1
|
Sherefedin U, Belay A, Gudishe K, Kebede A, Kumela AG, Asemare S. Photophysical Properties of Sinapic Acid and Ferulic Acid and Their Binding Mechanism with Caffeine. J Fluoresc 2025; 35:2379-2393. [PMID: 38592595 DOI: 10.1007/s10895-024-03689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Sinapic acid (SA) and ferulic acid (FA) are bioactive compounds used in the food, pharmaceutical, and cosmetic industries due to their antioxidant properties. In this work, we studied the photophysical properties of SA and FA in different solvents and concentrations and their interactions with caffeine (CF), using ultraviolet-visible (UV-Vis), fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The findings show that the quantum yield, fluorescence lifetime, radiative decay rates, and non-radiative decay rates of SA and FA are influenced by the concentrations and solvent polarity. The interaction between SA and FA with CF was also studied using UV-Vis and fluorescence spectroscopy. The results indicate that the CF quenched the fluorescence intensity of SA and FA by static quenching due to the formation of a non-fluorescent complex. The van't Hoff equation suggests that the van der Waals forces and hydrogen bonds force were responsible for the interaction between SA and CF, as indicated by a negative change in enthalpy (Δ H o < 0) and a negative change in entropy (Δ S o < 0). On the other hand, the interaction between FA and CF was primarily controlled by electrostatic force, as indicated by a negative change in enthalpy (Δ H o < 0) and a positive change in entropy (Δ S o > 0). The negative change in Gibbs free energy (Δ G o ) indicates that both compounds underwent a spontaneous binding process.
Collapse
Affiliation(s)
- Umer Sherefedin
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Abebe Belay
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Kusse Gudishe
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University, P.O. Box 165, Jinka, Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tullu Awulia, P.O. Box 32, Amhara, Ethiopia
| | - Alemu Kebede
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Department of Applied Physics, School of Applied Natural and Computational Sciences, Jinka University, P.O. Box 165, Jinka, Ethiopia
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University, Tullu Awulia, P.O. Box 32, Amhara, Ethiopia
| | - Semahegn Asemare
- Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
2
|
Aksar A, Lutz J, Wagner E, Strube W, Luykx JJ, Hasan A. Vaccination and clozapine use: a systematic review and an analysis of the VAERS database. Eur Arch Psychiatry Clin Neurosci 2025; 275:141-162. [PMID: 38165458 DOI: 10.1007/s00406-023-01729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
In the context of COVID-19 concerns related to the potential interactions between clozapine and vaccination arose. With the ultimate goal of deriving recommendations for clinical practice, we systematically reviewed the current evidence regarding altered vaccine effectiveness in clozapine-treated patients and safety aspects of vaccination, such as haematological changes and the impact of vaccines on clozapine blood levels, in clozapine-treated patients. A systematic PRISMA-conform literature search of four databases (PubMed, PsycINFO, EMBASE and Cochrane Library) complemented by a case-by-case analysis of the Vaccine Adverse Event Reporting System (VAERS) database was performed. We then systematically appraised the joint evidence and tried to derive recommendations for clinical practice. 14 records were included in this analysis. These records consisted of 5 original articles and 9 case reports. Among the original articles, two studies provided data on the association between clozapine use and antibody responses to vaccination, both indicating that clozapine use in schizophrenia may be associated with reduced levels of immunoglobulins. Additionally, three studies examined vaccine safety in clozapine-treated patients, with no clinically significant adverse effects directly attributable to the interplay between vaccinations and clozapine. VAERS Analysis encompassed 137 reports and showed no consistent evidence of an increased risk for clozapine blood level increases or adverse events. We found no evidence indicating that clozapine impairs the effectiveness of vaccines. Moreover, no serious safety concerns seem to apply when patients on clozapine are receiving vaccines. However, it is crucial to acknowledge that data on the interaction between clozapine and vaccines remain limited.
Collapse
Affiliation(s)
- Aslihan Aksar
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, Bezirkskrankenhaus Augsburg, University of Augsburg, Geschwister-Schoenert-Str. 1, 86156, Augsburg, Germany.
| | - Justina Lutz
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, Bezirkskrankenhaus Augsburg, University of Augsburg, Geschwister-Schoenert-Str. 1, 86156, Augsburg, Germany
| | - Elias Wagner
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, Bezirkskrankenhaus Augsburg, University of Augsburg, Geschwister-Schoenert-Str. 1, 86156, Augsburg, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, Munich, Germany
| | - Wolfgang Strube
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, Bezirkskrankenhaus Augsburg, University of Augsburg, Geschwister-Schoenert-Str. 1, 86156, Augsburg, Germany
| | - Jurjen J Luykx
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, Bezirkskrankenhaus Augsburg, University of Augsburg, Geschwister-Schoenert-Str. 1, 86156, Augsburg, Germany
- DZPG (German Center for Mental Health), Partner Site München/Augsburg, Augsburg, Germany
| |
Collapse
|
3
|
Truong J, Abu-Suriya N, Tory D, Bahho R, Ismaiel A, Nguyen T, Mansour A, Nand V, Saponja J, Dua K, De Rubis G, Parisi D. An Exploration of the Interplay Between Caffeine and Antidepressants Through the Lens of Pharmacokinetics and Pharmacodynamics. Eur J Drug Metab Pharmacokinet 2025; 50:1-15. [PMID: 39870954 PMCID: PMC11802704 DOI: 10.1007/s13318-024-00928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/29/2025]
Abstract
Caffeine consumption is regarded as a widespread phenomenon, and its usage has continued to increase. In addition, the growing usage of antidepressants worldwide and increase in mental health disorders were shown in recent statistical analyses conducted by the World Health Organisation. The coadministration of caffeine and antidepressants remains a concern due to potential interactions that can alter a patient's response to therapy. This review investigates the pharmacokinetic and pharmacodynamic interactions between caffeine and the five main classes of antidepressants: selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), serotonin and norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs), and other antidepressants not categorised by class, which we have categorised as 'miscellaneous'. The interaction between fluvoxamine and caffeine resulted in increased concentrations of caffeine in the body and lowered the renal clearance of fluvoxamine. Other SSRIs such as fluoxetine and escitalopram had augmented antidepressant effects by decreasing their renal clearance and prolonging their effects in the body when coadministered with caffeine. Caffeine may also increase the concentration of paroxetine, potentially affecting its pharmacodynamic effects. TCAs such as clomipramine, imipramine, desipramine, and sertraline, were found to reduce the metabolism of caffeine. However, studies suggest caffeine had no significant effect on the concentration of these medications in blood or brain tissue. The inhibition of caffeine at high doses when used with MAOIs such as tranylcypromine and phenelzine was found to lead to a higher likelihood of experiencing hypertension. Coadministration of caffeine with venlafaxine (SNRIs) suggests minimal interactions between the two substances and the pharmacodynamic effects of venlafaxine were unlikely to be impacted by caffeine consumption. Miscellaneous antidepressants (reboxetine, mianserin, agomelatine, maprotiline, and mirtazapine) displayed varying pharmacodynamic interactions with caffeine, resulting in increased antidepressant effects where vortioxetine, maprotiline, and mirtazapine failed to demonstrate any interactions. In conclusion, caffeine demonstrated varying effects on the pharmacokinetic and pharmacodynamic properties of each class of antidepressants, with several classes of antidepressants demonstrating a similar effect on caffeine.
Collapse
Affiliation(s)
- Jenny Truong
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Noor Abu-Suriya
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Daniel Tory
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rita Bahho
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Audrey Ismaiel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thach Nguyen
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Angela Mansour
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Varsha Nand
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Julijana Saponja
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Daniele Parisi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Theratrame (SA), Avenue de l'Hopital 1, 4000, Liège, Belgium.
| |
Collapse
|
4
|
Balasubramaniam AK, Elangovan A, Rahman MA, Nayak S, Richards A, Swain D. Purple Tea (Camellia sinensis var. assamica) Leaves and Obesity Management: A Review of 1,2-Di-Galloyl-4,6-Hexahydroxydiphenoyl-β-D-Glucose's (GHG) Potential Health Benefits, and Future Prospects. Cureus 2024; 16:e75055. [PMID: 39759725 PMCID: PMC11698542 DOI: 10.7759/cureus.75055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Purple tea (Camellia sinensis var. assamica) is a distinct variety of Camellia sinensis known for its bioactive compounds, including caffeine, catechins, and a unique compound called 1,2-di-Galloyl-4,6-Hexahydroxydiphenoyl-β-D-Glucose, (GHG) found predominantly in purple tea leaves, which shows potential in obesity management. Studies have indicated that these bioactive compounds play a significant role in reducing BMI and body weight among obese patients. This review focuses on how GHG impacts body weight and BMI in obese patients. A comprehensive literature review was conducted using Science Direct, Semantic Scholar, Wiley, PubMed, and Google Scholar databases up to 2024. The search employed both single keywords (e.g., 'purple tea', 'GHG', 'obesity') and multiple keyword combinations (e.g., 'purple tea and obesity', 'GHG and weight loss') related to purple tea, GHG, obesity, BMI, and clinical studies. The database search yielded 246 articles, with 173 articles retained after removing duplicates and studies published before 1999. This systematic approach aimed to gather comprehensive data on the phytochemistry, pharmacology, and potential therapeutic applications of purple tea. The investigation revealed that GHG operates through multiple mechanisms, such as inhibiting pancreatic lipase to reduce fat absorption, suppressing adipogenesis and lipogenesis, and preventing fatty tissue formation. Clinical investigations demonstrated significant reductions in BMI, waist circumference, and body weight among individuals consuming purple tea extracts with high GHG levels. Additional metabolic benefits include increased energy expenditure, improved insulin sensitivity, and enhanced glucose metabolism regulation. While more comprehensive research is needed to fully elucidate the optimal dosage and long-term effects, current evidence suggests that GHG from purple tea could be a valuable natural intervention in the multifaceted approach to obesity management.
