1
|
Hu M, Liu R, Castro N, Sanchez LL, Learn J, Huang R, Lam KS, Carraway KL. Structure-Activity Relationship Study Identifies a Novel Lipophilic Amiloride Derivative that Efficiently Kills Chemoresistant Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542364. [PMID: 37292759 PMCID: PMC10245970 DOI: 10.1101/2023.05.25.542364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Derivatives of the potassium-sparing diuretic amiloride are preferentially cytotoxic toward tumor cells relative to normal cells, and have the capacity to target tumor cell populations resistant to currently employed therapeutic agents. However, a major barrier to clinical translation of the amilorides is their modest cytotoxic potency, with estimated IC 50 values in the high micromolar range. Here we report the synthesis of ten novel amiloride derivatives and the characterization of their cytotoxic potency toward MCF7 (ER/PR-positive), SKBR3 (HER2-positive) and MDA-MB-231 (triple negative) cell line models of breast cancer. Comparisons of derivative structure with cytotoxic potency toward these cell lines underscore the importance of an intact guanidine group, and uncover a strong link between drug-induced cytotoxicity and drug lipophilicity. We demonstrate that our most potent derivative called LLC1 is preferentially cytotoxic toward mouse mammary tumor over normal epithelial organoids, acts in the single digit micromolar range on breast cancer cell line models representing all major subtypes, acts on cell lines that exhibit both transient and sustained resistance to chemotherapeutic agents, but exhibits limited anti-tumor effects in a mouse model of metastatic breast cancer. Nonetheless, our observations offer a roadmap for the future optimization of amiloride-based compounds with preferential cytotoxicity toward breast tumor cells.
Collapse
|
2
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. The role of mitochondrial/metabolic axis in development of tamoxifen resistance in breast cancer. Hum Cell 2023; 36:1877-1886. [PMID: 37646973 PMCID: PMC10587280 DOI: 10.1007/s13577-023-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Only a few investigations, to our knowledge, have examined the bioenergetics of Tamoxifen (TMX) resistant individuals and reported altered mitochondrial activity and metabolic profile. The primary cause of TMX resistance is firmly suggested to be metabolic changes. Metabolic variations and hypoxia have also been linked in a bidirectional manner. Increased hypoxic levels correlate with early recurrence and proliferation and have a negative therapeutic impact on breast cancer (BC) patients. Hypoxia, carcinogenesis, and patient death are all correlated, resulting in more aggressive traits, a higher chance of metastasis, and TMX resistance. Consequently, we sought to investigate the possible role of the metabolic/hypoxial axis Long non-coding RNA (LncRNA) Taurine up-regulated 1 (TUG-1), Micro-RNA 186-5p (miR-186), Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-α), and Hypoxia-Inducible Factor-1 (HIF-1) in the development of TMX resistance in BC patients and to correlate this axis with tumor progression. Interestingly, this will be the first time to explore epigenetic regulation of this axis in BC.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical & Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Dilli Batcha JS, Raju AP, Matcha S, Raj S. EA, Udupa KS, Gota V, Mallayasamy S. Factors Influencing Pharmacokinetics of Tamoxifen in Breast Cancer Patients: A Systematic Review of Population Pharmacokinetic Models. BIOLOGY 2022; 12:51. [PMID: 36671744 PMCID: PMC9855885 DOI: 10.3390/biology12010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tamoxifen is useful in managing breast cancer and it is reported to have significant variability in its pharmacokinetics. This review aimed to summarize reported population pharmacokinetics studies of tamoxifen and to identify the factors affecting the pharmacokinetics of tamoxifen in adult breast cancer patients. METHOD A systematic search was undertaken in Scopus, Web of Science, and PubMed for papers published in the English language from inception to 20 August 2022. Studies were included in the review if the population pharmacokinetic modeling was based on non-linear mixed-effects modeling with a parametric approach for tamoxifen in breast cancer patients. RESULTS After initial selection, 671 records were taken for screening. A total of five studies were selected from Scopus, Web of Science, PubMed, and by manual searching. The majority of the studies were two-compartment models with first-order absorption and elimination to describe tamoxifen and its metabolites' disposition. The CYP2D6 phenotype and CYP3A4 genotype were the main covariates that affected the metabolism of tamoxifen and its metabolites. Other factors influencing the drug's pharmacokinetics included age, co-medication, BMI, medication adherence, CYP2B6, and CYP2C19 genotype. CONCLUSION The disposition of tamoxifen and its metabolites varies primarily due to the CYP2D6 phenotype and CYP3A4 genotype. However, other factors, such as anthropometric characteristics and menopausal status, should also be addressed when accounting for this variability. All these studies should be externally evaluated to assess their applicability in different populations and to use model-informed dosing in the clinical setting.
Collapse
Affiliation(s)
- Jaya Shree Dilli Batcha
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Saikumar Matcha
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Elstin Anbu Raj S.
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
- Public Health Evidence South Asia, Department of Health Information, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Karthik S. Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Mumbai 410 210, Maharashtra, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
- Center for Pharmacometrics, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| |
Collapse
|
4
|
High BRCA1 gene expression increases the risk of early distant metastasis in ER + breast cancers. Sci Rep 2022; 12:77. [PMID: 34996912 PMCID: PMC8741892 DOI: 10.1038/s41598-021-03471-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although the function of the BRCA1 gene has been extensively studied, the relationship between BRCA1 gene expression and tumor aggressiveness remains controversial in sporadic breast cancers. Because the BRCA1 protein is known to regulate estrogen signaling, we selected microarray data of ER+ breast cancers from the GEO public repository to resolve previous conflicting findings. The BRCA1 gene expression level in highly proliferative luminal B tumors was shown to be higher than that in luminal A tumors. Survival analysis using a cure model indicated that patients of early ER+ breast cancers with high BRCA1 expression developed rapid distant metastasis. In addition, the proliferation marker genes MKI67 and PCNA, which are characteristic of aggressive tumors, were also highly expressed in patients with high BRCA1 expression. The associations among high BRCA1 expression, high proliferation marker expression, and high risk of distant metastasis emerged in independent datasets, regardless of tamoxifen treatment. Tamoxifen therapy could improve the metastasis-free fraction of high BRCA1 expression patients. Our findings link BRCA1 expression with proliferation and possibly distant metastasis via the ER signaling pathway. We propose a testable hypothesis based on these consistent results and offer an interpretation for our reported associations.
Collapse
|
5
|
Centonze G, Natalini D, Salemme V, Costamagna A, Cabodi S, Defilippi P. p130Cas/ BCAR1 and p140Cap/ SRCIN1 Adaptors: The Yin Yang in Breast Cancer? Front Cell Dev Biol 2021; 9:729093. [PMID: 34708040 PMCID: PMC8542790 DOI: 10.3389/fcell.2021.729093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
p130Cas/BCAR1 is an adaptor protein devoid of any enzymatic or transcriptional activity, whose modular structure with various binding motifs, allows the formation of multi-protein signaling complexes. This results in the induction and/or maintenance of signaling pathways with pleiotropic effects on cell motility, cell adhesion, cytoskeleton remodeling, invasion, survival, and proliferation. Deregulation of p130Cas/BCAR1 adaptor protein has been extensively demonstrated in a variety of human cancers in which overexpression of p130Cas/BCAR1 correlates with increased malignancy. p140Cap (p130Cas associated protein), encoded by the SRCIN1 gene, has been discovered by affinity chromatography and mass spectrometry analysis of putative interactors of p130Cas. It came out that p140Cap associates with p130Cas not directly but through its interaction with the Src Kinase. p140Cap is highly expressed in neurons and to a lesser extent in epithelial tissues such as the mammary gland. Strikingly, in vivo and in vitro analysis identified its tumor suppressive role in breast cancer and in neuroblastoma, showing an inverse correlation between p140Cap expression in tumors and tumor progression. In this review, a synopsis of 15 years of research on the role of p130Cas/BCAR1 and p140Cap/SRCIN1 in breast cancer will be presented.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
6
|
Meng C, Zou Y, Hong W, Bao C, Jia X. Estrogen-regulated PTTG1 promotes breast cancer progression by regulating cyclin kinase expression. Mol Med 2020; 26:33. [PMID: 32272902 PMCID: PMC7146910 DOI: 10.1186/s10020-020-00161-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The present study aims to investigate the effects of pituitary tumor transforming gene (PTTG) 1 on breast cancer and its underlying mechanism. METHODS GEO data set was applied to analyze the relationship between PTTG1 and survival status and the TCGA breast cancer dataset was used to explore its possible targets. The stable cell lines including PTTG1 knockdown cells, estrogen receptor (ESR) 1 knockdown cells, and PTTG1 overexpression cells were constructed. MTT was used to determine cell viabilities. Propidium iodide (PI) staining and flow cytometry were used to analyze the cell cycle. Quantitative polymerase chain reaction (qPCR) was employed to determine the mRNA expressions. Points mutations and luciferase reporter assays were used to determine the binding sites of estrogen. RESULTS PTTG1 was associated with poor survival rates in breast cancer. In vitro study demonstrated that PTTG1 affected cell viabilities of MCF7 and T47D cells. Besides, PTTG1 affected cell cycle arrest of breast cancer cells. Overexpression of PTTG1 led to more breast cancer cells distributed in S phase. The levels of PTTG1 were associated with estrogen and further results showed that the levels of PTTG1 were positively correlated to tamoxifen resistance. Two genes including CCNA2 and CCNB2 were identified to be possible targets of PTTG1. CONCLUSION Estrogen-regulated PTTG1 promotes the development of breast cancer cells by the regulation of the cell cycle.
