1
|
Marra M, Catalano A, Sinicropi MS, Ceramella J, Iacopetta D, Salpini R, Svicher V, Marsico S, Aquaro S, Pellegrino M. New Therapies and Strategies to Curb HIV Infections with a Focus on Macrophages and Reservoirs. Viruses 2024; 16:1484. [PMID: 39339960 PMCID: PMC11437459 DOI: 10.3390/v16091484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
More than 80 million people worldwide have been infected with the human immunodeficiency virus (HIV). There are now approximately 39 million individuals living with HIV/acquired immunodeficiency syndrome (AIDS). Although treatments against HIV infection are available, AIDS remains a serious disease. Combination antiretroviral therapy (cART), also known as highly active antiretroviral therapy (HAART), consists of treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. However, the increasing usage of cART is inevitably associated with the emergence of HIV drug resistance. In addition, the development of persistent cellular reservoirs of latent HIV is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Thus, several efforts are being applied to new generations of drugs, vaccines and new types of cART. In this review, we summarize the antiviral therapies used for the treatment of HIV/AIDS, both as individual agents and as combination therapies, and highlight the role of both macrophages and HIV cellular reservoirs and the most recent clinical studies related to this disease.
Collapse
Affiliation(s)
- Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Kumar S, Taumar D, Gaikwad S, More A, Nema V, Mukherjee A. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv Transl Res 2024; 14:1888-1908. [PMID: 38161197 DOI: 10.1007/s13346-023-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.
Collapse
Affiliation(s)
- Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Dhananjay Taumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Vijay Nema
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
3
|
Zheng L, Zhang W, Olkkola KT, Dallmann A, Ni L, Zhao Y, Wang L, Zhang Q, Hu W. Physiologically based pharmacokinetic modeling of ritonavir-oxycodone drug interactions and its implication for dosing strategy. Eur J Pharm Sci 2024; 194:106697. [PMID: 38199444 DOI: 10.1016/j.ejps.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
The concomitant administration of ritonavir and oxycodone may significantly increase the plasma concentrations of oxycodone. This study was aimed to simulate DDI between ritonavir and oxycodone, a widely used opioid, and to formulate dosing protocols for oxycodone by using physiologically based pharmacokinetic (PBPK) modeling. We developed a ritonavir PBPK model incorporating induction and competitive and time-dependent inhibition of CYP3A4 and competitive inhibition of CYP2D6. The ritonavir model was evaluated with observed clinical pharmacokinetic data and validated for its CYP3A4 inhibition potency. We then used the model to simulate drug interactions between oxycodone and ritonavir under various dosing scenarios. The developed model captured the pharmacokinetic characteristics of ritonavir from clinical studies. The model also accurately predicts exposure changes of midazolam, triazolam, and oxycodone in the presence of ritonavir. According to model simulations, the steady-state maximum, minimum and average concentrations of oxycodone increased by up to 166% after co-administration with ritonavir, and the total exposure increased by approximately 120%. To achieve similar steady-state concentrations, halving the dose with an unchanged dosing interval or doubling the dosing interval with an unaltered single dose should be practical for oxycodone, whether formulated in uncoated or controlled-release tablets during long-term co-medication with ritonavir. The results revealed exposure-related risks of oxycodone-ritonavir interactions that have not been studied clinically and emphasized PBPK as a workable method to direct judicious dosage.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wei Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Klaus T Olkkola
- Department of Anaesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany.
| | - Liang Ni
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qian Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Wagner T, Levy I, Elbirt D, Shahar E, Olshtain-Pops K, Elinav H, Chowers M, Istomin V, Riesenberg K, Geva D, Zuckerman NS, Wax M, Shirazi R, Gozlan Y, Matus N, Girshengorn S, Marom R, Mendelson E, Mor O, Turner D. Factors Associated with Virological Failure in First-Line Antiretroviral Therapy in Patients Diagnosed with HIV-1 between 2010 and 2018 in Israel. Viruses 2023; 15:2439. [PMID: 38140680 PMCID: PMC10748212 DOI: 10.3390/v15122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Despite the progress in contemporary antiretroviral therapy (ART) and the continuous changes in treatment guidelines, virological failure (VF) is still an ongoing concern. The goal of this study was to assess factors related to VF after first-line ART. A longitudinal cohort retrospective study of individuals on first-line ART diagnosed with HIV-1 in 2010-2018 and followed-up for a median of two years was conducted. Demographics, baseline and longitudinal CD4 counts, treatment regimens, adherence and VF were recorded. The Cox proportional hazards regression and mixed models were used. A cohort of 1130 patients were included. Overall, 80% were males and 62% were Israeli-born individuals. Compared to individuals diagnosed in 2010-2014, when treatment was initiated according to CD4 levels, those diagnosed in 2015-2018 were older and had lower baseline CD4 counts. VF was recorded in 66 (5.8%) patients. Diagnosis with CD4 <200 cells/mmᶟ with AIDS-defining conditions (HR = 2.75, 95%CI:1.52-4.97, p < 0.001) and non-integrase strand transfer inhibitor regimens (non-INSTI, HR = 1.80, 95%CI:1.01-3.24, p = 0.047) increased VF risk. No impact of baseline resistance was observed. We concluded that the early detection of HIV-1 infection and usage of INSTI-based regimens are recommended to reduce VF.
Collapse
Affiliation(s)
- Tali Wagner
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Itzchak Levy
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Infectious Disease Unit, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Daniel Elbirt
- Faculty of Medicine, Hadassah Braun School of Public Health & Community Medicine, The Hebrew University, Jerusalem 9112102, Israel
- Immunology, Kaplan Medical Center, Rehovot 76100, Israel
| | - Eduardo Shahar
- Immunology Unit, Rambam Health Care Campus, Haifa 3109601, Israel
- Rappaport Faculty of Medicine, Institute of Technology, Technion, Haifa 3109601, Israel
| | | | - Hila Elinav
- Faculty of Medicine, Hadassah Braun School of Public Health & Community Medicine, The Hebrew University, Jerusalem 9112102, Israel
- Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Michal Chowers
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Infectious Diseases, Meir Medical Center, Kfar Saba 4428164, Israel
| | | | - Klaris Riesenberg
- Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
- Infectious Disease Institute, Soroka Medical Center, Beersheba 84101, Israel
| | - Dikla Geva
- Integristat Ltd., Tel Aviv 69051, Israel
| | - Neta S Zuckerman
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Marina Wax
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Rachel Shirazi
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Yael Gozlan
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Natasha Matus
- Ichilov Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| | - Shirley Girshengorn
- Ichilov Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| | - Rotem Marom
- Ichilov Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| | - Ella Mendelson
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Orna Mor
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- National HIV-1 and Viral Hepatitis Reference Laboratory, Chaim Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Dan Turner
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Ichilov Medical Center, Crusaid Kobler AIDS Center, Tel Aviv 6423906, Israel
| |
Collapse
|
5
|
Silva A, Mourão J, Vale N. A Review of the Lidocaine in the Perioperative Period. J Pers Med 2023; 13:1699. [PMID: 38138926 PMCID: PMC10744742 DOI: 10.3390/jpm13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This review analyzes the controversies surrounding lidocaine (LIDO), a widely recognized local anesthetic, by exploring its multifaceted effects on pain control in the perioperative setting. The article critically analyzes debates about lidocaine's efficacy, safety, and optimal administration methods. While acknowledging its well-documented analgesic attributes, the text highlights the ongoing controversies in its application. The goal is to provide clinicians with a comprehensive understanding of the current discourse, enabling informed decisions about incorporating lidocaine into perioperative protocols. On the other hand, emphasizes the common uses of lidocaine and its potential role in personalized medicine. It discusses the medication's versatility, including its application in anesthesia, chronic pain, and cardiovascular diseases. The text recognizes lidocaine's widespread use in medical practice and its ability to be combined with other drugs, showcasing its adaptability for individualized treatments. Additionally, it explores the incorporation of lidocaine into hyaluronic acid injections and its impact on pharmacokinetics, signaling innovative approaches. The discussion centers on how lidocaine, within the realm of personalized medicine, can offer safer and more comfortable experiences for patients through tailored treatments.