Collapse
Affiliation(s)
- Arun Kumar Balasubramaniam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, USA
| | - Ashmitha Elangovan
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, IND
| | | | - Subhendu Nayak
- Probiotics and Supplements, Vidya Herbs USA, Bunnell, USA
| | | | - Durga Swain
- Pharmaceutical Biotechnology and Microbiology, Vidya Herbs USA, Bunnell, USA
| |
Collapse
|
5
|
Brower JO, Swatek JL. Beyond the buzz: the fatal consequences of caffeine overconsumption. J Anal Toxicol 2024; 48:535-540. [PMID: 38814665 DOI: 10.1093/jat/bkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Caffeine is a naturally occurring stimulant present in dozens of plant species including Coffea arabica and Camellia sinensis, from which we obtain coffee and tea, respectively. It is one of the world's most widely consumed psychoactive substances frequently used to increase alertness, elevate mood, and ward off fatigue. In traditional preparations, caffeine is generally well-tolerated by the consumer. However, complications can arise with the addition of caffeine to products like energy drinks, medications, and supplements. Furthermore, with pure caffeine accessible online, a consumer may unknowingly or inadvertently consume caffeine in dangerous amounts. Symptoms of caffeine toxicity include classic central nervous system stimulation side effects, such as agitation, insomnia, gastrointestinal distress, tachycardia, seizures, and death in extreme cases. To evaluate concentrations of toxicological significance, caffeine cases were assessed at a large reference laboratory (NMS Labs). From 2019 to 2023, 406 blood cases underwent confirmation testing via LC-MS-MS; the mean and median caffeine concentrations were 35 and 4.8 µg/mL, respectively. While most caffeine-containing cases indicate traditional use in the general population with concentrations <25 µg/mL (62%, N = 254), 10% (N = 42) of the cases were >100 µg/mL, indicating levels which may contribute to a fatal outcome. To gain insight into the significance of caffeine in determining the cause and manner of death, cases with various manners of death are presented. Despite being one of the most common toxicological findings in medicolegal death investigations, caffeine is often overlooked. Screening results should undergo scrutiny, and confirmation testing should be considered in cases where caffeine intoxication is prominently featured in the case history or scene investigation.
Collapse
Affiliation(s)
- Justin O Brower
- Toxicological Services, NMS Labs, 200 Welsh Rd, Horsham, PA 19044, United States
| | - Jennifer L Swatek
- Toxicological Services, NMS Labs, 200 Welsh Rd, Horsham, PA 19044, United States
| |
Collapse
|
6
|
von Morze C, Shaw A, Blazey T. Hyperpolarized 15N caffeine, a potential probe of liver function and perfusion. Magn Reson Med 2024; 92:459-468. [PMID: 38469685 DOI: 10.1002/mrm.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation byβ $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Rai SP, Ansari AH, Singh D, Singh S. Coffee, antioxidants, and brain inflammation. PROGRESS IN BRAIN RESEARCH 2024; 289:123-150. [PMID: 39168577 DOI: 10.1016/bs.pbr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee is the most popular beverage in the world and, aside from tea and water, the most often consumed caffeine-containing beverage. Because of its high caffeine concentration, it is typically classified as a stimulant. There are other bioactive ingredients in coffee besides caffeine. The coffee beverage is a blend of several bioactive substances, including diterpenes (cafestol and kahweol), alkaloids (caffeine and trigonelline), and polyphenols (particularly chlorogenic acids in green beans and caffeic acid in roasted coffee beans). Caffeine has also been linked to additional beneficial benefits such as antioxidant and anti-inflammatory properties, which change cellular redox and inflammatory status in a dose-dependent manner. Pyrocatechol, a constituent of roasted coffee that is created when chlorogenic acid is thermally broken down, has anti-inflammatory properties as well. It is postulated that coffee consumption reduces neuroinflammation, which is intimately linked to the onset of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). This review provides an overview of the most recent studies regarding coffee's possible benefits in preventing brain inflammation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
8
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
9
|
Reich N, Mannino M, Kotler S. Using caffeine as a chemical means to induce flow states. Neurosci Biobehav Rev 2024; 159:105577. [PMID: 38331128 DOI: 10.1016/j.neubiorev.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Flow is an intrinsically rewarding state characterised by positive affect and total task absorption. Because cognitive and physical performance are optimal in flow, chemical means to facilitate this state are appealing. Caffeine, a non-selective adenosine receptor antagonist, has been emphasized as a potential flow-inducer. Thus, we review the psychological and biological effects of caffeine that, conceptually, enhance flow. Caffeine may facilitate flow through various effects, including: i) upregulation of dopamine D1/D2 receptor affinity in reward-associated brain areas, leading to greater energetic arousal and 'wanting'; ii) protection of dopaminergic neurons; iii) increases in norepinephrine release and alertness, which offset sleep-deprivation and hypoarousal; iv) heightening of parasympathetic high frequency heart rate variability, resulting in improved cortical stress appraisal, v) modification of striatal endocannabinoid-CB1 receptor-signalling, leading to enhanced stress tolerance; and vi) changes in brain network activity in favour of executive function and flow. We also discuss the application of caffeine to treat attention deficit hyperactivity disorder and caveats. We hope to inspire studies assessing the use of caffeine to induce flow.
Collapse
Affiliation(s)
- Niklas Reich
- Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK; The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK.
| | - Michael Mannino
- Flow Research Collective, USA; Miami Dade College, Miami, FL, USA
| | | |
Collapse
|
10
|
Bodur M, Kaya S, Ilhan-Esgin M, Çakiroğlu FP, Özçelik AÖ. The caffeine dilemma: unraveling the intricate relationship between caffeine use disorder, caffeine withdrawal symptoms and mental well-being in adults. Public Health Nutr 2024; 27:e57. [PMID: 38305102 PMCID: PMC10882539 DOI: 10.1017/s1368980024000399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE This study aimed to explore the relationship between caffeine use disorder (CUD), caffeine withdrawal symptoms and the prevalence of depression, anxiety and stress (DASS) in adults. DESIGN The study utilised a cross-sectional design to assess the relationships between CUD, caffeine withdrawal symptoms and DASS. SETTING Participants' CUD was evaluated through the Caffeine Use Disorder Questionnaire (CUDQ), while the Depression Anxiety Stress Scale-21 (DASS-21) measured DASS levels. Caffeine withdrawal symptoms and total caffeine intake were calculated based on self-reported consumption of caffeine-rich products. PARTICIPANTS The study involved 618 participants with an average age of 27·8 (sd 7·8) years. RESULTS Participants consumed an average of 461·21 (sd 11·09) mg/d of caffeine, showing a positive correlation between CUD and total caffeine intake. The risk of CUD increased alongside levels of DASS. Individuals with caffeine withdrawal symptoms had higher CUDQ and DASS scores. A multiple linear regression model revealed significant associations between total caffeine intake (P < 0·001) and DASS-21 score (P < 0·001) with CUDQ score. CONCLUSIONS The study concluded that caffeine, while recognised for its potential health benefits, also exhibits properties that may lead to addiction. The development of caffeine use disorder and cessation of caffeine intake can increase DASS levels in adults, indicating the need for awareness and appropriate interventions in public health nutrition.
Collapse
Affiliation(s)
- Mahmut Bodur
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Seda Kaya
- Tokat Gaziosmanpaşa University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Tokat, Turkey
| | - Merve Ilhan-Esgin
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Funda Pınar Çakiroğlu
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Ayşe Özfer Özçelik
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| |
Collapse
|
11
|
Lei TH, Qin Q, Girard O, Mündel T, Wang R, Guo L, Cao Y. Caffeine intake enhances peak oxygen uptake and performance during high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol 2024; 124:537-549. [PMID: 37608124 DOI: 10.1007/s00421-023-05295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE We investigated whether caffeine consumption can enhance peak oxygen uptake ([Formula: see text]) by increasing peak ventilation during an incremental cycling test, and subsequently enhance time to exhaustion (TTE) during high-intensity cycling exercise in moderate normobaric hypoxia. METHODS We conducted a double-blind, placebo cross-over design study. Sixteen recreational male endurance athletes (age: 20 ± 2 years, [Formula: see text]: 55.6 ± 3.6 ml/kg/min, peak power output: 318 ± 40 W) underwent an incremental cycling test and a TTE test at 80% [Formula: see text] (derived from the placebo trial) in moderate normobaric hypoxia (fraction of inspired O2: 15.3 ± 0.2% corresponding to a simulated altitude of ~ 2500 m) after consuming either a moderate dose of caffeine (6 mg/kg) or a placebo. RESULTS Caffeine consumption resulted in a higher peak ventilation [159 ± 21 vs. 150 ± 26 L/min; P < 0.05; effect size (ES) = 0.31]. [Formula: see text] (3.58 ± 0.44 vs. 3.47 ± 0.47 L/min; P < 0.01; ES = 0.44) and peak power output (308 ± 44 vs. 302 ± 44 W; P = 0.02, ES = 0.14) were higher following caffeine consumption than during the placebo trial. During the TTE test, caffeine consumption enhanced minute ventilation (P = 0.02; ES = 0.28) and extended the TTE (426 ± 74 vs. 358 ± 75 s; P < 0.01, ES = 0.91) compared to the placebo trial. There was a positive correlation between the percent increase of [Formula: see text] following caffeine consumption and the percent increase in TTE (r = 0.49, P < 0.05). CONCLUSION Moderate caffeine consumption stimulates breathing and aerobic metabolism, resulting in improved performance during incremental and high-intensity endurance exercises in moderate normobaric hypoxia.
