1
|
Wolin IAV, Nascimento APM, Seeger R, Poluceno GG, Zanotto-Filho A, Nedel CB, Tasca CI, Correia SEG, Oliveira MV, Pinto-Junior VR, Osterne VJS, Nascimento KS, Cavada BS, Leal RB. The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells. Glycoconj J 2023; 40:47-67. [PMID: 36522582 DOI: 10.1007/s10719-022-10095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Seeger
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Programa Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Sarah Elizabeth Gomes Correia
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, CEP, 60020-181, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Kyria Santiago Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
2
|
Wang C, Peng F, Zhong B, Shi Y, Wang X, Jin X, Niu J. Metabolomic Analysis Reveals the Therapeutic Effects of MBT1805, a Novel Pan-Peroxisome Proliferator-Activated Receptor Agonist, on α-Naphthylisothiocyanate-Induced Cholestasis in Mice. Front Pharmacol 2021; 12:732478. [PMID: 34776958 PMCID: PMC8585842 DOI: 10.3389/fphar.2021.732478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Aims: Therapeutic drugs that are used to treat cholestatic liver disease are limited; however, the results of clinical trials on primary biliary cholangitis treatment targeting peroxisome proliferator-activated receptors (PPARs) are encouraging. In this study, we aimed to identify the effects of MBT1805, a novel balanced PPARα/γ/δ agonist, on cholestasis induced by α-naphthylisothiocyanate (ANIT) and elucidate the underlying mechanisms through untargeted and bile acid-targeted metabolomic analysis. Methods: Levels of serum biochemical indicators (transaminase, aspartate transaminase, alkaline phosphatase, and total bilirubin) and liver histopathology were analyzed to evaluate the therapeutic effects of MBT1805 on ANIT-induced cholestasis in C57BL/6 mice. Untargeted and bile acid-targeted metabolomic analysis of liver tissues was performed using ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MC/MC). qRT-PCR and Western blot analysis were carried out to measure the expression of key enzymes and transporters regulating bile acid synthesis, biotransformation, and transport. Results: MBT1805 significantly improved abnormal levels of liver biochemical indicators and gallbladder enlargement induced by ANIT. Histopathological analysis showed that MBT1805 effectively relieved ANIT-induced necrosis, vacuolation, and inflammatory infiltration. Untargeted metabolomic analysis identified 27 metabolites that were involved in the primary biliary acid biosynthesis pathway. In addition, bile acid-targeted metabolomics showed that MBT1805 could alleviate the abnormal bile acid content and composition induced by ANIT. Furthermore, qRT-PCR and Western blot results confirmed that MBT1805 could effectively regulate bile acid synthesis, biotransformation, and transport which helps relieve cholestasis. Conclusions: MBT1805 is a potential candidate drug for cholestasis, with a balanced PPARα/γ/δ activation effect.
Collapse
Affiliation(s)
- Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Fei Peng
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Bohua Zhong
- Beijing JK HuaYuan Med Tech Company LTD, Beijing, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| | - Xueyuan Jin
- International Center for Liver Disease Treatment, Fifth Medical Center of China PLA General Hospital, Beijing, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Zoonosis Research, Ministry Education, Changchun, Jilin, China
| |
Collapse
|
3
|
Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020; 10:biom10010105. [PMID: 31936288 PMCID: PMC7022462 DOI: 10.3390/biom10010105] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevailing global health disease with a high incidence rate which varies by region. It is a huge economic burden on health care providers. GI cancer affects different organs in the body such as the gastric organs, colon, esophagus, intestine, and pancreas. Internal and external factors like smoking, obesity, urbanization, genetic mutations, and prevalence of Helicobacter pylori and Hepatitis B and Hepatitis C viral infections could increase the risk of GI cancer. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in fruits, grains, and vegetables. Consumption of phytochemicals may protect against chronic diseases like cardiovascular disease, neurodegenerative disease, and cancer. Multiple studies have assessed the chemoprotective effect of selected phytochemicals in GI cancer, offering support to their potential towards reducing the pathogenesis of the disease. The aim of this review was to summarize the current knowledge addressing the anti-cancerous effects of selected dietary phytochemicals on GI cancer and their molecular activities on selected mechanisms, i.e., nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), detoxification enzymes, adenosine monophosphate activated protein kinase (AMPK), wingless-related integration site/β-catenin (wingless-related integration site (Wnt) β-catenin, cell apoptosis, phosphoinositide 3-kinases (PI3K)/ protein kinase B AKT/ mammalian target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK). In this review phytochemicals were classified into four main categories: (i) carotenoids, including lutein, lycopene, and β-carotene; (ii) proanthocyanidins, including quercetin and ellagic acid; (iii) organosulfur compounds, including allicin, allyl propyl disulphide, asparagusic acid, and sulforaphane; and (iv) other phytochemicals including pectin, curcumins, p-coumaric acid and ferulic acid. Overall, phytochemicals improve cancer prognosis through the downregulation of β-catenin phosphorylation, therefore enhancing apoptosis, and upregulation of the AMPK pathway, which supports cellular homeostasis. Nevertheless, more studies are needed to provide a better understanding of the mechanism of cancer treatment using phytochemicals and possible side effects associated with this approach.
