1
|
Cecerska-Heryć E, Polikowska A, Serwin N, Michalczyk A, Stodolak P, Goszka M, Zoń M, Budkowska M, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Samochowiec A, Misiak B, Sagan L, Samochowiec J, Dołęgowska B. The importance of oxidative biomarkers in diagnosis, treatment, and monitoring schizophrenia patients. Schizophr Res 2024; 270:44-56. [PMID: 38851167 DOI: 10.1016/j.schres.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION The etiology of schizophrenia (SCZ), an incredibly complex disorder, remains multifaceted. Literature suggests the involvement of oxidative stress (OS) in the pathophysiology of SCZ. OBJECTIVES Determination of selected OS markers and brain-derived neurotrophic factor (BDNF) in patients with chronic SCZ and those in states predisposing to SCZ-first episode psychosis (FP) and ultra-high risk (UHR). MATERIALS AND METHODS Determination of OS markers and BDNF levels by spectrophotometric methods and ELISA in 150 individuals (116 patients diagnosed with SCZ or in a predisposed state, divided into four subgroups according to the type of disorder: deficit schizophrenia, non-deficit schizophrenia, FP, UHR). The control group included 34 healthy volunteers. RESULTS Lower activities of analyzed antioxidant enzymes and GSH and TAC concentrations were found in all individuals in the study group compared to controls (p < 0.001). BDNF concentration was also lower in all groups compared to controls except in the UHR subgroup (p = 0.01). Correlations were observed between BDNF, R-GSSG, GST, GPx activity, and disease duration (p < 0.02). A small effect of smoking on selected OS markers was also noted (rho<0.06, p < 0.03). CONCLUSIONS OS may play an important role in the pathophysiology of SCZ before developing the complete clinical pattern of the disorder. The redox imbalance manifests itself with such severity in individuals with SCZ and in a state predisposing to the development of this psychiatric disease that natural antioxidant systems become insufficient to compensate against it completely. The discussed OS biomarkers may support the SCZ diagnosis and predict its progression.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Martyn Zoń
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Marta Budkowska
- Department of Analytical Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
3
|
Kara M, Sahin S, Rabbani F, Oztas E, Hasbal-Celikok G, Kanımdan E, Kocyigit A, Kanwal A, Wade U, Yakunina A, Di Pierro F, Khan A. An in vitro analysis of an innovative standardized phospholipid carrier-based Melissa officinalis L . extract as a potential neuromodulator for emotional distress and related conditions. Front Mol Biosci 2024; 11:1359177. [PMID: 38545418 PMCID: PMC10965792 DOI: 10.3389/fmolb.2024.1359177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Background: Melissa officinalis L. (MO), commonly known as lemon balm, a member of the mint family, is considered a calming herb. In various traditional medicines, it has been utilized to reduce stress and anxiety and promote sleep. A growing body of clinical evidence suggests that MO leaf extract supplementation possesses considerable neuropharmacological properties. However, its possible mechanism of action largely remains unknown. Objective: In the present in vitro studies, we comparatively investigated the central nervous system (CNS)-calming and antioxidative stress properties of an innovative standardized phospholipid carrier-based (Phytosome™) MO extract (Relissa™) vs. an unformulated dry MO extract. Methods: The neuropharmacological effect of the extract was studied in the anti-depressant enzymes γ-aminobutyrate transaminase (GABA-T) and monoamine oxidase A (MAO-A) assays and SH-SY5Y cells brain-derived neurotrophic factor (BDNF) expression assay. The neuroprotective effect of the extract against oxidative stress was assessed in SH-SY5Y cell-based (H2O2-exposed) Total Antioxidant Status (TAS) and Total Reactive Oxygen Species (ROS) assays. The cytotoxic effect of the extract was evaluated using MTT and LDH assays. The extract antioxidant effect was also evaluated in cell-free chemical tests, including TEAC-ABTS, DPPH, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Antioxidant Capacity (ORAC), and Hydroxyl Radical Antioxidant Capacity (HORAC) assays. Results: Relissa™ exhibited high GABA-T inhibitory activity, IC50 (mg/mL) = 0.064 vs. unformulated dry MO extract, IC50 (mg/mL) = 0.27. Similar inhibitory effects were also observed for MAO-A. Relissa™ demonstrated an improved neuroprotective antioxidant effect on SH-SY5Y cells against H2O2-induced oxidative stress. Compared to unformulated dry MO extract, Relissa™ exerted high protective effect on H2O2-exposed SH-SY5Y cells, leading to higher cells BDNF expression levels. Moreover, cell-free chemical tests, including TEAC-ABTS, DPPH radical scavenging, FRAP, ORAC, and HORAC assays, validated the improved antioxidant effect of Relissa™ vs. unformulated dry MO extract. Conclusion: The results of the present study support the neuromodulating and neuroprotective properties of Relissa™, and its supplementation may help in the amelioration of emotional distress and related conditions.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Istanbul University Faculty of Pharmacy, Istanbul, Türkiye
| | - Sumeyye Sahin
- Department of Food Engineering, Ordu University, Ordu, Türkiye
| | - Fazle Rabbani
- Department of Psychiatry, Lady Reading Hospital, Peshawar, Pakistan
| | - Ezgi Oztas
- Department of Pharmaceutical Toxicology, Istanbul University Faculty of Pharmacy, Istanbul, Türkiye
| | - Gozde Hasbal-Celikok
- Department of Biochemistry, Istanbul University Faculty of Pharmacy, Istanbul, Türkiye
| | - Ebru Kanımdan
- Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Ayesha Kanwal
- Department of Psychiatry, Lady Reading Hospital, Peshawar, Pakistan
| | - Ursula Wade
- Department of Basic and Clinical Neuroscience, Kings College London, London, United Kingdom
| | - Anastasia Yakunina
- Department of Basic and Clinical Neuroscience, Kings College London, London, United Kingdom
| | - Francesco Di Pierro
- Scientific and Research Department, Velleja Research, Milan, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Amjad Khan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
4
|
Edemann-Callesen H, Bernhardt N, Hlusicka EB, Hintz F, Habelt B, Winter R, Neubert I, Pelz M, Filla A, Soto-Montenegro ML, Winter C, Hadar R. Supplement Treatment with NAC and Omega-3 Polyunsaturated Fatty Acids during Pregnancy Partially Prevents Schizophrenia-Related Outcomes in the Poly I:C Rat Model. Antioxidants (Basel) 2023; 12:antiox12051068. [PMID: 37237933 DOI: 10.3390/antiox12051068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Heightened levels of inflammation and oxidative stress are thought to be involved in the pathophysiology of schizophrenia. We aimed to assess whether intake of anti-inflammatory and anti-oxidant drugs during pregnancy prevents later schizophrenia-related outcomes in a neurodevelopmental rat model of this disorder. METHODS Pregnant Wistar rats were injected with polyriboinosinic-polyribocytidilic acid (Poly I:C) or saline and subsequently treated with either N-acetyl cysteine (NAC) or omega-3 polyunsaturated fatty acids (PUFAs) until delivery. Controls rats received no treatment. In the offspring, neuroinflammation and anti-oxidant enzyme activity were assessed on postnatal day (PND) 21, 33, 48, and 90. Behavioral testing was performed at PND 90, followed by post-mortem neurochemical assessment and ex vivo MRI. RESULTS The supplement treatment led to a quicker restoration of the wellbeing of dams. In the adolescent Poly I:C offspring, the supplement treatment prevented an increase in microglial activity and partially prevented a deregulation in the anti-oxidant defense system. In the adult Poly I:C offspring, supplement treatment partially prevented dopamine deficits, which was paralleled by some changes in behavior. Exposure to omega-3 PUFAs prevented the enlargement of lateral ventricles. CONCLUSION Intake of over-the-counter supplements may assist in especially targeting the inflammatory response related to schizophrenia pathophysiology, aiding in diminishing later disease severity in the offspring.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Elizabeth Barroeta Hlusicka
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Franziska Hintz
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Rebecca Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Isabell Neubert
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Meike Pelz
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Alexandra Filla
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Maria Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Christine Winter
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Rizavi HS, Chase KA, Liu C, Gavin H, Rosen C, Xia C, Guidotti A, Sharma RP. Differential H3K9me2 heterochromatin levels and concordant mRNA expression in postmortem brain tissue of individuals with schizophrenia, bipolar, and controls. Front Psychiatry 2022; 13:1006109. [PMID: 36386965 PMCID: PMC9644155 DOI: 10.3389/fpsyt.2022.1006109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of repressive and durable chromatin assemblies along gene promoters or networks, especially in the brain, is of theoretical and therapeutic relevance in a subset of individuals diagnosed with schizophrenia who experience a chronic, persistent, and treatment-resistant trajectory. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to generate an epigenomic map that includes differential sites occupied by di-methylated lysine 9 of histone 3 (H3K9me2), a repressive modification that is yet unexplored in human postmortem brain tissue. We have discovered over 150 significantly differential promoter sites in the postmortem prefrontal cortex tissue of individuals diagnosed with schizophrenia (n = 15) when compared to controls (n = 15). Potentially dysregulated gene categories include postsynaptic proteins, processing enzymes (for proproteins, lipids, and oxidative stress), cadherin family genes, the complement system, and peptide hormones. Ten genes with significantly increased or decreased H3K9me2 promoter occupation were selected through statistical analysis, function, or previous GWAS association, and Quantitative RT-PCR (qRT-PCR) was performed on an extended sample of postmortem brain tissue, adding an additional 17 controls, 7 individuals with schizophrenia, and 19 individuals with bipolar samples (n = 32 control, 22 schizophrenia, 19 bipolar). This approach revealed that mRNA expression levels correlated with chromatin modification levels in eight of 10 selected genes, and mRNA expression in the total sample could be predicted by the occupancy of H3K9me2. Utilization of this method and replication in a larger sample open a pathway to durable and restrictive epigenomic assemblies whose accumulation across the lifespan of individuals diagnosed with schizophrenia may explain treatment resistance, and advance therapeutic options.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kayla A. Chase
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Chunyu Liu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hannah Gavin
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cherise Rosen
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cuihua Xia
- School of Life Sciences, Central South University, Changsha, China
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Rajiv P. Sharma
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
6
|
Kramar B, Pirc Marolt T, Monsalve M, Šuput D, Milisav I. Antipsychotic Drug Aripiprazole Protects Liver Cells from Oxidative Stress. Int J Mol Sci 2022; 23:ijms23158292. [PMID: 35955425 PMCID: PMC9368927 DOI: 10.3390/ijms23158292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antipsychotics used to treat schizophrenia can cause drug-induced liver injury (DILI), according to the Roussel Uclaf Causality Assessment Method. The role of oxidative stress in triggering injury in these DILI cases is unknown. We repeatedly administrated two second-generation antipsychotics, aripiprazole and olanzapine, at laboratory alert levels to study underlying mechanisms in stress prevention upon acute oxidative stress. The drugs were administered continuously for up to 8 weeks. For this, hepatoma Fao cells, which are suitable for metabolic studies, were used, as the primary hepatocytes survive in the culture only for about 1 week. Four stress responses—the oxidative stress response, the DNA damage response and the unfolded protein responses in the endoplasmic reticulum and mitochondria—were examined in H2O2-treated cells by antioxidant enzyme activity measurements, gene expression and protein quantification. Oxidant conditions increased the activity of antioxidant enzymes and upregulated genes and proteins associated with oxidative stress response in aripiprazole-treated cells. While the genes associated with DNA damage response, Gadd45 and p21, were upregulated in both aripiprazole- and olanzapine-treated cells, only aripiprazole treatment was associated with upregulation in response to even more H2O2, which also coincided with better survival. Endoplasmic reticulum stress-induced Chop was also upregulated; however, neither endoplasmic reticulum nor mitochondrial unfolded protein response was activated. We conclude that only aripiprazole, but not olanzapine, protects liver cells against oxidative stress. This finding could be relevant for schizophrenia patients with high-oxidative-stress-risk lifestyles and needs to be validated in vivo.