Collapse
Affiliation(s)
- Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Qiyang Qin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, Canada
| | - Ran Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Li Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yinhang Cao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
12
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
13
|
Czigle S, Nagy M, Mladěnka P, Tóth J. Pharmacokinetic and pharmacodynamic herb-drug interactions-part I. Herbal medicines of the central nervous system. PeerJ 2023; 11:e16149. [PMID: 38025741 PMCID: PMC10656908 DOI: 10.7717/peerj.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Unlike conventional drug substances, herbal medicines are composed of a complex of biologically active compounds. Therefore, the potential occurrence of herb-drug interactions is even more probable than for drug-drug interactions. Interactions can occur on both the pharmacokinetic and pharmacodynamic level. Herbal medicines may affect the resulting efficacy of the concomitantly used (synthetic) drugs, mainly on the pharmacokinetic level, by changing their absorption, distribution, metabolism, and excretion. Studies on the pharmacodynamic interactions of herbal medicines and conventional drugs are still very limited. This interaction level is related to the mechanism of action of different plant constituents. Herb-drug interactions can cause changes in drug levels and activities and lead to therapeutic failure and/or side effects (sometimes toxicities, even fatal). This review aims to provide a summary of recent information on the potential drug interactions involving commonly used herbal medicines that affect the central nervous system (Camellia, Valeriana, Ginkgo, Hypericum, Humulus, Cannabis) and conventional drugs. The survey databases were used to identify primary scientific publications, case reports, and secondary databases on interactions were used later on as well. Search keywords were based on plant names (botanical genera), officinal herbal drugs, herbal drug preparations, herbal drug extracts.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - the OEMONOM.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
14
|
Sevrioukova IF. Interaction of CYP3A4 with caffeine: First insights into multiple substrate binding. J Biol Chem 2023; 299:105117. [PMID: 37524132 PMCID: PMC10470200 DOI: 10.1016/j.jbc.2023.105117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Human cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme that shows extreme substrate promiscuity. Moreover, its large and malleable active site can simultaneously accommodate several substrate molecules of the same or different nature, which may lead to cooperative binding and allosteric behavior. Due to difficulty of crystallization of CYP3A4-substrate complexes, it remains unknown how multiple substrates can arrange in the active site. We determined crystal structures of CYP3A4 bound to three and six molecules of caffeine, a psychoactive alkaloid serving as a substrate and modulator of CYP3A4. In the ternary complex, one caffeine binds to the active site suitably for C8-hydroxylation, most preferable for CYP3A4. In the senary complex, three caffeine molecules stack parallel to the heme with the proximal ligand poised for 3-N-demethylation. However, the caffeine stack forms extensive hydrophobic interactions that could preclude product dissociation and multiple turnovers. In both complexes, caffeine is also bound in the substrate channel and on the outer surface known as a peripheral site. At all sites, aromatic stacking with the caffeine ring(s) is likely a dominant interaction, while direct and water-mediated polar contacts provide additional stabilization for the substrate-bound complexes. Protein-ligand interactions via the active site R212, intrachannel T224, and peripheral F219 were experimentally confirmed, and the latter two residues were identified as important for caffeine association. Collectively, the structural, spectral, and mutagenesis data provide valuable insights on the ligand binding mechanism and help better understand how purine-based pharmaceuticals and other aromatic compounds could interact with CYP3A4 and mediate drug-drug interactions.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| |
Collapse
|
15
|
Mao H, Szafranska K, Kruse L, Holte C, Wolfson DL, Ahluwalia BS, Whitchurch CB, Cole L, Lockwood GP, Diekmann R, Le Couteur D, Cogger VC, McCourt PAG. Effect of caffeine and other xanthines on liver sinusoidal endothelial cell ultrastructure. Sci Rep 2023; 13:13390. [PMID: 37591901 PMCID: PMC10435486 DOI: 10.1038/s41598-023-40227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Xanthines such as caffeine and theobromine are among the most consumed psychoactive stimulants in the world, either as natural components of coffee, tea and chocolate, or as added ingredients. The present study assessed if xanthines affect liver sinusoidal endothelial cells (LSEC). Cultured primary rat LSEC were challenged with xanthines at concentrations typically obtained from normal consumption of xanthine-containing beverages, food or medicines; and at higher concentrations below the in vitro toxic limit. The fenestrated morphology of LSEC were examined with scanning electron and structured illumination microscopy. All xanthine challenges had no toxic effects on LSEC ultrastructure as judged by LSEC fenestration morphology, or function as determined by endocytosis studies. All xanthines in high concentrations (150 μg/mL) increased fenestration frequency but at physiologically relevant concentrations, only theobromine (8 μg/mL) showed an effect. LSEC porosity was influenced only by high caffeine doses which also shifted the fenestration distribution towards smaller pores. Moreover, a dose-dependent increase in fenestration number was observed after caffeine treatment. If these compounds induce similar changes in vivo, age-related reduction of LSEC porosity can be reversed by oral treatment with theobromine or with other xanthines using targeted delivery.
Collapse
Affiliation(s)
- Hong Mao
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway.
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.
| | - Karolina Szafranska
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Larissa Kruse
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Christopher Holte
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Deanna L Wolfson
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Cynthia B Whitchurch
- Microbial Imaging Facility, The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Louise Cole
- Microbial Imaging Facility, The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glen P Lockwood
- Centre for Education and Research, ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robin Diekmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- LaVision BioTec GmbH, Bielefeld, Germany
| | - David Le Couteur
- Centre for Education and Research, ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Victoria C Cogger
- Centre for Education and Research, ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Peter A G McCourt
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037, Tromsø, Norway
- Centre for Education and Research, ANZAC Research Institute, Concord Repatriation General Hospital, Concord, NSW, Australia
- The Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Liu T, Gao P, Xie C, Zhang H, Shi Z, Chen R. Study on the daily dose and serum concentration of clozapine in psychiatric patients and possible influencing factors of serum concentration. BMC Psychiatry 2023; 23:596. [PMID: 37582705 PMCID: PMC10428656 DOI: 10.1186/s12888-023-05078-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Clozapine is the most effective drug for treatment-resistant schizophrenia, and the dosage and concentration of clozapine in the treatment of mental illness vary greatly in different populations and are affected by many factors. METHODS The serum clozapine concentration of 3734 psychiatric patients was detected, and data on daily dose, sex, age and other medical records were collected for statistical analysis. RESULTS The mean daily dose, mean serum concentration and mean C/D (concentration/dose) ratio of clozapine were 191.02 ± 113.47 mg/day, 326.15 ± 235.66 ng/mL and 1.94 ± 1.25 ng/mL per mg/day, respectively. There was difference in daily dose between sexes, and females had higher daily dose (p <0.01), higher serum clozapine concentrations (p < 0.01) and higher C/D ratios (p < 0.01). There were significant differences in daily dose (p < 0.001), serum drug concentration (p < 0.001) and C/D ratio (p < 0.001) among different age groups. The daily dose decreased with age (p for trend < 0.001), and the C/D ratio increased with age (p for trend < 0.001). Inpatients and outpatients had no difference in daily dose, but inpatients had higher serum concentration (p < 0.001) and C/D ratio (p < 0.001). There was no difference in daily dose among different occupations, but there were significant differences in serum concentration (p < 0.001) and C/D ratio (p < 0.001), and unemployed patients may have higher serum concentration and C/D ratio. Duration of disease, comorbidity, marital status, and psychotic type may influence the daily dose and serum concentration. CONCLUSIONS The effective daily dose and serum concentration of clozapine in the study area may be lower than recommended levels, and women have higher serum concentrations and slower metabolic rates. With increasing age, the daily dose decreases, and the metabolic rate slows. Inpatient status and occupation of patients may influence the serum concentration and metabolic rate of clozapine.
Collapse
Affiliation(s)
- Taixiu Liu
- Department of Clinical Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - Peng Gao
- Department of Clinical Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China.
| | - Chuange Xie
- Department of Clinical Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - Heng Zhang
- Department of Clinical Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - Zheng Shi
- Department of Clinical Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - Ruirui Chen
- Department of Clinical Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| |
Collapse
|
17
|
Kahraman C, Kaya Bilecenoglu D, Sabuncuoglu S, Cankaya IT. Toxicology of pharmaceutical and nutritional longevity compounds. Expert Rev Mol Med 2023; 25:e28. [PMID: 37345424 PMCID: PMC10752229 DOI: 10.1017/erm.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Aging is the most prominent risk factor for many diseases, which is considered to be a complicated biological process. The rate of aging depends on the effectiveness of important mechanisms such as the protection of DNA from free radicals, which protects the structural and functional integrity of cells and tissues. In any organism, not all organs may age at the same rate. Slowing down primary aging and reaching maximum lifespan is the most basic necessity. In this process, it may be possible to slow down or stabilise some diseases by using the compounds for both dietary and pharmacological purposes. Natural compounds with antioxidant and anti-inflammatory effects, mostly plant-based nutraceuticals, are preferred in the treatment of age-related chronic diseases and can also be used for other diseases. An increasing number of long-term studies on synthetic and natural compounds aim to elucidate preclinically and clinically the mechanisms underlying being healthy and prolongation of life. To delay age-related diseases and prolong the lifespan, it is necessary to take these compounds with diet or pharmaceuticals, along with detailed toxicological results. In this review, the most promising and utilised compounds will be highlighted and it will be discussed whether they have toxic effects in short/long-term use, although they are thought to be used safely.
Collapse
Affiliation(s)
- Cigdem Kahraman
- Department of Pharmacognosy, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | | | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Irem Tatli Cankaya
- Department of Pharmaceutical Botany, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
18
|
Myers AL, Jeske AH. Provider-directed analgesia for dental pain. Expert Rev Clin Pharmacol 2023; 16:435-451. [PMID: 37083548 DOI: 10.1080/17512433.2023.2206118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Extraction of impacted molar teeth is a common procedure performed by oral surgeons and general dentists, with postoperative pain being a significant adverse event post-surgery. If mismanaged, pain can lead to complications that impact oral and systemic health. The current scourge of the opioid epidemic has ushered in a new era of provider-directed analgesic (PDA) therapy in dentistry. AREAS COVERED This article provides an in-depth review on the major pharmacological and therapeutic properties of established and alternative analgesics used to manage dental pain. EXPERT OPINION Substantial evidence-based literature shows combination of a non-steroidal anti-inflammatory drug (NSAID; e.g. ibuprofen) and acetaminophen provides superior pain relief than single-agent or combination opioid regimens. However, there are clinical scenarios (e.g. severe pain) when short-course opioid prescription is appropriate in select patients, in which a 2-3-day treatment duration is typically sufficient. Alternative agents (e.g. caffeine, gabapentin, phytotherapies), typically in combination with established agents, can mitigate postoperative dental pain. Some evidence suggests preemptive therapies (e.g. corticosteroids, NSAIDs) reduce amounts of postsurgical analgesic consumption and might lessen opioid prescription burden. In summary, this comprehensive review provides an opportune update on the evolving landscape of pharmacotherapy for acute postsurgical dental pain, informing best practices for PDA in the dental setting.