Collapse
|
4
|
Polymorphic Expression of UGT1A9 is Associated with Variable Acetaminophen Glucuronidation in Neonates: A Population Pharmacokinetic and Pharmacogenetic Study. Clin Pharmacokinet 2019; 57:1325-1336. [PMID: 29654492 DOI: 10.1007/s40262-018-0634-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acetaminophen (paracetamol, APAP) is widely used as an analgesic and antipyretic drug in children and neonates. A number of enzymes contribute to the metabolism of acetaminophen, and genetic factors might be important to explain variability in acetaminophen metabolism among individuals. METHODS The current investigation utilized a previously published parent-metabolite population pharmacokinetic model describing acetaminophen glucuronidation, sulfation, and oxidation to examine the potential role of genetic variability on the relevant metabolic pathways. Neonates were administered 30-min intravenous infusions of acetaminophen 15 mg/kg every 12 h (< 28 weeks' gestational age [GA]) or every 8 h (≥ 28 weeks GA) for 48 h. A total of 18 sequence variations (SVs) in UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), and cytochrome P450 (CYP) genes from 33 neonates (aged 1-26 days) were examined in a stepwise manner for an effect on the metabolic formation clearance of acetaminophen by glucuronidation (UGT), sulfation (SULT), and oxidation (CYP). The stepwise covariate modeling procedure was performed using NONMEM® version 7.3. RESULTS Incorporation of genotype as a covariate for one SV located in the UGT1A9 gene promoter region (rs3832043, - 118 > insT, T9 > T10) significantly improved model fit (likelihood ratio test, p < 0.001) and reduced between-subject variability in glucuronide formation clearance. Individuals with the UGT1A9 T10 polymorphism, indicating insertion of an additional thymidine nucleotide, had a 42% reduction in clearance to APAP-glucuronide as compared to their wild-type counterparts. CONCLUSION This study shows a pharmacogenetic effect of an SV in the UGT1A9 promoter region on the metabolism of acetaminophen in neonates.
Collapse
|
5
|
Drug metabolizing enzymes and their inhibitors' role in cancer resistance. Biomed Pharmacother 2018; 105:53-65. [PMID: 29843045 DOI: 10.1016/j.biopha.2018.05.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
Despite continuous research on chemotherapeutic agents, different mechanisms of resistance have become a major pitfall in cancer chemotherapy. Although, exhaustive efforts are being made by several researchers to target resistance against chemotherapeutic agents, there is another class of resistance mechanism which is almost carrying on unattended. This class of resistance includes pharmacokinetics resistance such as efflux by ABC transporters and drug metabolizing enzymes. ABC transporters are the membrane bound proteins which are responsible for the movement of substrates through the cell membrane. Drug metabolizing enzymes are an integral part of phase-II metabolism that helps in the detoxification of exogenous, endogenous and xenobiotics substrates. These include uridine diphospho-glucuronosyltransferases (UGTs), glutathione-S-transferases (GSTs), dihydropyrimidine dehydrogenases (DPDs) and thiopurine methyltransferases (TPMTs). These enzymes may affect the role of drugs in both positive as well negative manner, depending upon the type of tissue and cells present and when present in tumors, can result in drug resistance. However, the underlying mechanism of resistance by drug metabolizing enzymes is still not clear. Here, we have tried to cover various aspects of these enzymes in relation to anticancer drugs.