Collapse
Affiliation(s)
- Chunhui Meng
- Department of General Surgery, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Yan Zou
- Department of General Surgery, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Weiwei Hong
- Department of General Surgery, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Chunhua Bao
- Department of Oncology, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Xiaofeng Jia
- Department of Oncology, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China.
| |
Collapse
|
7
|
Katiki MR, Kommula D, Polepalli S, Jain N, Murty MSR. A One-pot Multicomponent ‘Click’ Approach to the Synthesis of Novel Tamoxifen-triazole Conjugates using Nano Iron Oxide Catalyst and their Preliminary Antiproliferative Activity Studies. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180621100314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background:
In an effort to establish new drug candidates with improved antiproliferative
activity, we report here a novel class of compounds designed rationally by the replacement of
an ethyl group in tamoxifen with a methylene (1H-1,2,4-triazole) and the introduction of 1,4-
substituted 1,2,3-triazoles in the basic side chain.
Methods:
Magnetically separable iron oxide nanoparticles have been found to effectively catalyze
the one-pot multicomponent click synthesis of 1,4-disubstituted 1,2,3-triazole conjugates in water.
IR, 1HNMR, 13CNMR and HRMS experiments have been implemented for the unmistakable determination
of the regiochemistry of the process. The novel compounds were evaluated for their antiproliferative
activity against four human tumor cell lines, namely, MCF-7, MDA-MB-231, HeLa,
and A549. Cell growth inhibition was assessed according to the standard Sulforhodamine B (SRB)
cell proliferation method.
Results:
The most active compounds 4h, 4n and 5a have been identified with superior GI50 values
in the range of 0.13–0.31 µM as compared with the reference drug, tamoxifen (0.25-0.72 µM).
Conclusion:
Additionally, taking the stereochemistry into consideration, E isomers seem slightly
more active towards the tested cancer cell lines with respect to Z isomers.
Collapse
Affiliation(s)
- Mohana Rao Katiki
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR–Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Dileep Kommula
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR–Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Sowjanya Polepalli
- Centre for Chemical Biology, CSIR–Indian Institute of Chemical Technology, Hyderabad- 500 007, India
| | - Nishant Jain
- Centre for Chemical Biology, CSIR–Indian Institute of Chemical Technology, Hyderabad- 500 007, India
| | - Madugula Sree Rama Murty
- Medicinal Chemistry & Pharmacology Division, Discovery Laboratory, CSIR–Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
8
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
9
|
Griffin F, Marignol L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int J Radiat Biol 2018. [PMID: 29521142 DOI: 10.1080/09553002.2018.1446227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melatonin is an endogenous hormone primarily known for its action on the circadian rhythms. But pre-clinical studies are reporting both its radioprotective and radiosensitizing properties, possibly mediated through an interaction between melatonin and the regulation of estrogens. Melatonin pre-treatment prior to ionizing radiation was associated with a decrease in cell proliferation and an increase in p53 mRNA expression, leading to an increase in the radiosensitivity of breast cancer cells. At the same time, a decrease in radiation-induced side effects was described in breast cancer patients and in rodent models. This review examines the potential for melatonin to improve the therapeutic outcomes of breast radiation therapy, specifically estrogen receptor positive patients. Evidence suggests that melatonin may offer a novel, non-toxic and cheap adjuvant therapy to improve the existing treatment modalities. But further research is required in the clinical setting before a clear understanding of its therapeutic benefits is determined.
Collapse
Affiliation(s)
- Fiona Griffin
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| | - Laure Marignol
- a Applied Radiation Therapy Trinity, Discipline of Radiation therapy , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
10
|
Design, Synthesis, and Cytotoxicity Evaluation of Novel Griseofulvin Analogues with Improved Water Solubility. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2017:7386125. [PMID: 29362676 PMCID: PMC5738580 DOI: 10.1155/2017/7386125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Griseofulvin 1 is an important antifungal agent that has recently received attention due to its antiproliferative activity in mammalian cancer cells. Study of SAR of some griseofulvin analogues has led to the identification of 2'-benzyloxy griseofulvin 3, a more potent analogue which retards tumor growth through inhibition of centrosomal clustering. However, similar to griseofulvin 1, compound 3 exhibited poor aqueous solubility. In order to improve the poor water solubility, six new griseofulvin analogues 5-10 were synthesized and tested for their antiproliferative activity and water solubility. The semicarbazone 9 and aminoguanidine 10 analogues were the most potent against HCT116 and MCF-7 cell lines. In combination studies, compound 9 was found to exert synergistic effects with tamoxifen and 5-fluorouracil against MCF-7 and HCT116 cells proliferation, respectively. The flow cytometric analysis of effect of 9 on cell cycle progression revealed G2/M arrest in HCT116. In addition, compound 9 induced apoptosis in MCF-7 cells. Finally, all synthesized analogues revealed higher water solubility than griseofulvin 1 and benzyloxy analogue 3 in pH 1.2 and 6.8 buffer solutions.
Collapse
|
11
|
Alternative Splicing in Breast Cancer and the Potential Development of Therapeutic Tools. Genes (Basel) 2017; 8:genes8100217. [PMID: 28981467 PMCID: PMC5664086 DOI: 10.3390/genes8100217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is a key molecular mechanism now considered as a hallmark of cancer that has been associated with the expression of distinct isoforms during the onset and progression of the disease. The leading cause of cancer-related deaths in women worldwide is breast cancer, and even when the role of alternative splicing in this type of cancer has been established, the function of this mechanism in breast cancer biology is not completely decoded. In order to gain a comprehensive view of the role of alternative splicing in breast cancer biology and development, we summarize here recent findings regarding alternative splicing events that have been well documented for breast cancer evolution, considering its prognostic and therapeutic value. Moreover, we analyze how the response to endocrine and chemical therapies could be affected due to alternative splicing and differential expression of variant isoforms. With all this knowledge, it becomes clear that targeting alternative splicing represents an innovative approach for breast cancer therapeutics and the information derived from current studies could guide clinical decisions with a direct impact in the clinical advances for breast cancer patients nowadays.
Collapse
|
12
|
Bai A, Mao C, Jenkins RW, Szulc ZM, Bielawska A, Hannun YA. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS One 2017; 12:e0177805. [PMID: 28614356 PMCID: PMC5470663 DOI: 10.1371/journal.pone.0177805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 02/03/2023] Open
Abstract
Acid ceramidase, which catalyzes ceramide hydrolysis to sphingosine and free fatty acid mainly in the lysosome, is being recognized as a potential therapeutic target for cancer. B13 is an effective and selective acid ceramidase inhibitor in vitro, but not as effective in cells due to poor access to the lysosomal compartment. In order to achieve targeting of B13 to the lysosome, we designed lysosomotropic N, N-dimethyl glycine (DMG)-conjugated B13 prodrug LCL521 (1,3-di-DMG-B13). Our previous results indicated the efficient delivery of B13 to the lysosome resulted in augmented effects of LCL521 on cellular acid ceramidase as evaluated by effects on substrate/product levels. Our current studies indicate that functionally, this translated into enhanced inhibition of cell proliferation. Moreover, there were greater synergistic effects of LCL521 with either ionizing radiation or Tamoxifen. Taken together, these results clearly indicate that compartmental targeting for the inhibition of acid ceramidase is an efficient and valuable therapeutic strategy.