Collapse
Affiliation(s)
- Abigail Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Joana Mourão
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Anesthesiology, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
6
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Sahoo AK, Rakshit A, Pan A, Dhara HN, Patel BK. Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Org Biomol Chem 2023; 21:1680-1691. [PMID: 36723155 DOI: 10.1039/d3ob00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A light-triggered synthesis of thio-functionalized pyridines is demonstrated using γ-ketodinitriles, thiols, and eosin Y as the photocatalyst. The reaction proceeds via the selective attack on one of the cyano groups by an in situ generated thiyl radical. The reaction also proceeds with nearly equal efficiency using direct sunlight. Large-scale synthesis and a few useful synthetic transformations of the substituted pyridines are also performed.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Sharma A, Sharma P, Kapila I, Abbot V. A Combination of Novel HIV-1 Protease Inhibitor and Cytochrome P450 (CYP) Enzyme Inhibitor to Explore the Future Prospective of Antiviral Agents: Evotaz. Curr HIV Res 2023; 21:149-159. [PMID: 37221692 DOI: 10.2174/1570162x21666230522123631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Viruses belong to the class of micro-organisms that are well known for causing infections in the human body. Antiviral medications are given out to prevent the spread of disease-causing viruses. When the viruses are actively reproducing, these agents have their greatest impact. It is particularly challenging to develop virus-specific medications since viruses share the majority of the metabolic functions of the host cell. In the continuous search for better antiviral agents, the United States Food and Drug Administration (USFDA) approved a new drug named Evotaz on January 29, 2015 for the treatment of human immunodeficiency virus (HIV). Evotaz is a combined once-daily fixed drug, containing Atazanavir, an HIV protease inhibitor, and cobicistat, an inhibitor of the human liver cytochrome P450 (CYP) enzyme. The medication is created such that it can kill viruses by concurrently inhibiting protease and CYP enzymes. The medicine is still being studied for a number of criteria, but its usefulness in children under the age of 12 is currently unknown. The preclinical and clinical characteristics of Evotaz, as well as its safety and efficacy profiles and a comparison of the novel drug with antiviral medications presently available in the market, are the main topics of this review paper.
Collapse
Affiliation(s)
- Abha Sharma
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt., Ferozpur Road, Ludhiana, 142021, India
| | - Poonam Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Isha Kapila
- Pharmaceutical Chemistry Department, Chandigarh College of Pharmacy, Landran, Mohali, 140307, Punjab, India
| | - Vikrant Abbot
- Department of Pharmaceutical Sciences, Saraswati Group of Colleges, Gharuan, Mohali, 140413, Punjab, India
| |
Collapse
|
9
|
Al-Taie A, Büyük AŞ, Sardas S. Considerations into pharmacogenomics of COVID-19 pharmacotherapy: Hope, hype and reality. Pulm Pharmacol Ther 2022; 77:102172. [PMID: 36265833 PMCID: PMC9576910 DOI: 10.1016/j.pupt.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
COVID-19 medicines, such as molnupiravir are beginning to emerge for public health and clinical practice. On the other hand, drugs display marked variability in their efficacy and safety. Hence, COVID-19 medicines, as with all drugs, will be subject to the age-old maxim "one size prescription does not fit all". In this context, pharmacogenomics is the study of genome-by-drug interactions and offers insights on mechanisms of patient-to-patient and between-population variations in drug efficacy and safety. Pharmacogenomics information is crucial to tailoring the patients' prescriptions to achieve COVID-19 preventive and therapeutic interventions that take into account the host biology, patients' genome, and variable environmental exposures that collectively influence drug efficacy and safety. This expert review critically evaluates and summarizes the pharmacogenomics and personalized medicine aspects of the emerging COVID-19 drugs, and other selected drug interventions deployed to date. Here, we aim to sort out the hope, hype, and reality and suggest that there are veritable prospects to advance COVID-19 medicines for public health benefits, provided that pharmacogenomics is considered and implemented adequately. Pharmacogenomics is an integral part of rational and evidence-based medical practice. Scientists, health care professionals, pharmacists, pharmacovigilance practitioners, and importantly, patients stand to benefit by expanding the current pandemic response toolbox by the science of pharmacogenomics, and its applications in COVID-19 medicines and clinical trials.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Turkey.
| | - Ayşe Şeyma Büyük
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Semra Sardas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| |
Collapse
|
10
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
In silico evaluation of atazanavir as a potential HIV main protease inhibitor and its comparison with new designed analogs. Comput Biol Med 2022; 145:105523. [DOI: 10.1016/j.compbiomed.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
|
12
|
Turvey SL, Saxinger L, Mason AL. Apples to Apples? A Comparison of Real-World Tolerability of Antiretrovirals in Patients with Human Immunodeficiency Virus Infection and Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14030516. [PMID: 35336923 PMCID: PMC8949089 DOI: 10.3390/v14030516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
We previously characterized a human betaretrovirus and linked infection with the development of primary biliary cholangitis (PBC). There are in vitro and in vivo data demonstrating that antiretroviral therapy used to treat human immunodeficiency virus (HIV) can be repurposed to treat betaretroviruses. As such, PBC patients have been treated with nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), alone and in combination with a boosted protease inhibitor or an integrase strand transfer inhibitor in case studies and clinical trials. However, a randomized controlled trial using combination antiretroviral therapy with lopinavir was terminated early because 70% of PBC patients discontinued therapy because of gastrointestinal side effects. In the open-label extension, patients tolerating combination therapy underwent a significant reduction in serum liver parameters, whereas those on NRTIs alone rebounded to baseline. Herein, we compare clinical experience in the experimental use of antiretroviral agents in patients with PBC with the broader experience of using these agents in people living with HIV infection. While the incidence of gastrointestinal side effects in the PBC population appears somewhat increased compared to those with HIV infection, the clinical improvement observed in patients with PBC suggests that further studies using the newer and better tolerated antiretroviral agents are warranted.
Collapse
Affiliation(s)
- Shannon L. Turvey
- Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.L.T.); (L.S.)
| | - Lynora Saxinger
- Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.L.T.); (L.S.)
| | - Andrew L. Mason
- Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-8176; Fax: +1-780-492-1655
| |
Collapse
|
13
|
Singkham N, Avihingsanon A, Brundage RC, Birnbaum AK, Thammajaruk N, Ruxrungtham K, Bunupuradah T, Kiertiburanakul S, Chetchotisakd P, Punyawudho B. Pharmacogenetics-based population pharmacokinetic analysis for dose optimization of ritonavir-boosted atazanavir in Thai adult HIV-infected patients. Expert Rev Clin Pharmacol 2021; 15:99-108. [PMID: 34727835 DOI: 10.1080/17512433.2022.2000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND This population pharmacokinetic-pharmacogenetic study aimed to investigate the optimal dose of RTV-boosted ATV (ATV/RTV) for Thai adult HIV-infected patients. METHODS A total of 1460 concentrations of ATV and RTV from 544 patients receiving an ATV/RTV-based regimen were analyzed. The CYP3A5 6986 A > G, ABCB1 3435 C > T, ABCB1 2677 G > T, SLCO1B1 521 T > C, and NR1I2 63396 C > T were genotyped. A population pharmacokinetic model was performed using a nonlinear mixed-effect model (NONMEM®). Monte Carlo simulations were conducted to compare the percentages of patients achieving the therapeutic range of ATV through concentrations (Ctrough). RESULTS The apparent oral clearance of ATV (CL/FATV) without RTV was 7.69 L/h with interindividual variability (IIV) of 28.7%. Patients with CYP3A5 6986 GG had a 7.1% lower CL/FATV than those with AA or AG genotype. The CL/FATV decreased by 10.8% for females compared with males. Simulation results showed higher percentages (~70%) of patient receiving doses of 200/100 or 200/50 mg achieved the target ATV Ctrough, while more patients (~40%) receiving a standard dose (300/100 mg) had ATV Ctrough above this target. CONCLUSIONS Both CYP3A5 6986 A > G and female decreased CL/FATV in Thai HIV-infected patients. Simulations supported that the reduced dose of ATV/RTV was sufficient to achieve the target concentration for Thai population.