Collapse
|
6
|
Mehboob H, Tahir IM, Iqbal T, Saleem S, Perveen S, Farooqi A. Effect of UDP-Glucuronosyltransferase (UGT) 1A Polymorphism (rs8330 and rs10929303) on Glucuronidation Status of Acetaminophen. Dose Response 2017; 15:1559325817723731. [PMID: 28932176 PMCID: PMC5598801 DOI: 10.1177/1559325817723731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/21/2017] [Indexed: 01/29/2023] Open
Abstract
Interindividual variability in polymorphic uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) ascribed to genetic diversity is associated with relative glucuronidation level among individuals. The present research was aimed to study the effect of 2 important single nucleotide polymorphisms (SNPs; rs8330 and rs10929303) of UGT1A1 gene on glucuronidation status of acetaminophen in healthy volunteers (n = 109). Among enrolled volunteers, 54.13% were male (n = 59) and 45.87% were female (n = 50). The in vivo activity of UGT1A1 was investigated by high-performance liquid chromatography-based analysis of glucuronidation status (ie, acetaminophen and acetaminophen glucuronide) in human volunteers after oral intake of a single dose (1000 mg) of acetaminophen. The TaqMan SNP genotyping assay was used for UGT1A1 genotyping. The wild-type genotype (C/C) was observed the most frequent one for both SNPs (rs8330 and rs10929303) and associated with fast glucuronidator phenotypes. The distribution of variant genotype (G/G) for SNP rs8330 was observed in 5% of male and 8% of the female population; however, for SNP rs10929303, the G/G genotype was found in 8% of both genders. A trimodal distribution (fast, intermediate, and slow) based on phenotypes was observed. Among the male participants, the glucuronidation phenotypes were observed as 7% slow, 37% intermediate, and 56% fast glucuronidators; however, these findings for the females were slightly different as 8%, 32%, and 60% respectively. The k-statistics revealed a compelling evidence for good concordance between phenotype and genotype with a k value of 1.00 for SNP rs8330 and 0.966 for SNP rs10929303 in our population.
Collapse
Affiliation(s)
- Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Tahira Iqbal
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sadaf Saleem
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Sofia Perveen
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Aboubakker Farooqi
- College of Pharmacy, Government College University, Faisalabad, Pakistan
| |
Collapse
|
7
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 2017; 105:10-22. [PMID: 27881391 PMCID: PMC5183723 DOI: 10.3945/ajcn.116.136051] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
At a population level, there is growing evidence of the beneficial effects of dietary flavonoids on health. However, there is extensive heterogeneity in the response to increased intake, which is likely mediated via wide interindividual variability in flavonoid absorption and metabolism. Flavonoids are extensively metabolized by phase I and phase II metabolism (which occur predominantly in the gastrointestinal tract and liver) and colonic microbial metabolism. A number of factors, including age, sex, and genotype, may affect these metabolic processes. In addition, food composition and flavonoid source are likely to affect bioavailability, and emerging data suggest a critical role for the microbiome. This review will focus on the current knowledge for the main subclasses of flavonoids, including anthocyanins, flavonols, flavan-3-ols, and flavanones, for which there is growing evidence from prospective studies of beneficial effects on health. The identification of key factors that govern metabolism and an understanding of how the differential capacity to metabolize these bioactive compounds affect health outcomes will help establish how to optimize intakes of flavonoids for health benefits and in specific subgroups. We identify research areas that need to be addressed to further understand important determinants of flavonoid bioavailability and metabolism and to advance the knowledge base that is required to move toward the development of dietary guidelines and recommendations for flavonoids and flavonoid-rich foods.