Collapse
Affiliation(s)
- Aiping Bai
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Russell W. Jenkins
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Zdzislaw M. Szulc
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alicja Bielawska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| |
Collapse
|
13
|
Yin L, Wang ZY. Roles of the ER-α36-EGFR/HER2 positive regulatory loops in tamoxifen resistance. Steroids 2016; 111:95-99. [PMID: 26884313 DOI: 10.1016/j.steroids.2016.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen provided a successful treatment for ER-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to tamoxifen therapy. Extensive researches were conducted to understand the molecular mechanisms involved in tamoxifen resistance, and have revealed that multiple signaling molecules and pathways such as EGFR and HER2 are involved in tamoxifen resistance. Currently, the mechanisms by which tamoxifen sensitive breast cancer cells acquire these signaling pathways and develop tamoxifen resistance have not been elucidated. The identification of ER-α36, a variant of ER-α, that is able to mediate agonist activity of tamoxifen provided great insights into the underlying mechanisms of tamoxifen resistance. In this review, we will discuss the biological function and the possible underlying mechanisms of ER-α36 in tamoxifen resistance and specifically illustrate a novel cross-talk mechanism; positive regulatory loops between the ER-α36 and EGFR/HER2 in tamoxifen resistance. The function and the underlying mechanisms of ER-α36 in tamoxifen resistance of the breast cancer stem/progenitor cells will also be discussed. Finally, we will postulate a novel approach to restore tamoxifen sensitivity in tamoxifen resistant breast cancer cells.
Collapse
Affiliation(s)
- Li Yin
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE, USA
| | - Zhao-Yi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
14
|
Estrogen receptor beta participate in the regulation of metabolizm of extracellular matrix in estrogen alpha negative breast cancer. Folia Histochem Cytobiol 2016; 47:S107-12. [PMID: 20067880 DOI: 10.2478/v10042-009-0047-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biology of breast cancer is closely releted to sex steroid hormones. Estrogen receptor beta is overexpressed in around 70% breast cancer cases, referrd to as "ER positive". Estrogens bind to estrogen receptor and stimulate the transcription of genes involved in control of cell proliferation. Moreover, estrogens may induce growth factors and components of extracellular matrix and interact with them in a complex manner. Extracellular matrix and integrins play an important role in cell functions and their aberrant expressions are implicated in breast cancer development, invasion and metastasis. ER beta is certainly associated with more differentiated tumors, while evidence of role of ER beta is controversial. The highly invasive breast cancer ER beta negative cell line MDA-MB 231 can be the model of exam the role of ER beta in breast cancer. The aim of this study was to examine the role of activation of ER beta on the metabolism of the extracellular matrix and the expression of beta-1 integrin in the breast cancer cell line MDA-MB 231. The cells were exposed on the estradiol, tamoxifen, raloxifen and genisteina in dose dependent concentrations. To determine the relative rate of collagen syntesis we measured the time-dependent reduction of collagen-bound radioactivity after pulse-chase labeling with [3 H] prolina by Peterkofsky methods. The expression of beta-1 integrin was determine by Western blot analysis. The activity of MMP2 and 9 were measured using gelatin zymography with an image analysis system. Our data suggest on the role of estrogen receptor beta on the metabolism of extracellular matrix in the breast cancer line MDA - MB 231. Estradiol and SERMs regulate the expression of ECM proteins: collagen, integrins and enhance activity of metaloproteinases 2 and 9.
Collapse
|
15
|
A truncated phosphorylated p130Cas substrate domain is sufficient to drive breast cancer growth and metastasis formation in vivo. Tumour Biol 2016; 37:10665-73. [PMID: 26867768 DOI: 10.1007/s13277-016-4902-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated p130Cas (Crk-associated substrate) levels are found in aggressive breast tumors and are associated with poor prognosis and resistance to standard therapeutics in patients. p130Cas signals majorly through its phosphorylated substrate domain (SD) that contains 15 tyrosine motifs (YxxP) which recruit effector molecules. Tyrosine phosphorylation of p130Cas is important for mediating migration, invasion, tumor promotion, and metastasis. We previously developed a Src*/SD fusion molecule approach, where the SD is constitutively phosphorylated. In a polyoma middle T-antigen (PyMT)/Src*/SD double-transgenic mouse model, Src*/SD accelerates PyMT-induced tumor growth and promotes a more aggressive phenotype. To test whether Src*/SD also drives metastasis and which of the YxxP motifs are involved in this process, full-length and truncated SD molecules fused to Src* were expressed in breast cancer cells. The functionality of the Src*/SD fragments was analyzed in vitro, and the active proteins were tested in vivo in an orthotopic mouse model. Breast cancer cells expressing the full-length SD and the functional smaller SD fragment (spanning SD motifs 6-10) were injected into the mammary fat pads of mice. The tumor progression was monitored by bioluminescence imaging and caliper measurements. Compared with control animals, the complete SD promoted primary tumor growth and an earlier onset of metastases. Importantly, both the complete and truncated SD significantly increased the occurrence of metastases to multiple organs. These studies provide strong evidence that the phosphorylated p130Cas SD motifs 6-10 (Y236, Y249, Y267, Y287, and Y306) are important for driving mammary carcinoma progression.
Collapse
|
16
|
Abstract
The members of the Cas protein family (p130Cas/BCAR1, Nedd9/HEF1, EFS and CASS4) are scaffold proteins required for the assembly of signal transduction complexes in response to several stimuli, such as growth factors, hormones and extracellular matrix components. Given their ability to integrate and coordinate multiple signalling events, Cas proteins have emerged as crucial players in the control of mammary cell proliferation, survival and differentiation. More importantly, it has been found that alterations of their expression levels result in aberrant signalling cascades, which promote initiation and progression of breast cancer. Based on the increasing data from in vitro, mouse model and clinical studies, in this review we will focus on two Cas proteins, p130Cas/BCAR1 and Nedd9, and their coupled signalling pathways, to examine their role in mammary cell transformation and in the acquirement of invasiveness and drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Giusy Tornillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy; European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | | |
Collapse
|
17
|
Teschendorff AE, Li L, Yang Z. Denoising perturbation signatures reveal an actionable AKT-signaling gene module underlying a poor clinical outcome in endocrine-treated ER+ breast cancer. Genome Biol 2015; 16:61. [PMID: 25886003 PMCID: PMC4399757 DOI: 10.1186/s13059-015-0630-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background Databases of perturbation gene expression signatures and drug sensitivity provide a powerful framework to develop personalized medicine approaches, by helping to identify actionable genomic markers and subgroups of patients who may benefit from targeted treatments. Results Here we use a perturbation expression signature database encompassing perturbations of over 90 cancer genes, in combination with a large breast cancer expression dataset and a novel statistical denoising algorithm, to help discern cancer perturbations driving most of the variation in breast cancer gene expression. Clustering estrogen receptor positive cancers over the perturbation activity scores recapitulates known luminal subtypes. Analysis of individual activity scores enables identification of a novel cancer subtype, defined by a 31-gene AKT-signaling module. Specifically, we show that activation of this module correlates with a poor prognosis in over 900 endocrine-treated breast cancers, a result we validate in two independent cohorts. Importantly, breast cancer cell lines with high activity of the module respond preferentially to PI3K/AKT/mTOR inhibitors, a result we also validate in two independent datasets. We find that at least 34 % of the downregulated AKT module genes are either mediators of apoptosis or have tumor suppressor functions. Conclusions The statistical framework advocated here could be used to identify gene modules that correlate with prognosis and sensitivity to alternative treatments. We propose a randomized clinical trial to test whether the 31-gene AKT module could be used to identify estrogen receptor positive breast cancer patients who may benefit from therapy targeting the PI3K/AKT/mTOR signaling axis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0630-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China. .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Linlin Li
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Zhen Yang
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
18
|
Kumbrink J, Soni S, Laumbacher B, Loesch B, Kirsch KH. Identification of Novel Crk-associated Substrate (p130Cas) Variants with Functionally Distinct Focal Adhesion Kinase Binding Activities. J Biol Chem 2015; 290:12247-55. [PMID: 25805500 DOI: 10.1074/jbc.m115.649947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/08/2023] Open
Abstract
Elevated levels of p130(Cas) (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130(Cas) protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130(Cas)-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130(Cas) exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130(Cas) on cell biology and therefore will be the target of future studies.
Collapse
Affiliation(s)
- Joerg Kumbrink
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Shefali Soni
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Barbara Laumbacher
- the Immunotherapy Research Center, Pettenkoferstrasse 8, 80336 Munich, Germany, and
| | - Barbara Loesch
- Immunis e.V., Pettenkoferstrasse 8, 80336 Munich, Germany
| | - Kathrin H Kirsch
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
19
|
Abstract
Steroid hormone receptor (SHR) expression and changes in SHR expression compared to basal levels, whether upregulated, downregulated, or mutated, form a distinguishing feature of some breast, ovarian, and prostate cancers. These receptors act to induce tumor proliferation. In the imaging context, total expression together with modulation of expression can yield predictive and prognostic information. Currently, biopsy for histologic assessment of SHR expression is routine for breast and prostate cancer; however, the technique is not well suited to the heterogeneous tumor environment and can lead to incorrect receptor expression assignment, which precludes effective treatment. The development of positron emission tomography (PET) radioligands to image receptor expression may overcome the difficulties associated with tumor heterogeneity and facilitate the assessment of metastatic disease.
