1
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
2
|
Nayak RR, Orellana DA. The impact of the human gut microbiome on the treatment of autoimmune disease. Immunol Rev 2024; 325:107-130. [PMID: 38864582 PMCID: PMC11338731 DOI: 10.1111/imr.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Autoimmune (or rheumatic) diseases are increasing in prevalence but selecting the best therapy for each patient proceeds in trial-and-error fashion. This strategy can lead to ineffective therapy resulting in irreversible damage and suffering; thus, there is a need to bring the promise of precision medicine to patients with autoimmune disease. While host factors partially determine the therapeutic response to immunosuppressive drugs, these are not routinely used to tailor therapy. Thus, non-host factors likely contribute. Here, we consider the impact of the human gut microbiome in the treatment of autoimmunity. We propose that the gut microbiome can be manipulated to improve therapy and to derive greater benefit from existing therapies. We focus on the mechanisms by which the human gut microbiome impacts treatment response, provide a framework to interrogate these mechanisms, review a case study of a widely-used anti-rheumatic drug, and discuss challenges with studying multiple complex systems: the microbiome, the human immune system, and autoimmune disease. We consider open questions that remain in the field and speculate on the future of drug-microbiome-autoimmune disease interactions. Finally, we present a blue-sky vision for how the microbiome can be used to bring the promise of precision medicine to patients with rheumatic disease.
Collapse
Affiliation(s)
- Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Diego A Orellana
- Rheumatology Division, Department of Medicine, University of California, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
3
|
Mishra S, Shelke V, Dagar N, Lech M, Gaikwad AB. Immunosuppressants against acute kidney injury: what to prefer or to avoid? Immunopharmacol Immunotoxicol 2024; 46:341-354. [PMID: 38477877 DOI: 10.1080/08923973.2024.2330641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is a critical global health issue associated with high mortality rates, particularly in patients undergoing renal transplants and major surgeries. These individuals often receive immunosuppressants to dampen immune responses, but the impact of these drugs on AKI remains unclear. OBJECTIVE This review aims to provide a detailed understanding of the effects of different classes of immunosuppressants against AKI, elucidating their role in either exacerbating or mitigating the occurrence or progression of AKI. METHODS Several preclinical and clinical reports were analyzed to evaluate the impact of various immunosuppressants on AKI. Relevant preclinical and clinical studies were reviewed through different databases such as Scopus, PubMed, Google Scholar, and ScienceDirect, and official websites like https://clinicaltrials.gov to understand the mechanisms underlying the effects of immunosuppressants on kidney function. RESULTS AND DISCUSSION Specific immunosuppressants have been linked to the progression of AKI, while others demonstrate renoprotective effects. However, there is no consensus on the preferred or avoided immunosuppressants for AKI patients. This review outlines the classes of immunosuppressants commonly used and their impact on AKI, providing guidance for physicians in selecting appropriate drugs to prevent or ameliorate AKI. CONCLUSION Understanding the effects of immunosuppressants on AKI is crucial for optimizing patient care. This review highlights the need for further research to determine the most suitable immunosuppressants for AKI patients, considering both their efficacy and potential side effects.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
4
|
Wang Y, Liu QF, Wu DP, Xu ZL, Han TT, Sun YQ, Huang F, Fan ZP, Xu N, Chen F, Zhao Y, Kong Y, Mo XD, Xu LP, Zhang XH, Liu KY, Huang XJ. Mini-dose methotrexate combined with methylprednisolone for the initial treatment of acute GVHD: a multicentre, randomized trial. BMC Med 2024; 22:176. [PMID: 38664766 PMCID: PMC11044329 DOI: 10.1186/s12916-024-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND There is an urgent unmet need for effective initial treatment for acute graft-versus-host disease (aGVHD) adding to the standard first-line therapy with corticosteroids after allogeneic haematopoietic stem cell transplantation (allo-HSCT). METHODS We performed a multicentre, open-label, randomized, phase 3 study. Eligible patients (aged 15 years or older, had received allo-HSCT for a haematological malignancy, developed aGVHD, and received no previous therapies for aGVHD) were randomly assigned (1:1) to receive either 5 mg/m2 MTX on Days 1, 3, or 8 and then combined with corticosteroids or corticosteroids alone weekly. RESULTS The primary endpoint was the overall response rate (ORR) on Day 10. A total of 157 patients were randomly assigned to receive either MTX plus corticosteroids (n = 78; MTX group) or corticosteroids alone (n = 79; control group). The Day 10 ORR was 97% for the MTX group and 81% for the control group (p = .005). Among patients with mild aGVHD, the Day 10 ORR was 100% for the MTX group and 86% for the control group (p = .001). The 1-year estimated failure-free survival was 69% for the MTX group and 41% for the control group (p = .002). There were no differences in treatment-related adverse events between the two groups. CONCLUSIONS In conclusion, mini-dose MTX combined with corticosteroids can significantly improve the ORR in patients with aGVHD and is well tolerated, although it did not achieve the prespecified 20% improvement with the addition of MTX. TRIAL REGISTRATION The trial was registered with clinicaltrials.gov (NCT04960644).
Collapse
Affiliation(s)
- Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - De-Pei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Department of Hematology, Beijing Ludaopei Hematology Hospital, Beijing, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Zhi-Ping Fan
- Department of Hematology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Feng Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Ye Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Department of Hematology, Beijing Ludaopei Hematology Hospital, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
5
|
Eichinger JM, Shan DM, Greenzaid JD, Anakwenze L, Feldman SR. Clinical pharmacokinetics and pharmacodynamics of oral systemic nonbiologic therapies for psoriasis patients. Expert Opin Drug Metab Toxicol 2024; 20:249-262. [PMID: 38529623 DOI: 10.1080/17425255.2024.2335310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory immune condition. Treatments for psoriasis vary with disease severity, ranging from topicals to systemic biologic agents. The pharmacokinetic (PK) and pharmacodynamic (PD) properties of these therapies establish drug efficacy, toxicity, and optimal dosing to ensure therapeutic drug levels are sustained and adverse effects are minimized. AREAS COVERED A literature search was performed on PubMed, Google Scholar, and Ovid MEDLINE for PK and PD, efficacy, and safety data regarding oral systemic nonbiologic therapies utilized for moderate-to-severe plaque psoriasis. The findings were organized into sections for each drug: oral acitretin, methotrexate, cyclosporine, apremilast, tofacitinib, and deucravacitinib. EXPERT OPINION Some psoriasis patients may not respond to initial therapy. Ongoing research is evaluating genetic polymorphisms that may predict an improved response to specific medications. However, financial and insurance barriers, as well as limited genetic polymorphisms correlated with treatment response, may restrict the implementation of genetic testing necessary to personalize treatments. How well psoriasis patients adhere to treatment may contribute greatly to variation in response. Therapeutic drug monitoring may help patients adhere to treatment, improve clinical response, and sustain disease control.
Collapse
Affiliation(s)
| | - Divya M Shan
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jonathan D Greenzaid
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lisa Anakwenze
- University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven R Feldman
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Dermatology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Skougaard M, Søndergaard MF, Ditlev SB, Kristensen LE. Changes in Inflammatory Cytokines in Responders and Non-Responders to TNFα Inhibitor and IL-17A Inhibitor: A Study Examining Psoriatic Arthritis Patients. Int J Mol Sci 2024; 25:3002. [PMID: 38474247 PMCID: PMC10932211 DOI: 10.3390/ijms25053002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
This study aimed to examine the changes in biomarker levels in responders and non-responders to tumor necrosis factor alpha inhibitor (TNFi) and interleukin-17A inhibitor (IL-17Ai) in psoriatic arthritis (PsA) patients over a 4-month period after treatment initiation. A total of 68 PsA patients initiating either TNFi, IL-17Ai, or methotrexate treatment were included. Blood plasma and clinical outcome measures were collected adjacent to treatment initiation and after four months. A commercially available multiplex immunoassay was included to evaluate 54 biomarkers. Mean changes were used to evaluate change over time. A statistically significant decrease in pro-inflammatory cytokines IL-6 (log-transformed mean change -0.97, 95%CI -4.30; 2.37, [p = 0.032]) and an increase in anti-inflammatory IL-10 (0.38, 95%CI 1.74; 2.50 [p = 0.010]) were seen in TNFi responders. Meanwhile, a statistically significant increase in the target cytokine IL-17A was seen in both IL-17Ai responders (2.49, 95%CI -1.84; 6.85 [p = 0.031]) and non-responders (2.48, 95%CI -1.46; 6.41 [p = 0.001]). This study demonstrated differing changes in cytokine levels when comparing treatment responders and non-responders, highlighting the need to improve the understanding of the different immune response mechanisms explaining different responses to medical treatment in PsA patients.