Collapse
Affiliation(s)
- Barbara Kramar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Tinkara Pirc Marolt
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain;
| | - Dušan Šuput
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
7
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
8
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
9
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
|
11
|
Wang D, Jia D, He R, Lian S, Wang J, Wu R. Association Between Serum Selenium Level and Subclinical Mastitis in Dairy Cattle. Biol Trace Elem Res 2021; 199:1389-1396. [PMID: 32583225 DOI: 10.1007/s12011-020-02261-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an important element in nutrition, showing great potential in the udder health of dairy cattle and in the control of subclinical mastitis. However, there are few studies on selenium and subclinical mastitis in cows, and the correlation is not clear. A trial was designed to investigate the association between serum selenium levels and the immune and antioxidant capacity of dairy cattle with subclinical mastitis. Fifty cattle in early lactation with similar background information were selected randomly from an intensive dairy farm. Blood samples were collected for the detection of serum selenium levels by ICP-optic emission spectrometer. The cattle were divided into a low-selenium group (< 0.05 mg/L) and three normal selenium groups with different serum selenium levels (0.05-0.08 mg/L). The somatic cell count, immune indexes, and other indexes in the milk of each group were detected. The somatic cell count was found to be negatively correlated with serum selenium level. GSH-Px had a low positive correlation and IL-6 had a low negative correlation with serum selenium level. With a serum glutathione peroxidase < 148 U/L and IL-6 > 451 pg/mL, the risk of subclinical mastitis in dairy cattle increased.
Collapse
Affiliation(s)
- Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Daqing Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Ronghe He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Jixi Agricultural and Rural Bureau, Jixi, 158100, People's Republic of China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China.
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China.
| |
Collapse
|
12
|
KÖŞger F, YİĞİtaslan S, EŞsİzoĞlu A, GÜleÇ G, KarataŞ RD, DeĞİrmencİ SS. Inflammation and Oxidative Stress in Deficit Schizophrenia. ACTA ACUST UNITED AC 2020; 57:303-307. [PMID: 33354123 DOI: 10.29399/npa.24966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Introduction Differences in parameters related to inflammatory and oxidative stress in deficit (DS) and nondeficit schizophrenia (non-DS) may support the DS/non-DS categorization of schizophrenia. For DS patients, non-DS patients, and for healthy controls, this study aims to evaluate the serum levels of: proinflammatory cytokines of interleukin (IL) 1β, tumor necrosis factor (TNF) α, Interferon (IFN) γ, IL-12, and IL-17; anti-inflammatory cytokines of IL-10, IFN-α, and transforming growth factor (TGF) β; and antioxidant biomarkers of paraoxonase1 (PON1) and Total Antioxidant Capacity (TAOC). Method Serum IL-1β, TNF-α, IFN-γ, IL-12, IL-17, IL-10, IFN-α, TGF-β, PON1 and TAOC levels were measured and performed in DS (n=26), non-DS (n=28), and healthy control (n=28) groups. Results Patients in the DS group had higher IL-17 levels than the non-DS group did. TGF-β values for both patient groups were significantly higher than those of the controls. PON1 and TAOC values for both patient groups were significantly lower than those of the controls. Conclusion Our findings may be evidence for the consideration that DS reflects a coherent entity within schizophrenia. Increased levels of IL-17 from pro-inflammatory cytokines may be related with DS.
Collapse
Affiliation(s)
- Ferdi KÖŞger
- Department of Psychiatry, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | - Semra YİĞİtaslan
- Department of Medical Pharmacology, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | | | - Gülcan GÜleÇ
- Department of Psychiatry, Eskişehir Osmangazi University School of Medicine, Eskişehir, Turkey
| | | | | |
Collapse
|
13
|
Di Liberto D, D’Anneo A, Carlisi D, Emanuele S, De Blasio A, Calvaruso G, Giuliano M, Lauricella M. Brain Opioid Activity and Oxidative Injury: Different Molecular Scenarios Connecting Celiac Disease and Autistic Spectrum Disorder. Brain Sci 2020; 10:E437. [PMID: 32659996 PMCID: PMC7407635 DOI: 10.3390/brainsci10070437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Celiac Disease (CD) is an immune-mediated disease triggered by the ingestion of wheat gliadin and related prolamins from other cereals, such as barley and rye. Immunity against these cereal-derived proteins is mediated by pro-inflammatory cytokines produced by both innate and adaptive system response in individuals unable to adequately digest them. Peptides generated in this condition are absorbed across the gut barrier, which in these patients is characterized by the deregulation of its permeability. Here, we discuss a possible correlation between CD and Autistic Spectrum Disorder (ASD) pathogenesis. ASD can be induced by an excessive and inappropriate brain opioid activity during the neonatal period. Cereal-derived peptides produced in celiac patients cross the blood-brain barrier and bind to endogenous opioid receptors interfering with neurotransmission and generating deleterious effects on brain maturation, learning and social relations. Moreover, an increase in oxidative stress and a decrease in the antioxidant capacity, as well as an extended mitochondrial impairment in the brain, could represent a possible connection between ASD and CD. Therefore, we critically discuss the proposed relationship between ASD and CD and the possible usefulness of a gluten-free diet in ASD patients.
Collapse
Affiliation(s)
- Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy;
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy; (A.D.B.); (G.C.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.C.); (S.E.)
| |
Collapse
|
14
|
Langbein K, Hesse J, Gussew A, Milleit B, Lavoie S, Amminger GP, Gaser C, Wagner G, Reichenbach JR, Hipler UC, Winter D, Smesny S. Disturbed glutathione antioxidative defense is associated with structural brain changes in neuroleptic-naïve first-episode psychosis patients. Prostaglandins Leukot Essent Fatty Acids 2018; 136:103-110. [PMID: 29111383 DOI: 10.1016/j.plefa.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Oxidative stress and impaired antioxidant defense are reported in schizophrenia and are thought to be associated with disturbed neurodevelopment, brain structural alterations, glutamatergic imbalance, negative symptomatology, and cognitive impairment. To test some of these assumptions we investigated the glutathione (GSH) antioxidant defense system (AODS) and brain structural abnormalities in drug-naïve individuals with first acute episode of psychosis (FEP). METHOD The study involved 27 drug-naïve FEP patients and 31 healthy controls (HC). GSH AODS markers and TBARS (thiobarbituric acid reactive substances) were measured in blood plasma and erythrocytes. High-resolution T1-weighted 3T MRI were acquired from all subjects. To investigate brain structural abnormalities and effects of illness on interactions between GSH metabolites or enzyme activities and local grey matter density, voxel-based morphometry (VBM) with the computational anatomy toolbox (CAT12) was used. Symptomatology was assessed using the Positive and Negative Syndrome Scale (PANSS) and the Symptom Checklist 1990 revised (SCL-90-R). RESULTS (i) In FEP patients, glutathione reductase activity (GSR) was lower than in the HC group. GSR activity in plasma was inversely correlated with SCL-90-R scores of depression and PANSS scores of the negative symptom subscale. (ii) A reduction of GM was observed in left inferior frontal, bilateral temporal, as well as parietal cortices of FEP patients. (iii) Interaction analyses revealed an influence of illness on GSR/GM associations in the left orbitofrontal cortex (BA 47). CONCLUSION Our findings support the notion of altered GSH antioxidative defense in untreated acute psychosis as a potential pathomechanism for localized brain structural abnormalities. This pathology relates to a key brain region of social cognition, affective motivation control and decision making, and is clinically accompanied by depressive and negative symptoms.