Collapse
Affiliation(s)
- Noppaket Singkham
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.,School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Anchalee Avihingsanon
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Tuberculosis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Angela K Birnbaum
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Narukjaporn Thammajaruk
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Kiat Ruxrungtham
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Torsak Bunupuradah
- HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | | | - Baralee Punyawudho
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
14
|
Yu YX, Liu WT, Li HY, Wang W, Sun HB, Zhang LL, Wu SL. Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:889-915. [PMID: 34551634 DOI: 10.1080/1062936x.2021.1979647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is thought to be efficient targets of anti-AIDS drug design. Molecular dynamics (MD) simulations and multiple post-processing analysis technologies were applied to decipher molecular mechanism underlying binding of three drugs Lopinavir (LPV), Nelfinavir (NFV) and Atazanavir (ATV) to the PR. Binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) suggest that compensation between binding enthalpy and entropy plays a vital role in binding of drugs to PR. Dynamics analyses show that binding of LPV, NFV and ATV highly affects structural flexibility, motion modes and dynamics behaviour of the PR, especially for two flaps. Computational alanine scanning and interaction network analysis verify that although three drugs have structural difference, they share similar binding modes to the PR and common interaction clusters with the PR. The current findings also confirm that residues located interaction clusters, such as Asp25/Asp25', Gly27/Gly27', Ala28/Ala28', Asp29, Ile47/Ile47', Gly49/Gly49', Ile50/Ile50', Val82/Val82' and Ile84/Ile84, can be used as efficient targets of clinically available inhibitors towards the PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- Shuifa Qilu Cultural Tourism Development Co., Ltd, Shuifa Ecological Industry Group, Jinan, China
| | - H Y Li
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
15
|
Adin CA. Bilirubin as a Therapeutic Molecule: Challenges and Opportunities. Antioxidants (Basel) 2021; 10:1536. [PMID: 34679671 PMCID: PMC8532879 DOI: 10.3390/antiox10101536] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is strong evidence that serum free bilirubin concentration has significant effects on morbidity and mortality in the most significant health conditions of our times, including cardiovascular disease, diabetes, and obesity/metabolic syndrome. Supplementation of bilirubin in animal and experimental models has reproduced these protective effects, but several factors have slowed the application bilirubin as a therapeutic agent in human patients. Bilirubin is poorly soluble in water, and is a complex molecule that is difficult to synthesize. Current sources of this molecule are animal-derived, creating concerns regarding the risk of virus or prion transmission. However, recent developments in nanoparticle drug delivery, biosynthetic strategies, and drug synthesis have opened new avenues for applying bilirubin as a pharmaceutical agent. This article reviews the chemistry and physiology of bilirubin, potential clinical applications and summarizes current strategies for safe and efficient drug delivery.
Collapse
Affiliation(s)
- Christopher A Adin
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Cheney L, Barbaro JM, Berman JW. Antiretroviral Drugs Impact Autophagy with Toxic Outcomes. Cells 2021; 10:909. [PMID: 33920955 PMCID: PMC8071244 DOI: 10.3390/cells10040909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Antiretroviral drugs have dramatically improved the morbidity and mortality of people living with HIV (PLWH). While current antiretroviral therapy (ART) regimens are generally well-tolerated, risks for side effects and toxicity remain as PLWH must take life-long medications. Antiretroviral drugs impact autophagy, an intracellular proteolytic process that eliminates debris and foreign material, provides nutrients for metabolism, and performs quality control to maintain cell homeostasis. Toxicity and adverse events associated with antiretrovirals may be due, in part, to their impacts on autophagy. A more complete understanding of the effects on autophagy is essential for developing antiretroviral drugs with decreased off target effects, meaning those unrelated to viral suppression, to minimize toxicity for PLWH. This review summarizes the findings and highlights the gaps in our knowledge of the impacts of antiretroviral drugs on autophagy.
Collapse
Affiliation(s)
- Laura Cheney
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John M. Barbaro
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; (J.M.B.); (J.W.B.)
| | - Joan W. Berman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; (J.M.B.); (J.W.B.)
- Department of Microbiology and Immunology, Montefiore Medical Center and Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
18
|
Murugan NA, Raja KMP, Saraswathi NT. Peptide-Based Antiviral Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:261-284. [PMID: 34258744 DOI: 10.1007/978-981-16-0267-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - K Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India.
| | - N T Saraswathi
- School of Chemical & Biotechnology, Sastra Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
19
|
Bolarin JA, Oluwatoyosi MA, Orege JI, Ayeni EA, Ibrahim YA, Adeyemi SB, Tiamiyu BB, Gbadegesin LA, Akinyemi TO, Odoh CK, Umeobi HI, Adeoye ABE. Therapeutic drugs for SARS-CoV-2 treatment: Current state and perspective. Int Immunopharmacol 2021; 90:107228. [PMID: 33302035 PMCID: PMC7691844 DOI: 10.1016/j.intimp.2020.107228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
The disease caused by viral pneumonia called severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) declared by the World Health Organization is a global pandemic that the world has witnessed since the last Ebola epidemic, SARS and MERS viruses. Many chemical compounds with antiviral activity are currently undergoing clinical investigation in order to find treatments for SARS-CoV-2 infected patients. On-going drug-drug interaction examinations on new, existing, and repurposed antiviral drugs are yet to provide adequate safety, toxicological, and effective monitoring protocols. This review presents an overview of direct and indirect antiviral drugs, antibiotics, and immune-stimulants used in the management of SARS-CoV-2. It also seeks to outline the recent development of drugs with anti-coronavirus effects; their mono and combination therapy in managing the disease vis-à-vis their biological sources and chemistry. Co-administration of these drugs and their interactions were discussed to provide significant insight into how adequate monitoring of patients towards effective health management could be achieved.
Collapse
Affiliation(s)
- Joshua Adedeji Bolarin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mercy Adaramodu Oluwatoyosi
- Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua Iseoluwa Orege
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu PMB 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yusuf Ajibola Ibrahim
- School of Chemical Sciences, Chinese Academy of Science, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Bashir Bolaji Tiamiyu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanre Anthony Gbadegesin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Toluwanimi Oluwadara Akinyemi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuks Kenneth Odoh
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Happiness Ijeoma Umeobi
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adenike Bernice-Eloise Adeoye
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Arh Hig Rada Toksikol 2020; 71:285-299. [PMID: 33410773 PMCID: PMC7968508 DOI: 10.2478/aiht-2020-71-3466] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Due to their very good chemical and proteolytic stability, ability to penetrate cell membranes, and resemblance to a peptide bond, carbamate derivatives have received much attention in recent years and got an important role in modern drug discovery and medicinal chemistry. Today, carbamates make structural and/or functional part of many drugs and prodrugs approved and marketed for the treatment of various diseases such as cancer, epilepsy, hepatitis C, HIV infection, and Alzheimer's disease. In drugs they can play a role in drug-target interaction or improve the biological activity of parent molecules. In prodrugs they are mainly used to delay first-pass metabolism and enhance the bioavailability and effectiveness of compounds. This brief review takes a look at the properties and use of carbamates in various fields of medicine and provides quick insights into the mechanisms of action for some of them.