Collapse
|
20
|
The investigation of miR-221-3p and PAK1 gene expressions in breast cancer cell lines. Gene 2015; 555:377-81. [DOI: 10.1016/j.gene.2014.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
|
21
|
Effect of angiotensin receptor blockade on prevention and reversion of tamoxifen-resistant phenotype in MCF-7 cells. Tumour Biol 2014; 36:893-900. [PMID: 25304158 DOI: 10.1007/s13277-014-2713-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/05/2014] [Indexed: 01/17/2023] Open
Abstract
Tamoxifen (TAM) is a standard adjuvant endocrine therapy in postmenopausal breast cancer patients, but innate or acquired TAM resistance has remained to be a therapeutic challenge for clinicians. The aim of this study was to explore the possible participation of renin-angiotensin system (RAS) in the acquisition of TAM resistance and try to prevent and regress the resistance using an angiotensin II receptor type-1 (AGTR1) blocker, losartan. Establishment of TAM-resistant (TAM-R) cells was accomplished by continuous exposure of MCF-7 cells to 1 μmol/L TAM. MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to determine cell growth. Moreover, messenger RNA (mRNA) expression levels of AGTR1 and angiotensin II receptor type-2 (AGTR2) were measured by quantitative real-time polymerase chain reaction. A significant increase of AGTR1 and AGTR2 transcripts was observed in TAM-R cells compared to MCF-7 cells. Interestingly, losartan-TAM combination effectively resensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest an important role of RAS in acquired TAM resistance and targeting of RAS by losartan may overcome TAM resistance phenomenon and provide a novel avenue for treatment of resistant breast cancers.
Collapse
|
22
|
Estrogen receptor β isoform 5 confers sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis through interaction with Bcl2L12. Neoplasia 2014; 15:1262-71. [PMID: 24339738 DOI: 10.1593/neo.131184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing of estrogen receptor β (ERβ) yields five isoforms, but their functions remain elusive. ERβ isoform 5 (ERβ5) has been positively correlated with better prognosis and longer survival of patients with breast cancer (BCa) in various clinical studies. In this study, we investigated the inhibitory role of ERβ5 in BCa cells. Although ERβ5 does not reduce proliferation of BCa cell lines MCF-7 and MDA-MB-231, its ectopic expression significantly decreases their survival by sensitizing them to doxorubicin- or cisplatin-induced apoptosis through the intrinsic apoptotic pathway. Moreover, we discovered Bcl2L12, which belongs to the Bcl-2 family regulating apoptosis, to be a specific interacting partner of ERβ5, but not ERβ1 or ERα, in an estradiol-independent manner. Knockdown of Bcl2L12 enhanced doxorubicin- or cisplatin-induced apoptosis, and this process was further promoted by ectopic expression of ERβ5. Whereas Bcl2L12 was previously shown to inhibit apoptosis through binding to caspase 7, such interaction is reduced in the presence of ERβ5, suggesting a mechanism by which ERβ5 sensitizes cells to apoptosis. In conclusion, ERβ5 interacts with Bcl2L12 and functions in a novel estrogen-independent molecular pathway that promotes chemotherapeutic Agent-Induced in vitro apoptosis of BCa cell lines.
Collapse
|
23
|
Chakraborty S, Biswas PK. Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha. J Mol Model 2014; 20:2338. [PMID: 25060147 PMCID: PMC4379705 DOI: 10.1007/s00894-014-2338-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/08/2014] [Indexed: 12/27/2022]
Abstract
Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Laboratory of Computational Biophysics & Bioengineering Department of Physics, Tougaloo College, Tougaloo MS 39174, USA
- Saroj Mohan Institute of Technology, Hooghly, West Bengal, India
| | - P. K. Biswas
- Laboratory of Computational Biophysics & Bioengineering Department of Physics, Tougaloo College, Tougaloo MS 39174, USA
| |
Collapse
|
24
|
Montenegro MF, Collado-González MDM, Fernández-Pérez MP, Hammouda MB, Tolordava L, Gamkrelidze M, Rodríguez-López JN. Promoting E2F1-mediated apoptosis in oestrogen receptor-α-negative breast cancer cells. BMC Cancer 2014; 14:539. [PMID: 25064027 PMCID: PMC4122786 DOI: 10.1186/1471-2407-14-539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Because oestrogen receptor α (ERα) regulates E2F1 expression to mediate tamoxifen resistance in ERα-positive breast cancer cells, we aimed to define the possible roles of ERα and E2F1 in promoting the resistance of ERα-negative breast cancer cells to 4-hydroxy-tamoxifen (4OHT). Methods This study utilised conventional techniques to demonstrate the effects of 4OHT on the expression of ERα and E2F1 and also examined the individual and combined effects of 4OHT with dipyridamole (DIPY) and 3-O-(3,4,5-trimethoxybenzoyl)-(-)-catechin (TMCG) on the oestrogen-negative MDA-MB-231 breast cancer cell line using viability assays, Hoechst staining, MALDI-TOF mass spectroscopy, and confocal microscopy. Results Despite the ERα-negative status of the MDA-MB-231 cells, we observed that 4OHT efficiently up-regulated ERα in these cells and that this upregulation promoted E2F1-mediated cell growth. Because E2F1 plays a dual role in cell growth/apoptosis, we designed a therapy incorporating TMCG/DIPY to take advantage of the elevated E2F1 expression in these 4OHT-treated cells. 4OHT enhances the toxicity of TMCG/DIPY in these ERα-negative breast cancer cells. Conclusions Because TMCG/DIPY treatment modulates the methylation status/stability of E2F1, the results demonstrate that therapies targeting the epigenetic machinery of cancer cells in the presence of overexpressed E2F1 may result in efficient E2F1-mediated cell death.
Collapse
Affiliation(s)
- María F Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mercier I, Gonzales DM, Quann K, Pestell TG, Molchansky A, Sotgia F, Hulit J, Gandara R, Wang C, Pestell RG, Lisanti MP, Jasmin JF. CAPER, a novel regulator of human breast cancer progression. Cell Cycle 2014; 13:1256-64. [PMID: 24621503 DOI: 10.4161/cc.28156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.
Collapse
Affiliation(s)
- Isabelle Mercier
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA; Department of Pharmaceutical Sciences; Philadelphia College of Pharmacy; University of the Sciences in Philadelphia; Philadelphia, PA, USA
| | - Donna M Gonzales
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA
| | - Kevin Quann
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA
| | - Timothy G Pestell
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA
| | - Alexander Molchansky
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA
| | - Federica Sotgia
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA; Breakthrough Breast Cancer Research Unit; Institute of Cancer Sciences; University of Manchester; Manchester, UK
| | - James Hulit
- Breakthrough Breast Cancer Research Unit; Institute of Cancer Sciences; University of Manchester; Manchester, UK
| | - Ricardo Gandara
- Breakthrough Breast Cancer Research Unit; Institute of Cancer Sciences; University of Manchester; Manchester, UK
| | - Chenguang Wang
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA
| | - Richard G Pestell
- Department of Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA
| | - Michael P Lisanti
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA; Breakthrough Breast Cancer Research Unit; Institute of Cancer Sciences; University of Manchester; Manchester, UK
| | - Jean-François Jasmin
- Department of Stem Cell Biology & Regenerative Medicine; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA, USA; Department of Pharmaceutical Sciences; Philadelphia College of Pharmacy; University of the Sciences in Philadelphia; Philadelphia, PA, USA
| |
Collapse
|
26
|
Ballazhi L, Imeri F, Dimovski A, Jashari A, Popovski E, Breznica-Selmani P, Mikhova B, Dräger G, Alili-Idrizi E, Mladenovska K. Synergy of novel coumarin derivatives and tamoxifen in blocking growth and inducing apoptosis of breast cancer cells. ACTA ACUST UNITED AC 2014. [DOI: 10.33320/maced.pharm.bull.2014.60.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Possible synergistic effect of tamoxifen (2 μM) and hydrazinyldiene-chroman-2,4-diones (10-100 μM) was examined with an aim to create more effective treatment for ER+ breast cancer. Anti-breast cancer effect has been evaluated on the proliferation of MCF-7 breast adenocarcinoma cells using MTT and alamarBlue assays. Cell viability was evaluated after 48h-treatment and the ICs50 of the coumarin derivatives were determined. The apoptotic effect was evaluated by detection of PARP cleavage and reduced activity of the survival kinase Akt. The results demonstrated dose-dependent activity, with a percent of growth inhibition after combination treatment being significantly higher (53% to 79%, 10 μM and 100 μM, respectively) than the one in the cell lines treated with tamoxifen (29% to 37%) and the synthesized coumarin derivatives alone (11% to 68%, 10 μM and 100 μM, respectively). The ICs50 of the synthesized compounds significantly decreased in synergy with tamoxifen (33% to 51%). Coumarin derivative having thiazole moiety with additional methyl groups attached
to the carbons at positions 5 and 4 in the thiazole ring showed to be the most potent, with IC50 20 µM when administered alone and 10 µM in synergy with tamoxifen. The levels of phospho-Thr308 Akt were down-regulated by the combination treatment, pointing to tyrosine kinase phosphorylation inhibition. In conclusion, the novel coumarin derivatives enhance the activity of tamoxifen and this combination may
be suitable for prevention of ER+ breast cancer or development of related compounds. Further studies are needed to elucidate precisely the type of receptor involved in the activity and the mechanism of action.