Collapse
Affiliation(s)
- Marie Skougaard
- The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Magnus Friis Søndergaard
- Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Lars Erik Kristensen
- The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Greenzaid J, Feldman S. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Moderate-to-Severe Psoriasis. Clin Pharmacokinet 2024; 63:137-153. [PMID: 38280146 DOI: 10.1007/s40262-023-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
Psoriasis is a common inflammatory immune disorder due to chronic activation of the adaptive and innate immune responses. Therapies for psoriasis target reducing inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-17, and interleukin-22. Patients with inflammatory disorders have reduced metabolism by cytochrome P450 enzymes in the liver. The pharmacokinetic and pharmacodynamic changes due to psoriasis also have an impact on reaching therapeutic concentrations of the drug. Pharmacokinetic and pharmacodynamic data help determine the safety and clinical considerations necessary when utilizing drugs for plaque psoriasis. A literature search was performed on PubMed and Ovid MEDLINE for the pharmacokinetic and pharmacodynamic data of oral therapies and biologics utilized for moderate-to-severe plaque psoriasis. The findings from the literature search were organized into two sections: oral therapies and biologics. The pharmacokinetic and pharmacodynamic parameters in healthy patients, patients with psoriasis, and special populations are discussed in each section. The oral therapies described in this review include methotrexate, cyclosporine, apremilast, tofacitinib, and deucravacitinib. Biologics include tumor necrosis factor-alpha inhibitors, interleukin-17 inhibitors, ustekinumab, and interleukin-23 inhibitors. Clinical considerations for these therapies include drug toxicities, dosing frequency, and anti-drug antibodies. Methotrexate and cyclosporine have a risk for hepatoxicity and renal impairment, respectively. Moreover, drugs metabolized via cytochrome P450, including tofacitinib and apremilast have decreased clearance in patients with psoriasis, requiring dose adjustments. Patients treated with therapies such as adalimumab can develop anti-drug antibodies that reduce the long-term efficacy of the drug. Additionally, overweight patients benefit from more frequent dosing to achieve better psoriasis clearance.
Collapse
Affiliation(s)
- Jonathan Greenzaid
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, 475 Vine St, Winston-Salem, NC, 27101, USA.
| | - Steven Feldman
- Department of Dermatology, Center for Dermatology Research, Wake Forest University School of Medicine, 475 Vine St, Winston-Salem, NC, 27101, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Yin F, Xu X, Qi J, Guo M, Wang Y, Wang Y, Ye R, Lin Q, Yang D, Zhu X, Wang J. DSPE-PEG 2000-methotrexate nanoparticles encapsulating phenobarbital sodium kill cancer cells by inducing pyroptosis. J Mol Med (Berl) 2024; 102:213-229. [PMID: 38047923 DOI: 10.1007/s00109-023-02403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Cancer is a life-threatening disease worldwide. Nanomedicine and nanodelivery systems are recently developed scientific field that employs specific materials in the nanoscale range to deliver drugs. Lipid-based nanoparticles are an ideal delivery system since they exhibit many advantages, including high bioavailability, self-assembly, formulation simplicity, and the ability to exhibit a plethora of physicochemical properties. Herein, we report that phenobarbital sodium can kill cancer cells by using the DSPE-PEG2000-methotrexate nanoparticle delivery system, which can target folate receptors that are usually overexpressed on a variety of cancer cells. The released phenobarbital then executes cancer cells by inducing pyroptosis. Results from our animal model further indicate that the nanomedicine of nanoparticle-encapsulated phenobarbital sodium is a promising anticancer therapy.
Collapse
Affiliation(s)
- Fengyue Yin
- Department of Emergency, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, China
- Department of Pharmacy, Medical College of Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Xu
- Department of Pharmacy, Medical College of Guangxi University, Nanning, 530004, Guangxi, China
| | - Julia Qi
- Peking University Health Science Center, Beijing, 100191, China
| | - Mengyu Guo
- Department of Emergency, Zhongshan Hospital of Xiamen University, Xiamen, 361005, Fujian, China
| | - Yubo Wang
- Department of Biomedical Engineering, Medical College of Guangxi University, Nanning, 530004, Guangxi, China
| | - Yun Wang
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Heilongjiang 154007, Jiamusi, China
| | - Roumei Ye
- Department of Pharmacy, Medical College of Guangxi University, Nanning, 530004, Guangxi, China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Daowei Yang
- Department of Clinical Sciences, Lund University, 21428, Malmö, Sweden.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Jinling Wang
- Department of Emergency, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
9
|
Wang B, Wang Z, Yang W, Han L, Huang Q, Yawalkar N, Zhang Z, Yao Y, Yan K. Unlocking the role of the B7-H4 polymorphism in psoriasis: Insights into methotrexate treatment outcomes: A prospective cohort study. Immunology 2024; 171:104-116. [PMID: 37814391 DOI: 10.1111/imm.13704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
B7-H4 is a recently discovered member of B7 family that negatively regulates T-cell immunity, specifically Th1 and Th17 cell responses. However, its role in the pathogenesis of psoriasis has yet to be determined. This study aims to investigate the effect of B7-H4 polymorphism on the efficacy of methotrexate (MTX) and its mechanism in psoriasis. Four single nucleotide polymorphisms of B7-H4 were genotyped in 310 psoriatic patients who received 12-week MTX. The protein expression of B7-H4 in platelets was characterized using immunofluorescence staining, confocal laser scanning microscopy, and flow cytometry techniques. We found that GG genotype carriers of B7-H4 rs1935780 had a lower Psoriasis Area and Severity Index (PASI) 75 response rate and higher weight (p = 0.0245) and body mass index (p = 0.0185) than AA and AG genotype carriers. Multiple regression analysis showed that the PASI score at baseline (p = 0.01) and age at disease onset (p = 0.003) were positively correlated with PASI 75 response rate, while weight (p = 0.005) and the rs1935780 genotype (p = 0.003) were negatively associated with PASI 75 response rate. B7-H4 was expressed in the platelet plasma membrane and cytoplasm. Furthermore, the expression of B7-H4 protein in platelets was lower in good responders than in non-responders and was upregulated considerably after 12-week MTX or in vitro MTX stimulation in good responders. Collectively, these results demonstrate that psoriatic patients with GG genotype of B7-H4 rs1935780 had a poorer response to MTX. Low expression of B7-H4 protein in platelets correlated with better clinical outcomes of MTX in psoriasis.
Collapse
Affiliation(s)
- Bing Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
10
|
Orfali RL, Lorenzini D, Bressan A, Tanaka AA, Cerqueira AMMD, Hirayama ADS, Ramos AMC, Proença CC, Silva CMDR, Laczynski CMM, Carneiro FR, Duarte G, Hans Filho G, Gonçalves HDS, Melo LPD, Azulay-Abulafia L, Weber MB, Rivitti-Machado MC, Zaniboni MC, Ogawa M, Pires MC, Ianhez M, Felix PAO, Bonamigo R, Takaoka R, Lazzarini R, Cestari S, Mayor SAS, Cestari T, Oliveira ZNPD, Spuls PI, Gerbens LAA, Aoki V. Consensus on the therapeutic management of atopic dermatitis ‒ Brazilian Society of Dermatology: an update on phototherapy and systemic therapy using e-Delphi technique. An Bras Dermatol 2023; 98:814-836. [PMID: 37302894 PMCID: PMC10589461 DOI: 10.1016/j.abd.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 06/13/2023] Open
Abstract
This publication is an update of the "Consensus on the therapeutic management of atopic dermatitis - Brazilian Society of Dermatology" published in 2019, considering the novel, targeted-oriented systemic therapies for atopic dermatitis. The initial recommendations of the current consensus for systemic treatment of patients with atopic dermatitis were based on a recent review of scientific published data and a consensus was reached after voting. The Brazilian Society of Dermatology invited 31 experts from all regions of Brazil and 2 international experts on atopic dermatitis who fully contributed to the process. The methods included an e-Delphi study to avoid bias, a literature search and a final consensus meeting. The authors added novel approved drugs in Brazil and the indication for phototherapy and systemic therapy for AD. The therapeutical response to systemic treatment is hereby reported in a suitable form for clinical practice and is also part of this updated manuscript.