Collapse
Affiliation(s)
- Alan L Myers
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arthur H Jeske
- Office of the Dean, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Protano C, Valeriani F, De Giorgi A, Marotta D, Ubaldi F, Napoli C, Liguori G, Romano Spica V, Vitali M, Gallè F. Consumption patterns of energy drinks in university students: A systematic review and meta-analysis. Nutrition 2023; 107:111904. [PMID: 36529090 DOI: 10.1016/j.nut.2022.111904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Energy drink (ED) use is promoted to stimulate mental and/or physical activity, and their popularity has increased over the years, especially among young people. However, the use of EDs is often improper, and can induce adverse effects for human health. The purpose of this systematic review and meta-analysis was to analyze the literature to characterize the prevalence of ED consumption and motivations for use among undergraduate students. Furthermore, adverse effects and health-related behaviors associated with ED consumption were explored. METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines, and the PubMed, Scopus, and Web of Science databases were used for data research. RESULTS A total of 71 articles published between 2007 and 2021 met the inclusion criteria and were included in the review. The estimated overall prevalence of ED consumption was 42.9% in undergraduate students (95% confidence interval, 42.5%-43.3%), with significant heterogeneity among studies (Q test: P < 0.001; I2 = 99.4%). The main reasons for use were engagement in study, projects or examinations, stay awake or alert, and physical activity/sport engagement. Sleep disturbance and increased heart rate or blood pressure were the most commonly reported adverse effects. ED consumption was frequently associated with alcohol use and smoking. CONCLUSIONS These findings suggest that the inappropriate use of EDs and related unhealthy behaviors should be identified early, and addressed through effective educational interventions.<END ABSTRACT>.
Collapse
Affiliation(s)
- Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| | - Andrea De Giorgi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Daniela Marotta
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Francesca Ubaldi
- Department of Movement, Human, and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy.
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy.
| |
Collapse
|
20
|
Ye C, Xiao X, Sui H, Yang D, Yong L, Song Y. Trends of caffeine intake from food and beverage among Chinese adults: 2004-2018. Food Chem Toxicol 2023; 173:113629. [PMID: 36682416 DOI: 10.1016/j.fct.2023.113629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Caffeine is a kind of psychostimulant that naturally exist in foods. The benefits and risks of caffeine depend on the dose. Moreover, the intake of caffeine from dietary sources in China has seldom been assessed. We calculated the dietary caffeine intake of Chinese adult consumers from 2004 to 2018 and analyzed its consumption trends by using data from the China Health and Nutrition Survey and the National Food and Beverage Consumption Survey. Caffeine contents in different dietary items were determined by HPLC. Monte Carlo simulations were applied to estimate caffeine intake. Mann-Kendall trend test and linear regression were used to analyze the trend of caffeine consumption. Among 79,173 individuals, 3972 (5%) of the adult Chinese population consumed caffeine between 2004 and 2018. The average caffeine intake was 123 mg/day for male consumers and 116 mg/day for female consumers. The median and P75 caffeine intake raised over the 14 years. Traditional tea leaves, coffee and sodas are the main sources of caffeine intake. Our findings indicate that most Chinese adults consumed caffeine within the safe level (400 mg/day), but the caffeine consumption has shown an increasing trend in recent 14 years.
Collapse
Affiliation(s)
- Chen Ye
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Chaoyang District, Beijing, 100022, China; Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Haidian District, Beijing, 100191, China
| | - Xiao Xiao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Chaoyang District, Beijing, 100022, China
| | - Haixia Sui
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Chaoyang District, Beijing, 100022, China
| | - Daoyuan Yang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Chaoyang District, Beijing, 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Chaoyang District, Beijing, 100022, China.
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Chaoyang District, Beijing, 100022, China.
| |
Collapse
|
21
|
Chen YH, Chou YH, Yang TY, Jong GP. The Effects of Frequent Coffee Drinking on Female-Dominated Healthcare Workers Experiencing Musculoskeletal Pain and a Lack of Sleep. J Pers Med 2022; 13:25. [PMID: 36675686 PMCID: PMC9866007 DOI: 10.3390/jpm13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Previous research has demonstrated that chronic diseases can occur due to musculoskeletal (MS) pain and poor sleep. It is also worth noting that the caffeine in coffee can reduce overall sleep duration, efficiency, and quality. Thus, the present study examines the effects of frequent coffee drinking (two cups per day) on individuals experiencing MS pain and a lack of sleep during the COVID-19 period. This observational and cross-sectional study recruited 1615 individuals who completed the self-reported (Nordic musculoskeletal) questionnaire. Long-term, frequent coffee drinking and a sleep duration of less than 6 h per day were significantly associated with neck and shoulder pain among healthy individuals. The mediation model demonstrated that the shorter sleep duration and drinking multiple cups of coffee per day had a two-way relationship that worsened such pain over the long term. Specifically, individuals who experienced such pain frequently drank multiple cups of coffee per day, which, in turn, shortened their sleep durations. In summary, long-term coffee drinking creates a vicious cycle between MS pain and sleep duration. Therefore, the amount of coffee should be fewer than two cups per day for individuals who sleep less than 6 h per day or suffer from MS pain, especially neck and shoulder pain.
Collapse
Affiliation(s)
- Yong-Hsin Chen
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Safety and Health, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ying-Hsiang Chou
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Tsung-Yuan Yang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Gwo-Ping Jong
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
22
|
Dogan M, Akdogan M, Sabaner MC, Gobeka HH. Morphological changes in retinochoroidal microvasculature after caffeinated versus decaffeinated coffee consumption. Photodiagnosis Photodyn Ther 2022; 40:103138. [PMID: 36202320 DOI: 10.1016/j.pdpdt.2022.103138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND To investigate changes in retinochoroidal microvascular morphology after caffeinated versus decaffeinated coffee consumption in age- and gender-matched healthy individuals using optical coherence tomography (OCT) and OCT angiography (OCTA). METHODS In this prospective, randomized clinical study, a staff member in charge of record keeping randomly assigned 48 healthy volunteers to two groups: caffeinated coffee consumers (24 eyes) and decaffeinated coffee consumers (24 eyes). Participants' ages and genders were recorded before consumption, and a comprehensive ophthalmologic exam was performed, followed by OCT and OCTA analyses before, 30 min, one, six, and 24 h after blindly consuming either of the coffees. RESULTS Caffeinated and decaffeinated coffee consumers had mean ages of 23.45 ± 0.92 and 22.73 ± 1.13, respectively (p = 0.407). The following parameters changed significantly in caffeinated coffee consumers 30 min and 1 h post-consumption (pre-consumption versus 30 min versus one hour post-consumption; p < 0.05): a) parafoveal superficial capillary plexus vessel density (%): 54.45 versus 51.8 versus 51.92, b) parafoveal deep capillary plexus vessel density (%): 55.16 versus 52.45 versus 52.83, c) outer retinal flow area (%): 8.87 ± 1.91 versus 8.03 ± 1.88 versus 8.11 ± 1.93, d) choriocapillaris flow area (mm2): 20.95 ± 0.98 versus 19.82 ± 1.20 a versus 19.62 ± 0.95, and e) sub-foveal choroidal thickness (µm): 295.06 ± 5.45 versus 277.08 ± 5.33 versus 260.71 ± 58.61. No significant differences in any OCT and OCTA parameters were found between consecutive measurements in decaffeinated coffee consumers (p > 0.05). CONCLUSIONS Caffeinated coffee appears to transiently reduce parafoveal vessel density, capillary flow area, and sub-foveal choroidal thickness. Lack of these microvascular morphological changes in decaffeinated coffee suggests a potential caffeine-induced vasoconstrictive effect.
Collapse
Affiliation(s)
- Mustafa Dogan
- Department of Ophthalmology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Muberra Akdogan
- Department of Ophthalmology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Mehmet Cem Sabaner
- Department of Ophthalmology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Hamidu Hamisi Gobeka
- Department of Ophthalmology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey.
| |
Collapse
|
23
|
Kennedy DO, Wightman EL. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med 2022; 52:69-90. [PMID: 36447122 PMCID: PMC9734217 DOI: 10.1007/s40279-022-01796-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
The plant defence compound caffeine is widely consumed as a performance enhancer in a sporting context, with potential benefits expected in both physiological and psychological terms. However, although caffeine modestly but consistently improves alertness and fatigue, its effects on mental performance are largely restricted to improved attention or concentration. It has no consistent effect within other cognitive domains that are important to sporting performance, including working memory, executive function and long-term memory. Although caffeine's central nervous system effects are often attributed to blockade of the receptors for the inhibitory neuromodulator adenosine, it also inhibits a number of enzymes involved both in neurotransmission and in cellular homeostasis and signal propagation. Furthermore, it modulates the pharmacokinetics of other endogenous and exogenous bioactive molecules, in part via interactions with shared cytochrome P450 enzymes. Caffeine therefore enjoys interactive relationships with a wide range of bioactive medicinal and dietary compounds, potentially broadening, increasing, decreasing, or modulating the time course of their functional effects, or vice versa. This narrative review explores the mechanisms of action and efficacy of caffeine and the potential for combinations of caffeine and other dietary compounds to exert psychological effects in excess of those expected following caffeine alone. The review focusses on, and indeed restricted its untargeted search to, the most commonly consumed sources of caffeine: products derived from caffeine-synthesising plants that give us tea (Camellia sinensis), coffee (Coffea genus), cocoa (Theabroma cacao) and guaraná (Paullinia cupana), plus multi-component energy drinks and shots. This literature suggests relevant benefits to mental performance that exceed those associated with caffeine for multi-ingredient energy drinks/shots and several low-caffeine extracts, including high-flavanol cocoa and guarana. However, there is a general lack of research conducted in such a way as to disentangle the relative contributions of the component parts of these products.
Collapse
Affiliation(s)
- David O. Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma L. Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
24
|
Treatment of Lethal Caffeine Overdose with Haemodialysis: A Case Report and Review. J Crit Care Med (Targu Mures) 2022; 8:279-287. [DOI: 10.2478/jccm-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Caffeine, chemically 1,3,7-trimethylxanthine, is the most widely consumed central nervous system stimulant in the world with pleiotropic effects on the cardiovascular, pulmonary, and renal systems. The advent of over the counter (OTC) caffeine formulations has opened the window for potential toxicity, either by inadvertent or intentional overdosing. We present the case of a patient who attempted suicide by caffeine overdose treated with emergent haemodialysis and a review of the literature.