Collapse
|
27
|
Maruyama K, Nakamura M, Tomoshige S, Sugita K, Makishima M, Hashimoto Y, Ishikawa M. Structure-activity relationships of bisphenol A analogs at estrogen receptors (ERs): discovery of an ERα-selective antagonist. Bioorg Med Chem Lett 2013; 23:4031-6. [PMID: 23768907 DOI: 10.1016/j.bmcl.2013.05.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
Abstract
Our multi-template approach for drug discovery, focusing on protein targets with similar fold structures, has yielded lead compounds for various targets. We have also shown that a diphenylmethane skeleton can serve as a surrogate for a steroid skeleton. Here, on the basis of those ideas, we hypothesized that the diphenylmethane derivative bisphenol A (BPA) would bind to the ligand-binding domain of estrogen receptors (ERs) in a similar manner to estradiol and act as a steroid surrogate. To test this idea, we synthesized a series of BPA analogs and evaluated their structure-activity relationships, focusing on agonistic/antagonistic activities at ERs and ERα/ERβ subtype selectivity. Among the compounds examined, 18 was found to be a potent ERα-antagonist with high selectivity over ERβ and androgen receptor under our assay conditions. A computational docking study suggested that 18 would bind to the antagonistic conformation of ERα. ERα-selective antagonists, such as 18, are candidate agents for treatment of breast cancer.
Collapse
Affiliation(s)
- Keisuke Maruyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Sasanquasaponin from Camellia oleifera Abel. induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells. Fitoterapia 2013; 84:123-9. [DOI: 10.1016/j.fitote.2012.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 12/31/2022]
|
29
|
Montenegro MF, Sáez-Ayala M, Piñero-Madrona A, Cabezas-Herrera J, Rodríguez-López JN. Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation. PLoS One 2012; 7:e52231. [PMID: 23251702 PMCID: PMC3522638 DOI: 10.1371/journal.pone.0052231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background Tumour suppressor genes are often transcriptionally silenced by promoter hypermethylation, and recent research has implicated alterations in chromatin structure as the mechanistic basis for this repression. In addition to DNA methylation, other epigenetic post-translational modifications that modulate the stability and binding of specific transcription factors to gene promoters have emerged as important mechanisms for controlling gene expression. The aim of this study was to analyse the implications of these mechanisms and their molecular connections in the reactivation of RASSF1A in breast cancer. Methods Compounds that modulate the intracellular concentration of adenosine, such as dipyridamole (DIPY), greatly increase the antiproliferative effects of 3-O-(3,4,5-trimethoxybenzoyl)-(−)-catechin (TMCG), a synthetic antifolate derived from the structure of tea catechins. Quantitative real-time PCR arrays and MALDI-TOF mass spectrometry indicated that this combination (TMCG/DIPY) induced apoptosis in breast cancer cells by modulating the methylation levels of DNA and proteins (such as E2F1), respectively. Chromatin immunoprecipitation (ChIP) assays were employed to confirm that this combination induced chromatin remodelling of the RASSF1A promoter and increased the occupancy of E2F1 at the promoter of this tumour suppressor gene. Results The TMCG/DIPY combination acted as an epigenetic treatment that reactivated RASSF1A expression and induced apoptosis in breast cancer cells. In addition to modulating DNA methylation and chromatin remodelling, this combination also induced demethylation of the E2F1 transcription factor. The ChIP assay showed enhancement of E2F1 occupancy at the unmethylated RASSF1A promoter after TMCG/DIPY treatment. Interestingly, inhibition of E2F1 demethylation using an irreversible inhibitor of lysine-specific demethylase 1 reduced both TMCG/DIPY-mediated RASSF1A expression and apoptosis in MDA-MB-231 cells, suggesting that DNA and protein demethylation may act together to control these molecular and cellular processes. Conclusions/Significance This study demonstrates that simultaneous targeting of DNA and E2F1 methylation is an effective epigenetic treatment that reactivates RASSF1A expression and induces apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- María F. Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
| | - Magali Sáez-Ayala
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
| | - Antonio Piñero-Madrona
- Department of Surgery, University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - Juan Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biomédica, Murcia, Spain
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
30
|
Tsukuda S, Kusayanagi T, Umeda E, Watanabe C, Tosaki YT, Kamisuki S, Takeuchi T, Takakusagi Y, Shiina I, Sugawara F. Ridaifen B, a tamoxifen derivative, directly binds to Grb10 interacting GYF protein 2. Bioorg Med Chem 2012. [PMID: 23199482 DOI: 10.1016/j.bmc.2012.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ridaifen B (RID-B) is a tamoxifen derivative that potently inhibits breast tumor growth. RID-B was reported to show anti-proliferating activity for a variety of estrogen receptor (ER)-positive human cancer cells. Interestingly, RID-B was also reported to possess higher potency than that of tamoxifen even for some ER-negative cells, suggesting an ER-independent mechanism of action. In this study, a T7 phage display screen and subsequent binding analyses have identified Grb10 interacting GYF protein 2 (GIGYF2) as a RID-B-binding protein. Using a cell-based assay, the Akt phosphorylation level mediated by GIGYF2 was found to have decreased in the presence of RID-B.
Collapse
Affiliation(s)
- Senko Tsukuda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huber-Keener KJ, Liu X, Wang Z, Wang Y, Freeman W, Wu S, Planas-Silva MD, Ren X, Cheng Y, Zhang Y, Vrana K, Liu CG, Yang JM, Wu R. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq data. PLoS One 2012; 7:e41333. [PMID: 22844461 PMCID: PMC3402532 DOI: 10.1371/journal.pone.0041333] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/25/2012] [Indexed: 02/07/2023] Open
Abstract
Resistance to tamoxifen (Tam), a widely used antagonist of the estrogen receptor (ER), is a common obstacle to successful breast cancer treatment. While adjuvant therapy with Tam has been shown to significantly decrease the rate of disease recurrence and mortality, recurrent disease occurs in one third of patients treated with Tam within 5 years of therapy. A better understanding of gene expression alterations associated with Tam resistance will facilitate circumventing this problem. Using a next generation sequencing approach and a new bioinformatics model, we compared the transcriptomes of Tam-sensitive and Tam-resistant breast cancer cells for identification of genes involved in the development of Tam resistance. We identified differential expression of 1215 mRNA and 513 small RNA transcripts clustered into ERα functions, cell cycle regulation, transcription/translation, and mitochondrial dysfunction. The extent of alterations found at multiple levels of gene regulation highlights the ability of the Tam-resistant cells to modulate global gene expression. Alterations of small nucleolar RNA, oxidative phosphorylation, and proliferation processes in Tam-resistant cells present areas for diagnostic and therapeutic tool development for combating resistance to this anti-estrogen agent.
Collapse
Affiliation(s)
- Kathryn J. Huber-Keener
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Xiuping Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhong Wang
- The Center for Statistical Genetics, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Yaqun Wang
- The Center for Statistical Genetics, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Willard Freeman
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Song Wu
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York, United States of America
| | - Maricarmen D. Planas-Silva
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Yan Cheng
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Yi Zhang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Kent Vrana
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Rongling Wu
- The Center for Statistical Genetics, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
32
|
Verma S, Salmans ML, Geyfman M, Wang H, Yu Z, Lu Z, Zhao F, Lipkin SM, Andersen B. The estrogen-responsive Agr2 gene regulates mammary epithelial proliferation and facilitates lobuloalveolar development. Dev Biol 2012; 369:249-60. [PMID: 22819674 DOI: 10.1016/j.ydbio.2012.06.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 01/31/2023]
Abstract
Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.