Collapse
Affiliation(s)
- K Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - J Hesse
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - A Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - B Milleit
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Dermatology, University Hospital Jena, Jena, Germany
| | - S Lavoie
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - G P Amminger
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - C Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - G Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - J R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - U-C Hipler
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - D Winter
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - S Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Badr G, Ramadan NK, Abdel-Tawab HS, Ahmed SF, Mahmoud MH. Camel whey protein protects lymphocytes from apoptosis via the PI3K–AKT, NF-κB, ATF-3, and HSP-70 signaling pathways in heat-stressed male mice. Biochem Cell Biol 2018; 96:407-416. [DOI: 10.1139/bcb-2017-0217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat stress (HS) is an environmental factor that depresses the immune systems that mediate dysfunctional immune cells. Camel whey protein (CWP) can scavenge free radicals and enhance immunity. This study investigated the impact of dietary supplementation with CWP on immune dysfunction induced by exposure to HS. Male mice (n = 45) were distributed among 3 groups: control group; HS group; and HS mice that were orally administered CWP (HS + CWP group). The HS group exhibited elevated levels of reactive oxygen species (ROS) and pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor-α) as well as a significant reduction in the IL-2 and IL-4 levels. Exposure to HS resulted in impaired phosphorylation of AKT and IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha); increased expression of activating transcription factor 3 (ATF-3) and 70 kDa heat shock proteins (HSP70); and aberrant distribution of CD3+ T cells and CD20+ B cells in the thymus and spleen. Interestingly, HS mice treated with CWP presented significantly restored levels of reactive oxygen species and pro-inflammatory cytokines near the levels observed in the control mice. Furthermore, supplementation of HS mice with CWP enhanced the phosphorylation of AKT and IκB-α; attenuated the expression of ATF-3, HSP70, and HSP90; and improved T and B cell distributions in the thymus and spleen. Our findings reveal a potential immunomodulatory effect of CWP in attenuating immune dysfunction induced by exposure to thermal stress.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Nancy K. Ramadan
- Laboratory of Immunology & Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
- Animal Health Research Institute, Assiut Branch, Assiut, Egypt
| | | | - Samia F. Ahmed
- Animal Health Research Institute, Assiut Branch, Assiut, Egypt
| | - Mohamed H. Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia
- Food Science and Nutrition Department, National Research Center, Dokki, 12622 Cairo, Egypt
| |
Collapse
|
16
|
Yüksel RN, Ertek IE, Dikmen AU, Göka E. High neutrophil-lymphocyte ratio in schizophrenia independent of infectious and metabolic parameters. Nord J Psychiatry 2018; 72:336-340. [PMID: 29644919 DOI: 10.1080/08039488.2018.1458899] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Immunological and inflammatory mechanisms play an important role in schizophrenia. In the literature, there are studies investigating neutrophil-lymphocyte ratio (NLR) association with schizophrenia. AIMS The purpose of this study was to compare NLR values between patients with schizophrenia and healthy controls. In addition, the study aimed to investigate the relationship between NLR and disease severity and some metabolic/inflammatory parameters. METHODS Fifty-two patients diagnosed with schzophrenia and 53 healthy controls were included in the study. A socio-demographic information form was filled out by the clinician. Height, body weight, waist and hip circumference and blood pressure values of each patient were measured. Severity of disease was assessed by positive and negative syndrome scale (PANSS) and clinical global impression-severity scale (CGI-S). Complete blood count was performed to both patient and control groups. Fasting blood glucose, insulin, HbA1c, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride, total cholesterol and C-reactive protein (CRP) were measured. RESULTS The number of leukocytes, neutrophils, monocytes and NLR values in patients with schizophrenia was significantly higher than in the control group. There was no significant relationship between NLR values and the number of hospitalisation, duration of ilness or disease severity in patients. There was no correlation between other laboratory findings and NLR values. CONCLUSION NLR levels are high in schizophrenia independent of metabolic parameters according to the results. So, it can be considered that inflammatory processes may play a role in the etiology of the disease.
Collapse
Affiliation(s)
- Rabia Nazik Yüksel
- a Department of Psychiatry , Numune Education and Research Hospital , Ankara , Turkey
| | - Irem Ekmekci Ertek
- b Department of Psychiatry , Gazi University Medical Faculty , Ankara , Turkey
| | - Asiye Uğraş Dikmen
- b Department of Psychiatry , Gazi University Medical Faculty , Ankara , Turkey
| | - Erol Göka
- a Department of Psychiatry , Numune Education and Research Hospital , Ankara , Turkey
| |
Collapse
|
17
|
Basak M, Dutta S, Chowdhury M. Wild raspberry: Antioxidant fruits from Eastern Himalaya. J Food Biochem 2018. [DOI: 10.1111/jfbc.12560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mridushree Basak
- Taxonomy of Angiosperms and Biosystematics Laboratory, Department of Botany; University of North Bengal; Siliguri West Bengal, 734 013 India
| | - Somit Dutta
- Cellular Immunology Laboratory, Department of Zoology; University of North Bengal; Siliguri West Bengal, 734 013 India
| | - Monoranjan Chowdhury
- Taxonomy of Angiosperms and Biosystematics Laboratory, Department of Botany; University of North Bengal; Siliguri West Bengal, 734 013 India
| |
Collapse
|
18
|
Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. Curr Med Sci 2018; 38:1-10. [PMID: 30074145 DOI: 10.1007/s11596-018-1840-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/15/2018] [Indexed: 12/11/2022]
Abstract
In this review, we summarize the involvement of vitamin C in mental disorders by presenting available evidence on its pharmacological effects in animal models as well as in clinical studies. Vitamin C, especially its reduced form, has gained interest for its multiple functions in various tissues and organs, including central nervous system (CNS). Vitamin C protects the neuron against oxidative stress, alleviates inflammation, regulates the neurotransmission, affects neuronal development and controls epigenetic function. All of these processes are closely associated with psychopathology. In the past few decades, scientists have revealed that the deficiency of vitamin C may lead to motor deficit, cognitive impairment and aberrant behaviors, whereas supplement of vitamin C has a potential preventive and therapeutic effect on mental illness, such as major depressive disorder (MDD), schizophrenia, anxiety and Alzheimer's disease (AD). Although several studies support a possible role of vitamin C against mental disorders, more researches are essential to accelerate the knowledge and investigate the mechanism in this field.
Collapse
|
19
|
Ohnuma T, Nishimon S, Takeda M, Sannohe T, Katsuta N, Arai H. Carbonyl Stress and Microinflammation-Related Molecules as Potential Biomarkers in Schizophrenia. Front Psychiatry 2018; 9:82. [PMID: 29593588 PMCID: PMC5859354 DOI: 10.3389/fpsyt.2018.00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
This literature review primarily aims to summarize our research, comprising both cross-sectional and longitudinal studies, and discuss the possibility of using microinflammation-related biomarkers as peripheral biomarkers in the diagnosis and monitoring of patients with schizophrenia. To date, several studies have been conducted on peripheral biomarkers to recognize the potential markers for the diagnosis of schizophrenia and to determine the state and effects of therapy in patients with schizophrenia. Research has established a correlation between carbonyl stress, an environmental factor, and the pathophysiology of neuropsychiatric diseases, including schizophrenia. In addition, studies on biomarkers related to these stresses have achieved results that are either replicable or exhibit consistent increases or decreases in patients with schizophrenia. For instance, pentosidine, an advanced glycation end product (AGE), is considerably elevated in patients with schizophrenia; however, low levels of vitamin B6 [a detoxifier of reactive carbonyl compounds (RCOs)] have also been reported in some patients with schizophrenia. Another study on peripheral markers of carbonyl stress in patients with schizophrenia revealed a correlation of higher levels of glyceraldehyde-derived AGEs with higher neurotoxicity and lower levels of soluble receptors capable of diminishing the effects of AGEs. Furthermore, studies on evoked microinflammation-related biomarkers (e.g., soluble tumor necrosis factor receptor 1) have reported relatively consistent results, suggesting the involvement of microinflammation in the pathophysiology of schizophrenia. We believe that our cross-sectional and longitudinal studies as well as various previous inflammation marker studies that could be interpreted from several perspectives, such as mild localized encephalitis and microvascular disturbance, highlighted the importance of early intervention as prevention and distinguished the possible exclusion of inflammations in schizophrenia.