Collapse
Affiliation(s)
- Aedín Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
9
|
Yuan LM, Gao ZZ, Sun HY, Qian SN, Xiao YS, Sun LL, Zeng S. Inter-isoform Hetero-dimerization of Human UDP-Glucuronosyltransferases (UGTs) 1A1, 1A9, and 2B7 and Impacts on Glucuronidation Activity. Sci Rep 2016; 6:34450. [PMID: 27857056 PMCID: PMC5114717 DOI: 10.1038/srep34450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Human UDP-glucuronosyltransferases (UGTs) play a pivotal role in phase II metabolism by catalyzing the glucuronidation of endobiotics and xenobiotics. The catalytic activities of UGTs are highly impacted by both genetic polymorphisms and oligomerization. The present study aimed to assess the inter-isoform hetero-dimerization of UGT1A1, 1A9, and 2B7, including the wild type (1A1*1, 1A9*1, and 2B7*1) and the naturally occurring (1A1*1b, 1A9*2/*3/*5, and 2B7*71S/*2/*5) variants. The related enzymes were double expressed in Bac-to-Bac systems. The fluorescence resonance energy transfer (FRET) technique and co-immunoprecipitation (Co-IP) revealed stable hetero-dimerization of UGT1A1, 1A9, and 2B7 allozymes. Variable FRET efficiencies and donor-acceptor distances suggested that genetic polymorphisms resulted in altered affinities to the target protein. In addition, the metabolic activities of UGTs were differentially altered upon hetero-dimerization via double expression systems. Moreover, protein interactions also changed the regioselectivity of UGT1A9 for querectin glucuronidation. These findings provide in-depth understanding of human UGT dimerization as well as clues for complicated UGT dependent metabolism in humans.
Collapse
Affiliation(s)
- Ling-Min Yuan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhang-Zhao Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Ying Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sai-Nan Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Sheng Xiao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lian-Li Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Zhu L, Xiao L, Li W, Zhang Y, Han W, Zhu Y, Ge G, Yang L. Human UDP-Glucuronosyltransferases 1A1, 1A3, 1A9, 2B4 and 2B7 are Inhibited by Diethylstilbestrol. Basic Clin Pharmacol Toxicol 2016; 119:505-511. [PMID: 27176228 DOI: 10.1111/bcpt.12618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/29/2016] [Indexed: 01/05/2023]
Abstract
Inhibition of UDP-glucuronosyltransferases (UGTs) can result in many undesired side effects. Diethylstilbestrol (DES), a synthetic oestrogen famous for its multiple toxicities, was once widely administered to women in high dosages and now still gains application in clinics. This study investigated in vitro inhibitory effects of DES on catalytic activities of human UGTs, aiming at disclosing new potential toxic mechanisms on the basis of interactions between DES and metabolizing enzymes. DES (10 μM) could decrease activities of UGT1A1, 1A3, 1A9, 2B4 and 2B7 in catalysing 4-methylumbelliferone (4-Mu) glucuronidation. Further kinetic analyses showed that inhibition of these UGTs followed competitive (UGT1A1 and 1A9), mixed (UGT1A3 and 2B4) and non-competitive (UGT2B7) mechanisms, with Ki values ranging from 0.91 to 4.1 μM. The inhibition potentials of UGT1A9 and 2B7 in human liver microsomes (HLM) were further tested by employing propofol and zidovudine as probe substrates, respectively. The inhibition of human liver microsomal UGT1A9 followed mixed mechanism, with the Ki value of 3.5 μM and α of 4.1. On the other hand, DES displayed non-competitive inhibition against UGT2B7 in HLM, with the Ki value of 9.8 μM. The risks of in vivo inhibition of human UGTs were also predicted by calculation of plasma C/Ki values. Results suggest that DES can trigger in vivo inhibition of UGT1A1, 1A3, 1A9, 2B4 and 2B7 after the intravenous administration in high doses.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Food Science and Technology, School of Life Science, Anqing Normal University, Anqing, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Anhui Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China
| | - Ling Xiao
- Department of Food Science and Technology, School of Life Science, Anqing Normal University, Anqing, China.,Anhui Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China
| | - Wenjuan Li
- Department of Food Science and Technology, School of Life Science, Anqing Normal University, Anqing, China
| | - Yuan Zhang