Collapse
|
25
|
Wahba M, El Sherbiny D, El Enany N, Draz ME. Tracing the influence of caffeine on the pharmacokinetic parameters of three headache relieving pharmaceuticals applying synchronous fluorescence spectroscopy. Methods Appl Fluoresc 2022; 10. [PMID: 35905742 DOI: 10.1088/2050-6120/ac859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
A simple, sensitive, and selective first derivative synchronous fluorimetric method was developed and optimized to track the influence of caffeine content in beverages on the pharmacokinetic parameters of three pharmaceuticals used in relieving headache namely, aspirin (ASP), ibuprofen (IBU), and ergotamine tartrate (ERG). A full validation procedure was carried out to impart validity to the proposed method to apply it to biological fluids. The unique dissolving power of micellar solutions was utilized to avoid multiple extraction steps for both the in vitro and in vivo experiments, aiming to obtain acceptable recoveries and to accomplish sustainability, where 0.1 M sodium dodecyl sulphate (SDS) was used for this purpose. Moreover, the developed bioanalytical method was subjected to full validation to avoid interferences emerging from biological matrices. The greenness of the proposed method was assessed according to the Analytical Eco-Scale and proved to be excellent green carrying a score of 98%.
Collapse
Affiliation(s)
- Mary Wahba
- Department of Pharmaceutical Chemistry, Delta University for Science and Technology, gamasa, gamasa, 35712, EGYPT
| | - Dina El Sherbiny
- Department of Pharmaceutical Chemistry, Delta University for Science and Technology, gamasa, Belkas, 35712, EGYPT
| | - Nahed El Enany
- Department of Pharmaceutical Analytical Chemistry, Mansoura University, gehan street, Mansoura, 35516, EGYPT
| | - Mohammed E Draz
- Department of Pharmaceutical Chemistry, Delta University for Science and Technology, gamasa, Belkas, 35712, EGYPT
| |
Collapse
|
26
|
New Life of an Old Drug: Caffeine as a Modulator of Antibacterial Activity of Commonly Used Antibiotics. Pharmaceuticals (Basel) 2022; 15:ph15070872. [PMID: 35890171 PMCID: PMC9315996 DOI: 10.3390/ph15070872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
With the rapid and continuous emergence of antimicrobial resistance, bacterial infections became a significant global healthcare concern. One of the proposed strategies to combat multidrug-resistant pathogens is to use additional compounds, such as natural biologically active substances, as adjuvants for existing antibiotics. In this study, we investigated the potential of caffeine, the widely consumed alkaloid, to modulate the antibacterial effects of antibiotics commonly used in clinical practice. We used disc diffusion assay to evaluate the effects of caffeine on 40 antibiotics in two Staphylococcus aureus strains (methicillin-resistant and methicillin-sensitive). Based on the results of this step, we selected five antibiotics for which the greatest caffeine-induced improvements in antibacterial activity were observed, and further analyzed their interactions with caffeine using a checkerboard approach. Caffeine at concentrations of 250 µg/mL or higher halved the MIC values of ticarcillin, cefepime, gentamycin, azithromycin, and novobiocin for all gram-negative species investigated (Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii). At the highest caffeine concentrations tested (up to 16 mg/mL), decreases in MIC values were 8- to 16-fold. The obtained results prove that caffeine modulates the activity of structurally diverse antibiotics, with the most promising synergistic effects observed for cefepime and azithromycin toward gram-negative pathogens.
Collapse
|
27
|
N Bissonnette J, Anderson TJ, McKearney KJ, Tibbo PG, Fisher DJ. EEG Microstates in Early Phase Psychosis: The Effects of Acute Caffeine Consumption. Clin EEG Neurosci 2022; 53:335-343. [PMID: 35257622 PMCID: PMC9174612 DOI: 10.1177/15500594221084994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Individuals with schizophrenia use on average twice as much caffeine than the healthy population, but the underlying cortical effects of caffeine in this population are still not well understood. Using resting electroencephalography (EEG) data, we can determine recurrent configurations of the electric field potential over the cortex. These configurations, referred to as microstates, are reported to be altered in schizophrenia and can give us insight into the functional dynamics of large-scale brain networks. In the current study, we use a placebo-controlled, randomized, double-blind, repeated-measures design to examine the effects of a moderate dose of caffeine (200mg) on microstate classes A, B, C, and D in a sample of individuals within the first five years of psychosis onset compared to healthy controls. The results support the reduction of microstate class C and D, as well as the increase of microstate class A and B in schizophrenia. Further, acute caffeine administration appears to exacerbate these group differences by reducing class D, and increasing occurrences of class A and B states in the patient group only. The current results support the hypothesis of a microstate class D reduction as an endophenotypic marker for psychosis and provide the first descriptive account of how caffeine is affecting these microstate classes in an early phase psychosis sample.
Collapse
Affiliation(s)
| | - T-Jay Anderson
- 3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katelyn J McKearney
- 3688Dalhousie University, Halifax, Nova Scotia, Canada.,3690Saint Mary's University, Halifax, Nova Scotia, Canada
| | | | - Derek J Fisher
- 3688Dalhousie University, Halifax, Nova Scotia, Canada.,3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,3688Dalhousie University, Halifax, Nova Scotia, Canada.,3690Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
N Bissonnette J, Anderson TJ, McKearney KJ, Tibbo PG, Fisher DJ. Alteration of Resting Electroencephalography by Acute Caffeine Consumption in Early Phase Psychosis. Clin EEG Neurosci 2022; 53:326-334. [PMID: 34806929 PMCID: PMC9174578 DOI: 10.1177/15500594211057355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Individuals with schizophrenia use twice as much caffeine on average when compared to healthy controls. Knowing the high rates of consumption, and the potential negative effects of such, it is important we understand the cortical mechanisms that underlie caffeine use, and the consequences of caffeine use on neural circuits in this population. Using a randomized, placebo controlled, double-blind, repeated measures design, the current study examines caffeine's effects on resting electroencephalography (EEG) power in those who have been recently diagnosed with schizophrenia (SZ) compared to regular-using healthy controls (HC). Correlations between average caffeine consumption, withdrawal symptoms, drug related symptoms and clinical psychosis symptoms were measured and significant correlations with neurophysiological data were examined. Results showed caffeine had no effect on alpha asymmetry in the SZ group, although caffeine produced a more global effect on the reduction of alpha2 power in the SZ group. Further, those with more positive symptoms were found to have a greater reduction in alpha2 power following caffeine administration. Caffeine also reduced beta power during eyes closed and eyes open resting in HC, but only during eyes closed resting conditions in the SZ group. These findings provide a descriptive profile of the resting EEG state following caffeine administration in individuals with schizophrenia. The findings ultimately suggest caffeine does not affect alpha or beta power as readily in this population and a higher dose may be needed to achieve the desired effects, which may elucidate motivational factors for high caffeine use.
Collapse
Affiliation(s)
- Jenna N Bissonnette
- Department of Psychiatry, 3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - T-Jay Anderson
- Department of Psychology, 3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,Department of Psychology & Neuroscience, 3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katelyn J McKearney
- Department of Psychology & Neuroscience, 3688Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology, 3690Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Philip G Tibbo
- Department of Psychiatry, 3688Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek J Fisher
- Department of Psychiatry, 3688Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology, 3684Mount Saint Vincent University, Halifax, Nova Scotia, Canada.,Department of Psychology & Neuroscience, 3688Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology, 3690Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
29
|
Islas-Fabila P, Orozco-Gregorio H, Roldan-Santiago P, Waytula M, Gonzalez-Hernandez M, Vega-Manriquez X, Jimenez-Collado CA, Bonilla-Jaime H. Treatments and therapeutic protocols for the recovery of an asphyxiated new-born: A review of pre-clinical and clinical studies in human neonates and in different animal models. VET MED-CZECH 2022; 67:271-297. [PMID: 39100642 PMCID: PMC11296226 DOI: 10.17221/43/2021-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/10/2022] [Indexed: 08/06/2024] Open
Abstract
The objective of this review is to ascertain the advantages and disadvantages of several treatments and therapeutic protocols that have been used for the prevention and treatment of perinatal asphyxia in human neonates and in different animal models. Perinatal asphyxia is one of the main causes of mortality worldwide and is an important factor in triggering physio-metabolic disorders that result in serious neurological consequences and learning disorders not only in human foetuses and neonates, but also in animals. In recent years, the search for new pharmacological protocols to prevent and reverse physio-metabolic disorders and brain damage derived from perinatal asphyxia has been and continues to be the subject of intense research. Currently, within these pharmacological protocols, therapeutic strategies have been evaluated that use respiratory and hormonal stimulants, as well as hypothermic therapies in combination with other putative neuroprotective agents. Similarly, energy supplements have been evaluated with the objective of preventing perinatal asphyxia and treating new-borns with this condition, and to decrease the incidence of neonatal and foetal deaths associated with it. However, despite these promising advances, this pathology has persisted, since the administration of these therapies in low doses may not exert a neuroprotective effect or, in high doses, can trigger adverse effects (such as reduced cardiac contractility, reduced cerebral blood flow, poor perfusion, sympathetic and neuroendocrine stimulation, and increased blood viscosity) in human foetuses and neonates as well as in different animal models (rats, piglets, sheep and rabbits). Therefore, it is important to determine the minimum effective dose with which these therapies exert a neuroprotective effect, as well as the mode of administration, the duration of therapy, etc. Therefore, until a powerful strategy is found to improve the consequences of suffocation, this topic will continue to be the subject of intensive research in the future.