Collapse
Affiliation(s)
- Tohru Ohnuma
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shohei Nishimon
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Mayu Takeda
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takahiro Sannohe
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Narimasa Katsuta
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Heii Arai
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
20
|
Kim YK, Na KS. Neuroprotection in Schizophrenia and Its Therapeutic Implications. Psychiatry Investig 2017; 14:383-391. [PMID: 28845163 PMCID: PMC5561394 DOI: 10.4306/pi.2017.14.4.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental disorder. The persisting negative and cognitive symptoms that are unresponsive to pharmacotherapy reveal the impairment of neuroprotective aspects of schizophrenia. In this review, of the several neuroprotective factors, we mainly focused on neuroinflammation, neurogenesis, and oxidative stress. We conducted a narrative and selective review. Neuroinflammation is mainly mediated by pro-inflammatory cytokines and microglia. Unlike peripheral inflammatory responses, neuroinflammation has a role in various neuronal activities such as neurotransmission neurogenesis. The cross-talk between neuroinflammation and neurogenesis usually has beneficial effects in the CNS under physiological conditions. However, uncontrolled and chronic neuroinflammation exert detrimental effects such as neuronal loss, inhibited neurogenesis, and excessive oxidative stress. Neurogenesis is also a major component of neuroprotection. Adult neurogenesis mainly occurs in the hippocampal region, which has an important role in memory formation and processing. Impaired neurogenesis and an ineffective response to antipsychotics may be thought to indicate a deteriorating course of schizophrenia. Oxidative stress and excessive dopaminergic neurotransmission may create a vicious cycle and consequently disturb NMDA receptor-mediated glutamatergic neurotransmission. Based on the current evidences, several neuroprotective therapeutic approaches have been reported to be efficacious for improving psychopathology, but further longitudinal and large-sample based studies are needed.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
21
|
Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways. Transl Psychiatry 2017; 7:e1130. [PMID: 28509906 PMCID: PMC5534962 DOI: 10.1038/tp.2017.94] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic-pituitary-adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine-phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment.
Collapse
|
22
|
Gunes M, Altindag A, Bulut M, Demir S, Ibiloglu AO, Kaya MC, Atli A, Aksoy N. Oxidative metabolism may be associated with negative symptoms in schizophrenia. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1293243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Saia-Cereda VM, Cassoli JS, Martins-de-Souza D, Nascimento JM. Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur Arch Psychiatry Clin Neurosci 2017; 267:3-17. [PMID: 27377417 DOI: 10.1007/s00406-016-0709-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/25/2016] [Indexed: 12/17/2022]
Abstract
Approximately 25 % of the world population is affected by a mental disorder at some point in their life. Yet, only in the mid-twentieth century a biological cause has been proposed for these diseases. Since then, several studies have been conducted toward a better comprehension of those disorders, and although a strong genetic influence was revealed, the role of these genes in disease mechanism is still unclear. This led most recent studies to focus on the molecular basis of mental disorders. One line of investigation that has risen in the post-genomic era is proteomics, due to its power of revealing proteins and biochemical pathways associated with biological systems. Therefore, this review compiled and analyzed data of differentially expressed proteins, which were found in postmortem brain studies of the three most prevalent psychiatric diseases: schizophrenia, bipolar disorder and major depressive disorders. Overviewing both the proteomic methods used in postmortem brain studies, the most consistent metabolic pathways found altered in these diseases. We have unraveled those disorders share about 21 % of proteins affected, and though most are related to energy metabolism pathways deregulation, the main differences found are 14-3-3-mediated signaling in schizophrenia, mitochondrial dysfunction in bipolar disorder and oxidative phosphorylation in depression.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil. .,UNICAMP's Neurobiology Center, Campinas, Brazil.
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Mahmoud MH, Badr G, El Shinnawy NA. Camel whey protein improves lymphocyte function and protects against diabetes in the offspring of diabetic mouse dams. Int J Immunopathol Pharmacol 2016; 29:632-646. [PMID: 27694615 DOI: 10.1177/0394632016671729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023] Open
Abstract
The prevalence of health problems in the offspring of pregnant diabetic mothers has recently been verified. Therefore, the present study was designed to investigate the influence of dietary camel whey protein (CWP), administered as a supplement to streptozotocin (STZ)-induced diabetic pregnant mice, on the efficiency of the immune system of the offspring. Three groups of female mice (n = 10) were used: non-diabetic control mice, diabetic mice, and diabetic mice orally administered CWP during the pregnancy and lactation periods. We then tested the immune response of B and T cells in adult male offspring (n = 15 in each group) by using flow cytometry, western blotting, and ELISAs. Our data demonstrated that the offspring of diabetic dams exhibited several postpartum complications, such as significant aberrant overexpression of activating transcription factor-3 (ATF-3), significant elevation of the plasma levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and reactive oxygen species (ROS), marked decreases in the plasma levels of IL-2 and IL-7, significant inhibition of CCL21- and CXCL12-mediated chemotaxis of B- and T-lymphocytes, and a marked decrease in the proliferative capacity of antigen-stimulated B- and T-lymphocytes. Interestingly, administration of CWP to diabetic dams substantially restored the expression of ATF-3 and the levels of ROS, pro-inflammatory cytokines, IL-2, and IL-7 in the offspring. Furthermore, the chemotaxis of B- and T-lymphocytes toward CCL21 and CXCL12 and the proliferative capacities of these lymphocytes were restored in the male offspring of diabetic mice administered CWP. Our data provide evidence of a protective role of CWP in decreasing the tendency of the offspring of diabetic mothers to develop diabetes and related complications.
Collapse
Affiliation(s)
- Mohamed H Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia.,Food Science and Nutrition Department, National Research Center, Cairo, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt .,Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nashwa A El Shinnawy
- Zoology Department, Women's College for Science, Arts and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Chromatographic and mass spectrometric techniques in studies on oxidative stress in autism. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:4-14. [DOI: 10.1016/j.jchromb.2015.12.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
|
26
|
Zhang R, Zhang T, Ali AM, Al Washih M, Pickard B, Watson DG. Metabolomic Profiling of Post-Mortem Brain Reveals Changes in Amino Acid and Glucose Metabolism in Mental Illness Compared with Controls. Comput Struct Biotechnol J 2016; 14:106-16. [PMID: 27076878 PMCID: PMC4813093 DOI: 10.1016/j.csbj.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 12/04/2022] Open
Abstract
Metabolomic profiling was carried out on 53 post-mortem brain samples from subjects diagnosed with schizophrenia, depression, bipolar disorder (SDB), diabetes, and controls. Chromatography on a ZICpHILIC column was used with detection by Orbitrap mass spectrometry. Data extraction was carried out with m/z Mine 2.14 with metabolite searching against an in-house database. There was no clear discrimination between the controls and the SDB samples on the basis of a principal components analysis (PCA) model of 755 identified or putatively identified metabolites. Orthogonal partial least square discriminant analysis (OPLSDA) produced clear separation between 17 of the controls and 19 of the SDB samples (R2CUM 0.976, Q2 0.671, p-value of the cross-validated ANOVA score 0.0024). The most important metabolites producing discrimination were the lipophilic amino acids leucine/isoleucine, proline, methionine, phenylalanine, and tyrosine; the neurotransmitters GABA and NAAG and sugar metabolites sorbitol, gluconic acid, xylitol, ribitol, arabinotol, and erythritol. Eight samples from diabetic brains were analysed, six of which grouped with the SDB samples without compromising the model (R2 CUM 0.850, Q2 CUM 0.534, p-value for cross-validated ANOVA score 0.00087). There appears on the basis of this small sample set to be some commonality between metabolic perturbations resulting from diabetes and from SDB.
Collapse
Affiliation(s)
- Rong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510405, China
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Ali Muhsen Ali
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK; Department of Clinical Biochemistry/Diabetes and Endocrinology Centre, Thi-Qar Health Office, Thi-Qar, Nassiriya, Iraq
| | - Mohammed Al Washih
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK; General Directorate of Medical Services, Ministry of Interior, Riyadh 13321, KSA
| | - Benjamin Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| |
Collapse
|
27
|
Coccaro EF, Lee R, Gozal D. Elevated Plasma Oxidative Stress Markers in Individuals With Intermittent Explosive Disorder and Correlation With Aggression in Humans. Biol Psychiatry 2016; 79:127-35. [PMID: 24582164 DOI: 10.1016/j.biopsych.2014.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Animal and clinical studies suggest a link between inflammation and oxidative stress. Because oxidative stress is an inherent part of inflammation, and inflammation is associated with behavioral aggression in lower mammals and humans, we hypothesized that markers of oxidative stress would be related to aggression in human subjects. In this case-control study, markers of oxidative stress and aggression were assessed in human subjects with histories of recurrent, problematic, impulsive aggressive behavior and in nonaggressive comparator subjects. METHODS Plasma levels of 8-hydroxy-2'-deoxyguanosine and 8-isoprostane were examined in the context of measures of aggression and impulsivity in physically healthy subjects with intermittent explosive disorder (n = 69), nonaggressive subjects with Axis I or II disorders (n = 61), and nonaggressive subjects with no history of Axis I or II disorders (n = 67). RESULTS Levels of plasma 8-hydroxy-2'-deoxyguanosine and 8-isoprostane were significantly higher in subjects with intermittent explosive disorder compared with psychiatric or normal control subjects. In addition, both oxidative stress markers correlated with a composite measure of aggression; more specifically, 8-hydroxy-2'-deoxyguanosine correlated with measures reflecting a history of actual aggressive behavior in all subjects. CONCLUSIONS These data suggest a positive relationship between plasma markers of oxidative stress and aggression in human subjects. This finding adds to the complex picture of the central neuromodulatory role of aggression in human subjects.