Collapse
|
21
|
Rakshit A, Kumar P, Alam T, Dhara H, Patel BK. Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to γ- and β-Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. J Org Chem 2020; 85:12482-12504. [DOI: 10.1021/acs.joc.0c01703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prashant Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Hirendranath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
22
|
Singkham N, Avihingsanon A, Thammajaruk N, Ruxrungtham K, Bunupuradah T, Kiertiburanakul S, Chetchotisakd P, Burger DM, Emery S, Punyawudho B. Influence of CYP3A5 and SLCO1B1 polymorphisms on atazanavir/r concentrations in Thai HIV-infected patients. Pharmacogenomics 2020; 20:517-527. [PMID: 31124411 DOI: 10.2217/pgs-2018-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To evaluate the influence of genetic polymorphisms on plasma trough concentrations of atazanavir (ATV) and ritonavir (RTV). Patients & methods: The concentration-to-dose ratios were compared between different genotype groups of CYP3A5, ABCB1, SLCO1B1 and NR1I2 in 490 patients. Multiple regression analysis was used to examine the association between genetic and clinical factors and log-transformed concentration-to-dose ratio of ATV and RTV. Results: Higher concentrations of ATV and RTV were significantly associated with CYP3A5 6986 GG and SLCO1B1 521 TC or CC. Female patients had significantly higher ATV plasma concentration than male patients. Conclusion: Genetic polymorphisms and gender are factors affecting the variability of ATV and RTV concentrations in the Thai population. Thus, genetic testing is worth considering when atazanavir + low dose ritonavir is prescribed.
Collapse
Affiliation(s)
- Noppaket Singkham
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.,PhD's Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Avihingsanon
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kiat Ruxrungtham
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Sasisopin Kiertiburanakul
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - David M Burger
- Department of Pharmacy, Radbound University Medical Center, Nijmegen, The Netherlands
| | - Sean Emery
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Baralee Punyawudho
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.,Pharmacoepidemiology & Statistics Research Center (PESRC), Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Nishiya Y, Suzuki E, Ishizuka T, Kazui M, Sakurai H, Nakai D. Identification of non-P450 enzymes involved in the metabolism of new drugs: Their significance in drug interaction evaluation and prodrug disposition. Drug Metab Pharmacokinet 2020; 35:45-55. [PMID: 31926835 DOI: 10.1016/j.dmpk.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/29/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Yumi Nishiya
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan.
| | - Eiko Suzuki
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Tomoko Ishizuka
- Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Miho Kazui
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Hidetaka Sakurai
- General Administration Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Daisuke Nakai
- Biomarker & Translational Research Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| |
Collapse
|
24
|
Wang F, Zheng LS, Lang QW, Yin C, Wu T, Phansavath P, Chen GQ, Ratovelomanana-Vidal V, Zhang X. Rh(iii)-Catalyzed diastereoselective transfer hydrogenation: an efficient entry to key intermediates of HIV protease inhibitors. Chem Commun (Camb) 2020; 56:3119-3122. [DOI: 10.1039/c9cc09793g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly efficient diastereoselective transfer hydrogenation of α-aminoalkyl α′-chloromethyl ketones catalyzed by a tethered rhodium complex was developed and successfully utilized in the synthesis of the key intermediates of HIV protease inhibitors.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Long-Sheng Zheng
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Qi-Wei Lang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Congcong Yin
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Ting Wu
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | - Phannarath Phansavath
- PSL University
- Chimie ParisTech
- CNRS
- Institute of Chemistry for Life and Health Sciences
- CSB2D team
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| | | | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518000
- People's Republic of China
| |
Collapse
|
25
|
Sim J, Viji M, Rhee J, Jo H, Cho SJ, Park Y, Seo S, Jung K, Lee H, Jung J. γ
‐Functionalization of
α,β
‐Unsaturated Nitriles under Mild Conditions: Versatile Synthesis of 4‐Aryl‐2‐Bromopyridines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Jeongtae Rhee
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Hyeju Jo
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Suk Joon Cho
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
- Bio & Drug Discovery DivisionKorea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Yunjeong Park
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Seung‐Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical SciencesGachon University Incheon 21936 Republic of Korea
| | - Kwan‐Young Jung
- Bio & Drug Discovery DivisionKorea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Jae‐Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| |
Collapse
|
26
|
Han D, Tan J, Men J, Li C, Zhang X. Quantitative Structure Activity/Pharmacokinetics Relationship Studies of HIV-1 Protease Inhibitors Using Three Modelling Methods. Med Chem 2019; 17:396-406. [PMID: 31448716 DOI: 10.2174/1573406415666190826154505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 protease inhibitor (PIs) is a good choice for AIDS patients. Nevertheless, for PIs, there are several bugs in clinical application, like drug resistance, the large dose, the high costs and so on, among which, the poor pharmacokinetics property is one of the important reasons that leads to the failure of its clinical application. OBJECTIVE We aimed to build computational models for studying the relationship between PIs structure and its pharmacological activities. METHODS We collected experimental values of koff/Ki and structures of 50 PIs through a careful literature and database search. Quantitative structure activity/pharmacokinetics relationship (QSAR/QSPR) models were constructed by support vector machine (SVM), partial-least squares regression (PLSR) and back-propagation neural network (BPNN). RESULTS For QSAR models, SVM, PLSR and BPNN all generated reliable prediction models with the r2 of 0.688, 0.768 and 0.787, respectively, and r2pred of 0.748, 0.696 and 0.640, respectively. For QSPR models, the optimum models of SVM, PLSR and BPNN obtained the r2 of 0.952, 0.869 and 0.960, respectively, and the r2pred of 0.852, 0.628 and 0.814, respectively. CONCLUSION Among these three modelling methods, SVM showed superior ability than PLSR and BPNN both in QSAR/QSPR modelling of PIs, thus, we suspected that SVM was more suitable for predicting activities of PIs. In addition, 3D-MoRSE descriptors may have a tight relationship with the Ki values of PIs, and the GETAWAY descriptors have significant influence on both koff and Ki in PLSR equations.
Collapse
Affiliation(s)
- Dan Han
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Jingrui Men
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
27
|
Yatham VR, Bellotti P, König B. Decarboxylative hydrazination of unactivated carboxylic acids by cerium photocatalysis. Chem Commun (Camb) 2019; 55:3489-3492. [PMID: 30829348 PMCID: PMC6498423 DOI: 10.1039/c9cc00492k] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the cerium photocatalyzed radical decarboxylative hydrazination of carboxylic acids with di-tert-butylazodicarboxylate (DBAD). The operationally simple protocol provides rapid access to synthetically useful hydrazine derivatives and overcomes current scope limitations in the photoredox-catalyzed decarboxylation of carboxylic acids.