Collapse
Affiliation(s)
- Paloma Islas-Fabila
- Doctoral Program in Biological Sciences and Health, Universidad Autónoma Metropolitana, México City, México
| | | | - Patricia Roldan-Santiago
- Reproduction Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, México City, México
| | - Marilyn Waytula
- School of Veterinary Medicine and Zootechnics, Universidad del Valle de México, Coyoacán, Ciudad de México, México
| | | | - Xochil Vega-Manriquez
- Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Herlinda Bonilla-Jaime
- Department of Reproductive Biology, Universidad Autónoma Metropolitana, México City, México
| |
Collapse
|
30
|
von Bechtolsheim F, Oehme F, Maruschke M, Schmidt S, Schneider A, Weitz J, Distler M, Bodenstedt S, Funke I, Speidel S, Mees ST. Does caffeine consumption affect laparoscopic skills in a motion tracking analysis? A prospective, randomized, blinded crossover trial. Surg Endosc 2022; 36:4359-4368. [PMID: 34782961 PMCID: PMC9085661 DOI: 10.1007/s00464-021-08783-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Coffee can increase vigilance and performance, especially during sleep deprivation. The hypothetical downside of caffeine in the surgical field is the potential interaction with the ergonomics of movement and the central nervous system. The objective of this trial was to investigate the influence of caffeine on laparoscopic performance. METHODS Fifty laparoscopic novices participated in this prospective randomized, blinded crossover trial and were trained in a modified FLS curriculum until reaching a predefined proficiency. Subsequently, all participants performed four laparoscopic tasks twice, once after consumption of a placebo and once after a caffeinated (200 mg) beverage. Comparative analysis was performed between the cohorts. Primary endpoint analysis included task time, task errors, OSATS score and a performance analysis with an instrument motion analysis (IMA) system. RESULTS Fifty participants completed the study. Sixty-eight percent of participants drank coffee daily. The time to completion for each task was comparable between the caffeine and placebo cohorts for PEG transfer (119 s vs 121 s; p = 0.73), precise cutting (157 s vs 163 s; p = 0.74), gallbladder resection (190 s vs 173 s; p = 0.6) and surgical knot (171 s vs 189 s; p = 0.68). The instrument motion analysis showed no significant differences between the caffeine and placebo groups in any parameters: instrument volume, path length, idle, velocity, acceleration, and instrument out of view. Additionally, OSATS scores did not differ between groups, regardless of task. Major errors occurred similarly in both groups, except for one error criteria during the circle cutting task, which occurred significantly more often in the caffeine group (34% vs. 16%, p < 0.05). CONCLUSION The objective IMA and performance scores of laparoscopic skills revealed that caffeine consumption does not enhance or impair the overall laparoscopic performance of surgical novices. The occurrence of major errors is not conclusive but could be negatively influenced in part by caffeine intake.
Collapse
Affiliation(s)
- Felix von Bechtolsheim
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Florian Oehme
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Maruschke
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sofia Schmidt
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alfred Schneider
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Bodenstedt
- Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Division of Translational Surgical Oncology, National Center for Tumor Diseases, Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Isabel Funke
- Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Division of Translational Surgical Oncology, National Center for Tumor Diseases, Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Stefanie Speidel
- Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Division of Translational Surgical Oncology, National Center for Tumor Diseases, Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Soeren Torge Mees
- Department of General, Visceral and Thoracic Surgery, Städtisches Klinikum, Friedrichstraße 41, 01067 Dresden, Germany
| |
Collapse
|
31
|
Ingegnoli F, Cavalli S, Giudice L, Caporali R. Caffeine and rheumatoid arthritis: A complicated relationship. Clin Exp Rheumatol 2022; 21:103117. [PMID: 35595049 DOI: 10.1016/j.autrev.2022.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
The current ideal goal of rheumatoid arthritis (RA) management is to resolve joint and systemic inflammation by using pharmacological interventions, assuming this will correspondingly lead to overall well-being. Nonetheless, it has emerged that a substantial number of RA patients do not reach optimal disease control. Thus suggesting the holistic management of subjective symptoms might be overlooked. This poses significant medical challenges; hence the proposal of incorporating lifestyle interventions as part of a multidimensional approach. Among these aspects, both patients and physicians perceive the important role of nutrition. This review shall examine how caffeine, one of the most studied bioactive components of the most widely consumed beverages, may potentially interfere with RA management. In particular, the mechanism by which caffeine affects RA pathogenesis, as a trigger for RA onset or flare, including its influence on rheumatic drug metabolism and the most common RA comorbidities and constitutional symptoms are outlined, highlighting important knowledge gaps and unmet research needs.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy.
| | - Silvia Cavalli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Laura Giudice
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Roberto Caporali
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
32
|
Radeva-llieva M, Stoeva S, Hvarchanova N, Zhelev I, Georgiev KD. Influence of methylxanthines isolated from Bancha green tea on the pharmacokinetics of sildenafil in rats. Daru 2022; 30:75-84. [PMID: 35146639 PMCID: PMC9114228 DOI: 10.1007/s40199-022-00433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension and is metabolized in the liver mainly by CYP3A4, thus co-administration with drugs or herbal extracts that affect CYP3A4 activity may lead to drug-drug or drug-herb interactions, respectively. The aim of the present study was to evaluate the influence of single and multiple oral doses of methylxanthine fraction, isolated from Bancha green tea leaves on the pharmacokinetics of sildenafil in rats. METHODS Rats were given sildenafil alone as well as simultaneously with methylxanthines or ketoconazole. The plasma concentrations of sildenafil were measured with high-performance liquid chromatography method with ultraviolet detection. The pharmacokinetic parameters of sildenafil were calculated by non-compartmental analysis. RESULTS Concomitant use of sildenafil with a single oral dose of methylxanthines resulted in a decrease in Cmax (p > 0.05), AUC0-t (p < 0.05) and AUC0-inf (p < 0.05), while the administration of sildenafil after methylxanthines pretreatment resulted in an increase in Cmax (p < 0.0001), AUC0-t (p < 0.0001) and AUC0-inf (p < 0.001) compared to the sildenafil group. After co-administration of sildenafil and ketoconazole, a significant increase in Cmax, AUC0-t and AUC0-inf was observed in both of the experiments. CONCLUSION Drug-herb interactions were observed when sildenafil was co-administered with Bancha methylxanthines in rats. Further in vivo studies about the potential drug interactions between sildenafil and methylxanthines, especially caffeine, are needed to clarify mechanisms underlying the observed changes in sildenafil pharmacokinetics.
Collapse
Affiliation(s)
- Maya Radeva-llieva
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Stanila Stoeva
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Nadezhda Hvarchanova
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Iliya Zhelev
- grid.20501.360000 0000 8767 9052Department of Biology, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| | - Kaloyan D. Georgiev
- grid.20501.360000 0000 8767 9052Department of Pharmacology, toxicology and pharmacotherapy, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 84 “Tsar Osvoboditel” Blvd, 9000 Varna, Bulgaria
| |
Collapse
|
33
|
Lorca C, Mulet M, Arévalo-Caro C, Sanchez MÁ, Perez A, Perrino M, Bach-Faig A, Aguilar-Martínez A, Vilella E, Gallart-Palau X, Serra A. Plant-derived nootropics and human cognition: A systematic review. Crit Rev Food Sci Nutr 2022; 63:5521-5545. [PMID: 34978226 DOI: 10.1080/10408398.2021.2021137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Substances with modulatory capabilities on certain aspects of human cognition have been revered as nootropics from the dawn of time. The plant kingdom provides most of the currently available nootropics of natural origin. Here, in this systematic review, we aim to provide state-of-the-art information regarding proven and unproven effects of plant-derived nootropics (PDNs) on human cognition in conditions of health and disease. Six independent searches, one for each neurocognitive domain (NCD), were performed in parallel using three independent scientific library databases: PubMed, Cochrane and Scopus. Only scientific studies and systematic reviews with humans published between January 2000 and November 2021 were reviewed, and 256 papers were included. Ginkgo biloba was the most relevant nootropic regarding perceptual and motor functions. Bacopa monnieri improves language, learning and memory. Withania somnifera (Ashwagandha) modulates anxiety and social-related cognitions. Caffeine enhances attention and executive functions. Together, the results from the compiled studies highlight the nootropic effects and the inconsistencies regarding PDNs that require further research.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.2021137.
Collapse
Affiliation(s)
- Cristina Lorca
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
| | - Catalina Arévalo-Caro
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
| | - M Ángeles Sanchez
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - Ainhoa Perez
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - María Perrino
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - Anna Bach-Faig
- FoodLab Research Group (2017SGR 83), Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, Barcelona, Spain
| | - Alicia Aguilar-Martínez
- FoodLab Research Group (2017SGR 83), Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Universitat Rovira i Virgili (URV), Reus, Spain
- Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital Universitari Institut Pere Mata (HUIPM), Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Serra
- IMDEA-Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV) - School of Medicine, University of Lleida (UdL), Lleida, Spain
- Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
34
|
Kim E, Robinson NM, Newman BM. A Brewed Awakening: Neuropsychiatric Effects of Caffeine in Older Adults. Clin Geriatr Med 2021; 38:133-144. [PMID: 34794697 DOI: 10.1016/j.cger.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article provides a current review of the literature examining caffeine use in older adults. Caffeine use is prevalent among older adults; thus, providers need to be aware of the prevalence and diagnostic criteria of caffeine use disorder versus nonproblematic use. The relationship between caffeine and various neuropsychiatric disorders, including Parkinson's disease, Alzheimer's disease, insomnia, and late-life depression, is reviewed. The neurobiological effects of caffeine are described, along with clinically relevant interactions between caffeine and common psychotropic medications.
Collapse
Affiliation(s)
- Ellen Kim
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 Grand Boulevard, Saint Louis, MO 63104, USA
| | - Neil M Robinson
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 Grand Boulevard, Saint Louis, MO 63104, USA
| | - Brianne M Newman
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 Grand Boulevard, Saint Louis, MO 63104, USA.
| |
Collapse
|
35
|
Moussa M, Hansz K, Rasmussen M, Gillman C, Pollard C, Kwak E, Izsak E. Cardiovascular Effects of Energy Drinks in the Pediatric Population. Pediatr Emerg Care 2021; 37:578-582. [PMID: 32569249 DOI: 10.1097/pec.0000000000002165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Consumption of energy drinks in the pediatric population is correlated with more emergency department visits and causes adverse reactions, such as neurological, psychiatric, gastrointestinal, renal, and cardiovascular effects. These cardiovascular complications include increased cardiometabolic risk with high intake of sugar, short-term blood pressure increases and a decrease in cerebral blood flow due to the caffeine content, increased or decreased blood pressure from taurine, unmasked cardiac conditions, such as channelopathies, and atrial and ventral fibrillations. Cardiovascular complications can also arise when energy drinks are mixed with pharmaceutical drugs, such as amiodarone, potent CYP1A2 inhibitors, warfarin, digoxin, or corticosteroids. Combining energy drinks with alcohol also precipitates adverse cardiovascular events, posing a risk to the health of children and adolescents. This review further explores the ingredients in energy drinks and their mechanism of action in causing these cardiovascular complications.