Collapse
Affiliation(s)
- Emil F Coccaro
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience.
| | - Royce Lee
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Frau R, Abbiati F, Bini V, Casti A, Caruso D, Devoto P, Bortolato M. Targeting neurosteroid synthesis as a therapy for schizophrenia-related alterations induced by early psychosocial stress. Schizophr Res 2015; 168:640-8. [PMID: 25999042 PMCID: PMC4628592 DOI: 10.1016/j.schres.2015.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cogent evidence has shown that schizophrenia vulnerability is enhanced by psychosocial stress in adolescence, yet the underpinnings of this phenomenon remain elusive. One of the animal models that best capture the relationship between juvenile stress and schizophrenia is isolation rearing (IR). This manipulation, which consists in subjecting rats to social isolation from weaning through adulthood, results in neurobehavioral alterations akin to those observed in schizophrenia patients. In particular, IR-subjected rats display a marked reduction of the prepulse inhibition (PPI) of the startle reflex, which are posited to reflect imbalances in dopamine neurotransmission in the nucleus accumbens (NAcc). We recently documented that the key neurosteroidogenic enzyme 5α-reductase (5αR) plays an important role in the dopaminergic regulation of PPI; given that IR leads to a marked down-regulation of this enzyme in the NAcc, the present study was designed to further elucidate the functional role of 5αR in the regulation of PPI of IR-subjected rats. METHODS We studied the impact of the prototypical 5αR inhibitor finasteride (FIN) on the PPI deficits and NAcc steroid profile of IR-subjected male rats, in comparison with socially reared (SR) controls. RESULTS FIN (25-100 mg/kg, i.p.) dose-dependently countered IR-induced PPI reduction, without affecting gating integrity in SR rats. The NAcc and striatum of IR-subjected rats displayed several changes in neuroactive steroid profile, including a reduction in pregnenolone in both SR and IR-subjected groups, as well as a decrease in allopregnanolone content in the latter group; both effects were significantly opposed by FIN. CONCLUSIONS These results show that 5αR inhibition counters the PPI deficits induced by IR, possibly through limbic changes in pregnenolone and/or allopregnanolone concentrations.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Federico Abbiati
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases; University of Milan, Milan, Italy
| | - Valentina Bini
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Alberto Casti
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases; University of Milan, Milan, Italy
| | - Paola Devoto
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Cagliari, Italy; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
29
|
Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D. Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 2015; 265:601-12. [PMID: 26232077 DOI: 10.1007/s00406-015-0621-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.
Collapse
Affiliation(s)
- Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Andrea Schmitt
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil.
- UNICAMP's Neurobiology Center, Campinas, Brazil.
| |
Collapse
|
30
|
Nakamura T, Ohnuma T, Hanzawa R, Takebayashi Y, Takeda M, Nishimon S, Sannohe T, Katsuta N, Higashiyama R, Shibata N, Arai H. Associations of common copy number variants in glutathione S-transferase mu 1 and D-dopachrome tautomerase-like protein genes with risk of schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2015; 168:630-6. [PMID: 26175060 DOI: 10.1002/ajmg.b.32347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
Oxidative-stress, genetic regions of interest (1p13 and 22q11), and common copy number variations (CNVs) may play roles in the pathophysiology of schizophrenia. In the present study, we confirmed associations between schizophrenia and the common CNVs in the glutathione (GSH)-related genes GSTT1, DDTL, and GSTM1 using quantitative real-time polymerase chain reaction analyses of 620 patients with schizophrenia and in 622 controls. No significant differences in GSTT1 copy number distributions were found between patient groups. However, frequencies of characterized CNVs and assumed gain alleles of DDTL and GSTM1 were significantly higher in patients with schizophrenia. In agreement with a previous report, the present data indicate that gains in the CNV alleles DDTL and GSTM1 are genetic risk factors in Japanese patients with schizophrenia, and suggest involvement of micro-inflammation and oxidative stress in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Toru Nakamura
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryo Hanzawa
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuto Takebayashi
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mayu Takeda
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shohei Nishimon
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takahiro Sannohe
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Narimasa Katsuta
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryoko Higashiyama
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Smesny S, Milleit B, Schaefer MR, Hipler UC, Milleit C, Wiegand C, Hesse J, Klier CM, Holub M, Holzer I, Berk M, McGorry PD, Sauer H, Amminger GP. Effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system in individuals at ultra-high risk of psychosis. Prostaglandins Leukot Essent Fatty Acids 2015; 101:15-21. [PMID: 26260538 DOI: 10.1016/j.plefa.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oxidative stress and impaired antioxidant defenses are reported in schizophrenia and are associated with disturbed neurodevelopment, brain structural alterations, glutamatergic imbalance, increased negative symptoms, and cognitive impairment. There is evidence that oxidative stress predates the onset of acute psychotic illness. Here, we investigate the effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system (AODS). METHOD In 64 help-seeking UHR-individuals (13-25 years of age), vitamin E levels and glutathione were investigated before and after 12 weeks of treatment with either 1.2g/d omega-3 (PUFA-E) or saturated fatty acids (SFA-E), with each condition also containing 30.4mg/d alpha-tocopherol to ensure absorption without additional oxidative risk. RESULTS In multivariate tests, the effects on the AODS (alpha-tocopherol, total glutathione) were not significantly different (p=0.13, p=0.11, respectively) between treatment conditions. According to univariate findings, only PUFA-E caused a significant alpha-tocopherol increase, while PUFA-E and SFA-E caused a significant gamma- and delta-tocopherol decrease. Total glutathione (GSHt) was decreased by PUFA-E supplementation. CONCLUSION Effects of the PUFA-E condition on the vitamin E and glutathione AODS could be mechanisms underlying its clinical effectiveness. In terms of the vitamin E protection system, PUFA-E seems to directly support the antioxidative defense at membrane level. The effect of PUFA-E on GSHt is not yet fully understood, but could reflect antioxidative effects, resulting in decreased demand for glutathione. It is still necessary to further clarify which type of PUFA/antioxidant combination, and in which dose, is effective at each stage of psychotic illness.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany.
| | - Berko Milleit
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany; Department of Psychiatry and Psychotherapy, Thueringen-Kliniken GmbH, Rainweg 68, 07318 Saalfeld/Saale, Germany
| | - Miriam R Schaefer
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria; Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Christine Milleit
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany; Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Jana Hesse
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Claudia M Klier
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria
| | - Magdalena Holub
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Ingrid Holzer
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Michael Berk
- Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia; IMPACT Strategic Research Centre, Deakin University of Melbourne, School of Medicine, Barwon Health, Geelong, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Australia; Department of Psychiatry, The University of Melbourne, Royal Parade, Parkville, Melbourne 3052, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia
| | - Heinrich Sauer
- Department of Psychiatry, University Hospital Jena, Philosophenweg 3, D-07743 Jena, Germany
| | - G Paul Amminger
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria; Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Melbourne 3052, Victoria, Australia
| |
Collapse
|
32
|
Genetic Polymorphisms of Glutathione-Related Enzymes (GSTM1, GSTT1, and GSTP1) and Schizophrenia Risk: A Meta-Analysis. Int J Mol Sci 2015; 16:19602-11. [PMID: 26295386 PMCID: PMC4581314 DOI: 10.3390/ijms160819602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022] Open
Abstract
The association between polymorphisms of glutathione-related enzyme (GST) genes and the risk of schizophrenia has been investigated in many published studies. However, their results were inconclusive. Therefore, we performed a meta-analysis to explore the association between the GSTM1, GSTT1, and GSTP1 polymorphisms and the risk of schizophrenia. Twelve case-control studies were included in this meta-analysis. The odds ratio (OR) and 95% confidence interval (95% CI) were used to investigate the strength of the association. Our meta-analysis results revealed that GSTM1, GSTT1, and GSTP1 polymorphisms were not related to risk of schizophrenia (p > 0.05 in each model). Further analyses based on ethnicity, GSTM polymorphism showed weak association with schizophrenia in East Asian population (OR = 1.314, 95% CI = 1.025–1.684, p = 0.031). In conclusion, our meta-analysis indicated the GSTM1 polymorphism may be the only genetic risk factor for schizophrenia in East Asian population. However, more meta-analysis with a larger sample size were needed to provide more precise evidence.