Collapse
Affiliation(s)
- Veera Reddy Yatham
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany.
| | | | | |
Collapse
|
28
|
Wei J, Liang H, Ni C, Sheng R, Hu J. Transition-Metal-Free Desulfinative Cross-Coupling of Heteroaryl Sulfinates with Grignard Reagents. Org Lett 2019; 21:937-940. [DOI: 10.1021/acs.orglett.8b03918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Wei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huamin Liang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
29
|
Leowattana W. Antiviral Drugs and Acute Kidney Injury (AKI). Infect Disord Drug Targets 2019; 19:375-382. [PMID: 31288730 DOI: 10.2174/1871526519666190617154137] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
The introduction of more efficient antiviral drugs are common cause drug-induced acute kidney injury (AKI). The true prevalence of antiviral drugs induced nephrotoxicity is hardly determined. It causes AKI by many mechanisms including acute tubular necrosis (ATN), allergic interstitial nephritis (AIN), and crystal nephropathy. ATN has been described with a few kinds of antiviral drugs such as cidofovir, adefovir and tenofovir with unique effects on transporter defects, apoptosis, and mitochondrial injury. AIN from atazanavir is a rapid onset of AKI and usually nonoliguric but dialytic therapy are needed because of severity. Additionally, crystal nephropathy from acyclovir, indinavir, and foscarnet can cause AKI due to intratubular obstruction. In this article, the mechanisms of antiviral drug-induced AKI were reviewed and strategies for preventing AKI were mentioned.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Rajavithi Road, Rachatawee, Bangkok 10400, Thailand
| |
Collapse
|
30
|
Zhao Z, Wei H, Xiao K, Cheng B, Zhai H, Li Y. Facile Synthesis of Pyridines from Propargyl Amines: Concise Total Synthesis of Suaveoline Alkaloids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Hongbo Wei
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Ke Xiao
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Bin Cheng
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| | - Hongbin Zhai
- Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 China
| | - Yun Li
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 China
| |
Collapse
|
31
|
Zhao Z, Wei H, Xiao K, Cheng B, Zhai H, Li Y. Facile Synthesis of Pyridines from Propargyl Amines: Concise Total Synthesis of Suaveoline Alkaloids. Angew Chem Int Ed Engl 2018; 58:1148-1152. [PMID: 30411835 DOI: 10.1002/anie.201811812] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 01/22/2023]
Abstract
A general and efficient protocol was developed for the synthesis of polysubstituted pyridines from propargyl amines and unsaturated carbonyl compounds through a tandem condensation/alkyne isomerization/6π 3-azatriene electrocyclization sequence. This process was found to be applicable to a wide range of readily available substrates (30 examples, up to 95 % yield) and could be readily performed on a preparative (20 g) scale. By taking advantage of this method for late-stage pyridine incorporation, we successfully completed the collective total synthesis of suveoline, norsuveoline, and macrophylline.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongbo Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ke Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bin Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongbin Zhai
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
32
|
Tamraz B, Huang Y, French AL, Kassaye S, Anastos K, Nowicki MJ, Gange S, Gustafson DR, Bacchetti P, Greenblatt RM, Hysi PG, Aouizerat BE. A Genome-Wide Association Study Identifies a Candidate Gene Associated With Atazanavir Exposure Measured in Hair. Clin Pharmacol Ther 2018; 104:949-956. [PMID: 29315502 PMCID: PMC6037621 DOI: 10.1002/cpt.1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
Hair provides a direct measure of long-term exposure of atazanavir (ATV). We report the results of the first genome-wide association study (GWAS) of ATV exposure measured in hair in an observational cohort representative of US women living with HIV; the Women's Interagency HIV Study. Approximately 14.1 million single nucleotide polymorphisms (SNPs) were analyzed in linear regression-based GWAS, with replication, adjusted for nongenetic predictors collected under conditions of actual use of ATV in 398 participants. Lastly, the PharmGKB database was used to identify pharmacogene associations with ATV exposure. The rs73208473, within intron 1 of SORCS2, resulted in a 0.46-fold decrease in ATV exposure, with the strongest association (P = 1.71×10-8 ) in GWAS. A priori pharmacogene screening did not identify additional variants statistically significantly associated with ATV exposure, including those previously published in ATV plasma candidate pharmacogene studies. The findings demonstrate the potential value of pharmacogenomic GWAS in ethnically diverse populations under conditions of actual use.
Collapse
Affiliation(s)
- Bani Tamraz
- University of California, San Francisco, School of Pharmacy, San Francisco, CA
| | - Yong Huang
- University of California, San Francisco, School of Pharmacy, San Francisco, CA
| | - Audrey L. French
- Infectious Diseases, CORE Center/Stroger Hospital of Cook County, Chicago, IL
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, DC
| | - Kathryn Anastos
- Departments of Medicine and Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Marek J. Nowicki
- Department of Medicine, University of Southern California, Los Angeles, CA
| | - Stephen Gange
- John Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Deborah R. Gustafson
- Department of Neurology, State University of New York - Downstate Medical Center, Brooklyn, NY
| | - Peter Bacchetti
- University of California, San Francisco, School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA
| | - Ruth M. Greenblatt
- University of California, San Francisco, School of Pharmacy, San Francisco, CA
- University of California, San Francisco, School of Medicine, Department of Epidemiology and Biostatistics, San Francisco, CA
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, United Kingdom
- Great Ormand Street Institute for Child Health, University College London, United Kingdom
| | - Bradley E. Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, NY
| | | |
Collapse
|
33
|
Lloret-Linares C, Rahmoun Y, Lopes A, Chopin D, Simoneau G, Green A, Delhotal B, Sauvageon H, Mouly S, Bergmann JF, Sellier PO. Effect of body weight and composition on efavirenz, atazanavir or darunavir concentration. Therapie 2018; 73:185-191. [DOI: 10.1016/j.therap.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
|
34
|
Kim B, Kim KS. Monomorphic ventricular tachycardia due to protease inhibitor intoxication by atazanavir. Clin Exp Emerg Med 2018; 5:131-134. [PMID: 29706057 PMCID: PMC6039367 DOI: 10.15441/ceem.17.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023] Open
Abstract
Atazanavir is a protease inhibitor approved for use in combination with other antiretroviral drugs for the treatment of human immunodeficiency virus infection. Atazanavir and other protease inhibitors can sometimes induce corrected QT prolongation and ventricular arrhythmia. A 40-year-old man with no comorbidities, except human immunodeficiency virus 1 infection, presented with palpitations 3 days after an overdose of 150 caps of atazanavir, with suicidal intent. His initial electrocardiogram showed monomorphic ventricular tachycardia, and hyperbilirubinemia was observed in his initial blood test. Immediately after magnesium sulfate infusion, his ventricular tachycardia was converted into junctional bradycardia with prolonged corrected QT. After 3 days of close observation in the intensive care unit, the corrected QT prolongation and hyperbilirubinemia were normalized.