Collapse
Affiliation(s)
- Raquel Leao Orfali
- Department of Dermatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Daniel Lorenzini
- Department of Dermatology, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Aline Bressan
- Department of Dermatology, Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anber Ancel Tanaka
- Department of Dermatology, Hospital Universitário Evangélico Mackenzie, Curitiba, PR, Brazil
| | | | - André da Silva Hirayama
- Department of Dermatology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andréa Machado Coelho Ramos
- Department of Dermatology, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Contin Proença
- Dermatology Clinic, Irmandade Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Gleison Duarte
- Department of Dermatology, Instituto Bahiano de Imunoterapia, Salvador, BH, Brazil
| | - Gunter Hans Filho
- Department of Dermatology, Hospital Universitário Maria Aparecida Pedrossian, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Heitor de Sá Gonçalves
- Department of Health, National Reference Center in Sanitary Dermatology Dona Libânia, Fortaleza, CE, Brazil
| | - Ligia Pessoa de Melo
- Department of Dermatology, Instituto de Medicina Integral Professor Fernando Figueira, Recife, PE, Brazil; Health Department, Hospital Otávio de Freitas, Recife, PE, Brazil
| | - Luna Azulay-Abulafia
- Department of Dermatology, Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Professor Rubem David Azulay Institute of Dermatology, Santa Casa de Misericórdia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Maria Cecília Rivitti-Machado
- Department of Dermatology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Department of Dermatology, Universidade Metropolitana de Santos, Santos, SP, Brazil
| | - Mariana Colombini Zaniboni
- Department of Dermatology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marília Ogawa
- Department of Dermatology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mario Cezar Pires
- Department of Dermatology, Complexo Hospitalar Padre Bento, Guarulhos, SP, Brazil; Department of Dermatology, State Public Servant Hospital, São Paulo, SP, Brazil
| | - Mayra Ianhez
- Department of Dermatology, Hospital for Tropical Diseases, Goiânia, GO, Brazil; Department of Dermatology, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Renan Bonamigo
- Department of Dermatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Takaoka
- Department of Dermatology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rosana Lazzarini
- Dermatology Clinic, Irmandade Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
| | - Silmara Cestari
- Department of Dermatology, Teaching and Research Institute of Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Tania Cestari
- Department of Dermatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Phyllis I Spuls
- Department of Dermatology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam Public Health, Infection and Immunity, The Netherlands
| | - Louise A A Gerbens
- Department of Dermatology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam Public Health, Infection and Immunity, The Netherlands
| | - Valeria Aoki
- Department of Dermatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol 2023; 14:1189036. [PMID: 37841256 PMCID: PMC10568326 DOI: 10.3389/fimmu.2023.1189036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Drafi F, Bauerova K, Chrastina M, Taghdisiesfejír M, Rocha J, Direito R, Figueira ME, Sepodes B, Ponist S. Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules 2023; 28:5053. [PMID: 37446715 DOI: 10.3390/molecules28135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Rhodiola rosea L. extract (RSE) is mostly known for its adaptogen properties, but not for its antiarthritic activities, therefore monotherapy and combination with low-dose methotrexate (MTX) was studied. The collagen-induced arthritis (CIA) model was used to measure the functional score, and the change in hind paw volume (HPV). Both parameters had significant antiarthritic effects. Based on these preliminary results, an adjuvant arthritis (AA) model was further applied to assess another parameters. The experiment included these animal groups: healthy controls, untreated AA, AA administered with RSE (150 mg/kg b.w. daily, p.o.), AA administered by MTX (0.3 mg/kg b.w. twice a week, p.o.), and AA treated with the combination of RSE+MTX. The combination of RSE+MTX significantly reduced the HPV and increased the body weight. The combination significantly decreased HPV when compared to MTX monotherapy. The plasmatic levels of inflammatory markers (IL-6, IL-17A, MMP-9 and CRP) were significantly decreased by MTX+RSE treatment. The RSE monotherapy didn't influence any of the inflammatory parameters studied. In CIA, the RSE monotherapy significantly decreased the arthritic parameters studied. In summary, the combination of RSE and sub-therapeutic MTX was significantly effective in AA by improving inflammatory and arthritic parameters.
Collapse
Affiliation(s)
- Frantisek Drafi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Katarina Bauerova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Mohsen Taghdisiesfejír
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rosa Direito
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Silvester Ponist
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| |
Collapse
|
13
|
Ritter AC, Arbona RRJ, Livingston RS, Monette S, Lipman NS. Effects of Mouse Kidney Parvovirus on Pharmacokinetics of Chemotherapeutics and the Adenine Model of Chronic Kidney Disease. Comp Med 2023; 73:153-172. [PMID: 36973002 PMCID: PMC10162380 DOI: 10.30802/aalas-cm-22-000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 03/29/2023]
Abstract
Mouse kidney parvovirus (MKPV) causes inclusion body nephropathy in severely immunocompromised mice and renal interstitial inflammation in immunocompetent mice. Here we sought to determine the effects of MKPV on pre-clinical murine models that depend on renal function. To assess the effects of MKPV infection on the pharmacokinetics of 2 renally excreted chemotherapeutic agents, methotrexate and lenalidomide, we measured drug concentrations in the blood and urine of MKPV-infected or uninfected immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) and immunocompetent C57BL/6NCrl (B6) female mice. No differences in plasma pharmacokinetics were observed for lenalidomide. However, the AUC of methotrexate was 1.5-fold higher in uninfected NSG mice compared with infected NSG mice, 1.9-fold higher in infected B6 mice compared with uninfected B6 mice, and 4.3-fold higher in uninfected NSG mice compared with uninfected B6 mice. MKPV infection did not significantly affect the renal clearance of either drug. To assess effects of MKPV infection on the adenine diet model of chronic kidney disease, MKPV-infected and uninfected B6 female mice were fed a 0.2% adenine diet, and clinical and histopathologic features of disease were assessed over 8 wk. MKPV infection did not significantly alter urine chemistry results, hemogram findings, or serum concentrations of BUN, creatinine, or symmetric dimethylarginine. However, infection did influence histologic outcomes. As compared with uninfected mice, MKPV-infected mice had more interstitial lymphoplasmacytic infiltrates after 4 and 8 wk of diet consumption and less interstitial fibrosis at week 8. Macrophage infiltrates and renal tubular injury were similar between in infected and uninfected mice. These findings indicate that MKPV infection had minimal effects on the renal excretion of 2 chemotherapeutics and on serum biomarkers of renal function. However, infection significantly influenced two histologic features of the adenine diet model of chronic renal disease. MKPV-free mice are critically important in studies evaluating renal histology as an experimental outcome.
Collapse
Affiliation(s)
- Amanda C Ritter
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York;,
| | - Rodolfo Ricart J Arbona
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | | | - Sébastien Monette
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York;,
| |
Collapse
|
14
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
15
|
Jahanbakhshi M, Shahrousvand M. Preparation and characterization of cross-linked poly (vinyl alcohol-co-methyl methacrylate) colloidal nanoparticles from hydrolysis of poly (vinyl acetate-co-methyl methacrylate) as a promising cancer drug delivery system. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mehdi Jahanbakhshi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
17
|
Kondiah PPD, Rants’o TA, Makhathini SS, Mdanda S, Choonara YE. An Oral 3D Printed PLGA-Tocopherol PEG Succinate Nanocomposite Hydrogel for High-Dose Methotrexate Delivery in Maintenance Chemotherapy. Biomedicines 2022; 10:1470. [PMID: 35884775 PMCID: PMC9313284 DOI: 10.3390/biomedicines10071470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
High-dose methotrexate (HDMTX) is one of the chemotherapeutic agents used to treat a variety of cancers in both adults and children. However, the toxicity associated with HDMTX has resulted in the spread of infections and treatment interruption. Further, poor bioavailability due to efflux pump activities mediated by P-glycoprotein has also been linked to poor therapeutic effects of methotrexate following oral administrations. D-α-Tocopheryl poly-ethylene glycol 1000 succinate (TPGS) is known to improve the bioavailability of poorly soluble drugs by inhibiting P-gp efflux activities, thus enhancing cellular uptake. Therefore, to achieve improved bioavailability for MTX, this study aimed to design and develop a novel drug delivery system employing TPGS and a biodegradable polymer, i.e., PLGA, to construct methotrexate-loaded nanoparticles fixated in alginate-gelatine 3D printable hydrogel ink to form a solid 3D printed tablet for oral delivery. The results indicated that high accuracy (>95%) of the 3D printed tablets was achieved using a 25 G needle. In vitro, drug release profiles were investigated at pH 1.2 and pH 7.4 to simulate the gastrointestinal environment. The in vitro release profile displayed a controlled and prolonged release of methotrexate over 24 h. The in silico modeling study displayed P-gp ATPase inhibition, suggesting enhanced MTX absorption from the gastrointestinal site. The 3D-printed hydrogel-based tablet has the potential to overcome the chemotherapeutic challenges that are experienced with conventional therapies.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.P.D.K.); (T.A.R.); (S.S.M.); (S.M.)
