Badajoz, Spain.,ARADyAL Instituto de Salud Carlos III, Badajoz, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Málaga, Spain
| | - José A Cornejo-García
- Research Laboratory, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain.,ARADyAL Instituto de Salud Carlos III, Málaga, Spain
| | - María J Torres
- ARADyAL Instituto de Salud Carlos III, Málaga, Spain.,Allergy Unit, IBIMA, Regional University Hospital of Málaga, UMA, Málaga, Spain
| | - Natalia Blanca-López
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - Gabriela Canto
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Blanca
- Allergy Service, Infanta Leonor University Hospital, Madrid, Spain.,ARADyAL Instituto de Salud Carlos III, Madrid, Spain
| | - José J Laguna
- ARADyAL Instituto de Salud Carlos III, Madrid, Spain.,Allergy Unit and Allergy-Anaesthesia Unit, Hospital Central Cruz Roja, Faculty of Medicine, Alfonso X El Sabio University, Madrid, Spain
| | - Joan Bartra
- Allergy Section, Pneumology Department, Hospital Clinic, ARADyAL, Universitat de Barcelona, Barcelona, Spain.,ARADyAL Instituto de Salud Carlos III, Barcelona, Spain
| | - Ana Rosado
- Allergy Service, Alcorcón Hospital, Madrid, Spain
| | - Javier Fernández
- Allergy Unit, Regional University Hospital, Alicante, Spain.,ARADyAL Instituto de Salud Carlos III, Alicante, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - José A G Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain.,ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| |
Collapse
|
38
|
Yang P, Zuo X, Advani S, Wei B, Malek J, Day RS, Shureiqi I. Celecoxib Colorectal Bioavailability and Chemopreventive Response in Patients with Familial Adenomatous Polyposis. Cancer Prev Res (Phila) 2021; 15:217-223. [PMID: 34610992 DOI: 10.1158/1940-6207.capr-21-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/14/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Why celecoxib exerts chemopreventive activity in only some familial adenomatous polyposis (FAP) patients remains poorly understood. We conducted a phase II clinical study to identify potential predictive biomarkers for celecoxib chemopreventive activity in FAP. Twenty-seven patients with FAP completed a 6-month oral course of 400 mg of celecoxib twice a day; they underwent colonoscopies before and after celecoxib treatment to assess colorectal polyp tumor burden and to obtain normal and polyp colorectal biopsies to measure celecoxib, 13-S-hydroxyoctadecadienoic acid (13-HODE), 15-HETE, 12-HETE, and LTB4 levels by LC/MS-MS. Celecoxib levels in sera from those patients were also measured before treatment and after 2, 4, and 6 months of treatment. Nineteen of the 27 patients experienced a response to celecoxib, with a ≥ 28% reduction of colonic polyp burden on the basis of a reproducible quantitative assessment of colonoscopy results. Celecoxib levels were significantly lower in polyp tissues than in normal colorectal tissues. Celecoxib levels in sera and normal colorectal tissues were correlated in patients who experienced a response to celecoxib but not in those who did not. Among the measured lipoxygenase products, only 13-HODE levels were significantly lower in polyp tissues than in normal tissues. Our findings demonstrate the differential bioavailability of celecoxib between normal and polyp tissues and its potential effects on clinical response in patients with FAP. PREVENTION RELEVANCE: This study evaluated potential predictive biomarkers for celecoxib chemopreventive activity in patients with FAP. Our findings demonstrated the differential bioavailability of celecoxib between normal and polyp tissues and its potential effects on clinical chemopreventive response in patients with FAP.