Collapse
|
35
|
Floridia M, Masuelli G, Ravizza M, Tassis B, Cetin I, Sansone M, Degli Antoni A, Simonazzi G, Maccabruni A, Francisci D, Frisina V, Liuzzi G, Dalzero S, Tamburrini E. Atazanavir and darunavir in pregnant women with HIV: evaluation of laboratory and clinical outcomes from an observational national study. J Antimicrob Chemother 2018; 73:1025-1030. [PMID: 29244115 DOI: 10.1093/jac/dkx478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/18/2017] [Indexed: 11/13/2022] Open
Abstract
Background Atazanavir and darunavir represent the main HIV PIs recommended in pregnancy, but comparative data in pregnant women are limited. We assessed the safety and activity profile of these two drugs in pregnancy using data from a national observational study. Methods Women with atazanavir or darunavir exposure in pregnancy were evaluated for laboratory measures and main pregnancy outcomes (e.g. preterm delivery, low birthweight, non-elective caesarean section and neonatal gestational age-adjusted birthweight Z-score). Results Final analysis included 500 pregnancies with either atazanavir (n = 409) or darunavir (n = 91) exposure. No differences in pregnancy outcomes, weight gain in pregnancy, drug discontinuations, undetectable HIV-RNA, haemoglobin, ALT, total cholesterol, HDL cholesterol and LDL cholesterol were observed between the two groups. At third trimester, exposure to darunavir was associated with higher levels of plasma triglycerides (median 235.5 versus 179 mg/dL; P = 0.032) and a higher total cholesterol/HDL cholesterol ratio (median 4.03 versus 3.27; P = 0.028) and exposure to atazanavir was associated with higher levels of plasma bilirubin (1.54 versus 0.32 mg/dL; P < 0.001). Conclusions In this observational study, the two main HIV PIs currently recommended by perinatal guidelines showed similar safety and activity in pregnancy, with no evidence of differences between the two drugs in terms of main pregnancy outcomes. Based on the minor differences observed in laboratory measures, prescribing physicians might prefer either drug in some particular situations where the different impacts of treatment on lipid profile and bilirubin may have clinical relevance.
Collapse
Affiliation(s)
- M Floridia
- National Centre for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Masuelli
- Department of Obstetrics and Neonatology, Città della Salute e della Scienza Hospital and University of Turin, Turin, Italy
| | - M Ravizza
- Department of Obstetrics and Gynaecology, DMSD San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - B Tassis
- Obstetric and Gynaecology Unit, Fondazione IRCCS Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - I Cetin
- Department of Obstetrics and Gynaecology, Luigi Sacco Hospital and University of Milan, Milan, Italy
| | - M Sansone
- Department of Neurosciences, Reproductive and Dentistry Science, University Federico II, Naples, Italy
| | - A Degli Antoni
- Department of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, Parma, Italy
| | - G Simonazzi
- Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi and University of Bologna, Bologna, Italy
| | - A Maccabruni
- IRCCS S. Matteo and Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - D Francisci
- Clinic of Infectious Diseases, Azienda Ospedaliera 'Santa Maria', Terni and University of Perugia, Perugia, Italy
| | - V Frisina
- Department of Obstetrics and Neonatology, Città della Salute e della Scienza Hospital and University of Turin, Turin, Italy
| | - G Liuzzi
- I.N.M.I. Lazzaro Spallanzani, Rome, Italy
| | - S Dalzero
- Department of Obstetrics and Gynaecology, DMSD San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - E Tamburrini
- Department of Infectious Diseases, Catholic University, Rome, Italy
| |
Collapse
|
36
|
Morgen M, Saxena A, Chen XQ, Miller W, Nkansah R, Goodwin A, Cape J, Haskell R, Su C, Gudmundsson O, Hageman M, Kumar A, Chowan GS, Rao A, Holenarsipur VK. Lipophilic salts of poorly soluble compounds to enable high-dose lipidic SEDDS formulations in drug discovery. Eur J Pharm Biopharm 2017; 117:212-223. [PMID: 28438550 DOI: 10.1016/j.ejpb.2017.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/16/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) have been used to solubilize poorly water-soluble drugs to improve exposure in high-dose pharmacokinetic (PK) and toxicokinetic (TK) studies. However, the absorbable dose is often limited by drug solubility in the lipidic SEDDS vehicle. This study focuses on increasing solubility and drug loading of ionizable drugs in SEDDS vehicles using lipophilic counterions to prepare lipophilic salts of drugs. SEDDS formulations of two lipophilic salts-atazanavir-2-naphthalene sulfonic acid (ATV-2-NSA) and atazanavir-dioctyl sulfosuccinic acid (ATV-Doc)-were characterized and their performance compared to atazanavir (ATV) free base formulated as an aqueous crystalline suspension, an organic solution, and a SEDDS suspension, using in vitro, in vivo, and in silico methods. ATV-2-NSA exhibited ∼6-fold increased solubility in a SEDDS vehicle, allowing emulsion dosing at 12mg/mL. In rat PK studies at 60mg/kg, the ATV-2-NSA SEDDS emulsion had comparable exposure to the free-base solution, but with less variability, and had better exposure at high dose than aqueous suspensions of ATV free base. Trends in dose-dependent exposure for various formulations were consistent with GastroPlus™ modeling. Results suggest use of lipophilic salts is a valuable approach for delivering poorly soluble compounds at high doses in Discovery.
Collapse
Affiliation(s)
- Michael Morgen
- Bend Research Inc., a division of Capsugel, 64550 Research Road, Bend, OR 97703, USA.
| | - Ajay Saxena
- Biopharmaceutics, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560099, India
| | - Xue-Qing Chen
- Discovery Pharmaceutics, Bristol-Myers Squibb USA, Bristol-Myers Squibb Pharmaceutical Research Institute, Route 206, Province Line Road P.O. Box 4000, Princeton, NJ 08543, USA
| | - Warren Miller
- Bend Research Inc., a division of Capsugel, 64550 Research Road, Bend, OR 97703, USA
| | - Richard Nkansah
- Bend Research Inc., a division of Capsugel, 64550 Research Road, Bend, OR 97703, USA
| | - Aaron Goodwin
- Bend Research Inc., a division of Capsugel, 64550 Research Road, Bend, OR 97703, USA
| | - Jon Cape
- Bend Research Inc., a division of Capsugel, 64550 Research Road, Bend, OR 97703, USA
| | - Roy Haskell
- Discovery Pharmaceutics, Bristol-Myers Squibb Pharmaceutical Research Institute, Bristol-Myers Squibb USA, 5 Research Pkwy, Wallingford, CT 06492, USA
| | - Ching Su
- Discovery Pharmaceutics, Bristol-Myers Squibb USA, Bristol-Myers Squibb Pharmaceutical Research Institute, Route 206, Province Line Road P.O. Box 4000, Princeton, NJ 08543, USA
| | - Olafur Gudmundsson
- Discovery Pharmaceutics, Bristol-Myers Squibb USA, Bristol-Myers Squibb Pharmaceutical Research Institute, Route 206, Province Line Road P.O. Box 4000, Princeton, NJ 08543, USA
| | - Michael Hageman
- Discovery Pharmaceutics, Bristol-Myers Squibb USA, Bristol-Myers Squibb Pharmaceutical Research Institute, Route 206, Province Line Road P.O. Box 4000, Princeton, NJ 08543, USA
| | - Anoop Kumar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560099, India
| | - Gajendra Singh Chowan
- Biopharmaceutics, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560099, India
| | - Abhijith Rao
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560099, India
| | - Vinay K Holenarsipur
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560099, India
| |
Collapse
|
37
|
Abstract
HIV-1-infected patients with suppressed plasma viral loads often require changes to their antiretroviral (ARV) therapy to manage drug toxicity and intolerance, to improve adherence, and to avoid drug interactions. In patients who have never experienced virologic failure while receiving ARV therapy and who have no evidence of drug resistance, switching to any of the acceptable US Department of Health and Human Services first-line therapies is expected to maintain virologic suppression. However, in virologically suppressed patients with a history of virologic failure or drug resistance, it can be more challenging to change therapy while still maintaining virologic suppression. In these patients, it may be difficult to know whether the discontinuation of one of the ARVs in a suppressive regimen constitutes the removal of a key regimen component that will not be adequately supplanted by one or more substituted ARVs. In this article, we review many of the clinical scenarios requiring ARV therapy modification in patients with stable virologic suppression and outline the strategies for modifying therapy while maintaining long-term virologic suppression.