| |
Collapse
|
18
|
Zhang Y, Sun L, Chen X, Zhao L, Wang X, Zhao Z, Mei S. A Systematic Review of Population Pharmacokinetic Models of Methotrexate. Eur J Drug Metab Pharmacokinet 2022; 47:143-164. [PMID: 34985725 DOI: 10.1007/s13318-021-00737-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Methotrexate (MTX) is widely used for the treatment of a variety of neoplastic and autoimmune diseases. However, its toxicity and efficacy varied greatly among individuals, and they could be predicted by its pharmacokinetics. Many population pharmacokinetic models have been published to describe MTX pharmacokinetics. The objective of this systematic review was to summarize and discuss covariates with significant influence on MTX pharmacokinetics. METHODS We searched PubMed and EMBASE databases from their inception to April 2021 for population pharmacokinetic of MTX. The articles were screened by inclusion and exclusion criteria. The characteristics of studies and information for model construction and validation were extracted, summarized and discussed. RESULTS Thirty-five articles were included. The two-compartment model well described the pharmacokinetic behavior of MTX. For inter-individual variability, an exponential distribution error model was usually used for high-dose MTX population pharmacokinetic models, while a proportional distribution error model was used for low-dose MTX population pharmacokinetic models. Proportional and combined proportional and additive error models were used to describe residual error. Renal function was an independent indicator of MTX clearance. Body weight, age, gene polymorphisms (SLCO1B1, ABCC2, ABCB1, ABCG2 and MTHFR) and co-medications (proton pump inhibitors, non-steroidal anti-inflammatory drug, dexamethasone, vancomycin, penicillin and salicylic acid) could influence MTX clearance. Body weight, body surface area, age and dosage regimen have significant influence on MTX central compartment volume. Internal bootstrap test, external validation and visual predictive check were used to evaluate model predictive ability. CONCLUSIONS Various covariates could affect MTX pharmacokinetics, and their relationships have been summarized and discussed. This review will be helpful for researchers to develop their own population pharmacokinetic models and select appropriate models for individualized therapy of MTX.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Liyu Sun
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xinwei Chen
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Libo Zhao
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Xiaoling Wang
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
19
|
Zuber M, Harikrishna, Vidhyashree, Chhabra M, Venkataraman R, Kumar S, Rashid M. Methotrexate related cutaneous adverse drug reactions: a systematic literature review. J Basic Clin Physiol Pharmacol 2021; 33:549-565. [PMID: 34706401 DOI: 10.1515/jbcpp-2021-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Recently, there is an increased number of reports being published on Methotrexate (MTX) related cutaneous manifestations. We aimed to identify and critically appraise descriptive studies describing the MTX related skin manifestations, treatment approach, and their outcomes. METHODOLOGY An extensive literature search was performed in the PubMed, Embase, and Scopus databases from inception to April 2021 without any restrictions along with the bibliographic search of included studies, grey literature search, and a snowball search was performed in Google and Google Scholar to identify the relevant literature. Descriptive studies reporting MTX related cutaneous manifestations were considered for the review. The study selection, data extraction, and quality assessment were conducted by two independent reviewers and any disagreements were settled by consensus with the third reviewer. RESULTS 31 out of 8,365 descriptive studies including 38 patients (22 females and 16 males) aged between 12 and 78 years prescribed for the management of rheumatoid arthritis, ankylosing spondylitis, and psoriasis were included in this review. Toxic epidermal necrolysis (TEN), papular eruption, vasculitis, erosions of psoriasis, ulcerated psoriatic plaques, local reactions, keratinocyte dystrophy, erythema multiforme, drug rash with eosinophilia and systemic symptoms, Steven Johnson syndrome and photosensitive dermatitis were the majority of MTX induced cutaneous reactions. Immediate withdrawal of MTX, providing appropriate care with anti-inflammatory, topical steroids, and supplementation with folic acid were reported to be effective for the management of the MTX related cutaneous manifestations. CONCLUSIONS Clinicians and healthcare professionals should be aware of possible acute cutaneous drug reactions induced by MTX to avoid further consequences and fatal conditions. Immediate withdrawal of MTX and supportive care were reported as an efficacious therapeutic management of acute cutaneous drug reactions. PROSPERO REGISTRATION NUMBER CRD42020220038.
Collapse
Affiliation(s)
- Mohammed Zuber
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Nagamangala, Karnataka, India
| | - Harikrishna
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Nagamangala, Karnataka, India
| | - Vidhyashree
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Nagamangala, Karnataka, India
| | - Manik Chhabra
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajesh Venkataraman
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Nagamangala, Karnataka, India
| | - Sathish Kumar
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Nagamangala, Karnataka, India
| | - Muhammed Rashid
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Nagamangala, Karnataka, India
| |
Collapse
|
20
|
Pesenti G, Foppoli M, Manca D. Optimal dose and uncertainty estimation for individualized drug administration using pharmacokinetic models. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Design, characterization and evaluation of the drug-loaded chitosan/cerium oxide nanoparticles with pH-controlled drug release. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03839-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Pesenti G, Foppoli M, Manca D. A minimal physiologically based pharmacokinetic model for high-dose methotrexate. Cancer Chemother Pharmacol 2021; 88:595-606. [PMID: 34120234 PMCID: PMC8367929 DOI: 10.1007/s00280-021-04305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/30/2021] [Indexed: 11/18/2022]
Abstract
Purpose High-dose methotrexate (HDMTX) is administered for the treatment of a variety of malignant tumors. Wide intra- and inter-individual variabilities characterize the pharmacokinetics of MTX, which is mostly excreted renally. HDMTX dosages are prescribed as a function of body surface area whereas dose adjustments depending on renal function are not well defined. We develop a population pharmacokinetic model with a physiological description of renal excretion as the basis for clinical tools able to suggest model-informed dosages and support therapeutic monitoring. Methods This article presents a minimal physiologically based pharmacokinetic (PBPK) model for HDMTX, which specifically accounts for individual characteristics such as body weight, height, gender, age, hematocrit, and serum creatinine to provide individualized predictions. The model supplies a detailed and mechanistic description of capillary and cellular exchanges between plasma, interstitial fluid, and intracellular fluid compartments, and focuses on an individualized description of renal excretion. Results The minimal PBPK model is identified and validated with a literature dataset based on Chinese patients suffering from primary central nervous system lymphoma. A comparison with a pharmacokinetic model from the literature suggests that the proposed model provides improved predictions. Remarkably, the model does not present any significant bias in a wide range of degrees of renal function. Conclusion Results show that model predictions can capture the wide intra- and inter-individual variability of HDMTX, and highlight the role played by the individual degree of renal function. The proposed model can be the basis for the development of clinical decision-support systems for individualized dosages and therapeutic monitoring.
Collapse
Affiliation(s)
- Giuseppe Pesenti
- PSE-Lab, Process Systems Engineering Laboratory, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Foppoli
- Unit of Lymphoid Malignancies, Division of Onco-Hematological Medicine, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milano, Italy
| | - Davide Manca
- PSE-Lab, Process Systems Engineering Laboratory, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| |
Collapse
|
23
|
Fu J, Liu Y, Wang C, Zhang H, Yu B, Wang Y, Zhu H. Persistent follicular granulosa cell senescence and apoptosis induced by methotrexate leading to oocyte dysfunction and aberrant embryo development. Clin Transl Sci 2021; 14:2043-2054. [PMID: 33982403 PMCID: PMC8504813 DOI: 10.1111/cts.13068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Evidence from clinical cases indicates an association between the low success rate of in vitro fertilization (IVF) and ovarian injury due to previous methotrexate (MTX) administration. Therefore, it is necessary to develop and propose reasonable clinical drug guidelines to improve the quality of oocytes and the development of embryos before pregnancy. In this study, we established a mouse model with previous MTX exposure to validate the effects of MTX on reproductive function in female mice. We observed that MTX administration could result in a decrease in the success rate of fertilization and an aberrant embryonic development in both natural fertilization and IVF, even after completion of five to six ovulation cycles after MTX withdrawal. Further research revealed senescence and apoptosis of follicular granulosa cells (GCs), accompanied by arrested follicle development and aberrant estradiol and anti‐Mullerian hormone levels. Supportive evidence indicated that MTX administration induced senescence and apoptosis of human GCs in vitro, and the effects were consistent with the high levels of p21, p53, and oxidative stress. We further demonstrated that folic acid (FA) could improve oocyte function and embryonic development in vivo and in vitro by protecting GCs against apoptosis and senescence. Based on these findings, we propose the implementation of extended intervals between MTX exposure and conception or IVF and recommend FA as a special dietary supplement during this interval period; however, prospective inquiry in humans is necessary to further understand the relationship between MTX and FA recovery.
Collapse
Affiliation(s)
- Jingbo Fu
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Yang Liu
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Chen Wang
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Hongxia Zhang
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Bin Yu
- Renji HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Ye Wang
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
- Department of UrologyChinese People’s Liberation Army (PLA) General HospitalPLA Medical SchoolBeijingChina
- Centre for Reproductive MedicineChanghai HospitalNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Haiying Zhu
- Department of Cell BiologyNaval Medical University (Second Military Medical University)ShanghaiChina
| |
Collapse
|
24
|
Kyvsgaard N, Mikkelsen TS, Als TD, Christensen AE, Corydon TJ, Herlin T. Single nucleotide polymorphisms associated with methotrexate-induced nausea in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2021; 19:51. [PMID: 33794950 PMCID: PMC8017639 DOI: 10.1186/s12969-021-00539-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Context: Methotrexate (MTX) is a cornerstone in the treatment of juvenile idiopathic arthritis (JIA). MTX treatment is commonly associated with nausea. Large inter-individual variation exists in the level of MTX-induced nausea, possibly due to genetic factors. PURPOSE To investigate whether MTX-induced nausea was associated with single nucleotide polymorphisms (SNPs) in genes encoding MTX-transporter proteins, a MTX metabolizing enzyme and a nausea receptor. FINDINGS Methods: Children aged ≥9 years treated with MTX for JIA were eligible. MTX-induced nausea was registered by the children's completion of a nausea diary (min. 7 days) and the parents' completion of the MTX intolerance severity score (MISS). The selected SNPs were: SLCO1B1 (rs4149056; rs4149081), SLCO1B3 (rs2117032), SLC19A1 (rs1051266), ABCC2 (rs2273697; rs3740066; rs717620), ABCB1 (rs2032582; rs1045642), MTHFR (rs1801131, rs1801133), HTR3A (rs1062613; rs1985242; rs1176713) and HTR3B (rs1176744). RESULT Enrolled were 121 JIA patients (82 girls: 39 boys) with a median age of 13.3 years (IQR: 11.3-15.1). The median MTX dose was 9.7 mg/m2/week (IQR: 9.0-10.9). The median MTX treatment duration prior to enrolment was 340 days (IQR: 142-766). The SNP analysis was available for 119 patients. MTX intolerance was associated with the genotype distribution of rs1801133 (MTHFR) (p = 0.02). There was no additive effect of the minor alleles for any of the selected SNPs, nor any significant haplotype associations. CONCLUSION Summary: MTX-induced nausea may be influenced by genetic polymorphisms in a MTX metabolizing enzyme (rs1801133; MTHFR). IMPLICATIONS Further analyses involving inclusion of larger cohorts are needed to understand the impact of SNPs on MTX-induced nausea in JIA.