Collapse
Affiliation(s)
- Peiying Yang
- Departments of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Xiangsheng Zuo
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shailesh Advani
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| | - Bo Wei
- Departments of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica Malek
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rena Sue Day
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, Texas
| | - Imad Shureiqi
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Sawalha K, Desikan S, Kamoga GR. Oh wait … It isn't MUDPILES! Acute toxic encephalopathy with an interesting anion gap metabolic acidosis resulting in prolonged invasive mechanical ventilation. J Community Hosp Intern Med Perspect 2021; 11:670-672. [PMID: 34567461 PMCID: PMC8462857 DOI: 10.1080/20009666.2021.1942670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A 70-year-old white female patient with past medical history of migraine, fibromyalgia, diverticulitis, and hypothyroidism presented to the emergency department accompanied by her husband for one day of altered mentation, nausea and vomiting. Laboratory testing showed oligo-anuric acute kidney injury with a severely high anion gap metabolic acidosis. Urine drug screen was negative. Brain imaging and lumbar puncture were negative for acute findings. We report this unique case by going through the differential for anion gap metabolic acidosis secondary to Celecoxib as well as a unique drug–drug interaction between Celecoxib and Gabapentin.
Collapse
Affiliation(s)
- Khalid Sawalha
- Internal Medicine Division, White River Health System, Batesville, AR, USA
| | - Sai Desikan
- Internal Medicine Division, White River Health System, Batesville, AR, USA
| | - Gilbert-Roy Kamoga
- Internal Medicine Division, White River Health System, Batesville, AR, USA
| |
Collapse
|
40
|
Fatty acid-binding protein 5 activates cyclooxygenase-2 and promotes hypoxic injury in LO2 cells. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Mao L, Wu W, Wang M, Guo J, Li H, Zhang S, Xu J, Zou J. Targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv 2021; 28:1861-1876. [PMID: 34515606 PMCID: PMC8439249 DOI: 10.1080/10717544.2021.1971798] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The management of osteoarthritis (OA) is a clinical challenge due to the particular avascular, dense, and occluded tissue structure. Despite numerous clinical reports and animal studies, the pathogenesis and progression of OA are still not fully understood. On the basis of traditional drugs, a large number of new drugs have been continuously developed. Intra-articular (IA) administration for OA hastens the development of targeted drug delivery systems (DDS). OA drugs modification and the synthesis of bioadaptive carriers contribute to a qualitative leap in the efficacy of IA treatment. Nanoparticles (NPs) are demonstrated credible improvement of drug penetration and retention in OA. Targeted nanomaterial delivery systems show the prominent biocompatibility and drug loading-release ability. This article reviews different drugs and nanomaterial delivery systems for IA treatment of OA, in an attempt to resolve the inconsonance between in vitro and in vivo release, and explore more interactions between drugs and nanocarriers, so as to open up new horizons for the treatment of OA.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
42
|
Graham GG, Scott KF. Limitations of drug concentrations used in cell culture studies for understanding clinical responses of NSAIDs. Inflammopharmacology 2021; 29:1261-1278. [PMID: 34510275 DOI: 10.1007/s10787-021-00871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/21/2021] [Indexed: 02/02/2023]
Abstract
In this review, the in vitro cellular effects of six nonsteroidal anti-inflammatory drugs (NSAIDs), salicylate, ibuprofen, naproxen, indomethacin, celecoxib and diclofenac, are examined. Inhibition of prostanoid synthesis in vitro generally occurs within the therapeutic range of plasma concentrations that are observed in vivo, consistent with the major action of NSAIDs being inhibition of prostanoid production. An additional probable cellular action of NSAIDs has been discovered recently, viz. decreased oxidation of the endocannabinoids, 2-arachidonoyl glycerol and arachidonyl ethanolamide. Many effects of NSAIDs, other than decreased oxidation of arachidonic acid and endocannabinoids, have been put forward but almost all of these additional processes are observed at supratherapeutic concentrations when the concentration of albumin, the major protein that binds NSAIDs, is taken into account. However, one exception is salicylate, a very potent inhibitor of the neutrophilic enzyme, myeloperoxidase, the inhibition of which leads to reduced production of the inflammatory mediator, hypochlorous acid, and inhibition of the inflammation associated with rheumatoid arthritis.