Collapse
|
38
|
Zhu L, Brüggemann RJ, Uy J, Colbers A, Hruska MW, Chung E, Sims K, Vakkalagadda B, Xu X, van Schaik RHN, Burger DM, Bertz RJ. CYP2C19
Genotype-Dependent Pharmacokinetic Drug Interaction Between Voriconazole and Ritonavir-Boosted Atazanavir in Healthy Subjects. J Clin Pharmacol 2016; 57:235-246. [DOI: 10.1002/jcph.798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhu
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Princeton NJ USA
| | - Roger J. Brüggemann
- Department of Pharmacy; Radboud University Nijmegen Medical Centre; Nijmegen; the Netherlands and Radboud Institute for Health Sciences (RIHS); Nijmegen the Netherlands
| | - Jonathan Uy
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Plainsboro NJ USA
| | - Angela Colbers
- Department of Pharmacy; Radboud University Nijmegen Medical Centre; Nijmegen; the Netherlands and Radboud Institute for Health Sciences (RIHS); Nijmegen the Netherlands
| | - Matthew W. Hruska
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Princeton NJ USA
| | - Ellen Chung
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Hopewell NJ USA
| | - Karen Sims
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Princeton NJ USA
| | - Blisse Vakkalagadda
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Hopewell NJ USA
| | - Xiaohui Xu
- Bioanalytical Sciences; Bristol-Myers Squibb; Princeton NJ USA
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry (AKC); Erasmus University Medical Centre; Rotterdam the Netherlands
| | - David M. Burger
- Department of Pharmacy; Radboud University Nijmegen Medical Centre; Nijmegen; the Netherlands and Radboud Institute for Health Sciences (RIHS); Nijmegen the Netherlands
| | - Richard J. Bertz
- Exploratory Clinical and Translational Research; Bristol-Myers Squibb; Hopewell NJ USA
| |
Collapse
|
39
|
Naccarato M, Hall E, Wai A, Ostrowski M, Carvalhal A. A case of a probable drug interaction between lurasidone and atazanavir-based antiretroviral therapy. Antivir Ther 2016; 21:735-738. [PMID: 27328703 DOI: 10.3851/imp3059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
The cytochrome P450 isoform that is primarily involved in the metabolism of the antipsychotic lurasidone is CYP3A4. Drugs that inhibit or induce this enzyme would then be expected to increase or decrease serum concentrations of lurasidone, respectively. Atazanavir, an HIV-1 protease inhibitor, has demonstrated to be an inhibitor of CYP3A4 and would be expected to increase the exposure of any drug metabolized by this enzyme. We report a case of an atazanavir-precipitated drug-drug interaction that led to elevated serum concentrations of lurasidone and associated clinical symptoms of drug toxicity.
Collapse
Affiliation(s)
- Mark Naccarato
- Department of Infectious Diseases & HIV, St Michael's Hospital, Toronto, ON, Canada
| | - Elise Hall
- Department of Psychiatry, St Michael's Hospital, Toronto, ON, Canada
| | - Alan Wai
- Department of Psychiatry, St Michael's Hospital, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Infectious Diseases & HIV, St Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Adriana Carvalhal
- Department of Psychiatry, St Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Raju KVSN, Pavan Kumar KSR, Siva Krishna N, Madhava Reddy P, Sreenivas N, Kumar Sharma H, Himabindu G, Annapurna N. Trace Level Determination of Mesityl Oxide and Diacetone Alcohol in Atazanavir Sulfate Drug Substance by a Gas Chromatography Method. Sci Pharm 2016; 84:321-31. [PMID: 27222607 PMCID: PMC4871184 DOI: 10.3797/scipharm.1507-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 11/23/2022] Open
Abstract
A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.
Collapse
Affiliation(s)
- K V S N Raju
- Aurobindo Pharma Limited Research Centre-II, Survey No. 71&72, Indrakaran Village, Sangareddy Mandal, Medak-502329, Andhra Pradesh, India
| | - K S R Pavan Kumar
- Aurobindo Pharma Limited Research Centre-II, Survey No. 71&72, Indrakaran Village, Sangareddy Mandal, Medak-502329, Andhra Pradesh, India
| | - N Siva Krishna
- Aurobindo Pharma Limited Research Centre-II, Survey No. 71&72, Indrakaran Village, Sangareddy Mandal, Medak-502329, Andhra Pradesh, India
| | - P Madhava Reddy
- Aurobindo Pharma Limited Research Centre-II, Survey No. 71&72, Indrakaran Village, Sangareddy Mandal, Medak-502329, Andhra Pradesh, India
| | - N Sreenivas
- Aurobindo Pharma Limited Research Centre-II, Survey No. 71&72, Indrakaran Village, Sangareddy Mandal, Medak-502329, Andhra Pradesh, India
| | - Hemant Kumar Sharma
- Aurobindo Pharma Limited Research Centre-II, Survey No. 71&72, Indrakaran Village, Sangareddy Mandal, Medak-502329, Andhra Pradesh, India
| | - G Himabindu
- Department of Engineering Chemistry, AU college of Engineering, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India
| | - N Annapurna
- Department of Engineering Chemistry, AU college of Engineering, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India
| |
Collapse
|
41
|
Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Achievement of regioselectivity in transition metal-catalyzed direct C–H (hetero)arylation reactions of heteroarenes with one heteroatom through the use of removable protecting/blocking substituents or traceless directing groups. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
43
|
Advances and challenges in PBPK modeling – Analysis of factors contributing to the oral absorption of atazanavir, a poorly soluble weak base. Eur J Pharm Biopharm 2015; 93:267-80. [DOI: 10.1016/j.ejpb.2015.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 11/21/2022]
|
44
|
Comparison of body composition changes between atazanavir/ritonavir and lopinavir/ritonavir each in combination with tenofovir/emtricitabine in antiretroviral-naïve patients with HIV-1 infection. Clin Drug Investig 2015; 34:287-96. [PMID: 24557728 DOI: 10.1007/s40261-014-0175-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Antiretroviral drug regimen choice may influence changes in body composition. The objective of this study was to compare changes in body composition between ritonavir-boosted atazanavir (ATV/r) and ritonavir-boosted lopinavir (LPV/r) over 96 weeks using data from a substudy of CASTLE, which compared once-daily ATV/r with twice-daily LPV/r, both in combination with tenofovir disoproxil fumarate/emtricitabine in treatment-naïve patients with HIV-1 infection. METHODS We examined 224 patients (125 on ATV/r; 99 on LPV/r) at baseline, 48 and 96 weeks using dual-energy X-ray absorptiometry and computerised tomography. RESULTS In the lowest baseline body mass index (BMI) group, there were significantly greater gains at week 96 for ATV/r than for LPV/r in subcutaneous adipose tissue and in visceral adipose tissue (VAT). By week 96, patients with lowest baseline CD4 cell counts on ATV/r had 28 % increases in VAT versus 14 % reductions for patients receiving LPV/r. Those with the lowest baseline BMI on ATV/r had 19 % increases in VAT versus reductions of 5 % for patients on LPV/r. In the highest baseline BMI group, the mean increase in triglycerides was 6 and 70 % in the ATV/r and LPV/r arms, respectively. Compared with baseline, an increase in proportion of patients with high waist circumference (WC)/high triglycerides at 96 weeks was noted in both treatment arms, but this increase was numerically greater with LVP/r (18 %) than with ATV/r (11 %). CONCLUSION Truncal fat gains on ATV/r primarily led to increases in WC, which may reflect return to health, while on LPV/r increases in WC and triglycerides occurred. Changes in body composition with antiretroviral therapy are influenced by treatment choice and baseline characteristics.