Collapse
Affiliation(s)
- Nini Kyvsgaard
- Pediatric and Adolescent Medicine, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Torben Stamm Mikkelsen
- grid.154185.c0000 0004 0512 597XPediatric and Adolescent Medicine, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Thomas D. Als
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Estmann Christensen
- grid.7143.10000 0004 0512 5013Department of Pediatric Rheumatology, H.C. Andersen’s Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Thomas J. Corydon
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XDepartment of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Troels Herlin
- grid.154185.c0000 0004 0512 597XPediatric and Adolescent Medicine, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
25
|
Lopes DV, de Fraga Dias A, Silva LFL, Scholl JN, Sévigny J, Battastini AMO, Figueiró F. Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth. Purinergic Signal 2021; 17:273-284. [PMID: 33745072 DOI: 10.1007/s11302-021-09775-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.
Collapse
Affiliation(s)
- Daniela Vasconcelos Lopes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Fernando Lopes Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Functionalized graphene oxide/Fe 3O 4 nanocomposite: A biocompatible and robust nanocarrier for targeted delivery and release of anticancer agents. J Biotechnol 2021; 331:26-36. [PMID: 33722630 DOI: 10.1016/j.jbiotec.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
The development of efficient drug nanocarriers has remained an important challenge in advanced drug delivery in human body. Combination of graphene-based nanomaterials and cyanuric chloride (CC), as a linker, may improve the success of drug delivery. Herein, a simple approach was used for the synthesis of superparamagnetic graphene oxide (SPMGO) nanocomposite through a chemical precipitation method. The nanocomposite was readily functionalized with cyanuric chloride as a linker for loading the drug. The FTIR spectroscopy confirmed the efficient synthesis of nanocarriers. So did the transmission electron microscopy, atomic force microscopy, and thermo-gravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. Subsequently, the synthesized nanocarriers were studied in terms of their potential for biomedical applications. Immobilization of methotrexate (MTX), as a drug for treatment of cancer was taken into action on the SPMGO and SPMGO/CC. The in vitro assays indicated that the drug nanocarrier systems, SPMGO/MTX and SPMGO/CC/MTX, are hemo-compatible and increase the efficiency of MTX against Caov-4, HeLa and MCF-7 cell lines. The MTX nanocarriers represented a considerably high drug loading and controlled drug release. The overall results indicated the great potential of SPMGO/CC/MTX nanocarrier for targeted drug delivery, particularly in MTX chemotherapy.
Collapse
|
27
|
Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, Patterson AD, Ubeda C, Scher JU, Turnbaugh PJ. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 2021; 29:362-377.e11. [PMID: 33440172 PMCID: PMC7954989 DOI: 10.1016/j.chom.2020.12.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Immunomodulatory drugs can inhibit bacterial growth, yet their mechanism of action, spectrum, and clinical relevance remain unknown. Methotrexate (MTX), a first-line rheumatoid arthritis (RA) treatment, inhibits mammalian dihydrofolate reductase (DHFR), but whether it directly impacts gut bacteria is unclear. We show that MTX broadly alters the human gut microbiota. Drug sensitivity varied across strains, but the mechanism of action against DHFR appears conserved between mammalian and bacterial cells. RA patient microbiotas were sensitive to MTX, and changes in gut bacterial taxa and gene family abundance were distinct between responders and non-responders. Transplantation of post-treatment samples into germ-free mice given an inflammatory trigger led to reduced immune activation relative to pre-treatment controls, enabling identification of MTX-modulated bacterial taxa associated with intestinal and splenic immune cells. Thus, conservation in cellular pathways across domains of life can result in broad off-target drug effects on the human gut microbiota with consequences for immune function.
Collapse
Affiliation(s)
- Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, CA 94143, USA; Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Ishani Deshpande
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Kye Stapleton-Gray
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Carles Ubeda
- Centro Superior de Investigación en Salud Pública - FISABIO, Valencia, Spain; CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - Jose U Scher
- Department of Medicine, New York University, New York, NY 10003, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Gao J, Wang C, Wei W. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis. Life Sci 2021; 268:118907. [PMID: 33428880 DOI: 10.1016/j.lfs.2020.118907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporter families consist of common drug transporters that mediate the efflux and uptake of drugs, respectively, and play an important role in the absorption, distribution, metabolism and excretion of drugs in vivo. Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and there are many RA patients worldwide. Methotrexate (MTX), the first-choice treatment for RA, can reduce the level of inflammation, prevent joint erosion and functional damage, and greatly reduce pain in RA patients. However, many patients show resistance to MTX, greatly affecting the efficacy of MTX. Many factors, such as irrational drug use and heredity, are associated with drug resistance. Considering the effect of drug transporters on drugs, many studies have compared the expression of drug transporters in drug-resistant and drug-sensitive patients, and abnormal transporter expression and transport activity have been found in patients with MTX resistance. Thus, drug transporters are involved in drug resistance. This article reviews the effects of transporters on the efficacy of MTX in the treatment of RA.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
29
|
DMARDs-Gut Microbiota Feedback: Implications in the Response to Therapy. Biomolecules 2020; 10:biom10111479. [PMID: 33114390 PMCID: PMC7692063 DOI: 10.3390/biom10111479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Due to its immunomodulatory effects and the limitation in the radiological damage progression, disease-modifying antirheumatic drugs (DMARDs) work as first-line rheumatoid arthritis (RA) treatment. In recent years, numerous research projects have suggested that the metabolism of DMARDs could have a role in gut dysbiosis, which indicates that the microbiota variability could modify the employment of direct and indirect mechanisms in the response to treatment. The main objective of this review was to understand the gut microbiota bacterial variability in patients with RA, pre and post-treatment with DMARDs, and to identify the possible mechanisms through which microbiota can regulate the response to pharmacological therapy.
Collapse
|
30
|
Londono J, Saldarriaga EL, Rueda JC, Giraldo-Bustos R, Angarita JI, Restrepo L, Ballesteros-Muñoz J, González C, Ospina MJ, Arias-Correal S, Reyes-Martinez V, Bernalmacias S, Villota-Eraso C, Santos-Moreno P, Martinez-Rodriguez N, Santos AM. Pharmacogenetic aspects of methotrexate in a cohort of Colombian patients with rheumatoid arthritis. Biomed Rep 2020; 13:34. [PMID: 32793348 PMCID: PMC7418498 DOI: 10.3892/br.2020.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
Methotrexate (MTX) is the most commonly used disease-modifying antirheumatic drug for the treatment of rheumatoid arthritis (RA). However, over time, ~40% of patients may experience therapeutic failure or drug toxicity. The genetic variability of the enzymes involved in the MTX metabolic pathway seem to serve an important role in the eventual therapeutic failure or drug toxicity. Depending on the enzymes affected, the toxicity or the therapeutic response may change. The present study reports some of the polymorphisms identified in enzymes in the MTX metabolic pathway that are present in a group of Colombian patients with RA, and assesses the associations of these polymorphisms with toxicity or therapeutic response to the medication. A total of 400 patients with RA were evaluated, of which 76% were women. the average age was 60.7±13.9 years and the duration of the disease was 13.2±10.9 years. The disease activity scoring method, DAS28-CRP, was used to evaluate the therapeutic response. Toxicity was determined based on reports of adverse events during the evaluation of the patients. The single nucleotide polymorphisms (SNPs) assessed using reverse transcription-PCR in the present study were MTHFR C677T, A1298C, ATIC C347G, RFC-1-G80A, FPGS-AG and DHFR-CT. The SNPs of MTHFR C677T (P=0.05) and A1298C (P=0.048) were significantly associated with the efficacy of MTX, and DHFR-CT (P=0.01) and ATIC C347 (P=0.005) were significantly associated with documented toxicity. Haematological, hepatic or renal toxicity was not associated with any of the SNPs. The results obtained in Colombian patients with RA receiving MTX are similar to those reported in other populations; however, the SNPs associated with a lack of response previously reported in the literature were not observed in our data. The SNPs identified in the present study may be used as biomarkers to predict response to MTX in terms of efficacy and toxicity in Colombian patients with RA.