Collapse
Affiliation(s)
- Suman Verma
- Department of Medicine, University of California, Irvine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Regulation of p130(Cas)/BCAR1 expression in tamoxifen-sensitive and tamoxifen-resistant breast cancer cells by EGR1 and NAB2. Neoplasia 2012; 14:108-20. [PMID: 22431919 DOI: 10.1593/neo.111760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/19/2023] Open
Abstract
Elevated levels of p130(Cas)/BCAR1 (Crk-associated substrate/breast cancer antiestrogen resistance 1) are found in aggressive breast tumors and are associated with tamoxifen resistance of mammary cancers. p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways frequently deregulated in breast cancer. To elucidate mechanisms leading to p130(Cas) up-regulation in mammary carcinomas and during acquired tamoxifen resistance, the regulation of p130(Cas)/BCAR1 was studied. Because multiple putative binding motifs for the inducible transcription factor EGR1 were identified in the 5' region of BCAR1, the p130(Cas)/BCAR1 regulation by EGR1 and its coregulator NAB2 was investigated. Overexpression or short interfering RNA (siRNA)-mediated down-regulation of EGR1 or NAB2, and chromatin immunoprecipitations indicated that EGR1 and NAB2 act in concert to positively regulate p130(Cas)/BCAR1 expression in breast cancer cells. p130(Cas) depletion using siRNA showed that, in tamoxifen-sensitive MCF-7 cells, p130(Cas) regulates EGR1 and NAB2 expression, whereas in the derivative tamoxifen-resistant TAM-R cells, only NAB2 levels were influenced. BCAR1 messenger RNA and p130(Cas) protein were upregulated by phorbol esters following the kinetics of late response genes in MCF-7 but not in TAM-R cells. Thus, in MCF-7 cells, we identified a positive feedback loop where p130(Cas) positively regulates EGR1 and NAB2, which in turn induce p130(Cas) expression. Importantly, compared with MCF-7, enhanced NAB2 expression and increased EGR1 binding to the BCAR1 5' region observed in TAM-R may lead to the constitutively increased p130(Cas)/BCAR1 levels in TAM-R cells. The uncovered differences in this EGR1/NAB2/p130(Cas) network in MCF-7 versus TAM-R cells may also contribute to p130(Cas) up-regulation during acquired tamoxifen resistance.
Collapse
|
34
|
Itoh Y, Kitaguchi R, Ishikawa M, Naito M, Hashimoto Y. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg Med Chem 2011; 19:6768-78. [PMID: 22014751 DOI: 10.1016/j.bmc.2011.09.041] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 12/15/2022]
Abstract
Compounds that regulate the function(s) of nuclear receptors (NRs) are useful for biological studies and as candidate therapeutic agents. Most such compounds are agonists or antagonists. On the other hand, we have developed specific protein degradation inducers, which we designated as SNIPERs (Specific and Nongenetic IAPs-dependent Protein ERasers), for selective degradation of target proteins. SNIPERs are hybrid molecules consisting of an appropriate ligand for the protein of interest, coupled to a ligand for inhibitor of apoptosis proteins (IAPs), which target the bound protein for polyubiquitination and proteasomal degradation. We considered that protein knockdown with SNIPERs would be a promising alternative approach for modulating NR function. In this study, we designed and synthesized degradation inducers targeting retinoic acid receptor (RAR), estrogen receptor (ER), and androgen receptor (AR). These newly synthesized RAR, ER, and AR SNIPERs, 9, 11, and 13, respectively, were confirmed to significantly reduce the levels of the corresponding NRs in live cells.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Ju JH, Jeon MJ, Yang W, Lee KM, Seo HS, Shin I. Induction of apoptotic cell death by Pharbitis nil extract in HER2-overexpressing MCF-7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:126-131. [PMID: 20883766 DOI: 10.1016/j.jep.2010.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY We performed this study to investigate the anti-cancer activity of Pharbitis nil (PN) ethanol extract which has been used for herbal medicinal treatment against diseases in East Asia. MATERIALS AND METHODS We analyzed the effects of PN extract on proliferation of breast cancer cell lines, MCF-7 control vector (vec) and MCF-7 human epidermal growth factor receptor 2 (HER2) cells engineered to overexpress oncogenic HER2 via retroviral infection. We performed the proliferation assay to measure the growth rate of the cells. FACS analysis was used to analyze the cell cycle. Western blot analysis was used to investigate the effect of PN on the level and activation of intracellular molecules. RESULTS We found that PN extract inhibited the proliferation of both MCF-7 vec and MCF-7 HER2 cells. This growth inhibition was accompanied with the increase of sub G0/G1 apoptotic fractions. When we check the efficiency of PN on the level of intracellular signaling molecules, we found that PN extract induced the inhibition of phosphorylation of HER2 and its downstream effectors, Akt and extracellular signal-regulated kinases (ERK). Active forms of both Akt and ERK were gradually decreased in PN-treated MCF-7 vec and MCF-7 HER2 cells suggesting that the growth suppressive activity of PN is related to signaling pathway. The level of cyclin D also diminished in PN-treated both cells suggesting that PN may inhibit the growth of MCF-7 vec and MCF-7 HER2 cells by perturbing cell cycle progression. It should be noted that PN decreased the growth rate of both MCF-7 vec and MCF-7 HER2 cells without changing the level and activation of p53. CONCLUSION PN extract suppressed the proliferation rate of HER-2 overexpressing MCF-7 breast cancer cells inducing apoptotic cell death in vitro. Our data demonstrates that PN extracts contain useful anti-tumor activity especially against HER2 overexpressing breast cancer.
Collapse
Affiliation(s)
- Ji-hyun Ju
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 2010; 10:858-70. [PMID: 21102636 DOI: 10.1038/nrc2967] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects that are regulated by these adaptors in tumours might be crucial for the identification of new targets and the development of innovative therapeutic strategies for human cancer. In this Review we discuss the relevance of adaptor proteins in signalling that originates from integrin-mediated cell-extracellular matrix (ECM) adhesion and growth factor stimulation in the context of cell transformation and tumour progression. We specifically underline the contribution of p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK and the integrin-linked kinase (ILK)-pinch-parvin (IPP) complex to cancer, along with the more recently identified p140 Cas-associated protein (p140CAP; also known as SRCIN1).
Collapse
Affiliation(s)
- Sara Cabodi
- Molecular Biotechnology Centre and Department of Genetics, Biology and Biochemistry, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | | | | |
Collapse
|
37
|
Sánchez-Muñz A, Ribelles N, Alba E. Optimal adjuvant hormonal therapy in postmenopausal women with hormone-receptor-positive early breast cancer: have we answered the question? Clin Transl Oncol 2010; 12:614-20. [DOI: 10.1007/s12094-010-0566-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Isolated and combined action of tamoxifen and metformin in wild-type, tamoxifen-resistant, and estrogen-deprived MCF-7 cells. Breast Cancer Res Treat 2010; 128:109-17. [PMID: 20683653 DOI: 10.1007/s10549-010-1072-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/17/2010] [Indexed: 12/12/2022]
Abstract
Resistance to tamoxifen (TAM) and aromatase inhibitors represents a major drawback to the treatment of hormone-dependent breast cancer, and strategies to overcome this problem are urgently needed. The anti-diabetic biguanide metformin (MF) exerts pleiotropic effects which could enhance the effectiveness of available hormonal therapies. This study modeled several aspects of hormonal therapy in women and examined the effectiveness of MF under those conditions. For cell growth evaluation, wild-type (wt), TAM-resistant (TAM-R), and long-term estradiol-deprived (LTED) MCF-7 cells, as a model of aromatase inhibitor resistance, were grown in the presence or absence of TAM or MF for 5 days. For immunoblot analysis and aromatase activity measurements, these cells were grown for 48 h. Wild-type and LTED cells were equally sensitive to the growth inhibitory effects of TAM and MF, while TAM-R cells were less sensitive to TAM than to MF. Partial additive effects on cell number of TAM combined with MF were greatest (if compared with isolated TAM action) in TAM-R and LTED cells. In contrast to the decrease in PCNA values in TAM-resistant cells treated with the TAM and MF combination, no other changes were found in the levels of this proliferation marker. These findings suggested a major component of apoptosis in the growth inhibitory effect. This was confirmed with Western blot analysis of PARP and caspase 7 as well as with apoptosis ELISA assay. MF also altered signaling pathways. AMP-kinase was stimulated by MF approximately equally in MCF-7, TAM-R, and LTED cells, while inhibition by biguanide of p-S6K as a downstream target of mTOR was strongest in TAM-R cells. Under the influence of MF, expression of ER-α was decreased in wt MCF-7 cells suggesting possible involvement of this compound in estrogen signaling. Metformin interacts additively with TAM to reduce neoplastic cells growth. The cellular context (including loss of sensitivity to TAM and estrogen deprivation) is of importance in influencing breast cancer responses to MF and to a combination of MF and TAM.