Collapse
|
33
|
Chen X, Hong Y, Zheng P. Efficacy and safety of extract of Ginkgo biloba as an adjunct therapy in chronic schizophrenia: A systematic review of randomized, double-blind, placebo-controlled studies with meta-analysis. Psychiatry Res 2015; 228:121-7. [PMID: 25980333 DOI: 10.1016/j.psychres.2015.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 03/20/2015] [Accepted: 04/18/2015] [Indexed: 01/06/2023]
Abstract
Our study was to review and evaluate the efficacy and safety of extract of Gb (EGb) as an adjuvant therapy to antipsychotics in chronic schizophrenia treatment. We searched Pubmed/Medline, Embase, PsycINFO, the Cochrane library, and especially the Chinese periodical databases. Finally, eight randomized, double-blind, placebo-controlled trials (RCTs) of 1033 patients were enrolled, with 571 cases in EGb group and 462 in placebo. The result showed that EGb had a significant difference in ameliorating total and negative symptoms of chronic schizophrenia as an adjuvant therapy to antipsychotics. Thus, the EGb therapy plus antipsychotics might be more efficacious. Although the studies describing adverse reactions showed no distinguishable difference between EGb and placebo group in mean total scores of Treatment Emergent Symptom Scale (TESS) or a Rating Scale for Extrapyramidal Side Effects (RSESE), the results of subscores varied in different studies. In addition, the severity of side effects of EGb might be related to its daily dosage. Therefore, the safety of EGb therapy in chronic schizophrenia treatment might need more evidence. And all of these eight trials were carried out in China; thus, the results might be restricted to the race and we need more high-quality studies of multi-center and randomized double-blind clinical trials to compare, analyze, and confirm the findings further.
Collapse
Affiliation(s)
- Xichuang Chen
- Department of Pharmacy, Affiliated Wuxi No. 9 People׳s Hospital, Soochow University & Wuxi Hand Surgery Hospital, Liangxi Road 999, Wuxi, Jiangsu 214062, China.
| | - Yuan Hong
- Department of Pharmacy, Affiliated Wuxi Children׳s Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Panpan Zheng
- Department of Pharmacy, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315450, China
| |
Collapse
|
34
|
Cai L, Cai MH, Wang MY, Xu YF, Chen WZ, Qin SY, Wan CL, He L. Meta-Analysis-Based Preliminary Exploration of the Connection between ATDILI and Schizophrenia by GSTM1/T1 Gene Polymorphisms. PLoS One 2015; 10:e0128643. [PMID: 26046920 PMCID: PMC4457417 DOI: 10.1371/journal.pone.0128643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/30/2015] [Indexed: 11/21/2022] Open
Abstract
Anti-tuberculosis drugs have some adverse effects such as anti-tuberculosis drug-induced liver injury (ATDILI) and mental disorders. The involvement of glutathione S-transferase (GST) genes in pathogenesis of ATDILI or schizophrenia (SCZ) has been reported. Therefore, GST genes may exemplify molecular connectors between ATDILI and SCZ. However, association studies of GSTM1/T1 polymorphisms with these two diseases have yielded conflicting results. After searching case-control association studies in PubMed, ISI Web of Science, EMBASE, Chinese National Knowledge Infrastructure (CNKI), and Chinese BioMedical Literature Database, we performed meta-analyses across a total of 20 published association studies on 3146 subjects for the association of GSTM1 and ATDILI, 2587 for the GSTT1-ATDILI association, 2283 for GSTM1-SCZ and 1116 for GSTT1-SCZ to test the associations of GSTM1/T1 polymorphisms with ATDILI and SCZ. The GSTM1 present genotype was significantly associated with decreased risks of ATDILI (risk ratio(RR): 0.81, 95% confidence interval (CI): 0.75-0.88, P < 0.0001) and SCZ (RR: 0.88, 95%CI: 0.80-0.96, P = 0.004) according to the fixed-effect model, while the GSTT1 present genotype was significantly associated only with a high risk of SCZ (RR: 1.17, 95%CI: 1.04-1.32, P = 0.01) according to both the random- and fixed-effect models, but not with ATDILI (P = 0.82) according to the fixed-effect model. Moreover, these significant results were supported with moderate evidence according to the Venice criteria. These results indicate that GSTM1 represents a genetic connection between ATDILI and SCZ, and suggest that ATDILI and SCZ may be co-occurring for the subjects with GSTM1 null genotype.
Collapse
Affiliation(s)
- Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Mei-Hong Cai
- School of Medicine, Shanghai Jiaotong University, Shanghai, 200020, China
| | - Mei-Yan Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yi-Feng Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Wen-Zhong Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shen-Ying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Chun-Ling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
35
|
Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, Yoshida T, Iyo M, Hashimoto K. An Open Study of Sulforaphane-rich Broccoli Sprout Extract in Patients with Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2015; 13:62-67. [PMID: 25912539 PMCID: PMC4423155 DOI: 10.9758/cpn.2015.13.1.62] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Schizophrenia is a mental disorder characterized by severe cognitive impairment. Accumulating evidence suggests a role for oxidative stress in the pathophysiology of schizophrenia. Sulforaphane (SFN) extracted from broccoli sprout is an agent with potent anti-oxidant and anti-inflammatory activity. In this study, we attempted to evaluate the effect of SFN on cognitive impairment in medicated patients with schizophrenia. METHODS We recruited a total of 10 outpatients with schizophrenia, all of whom gave informed consent. Participants took 3 tablets of SFN, consisting of 30 mg of SFN-glucosinolate per day, for 8 weeks. Clinical symptoms using the Positive and Negative Syndrome Scale (PANSS) and cognitive function using the Japanese version of CogState battery were evaluated at the beginning of the study and at week 8. RESULTS A total of 7 patients completed the trial. The mean score in the Accuracy component of the One Card Learning Task increased significantly after the trial. However, we detected no other significant changes in participants. CONCLUSIONS This result suggests that SFN has the potential to improve cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Akihiro Shiina
- Department of Child Psychiatry, Chiba University Hospital, Chiba,
Japan
- Division of Law and Psychiatry, Chiba University Center for Forensic Mental Health, Chiba,
Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba,
Japan
| | - Tsuyoshi Sasaki
- Department of Child Psychiatry, Chiba University Hospital, Chiba,
Japan
| | - Yasunori Oda
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba,
Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba,
Japan
| | - Tadashi Hasegawa
- Department of Psychiatry, Chiba University Hospital, Chiba,
Japan
| | | | - Masaomi Iyo
- Department of Child Psychiatry, Chiba University Hospital, Chiba,
Japan
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba,
Japan
- Department of Psychiatry, Chiba University Hospital, Chiba,
Japan
- Chiba University Center for Forensic Mental Health, Chiba,
Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba,
Japan
| |
Collapse
|
36
|
Rapado-Castro M, Berk M, Venugopal K, Bush AI, Dodd S, Dean OM. Towards stage specific treatments: effects of duration of illness on therapeutic response to adjunctive treatment with N-acetyl cysteine in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:69-75. [PMID: 25315856 DOI: 10.1016/j.pnpbp.2014.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a chronic and often debilitating disorder in which stage of illness appears to influence course, outcome, prognosis and treatment response. Current evidence suggests roles for oxidative, neuroinflammatory, neurotrophic, apoptotic, mitochondrial and glutamatergic systems in the disorder; all targets of N-acetyl cysteine (NAC). A double blind, placebo controlled trial suggested NAC to be beneficial to those diagnosed with schizophrenia. The current manuscript aims to investigate duration of the illness as a key factor that may be modulating the response to NAC in the participants who took part in the study. A sample of 121 participants were randomised in a double fashion to 24 weeks (placebo=62; NAC=59). Clinical and functional variables were collected over the treatment period. Duration of the illness at baseline was grouped into <10 years, 10-<20 years and >20 years. Mixed Model Repeated Measures Analysis was used to explore the effect of illness duration on response to treatment with NAC. A significant interaction between duration of the illness and response to treatment with NAC was consistently found for positive symptoms and functional variables, but not for negative or general symptoms or for side effect related outcomes. The pattern of changes suggests that this mediator effect of duration of illness in response to treatment is more evident in those participants with 20 years or more of illness duration. Our results suggest a potential advantage of adjunctive NAC over placebo on functioning and positive symptoms reduction in those patients with chronic schizophrenia. This has potential for suggesting stage specific treatments.
Collapse
Affiliation(s)
- Marta Rapado-Castro
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Michael Berk
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia; IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, P.O. Box 291, Geelong 3220, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, 3052 Parkville, Australia.
| | - Kamalesh Venugopal
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, P.O. Box 291, Geelong 3220, Australia
| | - Ashley I Bush
- University of Melbourne, Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville 3052, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, P.O. Box 291, Geelong 3220, Australia
| | - Olivia M Dean
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, P.O. Box 291, Geelong 3220, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, 3052 Parkville, Australia
| |
Collapse
|
37
|
Yildirim O, Canan F, Tosun M, Kayka N, Tuman TC, Alhan C, Alcelik A. Plasma omentin levels in drug-free patients with schizophrenia. Neuropsychobiology 2015; 69:159-64. [PMID: 24852382 DOI: 10.1159/000360736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022]
Abstract
AIMS We aimed to investigate plasma omentin concentrations in non-obese, drug-free patients with schizophrenia in comparison with healthy volunteers. METHOD Thirty-two patients with schizophrenia and 33 control subjects were recruited. Plasma omentin levels were determined by enzyme-linked immunosorbent assay. RESULTS Plasma levels of omentin (ng/ml) were found to be markedly lower in patients with schizophrenia (median = 7.7, 25th percentile = 6.3, 75th percentile = 604.9) than in controls (median = 486, 25th percentile = 326, 75th percentile = 794.2, p < 0.01). No significant difference was found between drug-free (n = 23) and drug-naive (n = 9) patients with respect to plasma omentin levels. Omentin concentrations correlated negatively with severity of illness, suggesting that patients with more severe pathology had lower fasting levels of omentin (n = 32; r = -0.387; p = 0.029). CONCLUSION The present results suggest that plasma omentin levels are decreased in physically healthy, non-obese, antipsychotic-free patients with schizophrenia when compared with physically and mentally healthy individuals. To our knowledge, this is the first study that demonstrated the association between omentin and schizophrenia.