Collapse
Affiliation(s)
- John Londono
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Eugenia-Lucia Saldarriaga
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Juan C. Rueda
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico,Biosciences Programme, Faculty of Medicine and Engineering, Universidad de La Sabana, Chía, Cundinamarca 250001, Mexico
| | - Rodrigo Giraldo-Bustos
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Jose-Ignacio Angarita
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Luisa Restrepo
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Jesus Ballesteros-Muñoz
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Camilo González
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Maria J. Ospina
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Sofia Arias-Correal
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Viviana Reyes-Martinez
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Santiago Bernalmacias
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Catalina Villota-Eraso
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico
| | - Pedro Santos-Moreno
- BIOMAB, Centro de Atencion Integral en Artritis Reumatoide, Bogotá 10231, Colombia, Mexico
| | - Nancy Martinez-Rodriguez
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición (UIEEN), Hospital Infantil de México Federico Gomez, Ciudad de Mexico 06720, Mexico
| | - Ana M. Santos
- Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Cundinamarca 250001, Mexico,Correspondence to: Professor Ana M. Santos, Grupo Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca 250001, Colombia
| |
Collapse
|
31
|
Yu WJ, Huang DX, Liu S, Sha YL, Gao FH, Liu H. Polymeric Nanoscale Drug Carriers Mediate the Delivery of Methotrexate for Developing Therapeutic Interventions Against Cancer and Rheumatoid Arthritis. Front Oncol 2020; 10:1734. [PMID: 33042817 PMCID: PMC7526065 DOI: 10.3389/fonc.2020.01734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Methotrexate (MTX) is widely used as an anticancer and anti-inflammtory drug for treating various types of cancer and autoimmune diseases. The optimal dose of MTX is known to inhibit the dihydrofolatereductase that hinders the replication of purines. The nanobiomedicine has been extensively explored in the past decade to develop myriad functional nanostructures to facilitate the delivery of therapeutic agents for various medical applications. This review is focused on understanding the design and development of MTX-loaded nanoparticles alongside the inclusion of recent findings for the treatment of cancers. In this paper, we have made a coordinated effort to show the potential of novel drug delivery systems by achieving effective and target-specific delivery of methotrexate.
Collapse
Affiliation(s)
- Wen-Jun Yu
- The Eastern Division, Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dong-Xu Huang
- The Eastern Division, Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shuang Liu
- The Eastern Division, Department of Nursing Management, The First Hospital of Jilin University, Changchun, China
| | - Ying-Li Sha
- The Eastern Division, Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Feng-Hui Gao
- The Eastern Division, Department of Orthopaedics, The First Hospital of Jilin University, Changchun, China
| | - Hong Liu
- The Eastern Division, Department of Otolaryngology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
BASIC FIBROBLAST GROWTH FACTOR AND ADIPONECTIN IN ADOLESCENCE WITH JUVENILE IDIOPATHIC ARTHRITIS TREATED WITH METHOTREXATE. EUREKA: HEALTH SCIENCES 2020. [DOI: 10.21303/2504-5679.2020.001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methotrexate has been applied clinically for juvenile idiopathic arthritis (JIA) treatment for decades. It is recommended for use globally, according all modern guidelines. Despite the fact that fibrosis molecular mechanisms as well as methotrexate (MTX) elimination and fibrosis indexes were studied a lot there is still not enough information for adolescence. Adiponectin, fibroblast growth factor and fibrosis indexes in adolescents with JIA treated with methotrexate were studied in this work.
The aim was to study dynamics of molecular-cellular mechanisms activation of fibrotic processes development in the liver in adolescents with juvenile idiopathic arthritis treated with methotrexate.
Materials and methods: A total of 68 children with juvenile idiopathic arthritis, were enrolled in the study. 25 boys (36.8 %) and 43 girls (63.2 %) were examined. Children were divided into three groups in accordance with the methotrexate dose. The following data were analyzed: ESR (mm/hour), C-reactive protein (mg/l), Hemolytic activity (CU), circulating immune complexes, (g/l), ALT (U/l), AST (U/l), Adiponectin (mcg/ml), BFGF (pg/ml), APRI index, FIB-4 Score.
Results: According to our results when patients start using MTX they have significantly positive effect. Therefore, when analyzing all parameters liver pathologies may occur before MTX use. When MTX used, its proinflammation and antifibrotic effects lead to normalization of all organs and systems, as well as joints and liver. Also, long-term MTX use can lead to adverse effects.
Conclusions: So, it is important to control possible liver disorders in adolescence treated with MTX. According to our study results we find out that there are decreasing of liver damage parameters in patients which started using MTX.
Collapse
|
33
|
Tu X, Chen R, Huang G, Lu N, Chen Q, Bai X, Li B. Factors Predicting Severe Myelosuppression and Its Influence on Fertility in Patients with Low-Risk Gestational Trophoblastic Neoplasia Receiving Single-Agent Methotrexate Chemotherapy. Cancer Manag Res 2020; 12:4107-4116. [PMID: 32581584 PMCID: PMC7276201 DOI: 10.2147/cmar.s252664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the potential factors to predict severe myelosuppression among low-risk gestational trophoblastic neoplasia (GTN) patients with single-agent methotrexate (MTX) chemotherapy. To analyze reproductive outcomes of patients with or without severe myelosuppression after achieving complete remission (CR). Patients and Methods The retrospective study included 319 low-risk GTN patients registered from January 2008 to December 2018 in our hospital. Patients were divided into two groups according to myelosuppression grading. Their clinical data and reproductive outcomes were compared and analyzed. Results A higher proportion of patients in group A received second-line chemotherapy than group B (P<0.001). The number of total chemotherapy courses was more in group A than group B (P=0.001), while the number of MTX chemotherapy courses was more in group B than group A (P=0.001). When the joint predictor of pretreatment albumin (ALB) was not more than 44.5 g/L, pretreatment serum creatinine (Scr) was not less than 75.6 μmol/L, and the number of MTX chemotherapy courses was not less than four, there was a moderate predictive value. There was no significant difference of reproductive outcomes between the two groups after achieving CR. Conclusion Although some patients developed severe myelosuppression, MTX was still the effective first-line treatment for low-risk GTN patients. Patient’s pretreatment ALB was not more than 44.5 g/L, pretreatment Scr was not less than 75.6 μmol/L, and the number of MTX chemotherapy courses not less than four could be used as combined predictors to recognize the risk of severe myelosuppression. Severe myelosuppression had no significant adverse influence on fertility after achieving CR.
Collapse
Affiliation(s)
- Xiaoyu Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ruizhe Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Genping Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Nanjia Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoxia Bai
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
How does methotrexate work? Biochem Soc Trans 2020; 48:559-567. [DOI: 10.1042/bst20190803] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Abstract
Developed over 70 years ago as an anti-folate chemotherapy agent, methotrexate (MTX) is a WHO ‘essential medicine’ that is now widely employed as a first-line treatment in auto-immune, inflammatory diseases such as rheumatoid arthritis (RA), psoriasis and Crone's disease. When used for these diseases patients typically take a once weekly low-dose of MTX — a therapy which provides effective inflammatory control to tens of millions of people worldwide. While undoubtedly effective, our understanding of the anti-inflammatory mechanism-of-action of low-dose MTX is incomplete. In particular, the long-held dogma that this disease-modifying anti-rheumatic drug (DMARD) acts via the folate pathway does not appear to hold up to scrutiny. Recently, MTX has been identified as an inhibitor of JAK/STAT pathway activity, a suggestion supported by many independent threads of evidence. Intriguingly, the JAK/STAT pathway is central to both the inflammatory and immune systems and is a pathway already targeted by other RA treatments. We suggest that the DMARD activity of MTX is likely to be largely mediated by its inhibition of JAK/STAT pathway signalling while many of its side effects are likely associated with the folate pathway. This insight into the mechanism-of-action of MTX opens the possibility for repurposing this low cost, safe and effective drug for the treatment of other JAK/STAT pathway-associated diseases.
Collapse
|
35
|
Rostang A, Desjardins I, Espana B, Panzuti P, Berny P, Prouillac C, Pin D. Pharmacokinetics of low-dose methotrexate in horses. J Vet Pharmacol Ther 2020; 43:461-469. [PMID: 32216109 DOI: 10.1111/jvp.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate both the pharmacokinetic behavior and tolerance of methotrexate (MTX) in horses to design a specific dosing regimen as a new immunomodulatory drug for long-term treatment. To determine the primary plasma pharmacokinetic variables after single intravenous, subcutaneous or oral administration, six horses were administered 0.3 mg/kg MTX in a crossover design study. After a 10-week washout, MTX was administered subcutaneously to three of the six previously treated horses at a dose of 0.3 mg/kg once per week for 3 months. In both studies, MTX and metabolite concentrations were measured using LC-MS/MS. The absolute bioavailability of MTX was 73% following subcutaneous administration but less than 1% following oral administration. The plasma clearance was 1.54 ml min-1 kg-1 (extraction ratio = 2%). After 24 hr, plasma concentrations were below the LOQ. No adverse effects were noted except for a moderate reversible elevation in liver enzymes (GLDH). With regards to the main metabolites of MTX, very low concentrations of 7-hydroxy-MTX were found, whereas polyglutamated forms (mainly short chains) were found in red blood cells. A subcutaneous dose of 0.2 mg kg-1 week-1 may be safe and relevant in horses, although this has yet to be clinically confirmed.