Collapse
Affiliation(s)
- Mohamad Moussa
- From the Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences
| | - Keith Hansz
- From the Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences
| | - Michaela Rasmussen
- From the Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences
| | - Cassidy Gillman
- From the Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences
| | - Casey Pollard
- From the Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences
| | - Eunice Kwak
- From the Department of Emergency Medicine, University of Toledo College of Medicine and Life Sciences
| | - Eugene Izsak
- Department of Pediatric Emergency Medicine, Promedica Toledo Hospital, Toledo, OH
| |
Collapse
|
36
|
Caffeine consumption and schizophrenia: A highlight on adenosine receptor-independent mechanisms. Curr Opin Pharmacol 2021; 61:106-113. [PMID: 34688994 DOI: 10.1016/j.coph.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a common psychiatric disorder which affects approximately 1% of the population worldwide. However, the complexity of etiology, treatment resistance and side effects induced by current antipsychotics, relapse prevention, and psychosocial rehabilitation are still to be uncovered. Caffeine, as the world's most widely consumed psychoactive drug, plays a crucial role in daily life. Plenty of preclinical and clinical evidence has illustrated that caffeine consumption could have a beneficial effect on schizophrenia. In this review, we firstly summarize the factors associated with the caffeine-induced beneficial effect. Then, a variety of mechanism of actions independent of adenosine receptor signaling will be discussed with an emphasis on the potential contribution of the microbiome-gut-brain axis to provide more possibilities for future therapeutic, prognosis, and social rehabilitation strategy.
Collapse
|
37
|
Hladun O, Papaseit E, Martín S, Barriocanal AM, Poyatos L, Farré M, Pérez-Mañá C. Interaction of Energy Drinks with Prescription Medication and Drugs of Abuse. Pharmaceutics 2021; 13:pharmaceutics13101532. [PMID: 34683828 PMCID: PMC8541613 DOI: 10.3390/pharmaceutics13101532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, the consumption of energy drinks (EDs) has become increasingly popular, especially among adolescents. Caffeine, a psychostimulant, is the main compound of EDs which also contain other substances with pharmacological effects. This review aims to compile current evidence concerning the potential interactions between EDs, medicines, and drugs of abuse as they are frequently consumed in combination. The substances involved are mainly substrates, inductors or inhibitors of CYP1A2, psychostimulants, alcohol and other depressant drugs. Furthermore, intoxications reported with EDs and other substances have also been screened to describe acute toxicity. The results of our review show that the consumption of both EDs alone and in combination is not as safe as previously thought. Health professionals and consumers need to be aware of the potential interactions of these drinks as well as the absence of long-term safety data.
Collapse
Affiliation(s)
- Olga Hladun
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Esther Papaseit
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
- Correspondence: ; Tel.: +34-934978843
| | - Soraya Martín
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
| | - Ana Maria Barriocanal
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Lourdes Poyatos
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Magí Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Clara Pérez-Mañá
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (O.H.); (S.M.); (A.M.B.); (L.P.); (M.F.); (C.P.-M.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
| |
Collapse
|
38
|
Contreras-Barraza N, Madrid-Casaca H, Salazar-Sepúlveda G, Garcia-Gordillo MÁ, Adsuar JC, Vega-Muñoz A. Bibliometric Analysis of Studies on Coffee/Caffeine and Sport. Nutrients 2021; 13:nu13093234. [PMID: 34579111 PMCID: PMC8466917 DOI: 10.3390/nu13093234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
This article provides an empirical overview of coffee/caffeine studies in relation to sport worldwide, an incipient but growing relationship that has existed since 1938, although systematized over time since 1999. The extracted articles were examined using a bibliometric approach based on data from 160 records stored in the Web of Science (JCR) between 1938 and August 2021, applying traditional bibliometric laws and using VOSviewer for data and metadata processing. Among the results, these articles highlight an exponential increase in scientific production in the last two decades, with a concentration in only 12 specific journals, the hegemony of the USA among the co-authorship networks of worldwide relevance, and the thematic and temporal segregation of the concepts under study. This article concludes a high fragmentation of the authors with the highest level of scientific production and an evolution of almost 20 years in relevant thematic topics, and a concurrent concentration in three large blocks: (1) coffee consumption and risk factors, (2) health and coffee consumption, and (3) metabolism and sport correlated with the intake of coffee, which are distanced in time, providing evidence of an evolution that gives way to the irruption of alternative visions in the relationship of coffee and caffeine with sport.
Collapse
Affiliation(s)
| | - Héctor Madrid-Casaca
- Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras;
| | - Guido Salazar-Sepúlveda
- Departamento de Ingeniería Industrial, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | | | - José C. Adsuar
- Promoting a Healthy Society Research Group (PHeSO), Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain;
| | - Alejandro Vega-Muñoz
- Public Policy Observatory, Universidad Autónoma de Chile, Santiago 7500912, Chile;
- Correspondence:
| |
Collapse
|
39
|
Abstract
Caffeine is not only a widely consumed active stimulant, but it is also a model molecule commonly used in pharmaceutical sciences. In this work, by performing quartz-crystal microbalance and neutron reflectometry experiments we investigate the interaction of caffeine molecules with a model lipid membrane. We determined that caffeine molecules are not able to spontaneously partition from an aqueous environment, enriched in caffeine, into a bilayer. Caffeine could be however included in solid-supported lipid bilayers if present with lipids during self-assembly. In this case, thanks to surface-sensitive techniques, we determined that caffeine molecules are preferentially located in the hydrophobic region of the membrane. These results are highly relevant for the development of new drug delivery vectors, as well as for a deeper understanding of the membrane permeation role of purine molecules.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60121 Ancona, Italy
| |
Collapse
|
40
|
Barrea L, Pugliese G, Frias-Toral E, El Ghoch M, Castellucci B, Chapela SP, Carignano MDLA, Laudisio D, Savastano S, Colao A, Muscogiuri G. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit Rev Food Sci Nutr 2021; 63:1238-1261. [PMID: 34455881 DOI: 10.1080/10408398.2021.1963207] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coffee is one of the most popular beverages worldwide; however, its impact on health outcomes and adverse effects is not fully understood. The current review aims to establish an update about the benefits of coffee consumption on health outcomes highlighting its side effects, and finally coming up with an attempt to provide some recommendations on its doses. A literature review using the PubMed/Medline database was carried out and the data were summarized by applying a narrative approach using the available evidence based on the literature. The main findings were the following: first, coffee may contribute to the prevention of inflammatory and oxidative stress-related diseases, such as obesity, metabolic syndrome and type 2 diabetes; second, coffee consumption seems to be associated with a lower incidence of several types of cancer and with a reduction in the risk of all-cause mortality; finally, the consumption of up to 400 mg/day (1-4 cups per day) of caffeine is safe. However, the time gap between coffee consumption and some drugs should be taken into account in order to avoid interaction. However, most of the data were based on cross-sectional or/and observational studies highlighting an association of coffee intake and health outcomes; thus, randomized controlled studies are needed in order to identify a causality link.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, isola F2, 80143 Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 11072809, Lebanon
| | - Bianca Castellucci
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Sebastián Pablo Chapela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- Hospital Británico de Buenos Aires, Departamento de Terapia Intensiva, Buenos Aires, Argentina
| | | | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Endocrinology Unit, Department of Clinical Medicine and Surgery, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
41
|
Kamely M, Karimi Torshizi MA, West J, Niewold T. Impacts of caffeine on resistant chicken's performance and cardiovascular gene expression. J Anim Physiol Anim Nutr (Berl) 2021; 106:566-574. [PMID: 34291833 DOI: 10.1111/jpn.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022]
Abstract
We previously reported a study on 288 broiler (Gallus gallus) chicks who received caffeine in water between days 3 and 42, at levels of 0, 6.25, 12.5, 25, 50 and 100 mg/kg body weight (BW)/day. In the previous report, we found that caffeine caused pulmonary hypertension (PH)-associated mortality in a significant minority (20%-30%) of birds, including right ventricular hypertrophy and ascites. We have also shown a significant upregulation of the serotonin transporter (SERT), troponin T2, adenosine A1 receptor (ADORA1) and phosphodiesterase 5A (PDE5) in chicken suffering from PH. Here, we examine the resistant (survived) chicks from the first study that had not died due to acute heart failure and did not have clinical signs of pulmonary hypertension. Our goal was to determine whether birds who lacked overt signs of disease had subclinical manifestations, including similar changes in gene expression, growth rates and altered systemic haemodynamics. We found that growth was significantly increased by caffeine consumption (p < 0.01) at low doses; however, dosage over 50 mg/BW/d had remarkable adverse effects on growth (p < 0.01). Blood pressure, troponin T2 and PDE5 gene expression were not significantly altered by caffeine administration (p > 0.05). However, SERT gene expression linearly increased with increasing caffeine dosage (p < 0.01). The impact of caffeine on ADORA1 gene expression was dose dependent and nonlinear. In conclusion, despite the significant effects of caffeine on birds' growth, no significant negative effects of caffeine were observed on the cardiovascular function of resistant chickens. This work provides valuable information for further study on different dosage of caffeine in an animal model.
Collapse
Affiliation(s)
- Mohammad Kamely
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.,Division Animal and Human Health Engineering, Faculty of Bioscience Engineering, University of KU Leuven, Leuven, Belgium
| | | | - James West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
42
|
Manolis AA, Manolis TA, Apostolopoulos EJ, Melita H, Manolis AS. The Cardiovascular Benefits of Caffeinated Beverages: Real or Surreal? /"Metron Ariston - All in Moderation". Curr Med Chem 2021; 29:2235-2260. [PMID: 34238147 DOI: 10.2174/0929867328666210708091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
Caffeinated beverages are the most widely consumed beverages globally with coffee and tea as the two most prominent sources of caffeine. Caffeine content varies across different types of beverages. In addition to caffeine, coffee and tea have other biologically active compounds, and all may affect general and cardiovascular (CV) health. Moderate caffeine consumption (<300-400 mg/day), regardless of the source, is considered safe by both European and US Health Authorities, as it is not associated with adverse health and CV effects, while it may confer certain health benefits. There is a nonlinear association between coffee ingestion and CV risk; moderate coffee drinking is inversely significantly associated with CV risk, with the highest benefit at 2-4 cups per day, while heavy coffee drinking might confer increased risk. With regards to tea, due to a lower caffeine content per serving, its consumption is only limited by the total caffeine daily intake. Both these caffeinated beverages, coffee and tea, have additional phenolic compounds, with anti-oxidant and anti-inflammatory activities, which confer cardioprotective benefits. Of the several coffee compounds, chloroacetic acids and melanoidins offer such beneficial effects, while diterpenes may have unfavorable effects on lipids. Most of the tea ingredients (polyphenols) are cardioprotective. A major concern relates to energy drinks with their much higher caffeine content which puts individuals, especially adolescents and young adults, at high health and CV risk. All these issues are herein discussed, including pertinent studies and meta-analyses, pathogenetic mechanisms involved and relevant recommendations from health authorities.