Collapse
Affiliation(s)
- Osman Yildirim
- Department of Psychiatry, Abant Izzet Baysal University, School of Medicine, Bolu, Turkey
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
39
|
Wachowicz B. Blood Platelet as a Peripheral Cell in Oxidative Stress in Psychiatric Disorders. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-0440-2_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Dietrich-Muszalska A. Oxidative Stress in Schizophrenia. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-0440-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
41
|
Katsuta N, Ohnuma T, Maeshima H, Takebayashi Y, Higa M, Takeda M, Nakamura T, Nishimon S, Sannohe T, Hotta Y, Hanzawa R, Higashiyama R, Shibata N, Arai H. Significance of measurements of peripheral carbonyl stress markers in a cross-sectional and longitudinal study in patients with acute-stage schizophrenia. Schizophr Bull 2014; 40:1366-73. [PMID: 24448481 PMCID: PMC4193703 DOI: 10.1093/schbul/sbt234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Altered peripheral carbonyl stress markers, high levels of serum pentosidine, which accumulates following carbonyl stress, and low levels of pyridoxal (vitamin B6), which detoxifies reactive carbonyl compounds, have been reported in a cross-sectional study of chronic schizophrenia. However, changes in the levels of these compounds in patients with schizophrenia have not been investigated in a longitudinal study. To clarify whether these markers may be biological markers that reflect the clinical course of the disease, the serum levels of these compounds were investigated in a cross-sectional and a longitudinal study. One hundred and thirty-seven acute-stage Japanese patients were enrolled. Among these, 53 patients were followed from the acute stage to remission. A portion of patients in the acute stage (14 cases, 10.2%) showed extremely high pentosidine levels. These levels were not associated with the severity of symptoms but were associated with antipsychotic dose amounts. Pyridoxal levels were lower in schizophrenia and increased according to the clinical course of the illness. Furthermore, 18 patients with decreased pyridoxal levels according to the clinical course showed that the greater the decrease in pyridoxal levels, the lesser the improvement in symptoms. Thus, extremely high pentosidine levels in a portion of patients may be caused by higher daily antipsychotic doses, whereas pyridoxal levels were lower in schizophrenia and increased according to the clinical course. Patients with decreasing pyridoxal levels during the clinical course showed less improvement in symptoms. Carbonyl stress markers may also be therapeutic biological markers in some patients with schizophrenia.
Collapse
Affiliation(s)
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arunagiri P, Rajeshwaran K, Shanthakumar J, Tamilselvan T, Balamurugan E. Combination of omega-3 Fatty acids, lithium, and aripiprazole reduces oxidative stress in brain of mice with mania. Biol Trace Elem Res 2014; 160:409-17. [PMID: 25035188 DOI: 10.1007/s12011-014-0067-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Manic episode in bipolar disorder (BD) was evaluated in the present study with supplementation of omega-3 fatty acids in combination with aripiprazole and lithium on methylphenidate (MPD)-induced manic mice model. Administration of MPD 5 mg/kg bw intraperitoneally (i.p.) caused increase in oxidative stress in mice brain. To retract this effect, supplementation of omega-3 fatty acids 1.5 ml/kg (p.o.), aripiprazole 1.5 mg/kg bw (i.p.), and lithium 50 mg/kg bw (p.o) were given to mice. Omega-3 fatty acids alone and in combination with aripiprazole- and lithium-treated groups significantly reduced the levels of superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation products (thiobarbituric acid reactive substances) in the brain. MPD treatment significantly decreased the reduced glutathione (GSH) level and glutathione peroxidase (GPx) activity, and they were restored by supplementation of omega-3 fatty acids with aripiprazole and lithium. There is no remarkable difference in the effect of creatine kinase (CK) activity between MPD-induced manic model and the treatment groups. Therefore, our results demonstrate that oxidative stress imbalance and mild insignificant CK alterations induced by administration of MPD can be restored back to normal physiological levels through omega-3 fatty acids combined with lithium and aripiprazole that attributes to effective prevention against mania in adult male Swiss albino mice.
Collapse
Affiliation(s)
- Pandiyan Arunagiri
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | | | | | | | | |
Collapse
|
43
|
Abstract
The clinical symptoms and cognitive and functional deficits of schizophrenia typically begin to gradually emerge during late adolescence and early adulthood. Recent findings suggest that disturbances of a specific subset of inhibitory neurons that contain the calcium-binding protein parvalbumin (PV), which may regulate the course of postnatal developmental experience-dependent synaptic plasticity in the cerebral cortex, including the prefrontal cortex (PFC), may be involved in the pathogenesis of the onset of this illness. Specifically, converging lines of evidence suggest that oxidative stress, extracellular matrix (ECM) deficit and impaired glutamatergic innervation may contribute to the functional impairment of PV neurons, which may then lead to aberrant developmental synaptic pruning of pyramidal cell circuits during adolescence in the PFC. In addition to promoting the functional integrity of PV neurons, maturation of ECM may also play an instrumental role in the termination of developmental PFC synaptic pruning; thus, ECM deficit can directly lead to excessive loss of synapses by prolonging the course of pruning. Together, these mechanisms may contribute to the onset of schizophrenia by compromising the integrity, stability, and fidelity of PFC connectional architecture that is necessary for reliable and predictable information processing. As such, further characterization of these mechanisms will have implications for the conceptualization of rational strategies for the diagnosis, early intervention, and prevention of this debilitating disorder.
Collapse
Affiliation(s)
- Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, MRC303E, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA,
| |
Collapse
|
44
|
Danta CC, Piplani P. The discovery and development of new potential antioxidant agents for the treatment of neurodegenerative diseases. Expert Opin Drug Discov 2014; 9:1205-22. [PMID: 25056182 DOI: 10.1517/17460441.2014.942218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several neurodegenerative disorders (NDs) including Alzheimer's and Huntington's diseases have had associations with the oxidative process and free radical damage. Consequently, in past decades, several natural and synthetic antioxidants have been assessed as therapeutic agents but have shown limitations in bioavailability, metabolic susceptibility and permeability to the blood brain barrier. Given these issues, medicinal chemists are hard at work to modify/improve the chemical structures of these antioxidants, thereby improving their efficacy. AREAS COVERED In this review, the authors critically analyze several biological mechanisms involved in the generation of free radicals. Additionally, they analyze free radicals' role in the generation of oxidative stress and in the progression of many NDs. Further, the authors review a collection of natural and synthetic antioxidants, their role as free radical scavengers along with their mechanisms of action and their potential for preventing neurodegenerative diseases. EXPERT OPINION So far, preclinical studies on several antioxidants have shown promise for treating NDs, despite their limitations. The authors do highlight the lack of the adequate animal models for preclinical assessment and this does hinder further progression into clinical trials. Further studies are necessary to fully investigate the potential of these antioxidants as ND therapeutic options.
Collapse
Affiliation(s)
- Chhanda Charan Danta
- Panjab University, University Institute of Pharmaceutical Sciences , Chandigarh-160014 , India
| | | |
Collapse
|
45
|
Dai D, Wang Y, Yuan J, Zhou X, Jiang D, Li J, Zhang Y, Yin H, Duan S. Meta-analyses of 10 polymorphisms associated with the risk of schizophrenia. Biomed Rep 2014; 2:729-736. [PMID: 25054019 DOI: 10.3892/br.2014.308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia (SCZ) is a severe complex psychiatric disorder that generates problems for the associated family and society and causes disability with regards to work for patients. The aim of the present study was to assess the contribution of 10 genetic polymorphisms to SCZ susceptibility. Meta-analyses were conducted using the data without a limitation for time or language. A total of 27 studies with 7 genes and 10 polymorphisms were selected for the meta-analyses. Two polymorphisms were found to be significantly associated with SCZ. SNAP25 rs3746544 was shown to increase the SCZ risk by 18% [P=0.01; odds ratio (OR), 1.18; 95% confidence interval (CI), 1.05-1.34] and GRIK3 rs6691840 was found to increase the risk by 30% (P=0.008; OR, 1.30; 95% CI, 1.07-1.58). Significant results were found under the dominant (P=0.001; OR, 1.36; 95% CI, 1.13-1.65) and additive (P=0.02; OR, 1.45; 95% CI, 1.06-1.98) model for the SNAP25 rs3746544 polymorphism and under the additive model for the GRIK3 rs6691840 polymorphism (P=0.03; OR, 1.73; 95% CI, 1.04-2.85). There were no significant results observed for the other eight polymorphisms, which were CCKAR rs1800857, CHRNA7 rs904952, CHRNA7 rs6494223, CHRNA7 rs2337506, DBH Ins>Del, FEZ1 rs559668, FEZ1 rs597570 and GCLM rs2301022. In conclusion, the present meta-analyses indicated that the SNAP25 rs3746544 and GRIK3 rs6691840 polymorphisms were risk factors of SCZ, which may provide valuable information for the clinical diagnosis of SCZ.