Collapse
|
39
|
Cyrus K, Wehenkel M, Choi EY, Lee H, Swanson H, Kim KB. Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. ChemMedChem 2010; 5:979-85. [PMID: 20512796 PMCID: PMC3516907 DOI: 10.1002/cmdc.201000146] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Indexed: 01/25/2023]
Abstract
Estrogen receptor-alpha (ER) antagonists have been widely used for breast cancer therapy. Despite initial responsiveness, hormone-sensitive ER-positive cancer cells eventually develop resistance to ER antagonists. It has been shown that in most of these resistant tumor cells, the ER is expressed and continues to regulate tumor growth. Recent studies indicate that tamoxifen initially acts as an antagonist, but later functions as an ER agonist, promoting tumor growth. This suggests that targeted ER degradation may provide an effective therapeutic approach for breast cancers, even those that are resistant to conventional therapies. With this in mind, we previously demonstrated that proteolysis targeting chimeras (PROTACs) effectively induce degradation of the ER as a proof-of-concept experiment. Herein we further refined the PROTAC approach to target the ER for degradation. The ER-targeting PROTACs are composed of an estradiol on one end and a hypoxia-inducing factor 1alpha (HIF-1alpha)-derived synthetic pentapeptide on the other. The pentapeptide is recognized by an E3 ubiquitin ligase called the von Hippel Lindau tumor suppressor protein (pVHL), thereby recruiting the ER to this E3 ligase for ubiquitination and degradation. Specifically, the pentapeptide is attached at three different locations on estradiol to generate three different PROTAC types. With the pentapeptide linked through the C7alpha position of estradiol, the resulting PROTAC shows the most effective ER degradation and highest affinity for the estrogen receptor. This result provides an opportunity to develop a novel type of ER antagonist that may overcome the resistance of breast tumors to conventional drugs such as tamoxifen and fulvestrant (Faslodex).
Collapse
Affiliation(s)
- Kedra Cyrus
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA, Fax: (+1)859-257-7564
| | - Marie Wehenkel
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA, Fax: (+1)859-257-7564
| | - Eun-Young Choi
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | - Hyosung Lee
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA, Fax: (+1)859-257-7564
| | - Hollie Swanson
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | - Kyung-Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA, Fax: (+1)859-257-7564
| |
Collapse
|
40
|
Mancinelli R, Onori P, DeMorrow S, Francis H, Glaser S, Franchitto A, Carpino G, Alpini G, Gaudio E. Role of sex hormones in the modulation of cholangiocyte function. World J Gastrointest Pathophysiol 2010; 1:50-62. [PMID: 21607142 PMCID: PMC3097944 DOI: 10.4291/wjgp.v1.i2.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 02/06/2023] Open
Abstract
Over the last years, cholangiocytes, the cells that line the biliary tree, have been considered an important object of study for their biological properties which involves bile formation, proliferation, injury repair, fibrosis and angiogenesis. Cholangiocyte proliferation occurs in all pathologic conditions of liver injury where it is associated with inflammation and regeneration. During these processes, biliary cells start to secrete different cytokines, growth factors, neuropeptides and hormones which represent potential mechanisms for cross talk with other liver cells. Several studies suggest that hormones, and in particular, sex hormones, play a fundamental role in the modulation of the growth of this compartment in the injured liver which functionally conditions the progression of liver disease. Understanding the mechanisms of action and the intracellular pathways of these compounds on cholangiocyte pathophysiology will provide new potential strategies for the management of chronic liver diseases. The purpose of this review is to summarize the recent findings on the role of sex hormones in cholangiocyte proliferation and biology.
Collapse
|
41
|
Nalvarte I, Schwend T, Gustafsson JA. Proteomics analysis of the estrogen receptor alpha receptosome. Mol Cell Proteomics 2010; 9:1411-22. [PMID: 20348541 DOI: 10.1074/mcp.m900457-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The estrogen receptors (ERs) are ligand-dependent transcription factors that activate transcription by binding to estrogen response elements. Estrogen-mediated effects are tissue- and cell type-specific, determined by the cofactor recruitment to the ERs among other factors. To understand these differences in estrogen action, it is important to identify the various compositions of the ER complexes (ER receptosomes). In this report, we describe a fast and efficient method for the isolation of the ERalpha receptosome for proteomics analysis. Using immobilized estrogen response element on a Sepharose column in combination with two-dimensional electrophoresis and MALDI-TOF MS, significant amounts of proteins could be isolated and identified. Differences in ERalpha complex composition with the ER ligands 17beta-estradiol, 4-hydroxytamoxifen, and ICI-182,780 could also be observed. Thus, this approach provides an easy and relevant way of identifying ERalpha cofactor and transcription factor recruitment under different conditions.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institute, SE-14183 Huddinge, Sweden.
| | | | | |
Collapse
|
42
|
Mahata P. Exploratory consensus of hierarchical clusterings for melanoma and breast cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2010; 7:138-152. [PMID: 20150676 DOI: 10.1109/tcbb.2008.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Finding subtypes of heterogeneous diseases is the biggest challenge in the area of biology. Often, clustering is used to provide a hypothesis for the subtypes of a heterogeneous disease. However, there are usually discrepancies between the clusterings produced by different algorithms. This work introduces a simple method which provides the most consistent clusters across three different clustering algorithms for a melanoma and a breast cancer data set. The method is validated by showing that the Silhouette, Dunne's and Davies-Bouldin's cluster validation indices are better for the proposed algorithm than those obtained by k-means and another consensus clustering algorithm. The hypotheses of the consensus clusters on both the data sets are corroborated by clear genetic markers and 100 percent classification accuracy. In Bittner et al.'s melanoma data set, a previously hypothesized primary cluster is recognized as the largest consensus cluster and a new partition of this cluster into two subclusters is proposed. In van't Veer et al.'s breast cancer data set, previously proposed "basal" and "luminal A" subtypes are clearly recognized as the two predominant clusters. Furthermore, a new hypothesis is provided about the existence of two subgroups within the "basal" subtype in this data set. The clusters of van't Veer's data set is also validated by high classification accuracy obtained in the data set of van de Vijver et al.
Collapse
|
43
|
Abstract
Recognition of focal morphological intraepithelial lesions associated with the eventual development of invasive cancer has long been the sine qua non of precancer. Empirically, precancers are associated with a morphological continuum from atypia to dysplasia and invasive neoplasia. Such lesions are used as early indicators of cancers and have dramatically reduced mortality from cancers of the colon, uterine cervix, and breast. Progression has been modeled as a linear, stepwise process. Some molecular evidence supports a linear model. However, clinical studies now suggest that preexisting cofactors such as human papilloma virus (HPV) in cervical cancer determines the cell fate. Other clinical studies such as bladder, prostate, and breast suggest that many intraepithelial lesions do not progress to malignancy. The more recent experimental analyses reveal that the key molecular and genetic events even predate the emergence of visible lesions. Thus, a new nonlinear, parallel model is proposed. The parallel model suggests an origin in a putative progenitor cell that expands and invades. The clinical outcome is thus predetermined. If correct, this model suggests that "progression" to malignancy is epigenetic. Further, future assessment of biological potential will involve identification and genetic analysis of the progenitor cell populations.
Collapse
|
44
|
Breast carcinoma cells in primary tumors and effusions have different gene array profiles. JOURNAL OF ONCOLOGY 2009; 2010:969084. [PMID: 19680458 PMCID: PMC2725284 DOI: 10.1155/2010/969084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/02/2009] [Indexed: 12/24/2022]
Abstract
The detection of breast carcinoma cells in effusions is associated with rapidly fatal outcome, but these cells are poorly characterized at the molecular level. This study compared the gene array signatures of breast carcinoma cells in primary carcinomas and effusions. The genetic signature of 10 primary tumors and 10 effusions was analyzed using the Array-Ready Oligo set for the Human Genome platform. Results for selected genes were validated using PCR, Western blotting, and immunohistochemistry. Array analysis identified 255 significantly downregulated and 96 upregulated genes in the effusion samples. The majority of differentially expressed genes were part of pathways involved in focal adhesion, extracellular matrix-cell interaction, and the regulation of the actin cytoskeleton. Genes that were upregulated in effusions included KRT8, BCAR1, CLDN4, VIL2, while DCN, CLDN19, ITGA7, and ITGA5 were downregulated at this anatomic site. PCR, Western blotting, and immunohistochemistry confirmed the array findings for BCAR1, CLDN4, VIL2, and DCN. Our data show that breast carcinoma cells in primary carcinomas and effusions have different gene expression signatures, and differentially express a large number of molecules related to adhesion, motility, and metastasis. These differences may have a critical role in designing therapy and in prognostication for patients with metastatic disease localized to the serosal cavities.