Collapse
Affiliation(s)
| | | | | | | | - Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| |
Collapse
|
43
|
Woziwodzka A, Krychowiak-Maśnicka M, Gołuński G, Felberg A, Borowik A, Wyrzykowski D, Piosik J. Modulatory Effects of Caffeine and Pentoxifylline on Aromatic Antibiotics: A Role for Hetero-Complex Formation. Molecules 2021; 26:3628. [PMID: 34198510 PMCID: PMC8231999 DOI: 10.3390/molecules26123628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance is a major healthcare threat globally. Xanthines, including caffeine and pentoxifylline, are attractive candidates for drug repurposing, given their well-established safety and pharmacological profiles. This study aimed to analyze potential interactions between xanthines and aromatic antibiotics (i.e., tetracycline and ciprofloxacin), and their impact on antibiotic antibacterial activity. UV-vis spectroscopy, statistical-thermodynamical modeling, and isothermal titration calorimetry were used to quantitatively evaluate xanthine-antibiotic interactions. The antibacterial profiles of xanthines, and xanthine-antibiotic mixtures, towards important human pathogens Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Enterobacter cloacae were examined. Caffeine and pentoxifylline directly interact with ciprofloxacin and tetracycline, with neighborhood association constant values of 15.8-45.6 M-1 and enthalpy change values up to -4 kJ·M-1. Caffeine, used in mixtures with tested antibiotics, enhanced their antibacterial activity in most pathogens tested. However, antagonistic effects of caffeine were also observed, but only with ciprofloxacin toward Gram-positive pathogens. Xanthines interact with aromatic antibiotics at the molecular and in vitro antibacterial activity level. Given considerable exposure to caffeine and pentoxifylline, these interactions might be relevant for the effectiveness of antibacterial pharmacotherapy, and may help to identify optimal treatment regimens in the era of multidrug resistance.
Collapse
Affiliation(s)
- Anna Woziwodzka
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (G.G.); (A.F.); (A.B.); (J.P.)
| | - Marta Krychowiak-Maśnicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Grzegorz Gołuński
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (G.G.); (A.F.); (A.B.); (J.P.)
| | - Anna Felberg
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (G.G.); (A.F.); (A.B.); (J.P.)
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (G.G.); (A.F.); (A.B.); (J.P.)
| | - Dariusz Wyrzykowski
- Department of Inorganic Biological Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (G.G.); (A.F.); (A.B.); (J.P.)
| |
Collapse
|
44
|
Abstract
The purine alkaloid caffeine is the most widely consumed psychostimulant drug in the world and has multiple beneficial pharmacological activities, for example, in neurodegenerative diseases. However, despite being an extensively studied bioactive natural product, the mechanistic understanding of caffeine's pharmacological effects is incomplete. While several molecular targets of caffeine such as adenosine receptors and phosphodiesterases have been known for decades and inspired numerous medicinal chemistry programs, new protein interactions of the xanthine are continuously discovered providing potentially improved pharmacological understanding and a molecular basis for future medicinal chemistry. In this Perspective, we gather knowledge on the confirmed protein interactions, structure activity relationship, and chemical biology of caffeine on well-known and upcoming targets. The diversity of caffeine's molecular activities on receptors and enzymes, many of which are abundant in the CNS, indicates a complex interplay of several mechanisms contributing to neuroprotective effects and highlights new targets as attractive subjects for drug discovery.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
45
|
Agritelley MS, Goldberger JJ. Caffeine supplementation in the hospital: Potential role for the treatment of caffeine withdrawal. Food Chem Toxicol 2021; 153:112228. [PMID: 33932520 DOI: 10.1016/j.fct.2021.112228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Caffeine use in the population is widespread. Caffeine withdrawal in the hospital setting is an underappreciated syndrome with symptoms including drowsiness, difficulty concentrating, mood disturbances, low motivation, flu-like symptoms, and headache. Withdrawal may occur upon abstinence from chronic daily exposure at doses as low as 100 mg/day and following only 3-7 days of consumption at higher doses. There are limited data investigating how caffeine withdrawal contributes to hospital morbidity. Some studies suggest caffeine withdrawal may contribute to intensive care delirium and that caffeine may promote wakefulness post-anesthesia. Caffeine supplementation has also shown promise in patients at risk of caffeine withdrawal, such as those placed on nil per os (NPO) status, in preventing caffeine withdrawal headache. These data on caffeine supplementation are not entirely consistent, and routine caffeine administration has not been implemented into clinical practice for patients at risk of withdrawal. Notably, caffeine serves a therapeutic role in the hospital for other conditions. Our review demonstrates that caffeine is largely safe in the general population and may be an appropriate therapeutic option for future studies, if administered properly. There is a need for a randomized controlled trial investigating in-hospital caffeine supplementation and the population that this would best serve.
Collapse
Affiliation(s)
- Matthew S Agritelley
- Cardiovascular Division, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| | - Jeffrey J Goldberger
- Cardiovascular Division, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
46
|
Georgalas VL, Kalantzi N, Harpur I, Kenny C. The Effects of Caffeine on Voice: A Systematic Review. J Voice 2021:S0892-1997(21)00084-9. [PMID: 33752928 DOI: 10.1016/j.jvoice.2021.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Caffeine is considered a dehydrating agent due to its diuretic effects and influences the body's fluid balance. The relationship between voice and hydration has been widely investigated and it is accepted that inadequate hydration has detrimental effects on phonation. Since dehydration negatively affects the vocal folds and caffeine is considered a dehydrating agent, it can be hypothesized that voice might be negatively affected by caffeine intake. This systematic review aims to summarize and appraise the available evidence regarding the effects of caffeine on voice. METHODS Randomized and non-randomized experimental studies of healthy participants were retrieved following an electronic searching of six databases in June 2020. No publication, language or date restrictions were applied. Data extraction of relevant data and risk of bias assessment was conducted independently by two reviewers. RESULTS Five non-randomized experimental studies were deemed eligible for inclusion. The format of the administered interventions in the included studies was either liquid (coffee) or solid (caffeine tablets). Reported outcome measures used to examine the effects of caffeine on phonation consisted of acoustic, aerodynamic and (auditory & self-) perceptual. No measures were adversely affected by caffeine consumption. CONCLUSION Clinicians commonly advise patients to refrain from caffeine, as caffeine intake increases diuresis with subsequent effects on fluid balance. Such imbalances can potentially induce dehydration which can be detrimental to phonation. This notion cannot be supported empirically, as the evidence is deemed unreliable and no firm conclusions can be elicited to guide clinical practice. The results of this review demonstrate the lack of research in the field and the necessity for future investigations in order to inform evidence-based practice through reliable and valid outcomes.
Collapse
Affiliation(s)
- Vasilis L Georgalas
- Department of Clinical Speech and Language studies, Trinity College Dublin, Dublin, Ireland.
| | - Niki Kalantzi
- Department of Clinical Speech and Language studies, Trinity College Dublin, Dublin, Ireland
| | | | - Ciarán Kenny
- Department of Clinical Speech and Language studies, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Abstract
Caffeine is well known for its central nervous system–stimulating effect. Toxicity may occur following high-dose caffeine ingestions. We describe a case of caffeine intoxication secondary to reported ingestion of a large dose of caffeine (60,000 mg in tablet form) with an initial serum caffeine level of 608 μmol/L (known lethal serum level starting from 412 μmol/L). This case demonstrates the key clinical manifestations of caffeine intoxication and the effect of its associated massive adrenergic surge with neurologic symptoms, cardiovascular instability, metabolic abnormalities, and the significant risk of mortality. We highlight important kidney management considerations, including protective measures against electrolyte disturbances such as hypokalemia and hypophosphatemia, and the use of prolonged hemodialysis for caffeine elimination. We share our practical decision making and approach to dialysis discontinuation if serum caffeine level reporting is unavailable or delayed.
Collapse
Affiliation(s)
- Mohamed Elbokl
- Division of Nephrology, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Ian Randall
- Department of Anesthesia, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Charmaine Lok
- Division of Nephrology, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Caffeine: A potential strategy to improve survival of neonatal pigs and sheep. Anim Reprod Sci 2021; 226:106700. [PMID: 33517067 DOI: 10.1016/j.anireprosci.2021.106700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Caffeine is commonly used to treat pre-and postnatal injuries, including apnoea in premature infants, as well as neurological impairment caused by hypoxia or asphyxiation often associated with difficult birthing. As an adenosine antagonist, caffeine is metabolised rapidly and transported into many tissues. Caffeine stimulates the brain respiratory centre, improving respiratory function in immature infants or neonates, provides neuroprotection to the fetal brain, and initiates non-shivering thermoregulation increasing metabolic rates. Recently, potential benefits of caffeine for animal production have been investigated. This has particularly occurred in pig production, where large litters are associated with relatively long parturition durations, and piglets born near the end of the parturition period have an increased risk of mortality due to asphyxia-related birthing injury. Similarly, in sheep, dystocia or prolonged parturition is a significant problem, where neonatal injury, dystocia and death in utero contributes to approximately 46 % of lamb mortalities. Within these two livestock production systems, large prevalence's of neonatal mortality is a persistent issue contributing to lost revenue, as well as being a significant animal welfare concern. Pre-partum maternal caffeine supplementation is a promising strategy to reduce neonatal mortality; however, there needs to be refinement of appropriate quantities administered, duration and administration pathway to provide producers with an efficient and cost-effective method to reduce mortality rates and increase production output. The information in this review details effects, benefits and important considerations regarding caffeine use in animal production, and identifies areas of limited knowledge where further research is needed.
Collapse
|
49
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
50
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|