Collapse
Affiliation(s)
- Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Jiaojiao Yuan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xingyu Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinfeng Li
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Yuzheng Zhang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Honglei Yin
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
46
|
Chen PJ, Sheen LY. Gastrodiae Rhizoma (tiān má): a review of biological activity and antidepressant mechanisms. J Tradit Complement Med 2014; 1:31-40. [PMID: 24716103 PMCID: PMC3942998 DOI: 10.1016/s2225-4110(16)30054-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gastrodiae Rhizoma, also called chì jiàn (赤箭), guǐ dū yóu (鬼督郵), or tiān má (天麻) in Chinese, is considered a top grade (上品 shàng pǐn) medicine described to enter liver channel (肝經 gān jīng) in classic literatures of traditional Chinese medicine and has been used for centuries. Many studies investigating its various bioactivities and active compounds have been conducted worldwide. This article reviews these biological activities and details the antidepressant pharmacology of Gastrodiae Rhizoma. Gastrodiae Rhizoma treatment exerts an effective inhibition of diverse diseases and disorders, including convulsion, oxidative stress, mental disorders, amnesia, cardio-cerebral-vascular diseases, and inflammation, among others. The antidepressant effect of Gastrodiae Rhizoma was evaluated in animal models and several mechanisms of activity were found, including the modulation and regulation of monoamine oxidase activity, monoamine concentration and turnover, antioxidatant activity, GABAergic system induction, BDNF induction, neuroprotection and anti-inflammatory activity.
Collapse
Affiliation(s)
- Pei-Ju Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Deslauriers J, Racine W, Sarret P, Grignon S. Preventive effect of α-lipoic acid on prepulse inhibition deficits in a juvenile two-hit model of schizophrenia. Neuroscience 2014; 272:261-70. [PMID: 24813434 DOI: 10.1016/j.neuroscience.2014.04.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
Abstract
Some pathophysiological models of schizophrenia posit that prenatal inflammation sensitizes the developing brain to second insults in early life and enhances brain vulnerability, thereby increasing the risk of developing the disorder during adulthood. We previously developed a two-hit animal model, based on the well-established prenatal immune challenge with poly-inosinic/cytidylic acid (polyI:C), followed by juvenile restraint stress (RS). We observed an additive disruption of prepulse inhibition (PPI) of acoustic startle in juvenile mice submitted to both insults. Previous studies have also reported that oxidative stress is associated with pathophysiological mechanisms of psychiatric disorders, including schizophrenia. We report here that PPI disruption in our two-hit animal model of schizophrenia is associated with an increase in oxidative stress. These findings led us to assess whether α-lipoic acid, an antioxidant, can prevent both increase in oxidative status and PPI deficits in our juvenile in vivo model of schizophrenia. In the offspring submitted to prenatal injection of polyI:C and to RS, treatment with α-lipoic acid prevented the development of PPI deficits 24h after the last period of RS. α-Lipoic acid also improved PPI performance in control mice. The reversal effect of α-lipoic acid pretreatment on these behavioral alterations was further accompanied by a normalization of the associated oxidative status and dopaminergic and GABAergic abnormalities in the prefrontal cortex. Based on our double insult paradigm, these results support the hypothesis that oxidative stress plays an important role in the development of PPI deficits, a well-known behavior associated with schizophrenia. These findings form the basis of future studies aiming to unravel mechanistic insights of the putative role of antioxidants in the treatment of schizophrenia, especially during the prodromal stage.
Collapse
Affiliation(s)
- J Deslauriers
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12(e) avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - W Racine
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12(e) avenue Nord, Sherbrooke, QC J1H 5N4, Canada; Department of Psychiatry, Centre Hospitalier Universitaire de Sherbrooke, 580 Bowen Sud, Sherbrooke, QC J1G 2E8, Canada
| | - P Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12(e) avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - S Grignon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12(e) avenue Nord, Sherbrooke, QC J1H 5N4, Canada; Department of Psychiatry, Centre Hospitalier Universitaire de Sherbrooke, 580 Bowen Sud, Sherbrooke, QC J1G 2E8, Canada.
| |
Collapse
|
48
|
Dietrich-Muszalska A, Kwiatkowska A. Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia. Neuropsychiatr Dis Treat 2014; 10:703-9. [PMID: 24833903 PMCID: PMC4015795 DOI: 10.2147/ndt.s60034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Blood platelets are considered to be a peripheral marker in schizophrenia and other psychiatric disorders. Oxidative stress in schizophrenia may be responsible for changes in platelet metabolism and function; therefore, the aim of this study was to examine and compare the generation of superoxide anions and activity of an antioxidant enzyme (glutathione peroxidase [GPx]) in blood platelets in patients with schizophrenia and healthy subjects. The level of superoxide anions generated in platelets after thrombin and platelet-activating factor stimulation and activity of GPx in patients with schizophrenia and healthy volunteers was estimated. The results obtained from the study indicate that the generation of superoxide anions in platelets as a response of platelets in patients with schizophrenia to such activating factors as thrombin or platelet-activating factor is higher than in the response of platelets of healthy subjects. In platelets from schizophrenic patients, suppressed GPx activity of about 67% was observed.
Collapse
Affiliation(s)
- Anna Dietrich-Muszalska
- Department of Biological Psychiatry of the Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Anna Kwiatkowska
- Department of Biological Psychiatry of the Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
49
|
Zhang XY, Chen DC, Xiu MH, Yang FD, Tan Y, Luo X, Zuo L, Kosten TA, Kosten TR. Cognitive function, plasma MnSOD activity, and MnSOD Ala-9Val polymorphism in patients with schizophrenia and normal controls. Schizophr Bull 2014; 40:592-601. [PMID: 23588476 PMCID: PMC3984504 DOI: 10.1093/schbul/sbt045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excessive reactive oxygen species are thought to produce oxidative damage that underlies neurodegeneration and cognitive impairment in several disorders including schizophrenia. The functional Ala-9Val polymorphism of the mitochondrial enzyme manganese superoxide dismutase (MnSOD), which detoxifies superoxide radicals to hydrogen peroxide, has been associated with schizophrenia. However, no study has reported its role in cognitive deficits of schizophrenia as mediated through MnSOD activity. We recruited 923 schizophrenic inpatients and 566 healthy controls and compared them on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), plasma MnSOD activity, and the MnSOD Ala-9Val polymorphism. We assessed patient psychopathology using the Positive and Negative Syndrome Scale. We showed that the MnSOD Ala-9Val polymorphism may not contribute directly to the susceptibility to schizophrenia. The Ala variant was associated with worse attention performance among chronic schizophrenic patients but not among normal controls. Plasma MnSOD activity was significantly decreased in patients compared with that in normal controls. Moreover, MnSOD activity among the schizophrenic Ala allele carriers was correlated with the degree of cognitive impairments, especially attention and RBANS total score. We demonstrated an association between the MnSOD Ala-9Val variant and poor attention in schizophrenia. The association between higher MnSOD activity and cognitive impairment in schizophrenia is dependent on the MnSOD Ala-9Val polymorphism.
Collapse
Affiliation(s)
- Xiang Y. Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX;,Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China;,*To whom correspondence should be addressed; Research Building 109, Room 130, 2002 Holcombe Boulevard, Houston, TX 77030, US; tel: 713-791-1414, fax: 713-794-7938, e-mail:
| | - Da C. Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China
| | - Mei H. Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China
| | - Fu D. Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Therese A. Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX
| | - Thomas R. Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX;,Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China
| |
Collapse
|
50
|
Giusti L, Mantua V, Da Valle Y, Ciregia F, Ventroni T, Orsolini G, Donadio E, Giannaccini G, Mauri M, Cassano GB, Lucacchini A. Search for peripheral biomarkers in patients affected by acutely psychotic bipolar disorder: a proteomic approach. MOLECULAR BIOSYSTEMS 2014; 10:1246-54. [PMID: 24554194 DOI: 10.1039/c4mb00068d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Data on neurobiological mechanisms underlying mood disorders are elusive; the aetiology of such states is multifactorial, including genetic predisposition and environmental factors. Diagnosis is currently being made only on an interview-based methodology. Biological markers, which could improve the current classification, and in perspective, stratify patients on a biological basis into more homogeneous clinically distinct subgroups, are highly needed. We describe here a comparative proteomic analysis of peripheral lymphocytes from patients affected by acute psychotic bipolar disorder (PBD) (n = 15), major depressive episode (MDE) with no personal or family history of psychosis (n = 11), and a group of demographically matched healthy controls (HC) (n = 15). All patients were evaluated by means of Structured Clinical Interview for DSM-IV-Patient version (SCID-I-P), Positive and Negative Symptoms Scale (PANSS), Young Mania Rating Scale (YMRS), Hamilton Anxiety Rating Scale (HAM-A) and Hamilton Depression Rating Scale (HAM-D-17) questionnaires. Blood lymphocytes were obtained by gradient separation, and 2-DE was carried out on protein extracts. Significant differences in protein patterns among the three groups were observed. Thirty-six protein spots were found to be differentially expressed in patients compared to controls, which collapsed into 25 different proteins after mass spectrometry identification. Twenty-one of these proteins failed to discriminate between PBD and MDE, suggesting common signatures for these disorders. Nevertheless, after the western blot validation only two of the remaining proteins, namely LIM and SH3 domain protein1, and short-chain specific acyl-CoA dehydrogenase mitochondrial protein, resulted in being significantly upregulated in PBD samples suggesting additional mechanisms that could be associated with the psychotic features of bipolar disorder.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|