Collapse
|
45
|
Chen J, Russo J. Mitochondrial oestrogen receptors and their potential implications in oestrogen carcinogenesis in human breast cancer. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13590840801972074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Aydiner A, Tas F. Meta-analysis of trials comparing anastrozole and tamoxifen for adjuvant treatment of postmenopausal women with early breast cancer. Trials 2008; 9:47. [PMID: 18664277 PMCID: PMC2503952 DOI: 10.1186/1745-6215-9-47] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/29/2008] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE It was aimed to review the literature and make a meta-analysis of the trials on both upfront, switching, and sequencing anastrozole in the adjuvant treatment of early breast cancer. METHODS The PubMed, ClinicalTrials.gov and Cochrane databases were systematically reviewed for randomized-controlled trials comparing anastrozole with tamoxifen in the adjuvant treatment of early breast cancer. RESULTS The combined hazard rate of 4 trials for event-free survival (EFS) was 0.77 (95%CI: 0.70-0.85) (P < 0.0001) for patients treated with anastrozole compared with tamoxifen. In the second analysis in which only ITA, ABCSG 8, and ARNO 95 trials were included and ATAC (upfront trial) was excluded, combined hazard rate for EFS was 0.64 (95%CI: 0.52-0.79) (P < 0.0001). In the third analysis including hazard rate for recurrence-free survival (excluding non-disease related deaths) of estrogen receptor-positive patients for ATAC trial and hazard rate for EFS of all patients for the rest of the trials, combined hazard rate was 0.73 (95%CI: 0.65-0.81) (P < 0.0001). CONCLUSION Anastrozole appears to have superior efficacy than tamoxifen in the adjuvant hormonal treatment of early breast cancer. Until further clinical evidence comes up, aromatase inhibitors should be the initial hormonal therapy in postmenopausal early breast cancer patients and switching should only be considered for patients who are currently receiving tamoxifen.
Collapse
Affiliation(s)
- Adnan Aydiner
- Istanbul University, Istanbul Medical School, Department of Medical Oncology, Istanbul, Turkey
| | - Faruk Tas
- Istanbul University, Istanbul Medical School, Department of Medical Oncology, Istanbul, Turkey
| |
Collapse
|
47
|
Conde I, Lobo MVT, Zamora J, Pérez J, González FJ, Alba E, Fraile B, Paniagua R, Arenas MI. Human pregnane X receptor is expressed in breast carcinomas, potential heterodimers formation between hPXR and RXR-alpha. BMC Cancer 2008; 8:174. [PMID: 18565212 PMCID: PMC2442113 DOI: 10.1186/1471-2407-8-174] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 06/19/2008] [Indexed: 11/16/2022] Open
Abstract
Background The human pregnane X receptor (hPXR) is an orphan nuclear receptor that induces transcription of response elements present in steroid-inducible cytochrome P-450 gene promoters. This activation requires the participation of retinoid X receptors (RXRs), needed partners of hPXR to form heterodimers. We have investigated the expression of hPXR and RXRs in normal, premalignant, and malignant breast tissues, in order to determine whether their expression profile in localized infiltrative breast cancer is associated with an increased risk of recurrent disease. Methods Breast samples from 99 patients including benign breast diseases, in situ and infiltrative carcinomas were processed for immunohistochemistry and Western-blot analysis. Results Cancer cells from patients that developed recurrent disease showed a high cytoplasmic location of both hPXR isoforms. Only the infiltrative carcinomas that relapsed before 48 months showed nuclear location of hPXR isoform 2. This location was associated with the nuclear immunoexpression of RXR-alpha. Conclusion Breast cancer cells can express both variants 1 and 2 of hPXR. Infiltrative carcinomas that recurred showed a nuclear location of both hPXR and RXR-alpha; therefore, the overexpression and the subcellular location changes of hPXR could be considered as a potential new prognostic indicator.
Collapse
Affiliation(s)
- Isabel Conde
- Department of Cell Biology and Genetics, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van Agthoven T, Veldscholte J, Smid M, van Agthoven TLA, Vreede L, Broertjes M, de Vries I, de Jong D, Sarwari R, Dorssers LCJ. Functional identification of genes causing estrogen independence of human breast cancer cells. Breast Cancer Res Treat 2008; 114:23-30. [PMID: 18351453 DOI: 10.1007/s10549-008-9969-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 01/24/2023]
Abstract
Endocrine treatment of breast cancer is widely applied and effective. However, in advanced disease cases, the tumors will eventually progress into an estrogen-independent and therapy-resistant phenotype. To elucidate the molecular mechanisms underlying this endocrine therapy failure, we applied retroviral insertion mutagenesis to identify the main genes conferring estrogen independence to human breast cancer cells. Estrogen-dependent ZR-75-1 cells were infected with replication-defective retroviruses followed by selection with the anti-estrogen 4-hydroxy-tamoxifen. In the resulting panel of 79 tamoxifen-resistant cell lines, the viral integrations were mapped within the human genome. Genes located in the immediate proximity of the retroviral integration sites were characterized for altered expression and their capacity to confer anti-estrogen resistance when transfected into breast cancer cells. Out of 15 candidate BCAR (breast cancer anti-estrogen resistance) genes, seven (AKT1, AKT2, BCAR1, BCAR3, EGFR, GRB7, and TRERF1/BCAR2) were shown to directly underlie estrogen independence. Our results show that insertion mutagenesis is a powerful tool to identify BCAR loci, which may provide insights into the molecular and cellular mechanisms of breast tumor progression and therapy resistance thereby offering novel targets for the development of tailor-made therapeutical and prevention strategies.
Collapse
Affiliation(s)
- Ton van Agthoven
- Department of Pathology, Josephine Nefkens Institute, Be 432, Erasmus MC-University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA, 3000, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jonat W, Gnant M, Boccardo F, Kaufmann M, Rubagotti A, Zuna I, Greenwood M, Jakesz R. Effectiveness of switching from adjuvant tamoxifen to anastrozole in postmenopausal women with hormone-sensitive early-stage breast cancer: a meta-analysis. Lancet Oncol 2007; 7:991-6. [PMID: 17138220 DOI: 10.1016/s1470-2045(06)70948-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND For more than 20 years, tamoxifen has been the mainstay of adjuvant endocrine therapy for women with hormone-sensitive early-stage breast cancer. However, not only does tamoxifen have potential side-effects such as an increased risk of endometrial cancer and thromboembolic events, but patients can also develop resistance to the drug. We aimed to investigate whether switching treatment of postmenopausal women with such breast cancer to anastrozole after 2-3 years of tamoxifen would be more effective than continuing on tamoxifen for a total of 5 years. METHODS We did a meta-analysis of three clinical trials--the Austrian Breast and Colorectal Cancer Study Group (ABCSG 8), Arimidex-Nolvadex (ARNO 95), and the Italian Tamoxifen Anastrozole (ITA) studies--in which postmenopausal women with histologically confirmed, hormone-sensitive early-stage breast cancer were randomised to 1 mg/day anastrozole (n=2009) after 2-3 years of tamoxifen treatment or to continued 20 or 30 mg/day tamoxifen (n=1997). We analysed the data with a stratified Cox proportional hazards model with the covariates of age, tumour size, nodal status, grade, surgery, and chemotherapy. FINDINGS Patients who switched to anastrozole had fewer disease recurrences (92 vs 159) and deaths (66 vs 90) than did those who remained on tamoxifen, resulting in significant improvements in disease-free survival (hazard ratio 0.59 [95% CI 0.48-0.74]; p<0.0001), event-free survival (0.55 [0.42-0.71]; p<0.0001), distant recurrence-free survival (0.61 [0.45-0.83]; p=0.002), and overall survival (0.71 [0.52-0.98]; p=0.04). INTERPRETATION Our results show that the clinical benefits in terms of event-free survival seen in individual trials for those patients who switched to anastrozole translate into a benefit in overall survival. These findings confirm that clinicians should consider switching postmenopausal women who have taken adjuvant tamoxifen for 2-3 years to anastrozole.
Collapse
|
50
|
Secreto FJ, Monroe DG, Dutta S, Ingle JN, Spelsberg TC. Estrogen receptor α/β isoforms, but not βcx, modulate unique patterns of gene expression and cell proliferation in Hs578T cells. J Cell Biochem 2007; 101:1125-47. [PMID: 17520659 DOI: 10.1002/jcb.21205] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.
Collapse
Affiliation(s)
- Frank J Secreto
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|