Collapse
|
45
|
Margolis AM, Heverling H, Pham PA, Stolbach A. A review of the toxicity of HIV medications. J Med Toxicol 2014; 10:26-39. [PMID: 23963694 DOI: 10.1007/s13181-013-0325-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has changed human immunodeficiency virus (HIV) infection from a near-certainly fatal illness to one that can be managed chronically. More patients are taking antiretroviral drugs (ARVs) for longer periods of time, which naturally results in more observed toxicity. Overdose with ARVs is not commonly reported. The most serious overdose outcomes have been reported in neonates who were inadvertently administered supratherapeutic doses of HIV prophylaxis medications. Typical ARV regimens include a "backbone" of two nucleoside reverse transcriptase inhibitors (NRTI) and a "base" of either a protease inhibitor (PI) or nonnucleoside reverse transcriptase inhibitor. New classes of drugs called entry inhibitors and integrase inhibitors have also emerged. Older NRTIs were associated with mitochondrial toxicity, but this is less common in the newer drugs, emtricitabine, lamivudine, and tenofovir. Mitochondrial toxicity results from NRTI inhibition of a mitochondrial DNA polymerase. Mitochondrial toxicity manifests as myopathy, neuropathy, hepatic failure, and lactic acidosis. Routine lactate assessment in asymptomatic patients is not indicated. Lactate concentration should be obtained in patients taking NRTIs who have fatigue, nausea, vomiting, or vague abdominal pain. Mitochondrial toxicity can be fatal and is treated by supportive care and discontinuing NRTIs. Metabolic cofactors like thiamine, carnitine, and riboflavin may be helpful in managing mitochondrial toxicity. Lipodystrophy describes changes in fat distribution and lipid metabolism that have been attributed to both PIs and NRTIs. Lipodystrophy consists of loss of fat around the face (lipoatrophy), increase in truncal fat, and hypertriglyceridemia. There is no specific treatment of lipodystrophy. Clinicians should be able to recognize effects of chronic toxicity of ARVs, especially mitochondrial toxicity.
Collapse
Affiliation(s)
- Asa M Margolis
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
46
|
Lyseng-Williamson KA, Deeks ED. Cobicistat: a guide to its use as a pharmacokinetic enhancer of atazanavir and darunavir in HIV-1 infection. DRUGS & THERAPY PERSPECTIVES 2014. [DOI: 10.1007/s40267-014-0143-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
De Rosa M, Unge J, Motwani HV, Rosenquist Å, Vrang L, Wallberg H, Larhed M. Synthesis of P1'-functionalized macrocyclic transition-state mimicking HIV-1 protease inhibitors encompassing a tertiary alcohol. J Med Chem 2014; 57:6444-57. [PMID: 25054811 DOI: 10.1021/jm500434q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Seven novel tertiary alcohol containing linear HIV-1 protease inhibitors (PIs), decorated at the para position of the benzyl group in the P1' side with (hetero)aromatic moieties, were synthesized and biologically evaluated. To study the inhibition and antiviral activity effect of P1-P3 macrocyclization, 14- and 15-membered macrocyclic PIs were prepared by ring-closing metathesis of the corresponding linear PIs. The macrocycles were more active than the linear precursors and compound 10f, with a 2-thiazolyl group in the P1' position, was the most potent PI of this new series (Ki 2.2 nM, EC50 0.2 μM). Co-crystallized complexes of both linear and macrocyclic PIs with the HIV-1 protease enzyme were prepared and analyzed.
Collapse
Affiliation(s)
- Maria De Rosa
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University , P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Dalla-Vechia L, Reichart B, Glasnov T, Miranda LSM, Kappe CO, de Souza ROMA. A three step continuous flow synthesis of the biaryl unit of the HIV protease inhibitor Atazanavir. Org Biomol Chem 2014; 11:6806-13. [PMID: 24175328 DOI: 10.1039/c3ob41464g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of multistep continuous flow reactions for the synthesis of important intermediates for the pharmaceutical industry is still a significant challenge. In the present contribution the biaryl-hydrazine unit of Atazanavir, an important HIV protease inhibitor, was prepared in a three-step continuous flow sequence in 74% overall yield. The synthesis involved Pd-catalyzed Suzuki–Miyaura cross-coupling, followed by hydrazone formation and a subsequent hydrogenation step, and additionally incorporates a liquid–liquid extraction step.
Collapse
|
49
|
Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. AIDS 2014; 28:621-32. [PMID: 24983540 DOI: 10.1097/qad.0000000000000103] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Assessment of renal function in HIV-positive patients is of increasing importance in the context of ageing and associated comorbidities. Exposure to nephrotoxic medications is widespread, and several commonly used antiretroviral drugs have nephrotoxic potential. Moreover, specific antiretrovirals inhibit renal tubular transporters resulting in the potential for drug-drug interactions as well as increases in serum creatinine concentrations, which affect estimates of glomerular filtration rate in the absence of changes in actual glomerular filtration rate. This review explores the effects of antiretroviral therapy on the kidney and offers an understanding of mechanisms that lead to apparent and real changes in renal function.
Collapse
|
50
|
Panagopoulos P, Paraskevis D, Katsarolis I, Sypsa V, Detsika M, Protopapas K, Antoniadou A, Papadopoulos A, Petrikkos G, Hatzakis A. High prevalence of the UGT1A1*28 variant in HIV-infected individuals in Greece. Int J STD AIDS 2014; 25:860-5. [DOI: 10.1177/0956462414523259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hyperbilirubinaemia with or without jaundice is one of the side effects of atazanavir boosted with low-dose ritonavir (ATV/rit) related to the drug plasma levels, as a result of its metabolism by UGT1A1 – uridine diphosphate-glucuronosyl transferase. Genotyping for UGT1A1*28 before initiation of antiretroviral therapy containing atazanavir may aid in identifying individuals at risk of hyperbilirubinaemia. Our objective was to estimate the prevalence of the UGTA1A1*28 polymorphism in HIV-infected individuals in Greece and to determine its potential association with hyperbilirubinaemia in patients receiving ATV/rit. The prevalence of the UGTA1A1*28 variant was estimated in 79 HIV-infected patients prior to the administration of the first-line treatment. The UGTA1A1*28 variant was detected in 46 out of 79 individuals (58.2%). Antiretroviral therapy was administered to 64/79 patients (81%). Among them, 26/64 (40.6%) received ATV/rit. Of the ATV/rit-treated patients, 14 were found to be carriers of the UGT1A1*28 variant (54%), and maximum serum bilirubin levels were significantly higher in the carrier population (4.71 vs. 2.69 mg/dL, p = 0.026). In 50% of the population, maximum levels were recorded in the first month of follow-up. Although carriage of UGT1A1 is linked with the development of hyperbilirubinaemia, the implementation of a pharmacogenomic approach in clinical practice cannot yet be recommended as a standard of care.
Collapse
Affiliation(s)
- P Panagopoulos
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Haidari Athens, Greece
- 2nd Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - D Paraskevis
- Hygiene and Epidemiology Department, Medical School, University of Athens, Greece
| | - I Katsarolis
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Haidari Athens, Greece
| | - V Sypsa
- Hygiene and Epidemiology Department, Medical School, University of Athens, Greece
| | - M Detsika
- Hygiene and Epidemiology Department, Medical School, University of Athens, Greece
| | - K Protopapas
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Haidari Athens, Greece
| | - A Antoniadou
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Haidari Athens, Greece
| | - A Papadopoulos
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Haidari Athens, Greece
| | - G Petrikkos
- 4th Department of Internal Medicine, ATTIKON University General Hospital, Haidari Athens, Greece
| | - A Hatzakis
- Hygiene and Epidemiology Department, Medical School, University of Athens, Greece
| |
Collapse
|