Collapse
Affiliation(s)
- Antoine Rostang
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Isabelle Desjardins
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Bernadette Espana
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Pauline Panzuti
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Philippe Berny
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Caroline Prouillac
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| | - Didier Pin
- Université de Lyon, VetAgro Sup, UPSP ICE 'Interactions Cellules Environnement', Marcy l'Etoile, France
| |
Collapse
|
36
|
Shi ZY, Liu YO, Gu HY, Xu XQ, Yan C, Yang XY, Yan D. Population pharmacokinetics of high-dose methotrexate in Chinese pediatric patients with medulloblastoma. Biopharm Drug Dispos 2020; 41:101-110. [PMID: 32017134 DOI: 10.1002/bdd.2221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX) pharmacokinetics has substantial inter-individual variability and toxicity. In children with medulloblastoma treated with high-dose methotrexate (HD-MTX), the pharmacokinetic properties of methotrexate have not been established. A total of 660 serum samples from 105 pediatric patients with medulloblastoma were included in a population pharmacokinetic (PPK) analysis of methotrexate by using the nonlinear mixed-effects modeling method. The basic one-compartment population pharmacokinetic model was established by NONMEM software and the first-order conditional estimation (FOCE) method, and the final covariate model was obtained by the stepwise regression method. Weight (WT), creatinine clearance (CrCL), and whether the treatment was combined with dexamethasone (DEX) were covariates that had significant effects on the clearance rate (CL) of the model. The pharmacokinetic equation of CL in the final covariate model was as follows: CLi = 9.23× (1 + 0.0005× (θCrCL -105.78)) × (1 + 0.0017× (θWT -16)) × eηcl,i (L/h), IF (θDEX ) CLi = 1.19× CLi (L/h). The estimation accuracy of all pharmacokinetic parameters were acceptable (relative standard error < 14.74%). The goodness-of-fit diagram and bootstrap tests indicated that the final PPK model was stable with acceptable predictive ability. The PPK model may be useful for determining personalized medication levels in pediatric medulloblastoma patients undergoing HD-MTX therapy.
Collapse
Affiliation(s)
- Zheng-Yuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China.,Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China
| | - Ya-Ou Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Hong-Yan Gu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China.,Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China
| | - Xi-Qiao Xu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China.,Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China
| | - Can Yan
- Research Centre of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin-Yu Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China.,Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China.,Joint Laboratory for International Cooperation of Bio-characteristic Profiling for Evaluation of Clinical Rational Drug Use, Beijing, 100038, China
| |
Collapse
|
37
|
Derijks LJJ, Wong DR, Hommes DW, van Bodegraven AA. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Inflammatory Bowel Disease. Clin Pharmacokinet 2019; 57:1075-1106. [PMID: 29512050 DOI: 10.1007/s40262-018-0639-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to recent clinical consensus, pharmacotherapy of inflammatory bowel disease (IBD) is, or should be, personalized medicine. IBD treatment is complex, with highly different treatment classes and relatively few data on treatment strategy. Although thorough evidence-based international IBD guidelines currently exist, appropriate drug and dose choice remains challenging as many disease (disease type, location of disease, disease activity and course, extraintestinal manifestations, complications) and patient characteristics [(pharmaco-)genetic predisposition, response to previous medications, side-effect profile, necessary onset of response, convenience, concurrent therapy, adherence to (maintenance) therapy] are involved. Detailed pharmacological knowledge of the IBD drug arsenal is essential for choosing the right drug, in the right dose, in the right administration form, at the right time, for each individual patient. In this in-depth review, clinical pharmacodynamic and pharmacokinetic considerations are provided for tailoring treatment with the most common IBD drugs. Development (with consequent prospective validation) of easy-to-use treatment algorithms based on these considerations and new pharmacological data may facilitate optimal and effective IBD treatment, preferably corroborated by effectiveness and safety registries.
Collapse
Affiliation(s)
- Luc J J Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, PO Box 7777, 5500 MB, Veldhoven, The Netherlands.
| | - Dennis R Wong
- Department of Clinical Pharmacy, Pharmacology and Toxicology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Daniel W Hommes
- Center for Inflammatory Bowel Diseases, UCLA, Los Angeles, CA, USA
| | - Adriaan A van Bodegraven
- Department of Gastroenterology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
- Department of Gastroenterology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an Old Drug with New Tricks. Int J Mol Sci 2019; 20:E5023. [PMID: 31658782 PMCID: PMC6834162 DOI: 10.3390/ijms20205023] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Methotrexate (MTX) is the first line drug for the treatment of a number of rheumatic and non-rheumatic disorders. It is currently used as an anchor disease, modifying anti-rheumatic drug in the treatment of rheumatoid arthritis (RA). Despite the development of numerous new targeted therapies, MTX remains the backbone of RA therapy due to its potent efficacy and tolerability. There has been also a growing interest in the use of MTX in the treatment of chronic viral mediated arthritis. Many viruses-including old world alphaviruses, Parvovirus B19, hepatitis B/C virus, and human immunodeficiency virus-have been associated with arthritogenic diseases and reminiscent of RA. MTX may provide benefits although with the potential risk of attenuating patients' immune surveillance capacities. In this review, we describe the emerging mechanisms of action of MTX as an anti-inflammatory drug and complementing its well-established immunomodulatory activity. The mechanisms involve adenosine signaling modulation, alteration of cytokine networks, generation of reactive oxygen species and HMGB1 alarmin suppression. We also provide a comprehensive understanding of the mechanisms of MTX toxic effects. Lastly, we discussed the efficacy, as well as the safety, of MTX used in the management of viral-related rheumatic syndromes.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Xavier Guillot
- Service de Rhumatologie, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Jimmy Sélambarom
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Pascale Guiraud
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Claude Giry
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Marie Christine Jaffar-Bandjee
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Stéphane Ralandison
- Service de Rhumatologie-Médecine Interne, CHU Morafeno, Route d'Ivoloina 501, Toamasina, Madagascar.
| | - Philippe Gasque
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
- Pôle de Biologie, secteur Laboratoire d'Immunologie Clinique et Expérimentale de la zone de l'Océan Indien (LICE-OI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| |
Collapse
|
39
|
Understanding the binding interaction between methotrexate and human alpha-2-macroglobulin: Multi-spectroscopic and computational investigation. Arch Biochem Biophys 2019; 675:108118. [DOI: 10.1016/j.abb.2019.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022]
|
40
|
Lucas CJ, Dimmitt SB, Martin JH. Optimising low-dose methotrexate for rheumatoid arthritis-A review. Br J Clin Pharmacol 2019; 85:2228-2234. [PMID: 31276602 DOI: 10.1111/bcp.14057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/03/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Methotrexate at low doses (5-25 mg/week) is first-line therapy for rheumatoid arthritis. However, there is inter- and intrapatient variability in response, with contribution of variability in concentrations of active polyglutamate metabolites, associated with clinical efficacy and toxicity. Prescribing remains heterogeneous across population groups, disease states and regimens. This review examines current knowledge of dose-response of oral methotrexate in the setting of rheumatoid arthritis, and how this could help inform dosage regimens.
Collapse
Affiliation(s)
- Catherine J Lucas
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Simon B Dimmitt
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Division of Internal Medicine, Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Western Australia, Australia
| | - Jennifer H Martin
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Hunter New England Local Health District, Newcastle, New South Wales, Australia
| |
Collapse
|
41
|
Abdollahi Z, Taheri-Kafrani A, Bahrani SA, Kajani AA. PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. J Biotechnol 2019; 298:88-97. [PMID: 30986517 DOI: 10.1016/j.jbiotec.2019.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/09/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
Polymer-coated nanocarriers play an important role in targeted drug delivery. The use of polymers such as polyethylene glycol increases stability, biocompatibility, and blood circulation time of the drug, and may consequently improve the success of drug delivery. In the present work, a simple approach has been reported for synthesizing polyethylene glycol bis amin (PEGA) functionalized graphene oxide/iron oxide nanocomposite as a remarkable unit for loading drugs. The biomedical applications of the synthesized nanocomposite were investigated by immobilizing methotrexate (MTX), as an anticancer drug. The structural and morphological characteristics and the successful synthesis of the nanocomposite were evaluated by different charachterization techniques. The cytotoxicity assay of the nanocarrier showed higher toxicity against HeLa and MCF-7 cell lines, compared to free MTX. The drug release experiments in acidic and physiological conditions suggested the first order kinetics model for the release of MTX from the nanocomposite. Furthermore, the agglutination, complement activation, and coagulation time experiments demonstrated the blood compatibility of the synthesized nanocarrier.
Collapse
Affiliation(s)
- Zahra Abdollahi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Seyed Amir Bahrani
- ,IMT Lille Douai, Univ. Lille, Département Energétique Industrielle, F-59000 Lille, France
| | - Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
42
|
Nagy G, Király G, Veres P, Lázár I, Fábián I, Bánfalvi G, Juhász I, Kalmár J. Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth. Int J Pharm 2019; 558:396-403. [DOI: 10.1016/j.ijpharm.2019.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 02/01/2023]
|
43
|
Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur J Med Chem 2018; 158:502-516. [PMID: 30243154 DOI: 10.1016/j.ejmech.2018.09.027] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022]
Abstract
Methotrexate (MTX) is used as an anchor disease-modifying anti-rheumatic drugs (DMARDs) in treating rheumatoid arthritis (RA) because of its potent efficacy and tolerability. MTX benefits a large number of RA patients but partially suffered from side effects. A variety of side effects can be associated with MTX when treating RA patients, from mild to severe or discontinuation of the treatment. In this report, we reviewed the possible side effects that MTX might cause from the most common gastrointestinal toxicity effects to less frequent malignant diseases. In order to achieve regimen with less side effects, the administration of MTX with appropriate dose and a careful pretreatment inspection is necessary. Further investigations are required when combining MTX with other drugs so as to enhance the efficacy and reduce side effects at the same time. The management of MTX treatment is also discussed to provide strategies for occurred side effects. Thus, this review will provide scholars with a comprehensive understanding the side effects of MTX administration by RA patients.