Collapse
Affiliation(s)
- Garry G Graham
- Department of Clinical Pharmacology, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia. .,School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Kieran F Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia. .,Ingham Institute of Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.
| |
Collapse
|
43
|
Su X, Yu C, Zhao P, Wang M, Zhao C, Chen M, Gong J. Solid-liquid equilibrium and thermodynamic analysis of elastically bendable crystal celecoxib in thirteen pure solvents based on experiments and molecular simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Physiologically based pharmacokinetic (PBPK) modeling for prediction of celecoxib pharmacokinetics according to CYP2C9 genetic polymorphism. Arch Pharm Res 2021; 44:713-724. [PMID: 34304363 DOI: 10.1007/s12272-021-01346-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022]
Abstract
Celecoxib is a non-steroidal anti-inflammatory drug (NSAID) and a representative selective cyclooxygenase (COX)-2 inhibitor, which is commonly prescribed for osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute pain, and primary dysmenorrhea. It is mainly metabolized by CYP2C9 and partly by CYP3A4 after oral administration. Many studies reported that CYP2C9 genetic polymorphism has significant effects on the pharmacokinetics of celecoxib and the occurrence of adverse drug reactions. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of celecoxib according to CYP2C9 genetic polymorphism for personalized pharmacotherapy. Initially, a clinical pharmacokinetic study was conducted where a single dose (200 mg) of celecoxib was administered to 39 healthy Korean subjects with CYP2C9*1/*1 or CYP2C9*1/*3 genotypes to obtain data for PBPK development. Based on the conducted pharmacokinetic study and a previous pharmacokinetic study involving subjects with CYP2C9*1/*13 and CYP2C9*3/*3 genotype, PBPK model for celecoxib was developed. A PBPK model for CYP2C9*1/*1 genotype group was developed and then scaled to other genotype groups (CYP2C9*1/*3, CYP2C9*1/*13 and CYP2C9*3/*3). After model development, model validation was performed with comparison of five pharmacokinetic studies. As a result, the developed PBPK model of celecoxib successfully described the pharmacokinetics of each CYP2C9 genotype group and its predicted values were within the acceptance criterion. Additionally, all the predicted values were within two-fold error range in comparison to the previous pharmacokinetic studies. This study demonstrates the possibility of determining the appropriate dosage of celecoxib for each individual through the PBPK modeling with CYP2C9 genomic information. This approach could contribute to the reduction of adverse drug reactions of celecoxib and enable precision medicine.
Collapse
|
45
|
Sharma S, Bhatia V. Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design. Mini Rev Med Chem 2021; 21:204-216. [PMID: 32875985 DOI: 10.2174/1389557520666200901184146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Pyrazole and its derivatives are a pharmacologically and significantly active scaffolds that have innumerable physiological and pharmacological activities. They can be very good targets for the discovery of novel anti-bacterial, anti-cancer, anti-inflammatory, anti-fungal, anti-tubercular, antiviral, antioxidant, antidepressant, anti-convulsant and neuroprotective drugs. This review focuses on the importance of in silico manipulations of pyrazole and its derivatives for medicinal chemistry. The authors have discussed currently available information on the use of computational techniques like molecular docking, structure-based virtual screening (SBVS), molecular dynamics (MD) simulations, quantitative structure activity relationship (QSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to drug design using pyrazole moieties. Pyrazole based drug design is mainly dependent on the integration of experimental and computational approaches. The authors feel that more studies need to be done to fully explore the pharmacological potential of the pyrazole moiety and in silico method can be of great help.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, U.P., Noida, India
| |
Collapse
|
46
|
McEvoy L, Carr DF, Pirmohamed M. Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Front Pharmacol 2021; 12:684162. [PMID: 34234675 PMCID: PMC8256335 DOI: 10.3389/fphar.2021.684162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs which are widely used globally for the treatment of pain and inflammation, and in the case of aspirin, for secondary prevention of cardiovascular disease. Chronic non-steroidal anti-inflammatory drug use is associated with potentially serious upper gastrointestinal adverse drug reactions (ADRs) including peptic ulcer disease and gastrointestinal bleeding. A few clinical and genetic predisposing factors have been identified; however, genetic data are contradictory. Further research is needed to identify clinically relevant genetic and non-genetic markers predisposing to NSAID-induced peptic ulceration.