Collapse
|
44
|
Andersen NS, Peiró Cadahía J, Previtali V, Bondebjerg J, Hansen CA, Hansen AE, Andresen TL, Clausen MH. Methotrexate prodrugs sensitive to reactive oxygen species for the improved treatment of rheumatoid arthritis. Eur J Med Chem 2018; 156:738-746. [DOI: 10.1016/j.ejmech.2018.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/08/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
|
45
|
Rostang A, Mosca M, Jeannin M, Luissiez C, Berny P, Fourel I, Pin D, Prouillac C. Pharmacokinetics of low-dose methotrexate in healthy beagle dogs. J Vet Pharmacol Ther 2018; 41:659-669. [DOI: 10.1111/jvp.12673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Antoine Rostang
- Interaction Cellule Environnement; Unité Pharmacologie et Toxicologie; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| | - Marion Mosca
- Interaction Cellule Environnement; Unité Dermatologique; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| | - Morgan Jeannin
- Interaction Cellule Environnement; Unité Pharmacologie et Toxicologie; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| | - Coralie Luissiez
- Interaction Cellule Environnement; Unité Pharmacologie et Toxicologie; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| | - Philippe Berny
- Interaction Cellule Environnement; Unité Pharmacologie et Toxicologie; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| | - Isabelle Fourel
- USC 1233 RS2GP; INRA; VetAgro Sup; Université Lyon; Marcy l’Etoile France
| | - Didier Pin
- Interaction Cellule Environnement; Unité Dermatologique; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| | - Caroline Prouillac
- Interaction Cellule Environnement; Unité Pharmacologie et Toxicologie; VetAgro Sup-Campus Vétérinaire de Lyon; Marcy l’Etoile France
| |
Collapse
|
46
|
Wang WY, Zhao XF, Ju XH, Liu P, Li J, Tang YW, Li SP, Li XD, Song FG. Induction of Au-methotrexate conjugates by sugar molecules: production, assembly mechanism, and bioassay studies. Int J Pharm 2018; 538:65-78. [PMID: 29341908 DOI: 10.1016/j.ijpharm.2017.12.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 01/12/2023]
Abstract
Au-methotrexate (Au-MTX) conjugates induced by sugar molecules were produced by a simple, one-pot, hydrothermal growth method. Herein, the Au(III)-MTX complexes were used as the precursors to form Au-MTX conjugates. Addition of different types of sugar molecules with abundant hydroxyl groups resulted in the formation of Au-MTX conjugates featuring distinct characteristics that could be explained by the diverse capping mechanisms of sugar molecules. That is, the instant-capping mechanism of glucose favored the generation of peanut-like Au-MTX conjugates with high colloidal stability while the post-capping mechanism of dextran and sucrose resulted in the production of Au-MTX conjugates featuring excellent near-infrared (NIR) optical properties with a long-wavelength plasmon resonance near 630-760 nm. Moreover, in vitro bioassays showed that cancer cell viabilities upon incubation with free MTX, Au-MTX conjugates doped with glucose, dextran and sucrose for 48 h were 74.6%, 55.0%, 62.0%, and 63.1%, respectively. Glucose-doped Au-MTX conjugates exhibited a higher anticancer activity than those doped with dextran and sucrose, therefore potentially presenting a promising treatment platform for anticancer therapy. Based on the present study, this work may provide the first example of using biocompatible sugars as regulating agents to effectively guide the shape and assembly behavior of Au-MTX conjugates. Potentially, the synergistic strategy of drug molecules and sugar molecules may offer the possibility to create more gold-based nanocarriers with new shapes and beneficial features for advanced anticancer therapy.
Collapse
Affiliation(s)
- Wei-Yuan Wang
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiu-Fen Zhao
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao-Han Ju
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jing Li
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ya-Wen Tang
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shu-Ping Li
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Shandong Bingkun Tengtai Ceramics Technology Co. Ltd., Zibo 255321, China.
| | - Xiao-Dong Li
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fu-Gui Song
- Shandong Bingkun Tengtai Ceramics Technology Co. Ltd., Zibo 255321, China
| |
Collapse
|
47
|
Mitochondrial translation requires folate-dependent tRNA methylation. Nature 2018; 554:128-132. [PMID: 29364879 PMCID: PMC6020024 DOI: 10.1038/nature25460] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Folates enable the activation and transfer of one-carbon units for biosynthesis of purines, thymidine and methionine1–3. Antifolates are important immunosuppressive4 and anticancer agents5. In proliferating lymphocytes6 and human cancers7,8, folate enzymes localizing to the mitochondria are particularly strongly upregulated. This in part reflects the need for mitochondria to generate one-carbon units and export them to the cytosol for anabolic metabolism2,9. The full range of uses of folate-bound one-carbon units in the mitochondrial compartment itself, however, has not been thoroughly explored. Here we show that loss of catalytic activity of the mitochondrial folate enzyme serine hydroxymethyltransferase 2 (SHMT2), but not other folate enzymes, leads to defective oxidative phosphorylation due to impaired mitochondrial translation. We find that SHMT2, presumably by generating mitochondrial 5,10-methylenetetrahydrofolate, provides methyl donors for producing the taurinomethyluridine base at the wobble position of select mitochondrial tRNAs. Mitochondrial ribosome profiling reveals that SHMT2 knockout cells, due to lack of this modified base, suffer from defective translation with preferential mitochondrial ribosome stalling at certain lysine (AAG) and leucine (UUG) codons. This results in impaired respiratory chain enzyme expression. Stalling at these specific codons also occurs in certain mitochondrial inborn errors of metabolism. Disrupting whole-cell folate metabolism, by folate deficiency or antifolate therapy, also impairs the respiratory chain. In summary, mammalian mitochondria use folate-bound one-carbon units to methylate tRNA, and this modification is required for respiratory chain translation and thus oxidative phosphorylation.
Collapse
|
48
|
Silva MF, Ribeiro C, Gonçalves VMF, Tiritan ME, Lima Á. Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: A brief review. Biomed Chromatogr 2018; 32:e4159. [PMID: 29226354 DOI: 10.1002/bmc.4159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023]
Abstract
Methotrexate (MTX) is an antifolate drug used for several diseases. Depending on the disease, MTX can be administered at low dose (LDMTX) in some autoimmune diseases, like rheumatoid arthritis, or at high dose (HDMTX) in some cancers, such as acute lymphoblastic leukemia. After absorption, MTX is metabolized in the liver to 7-hydroxymethotrexate and in the intestine to 2,4-diamino-N10-methylpteroic acid (DAMPA). Moreover, inside red blood cells, MTX is converted to active metabolites, MTX polyglutamates (MTXPGs), contributing to its pharmacodynamics. Owing to its narrow therapeutic range, and inter- and intra-patient variability, either noneffectiveness and/or toxicity may occur. Because of the existence of a relationship between drug therapeutic outcome and its systemic concentration, therapeutic drug monitoring (TDM) may ensure the effectiveness and safety of MTX use. In order to monitor the optimization of patient clinical response profile, several analytical methods have been described for TDM in biological samples. These include liquid chromatography (LC) coupled with ultraviolet detection, fluorescence detection or mass spectrometry, each one presenting advantages and drawbacks. This paper reviews the most commonly used techniques for sample preparation and critically discusses the current LC methods applied for the TDM of MTX in biological samples, at LDMTX and HDMTX.
Collapse
Affiliation(s)
- Mónica Francisco Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra, PRD, Portugal.,Faculdade de Medicina da Universidade de Coimbra, R. Larga, Coimbra, Portugal
| | - Cláudia Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra, PRD, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal
| | - Virgínia M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra, PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra, PRD, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Áurea Lima
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra, PRD, Portugal.,Grupo de Oncologia Molecular e Patologia Viral, Centro de Investigação, Instituto Português de Oncologia do Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal.,Hospital de Santo António, Centro Hospitalar do Porto, E.P.E. Largo do Prof. Abel Salazar, Porto, Portugal
| |
Collapse
|
49
|
Pallet N, Fernández-Ramos AA, Loriot MA. Impact of Immunosuppressive Drugs on the Metabolism of T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:169-200. [DOI: 10.1016/bs.ircmb.2018.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Danieli C, Abrahamowicz M. Competing risks modeling of cumulative effects of time-varying drug exposures. Stat Methods Med Res 2017; 28:248-262. [PMID: 28882094 DOI: 10.1177/0962280217720947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An accurate assessment of drug safety or effectiveness in pharmaco-epidemiology requires defining an etiologically correct time-varying exposure model, which specifies how previous drug use affects the hazard of the event of interest. An additional challenge is to account for the multitude of mutually exclusive events that may be associated with the use of a given drug. To simultaneously address both challenges, we develop, and validate in simulations, a new approach that combines flexible modeling of the cumulative effects of time-varying exposures with competing risks methodology to separate the effects of the same drug exposure on different outcomes. To account for the dosage, duration and timing of past exposures, we rely on a spline-based weighted cumulative exposure modeling. We also propose likelihood ratio tests to test if the cumulative effects of past exposure on the hazards of the competing events are the same or different. Simulation results indicate that the estimated event-specific weight functions are reasonably accurate, and that the proposed tests have acceptable type I error rate and power. In real-life application, the proposed method indicated that recent use of antihypertensive drugs may reduce the risk of stroke but has no effect on the hazard of coronary heart disease events.
Collapse
Affiliation(s)
- Coraline Danieli
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Michal Abrahamowicz
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|