Collapse
Affiliation(s)
- L McEvoy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - D F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - M Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
47
|
Abou-El-Naga IF, El-Temsahy MM, Mogahed NMFH, Sheta E, Makled S, Ibrahim EI. Effect of celecoxib against different developmental stages of experimental Schistosoma mansoni infection. Acta Trop 2021; 218:105891. [PMID: 33773944 DOI: 10.1016/j.actatropica.2021.105891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 01/18/2023]
Abstract
Due to the high prevalence of schistosomiasis and the wide use of praziquantel solely for mass drug administration to control the disease, there is a great concern about the potential emergence of reduced susceptibility strains. This, together with the concern that praziquantel is ineffective against juvenile worms highlight the importance of developing an alternative anti-schistosomal drug. Using nonsteroidal anti-inflammatory drugs against schistosome infection is considerable. The present study evaluated the effect of oral administration of five days celecoxib regimen (20 mg/kg/day) against different developmental stages of Schistosoma mansoni infection. This regimen induced significant reduction in worm burden, tissue egg count, individual female fecundity and the mean percentage of immature and mature eggs with increased mean percentage of dead eggs. More importantly, celecoxib was more potent than praziquantel in all these parasitological parameters (except in the worm burden when given against the adult stage where the difference was statistically non-significant). Scanning and transmission electron microscopy of the adult worms revealed severe tegumental damage, laceration of the muscular layers and oedema of the syncytial layer. There was disruption of the testicular, ovarian and vitelline glandular tissues with signs of apoptosis and abnormalities of the spermatozoa and the oocytes. Additionally, celecoxib induced reduction in the number and the size of the hepatic granulomata and also amelioration of the hepatic tissue pathology.
Collapse
|
48
|
Cowan A, Garg AX. Controlling pain in dialysis care: a choice among undesirable options. Nephrol Dial Transplant 2021; 36:749-751. [PMID: 33156907 DOI: 10.1093/ndt/gfaa256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrea Cowan
- Division of Nephrology, Western University, London, ON, Canada
| | - Amit X Garg
- Division of Nephrology, Western University, London, ON, Canada
| |
Collapse
|
49
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
50
|
Shawahna R, Zyoud A, Haj-Yahia A, Taya R. Evaluating Solubility of Celecoxib in Age-Appropriate Fasted- and Fed-State Gastric and Intestinal Biorelevant Media Representative of Adult and Pediatric Patients: Implications on Future Pediatric Biopharmaceutical Classification System. AAPS PharmSciTech 2021; 22:84. [PMID: 33649887 DOI: 10.1208/s12249-021-01958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Prediction of performance of traditional, reformulated, and novel oral formulations in adults and pediatrics is of great importance. This study was conducted to assess solubility of celecoxib in age-appropriate fasted- and fed-state gastric and intestinal biorelevant media, classify celecoxib into biopharmaceutical classification system (BCS), and assess the effects of age-related developmental changes in the composition and volume of gastrointestinal fluids on the solubility and performance of oral formulations containing celecoxib. Solubility of celecoxib was assessed at 37°C in the pH range specified by the BCS-based criteria in 13 age-appropriate biorelevant media reflective of the gastric and proximal small intestinal environment in both fasted and fed states in adults and different pediatric subpopulations. A validated HPLC-UV method was used to quantify celecoxib. Experimental and computational molecular descriptors and in vivo pharmacokinetic data were used to assign the permeability class of celecoxib. Celecoxib belonged to BCS class 2. The pediatric to adult solubility ratios were outside the 80-125% boundaries in 3 and borderline in 1 biorelevant media. Significant age-related variability could be predicted for oral formulations containing celecoxib intended for pediatric use. Findings of this study indicated that the criteria used in the adult BCS might not be directly applied to pediatric subpopulations.
Collapse
|