- Department of Food Science and Technology, School of Life Science, Anqing Normal University, Anqing, China
| | - Wenwen Han
- Department of Food Science and Technology, School of Life Science, Anqing Normal University, Anqing, China
| | - Yu Zhu
- Department of Food Science and Technology, School of Life Science, Anqing Normal University, Anqing, China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
11
|
Dimerization of human uridine diphosphate glucuronosyltransferase allozymes 1A1 and 1A9 alters their quercetin glucuronidation activities. Sci Rep 2016; 6:23763. [PMID: 27025983 PMCID: PMC4837415 DOI: 10.1038/srep23763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 11/08/2022] Open
Abstract
Uridine diphosphate glucuronosyltransferase 1A (UGT1A) is a major phase II drug-metabolism enzyme superfamily involved in the glucuronidation of endobiotics and xenobiotics in humans. Many polymorphisms in UGT1A genes are reported to inhibit or decrease UGT1A activity. In this study, two UGT1A1 allozymes, UGT1A1 wild-type and a splice mutant, as well as UGT1A9 wild-type and its three UGT1A9 allozymes, UGT1A9*2(C3Y), UGT1A9*3(M33T), and UGT1A9*5(D256N) were single- or double-expressed in a Bac-to-Bac expression system. Dimerization of UGT1A1 or UGT1A9 allozymes was observed via fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. SNPs of UGT1A altered the ability of protein-protein interaction, resulting in differential FRET efficiencies and donor-acceptor r distances. Dimerization changed the chemical regioselectivity, substrate-binding affinity, and enzymatic activity of UGT1A1 and UGT1A9 in glucuronidation of quercetin. These findings provide molecular insights into the consequences of homozygous and heterozygous UGT1A1 and UGT1A9 allozymes expression on quercetin glucuronidation.
Collapse
|
12
|
|
13
|
Narayanapillai SC, von Weymarn LB, Carmella SG, Leitzman P, Paladino J, Upadhyaya P, Hecht SS, Murphy SE, Xing C. Dietary Dihydromethysticin Increases Glucuronidation of 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanol in A/J Mice, Potentially Enhancing Its Detoxification. Drug Metab Dispos 2016; 44:422-7. [PMID: 26744252 PMCID: PMC4767383 DOI: 10.1124/dmd.115.068387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023] Open
Abstract
Effective chemopreventive agents are needed against lung cancer, the leading cause of cancer death. Results from our previous work showed that dietary dihydromethysticin (DHM) effectively blocked initiation of lung tumorigenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice, and it preferentially reduced 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL)-derived DNA adducts in lung. This study explored the mechanism(s) responsible for DHM's differential effects on NNK/NNAL-derived DNA damage by quantifying their metabolites in A/J mice. The results showed that dietary DHM had no effect on NNK or NNAL abundance in vivo, indicating that DHM does not affect NNAL formation from NNK. DHM had a minimal effect on cytochrome P450 2A5 (CYP2A5, which catalyzes NNK and NNAL bioactivation in A/J mouse lung), suggesting that it does not inhibit NNAL bioactivation. Dietary DHM significantly increased O-glucuronidated NNAL (NNAL-O-gluc) in A/J mice. Lung and liver microsomes from dietary DHM-treated mice showed enhanced activities for NNAL O-glucuronidation. These results overall support the notion that dietary DHM treatment increases NNAL detoxification, potentially accounting for its chemopreventive efficacy against NNK-induced lung tumorigenesis in A/J mice. The ratio of urinary NNAL-O-gluc and free NNAL may serve as a biomarker to facilitate the clinical evaluation of DHM-based lung cancer chemopreventive agents.
Collapse
Affiliation(s)
- Sreekanth C Narayanapillai
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Linda B von Weymarn
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Steven G Carmella
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Pablo Leitzman
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Jordan Paladino
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Pramod Upadhyaya
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy (S.C.N., P.L., J.P., C.X.), Masonic Cancer Center (L.B.W., S.G.C., P.U., S.S.H., S.E.M.), and Department of Biochemistry, Molecular Biology and Biophysics (L.B.W., S.E.M.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Zahreddine HA, Borden KLB. Molecular Pathways: GLI1-Induced Drug Glucuronidation in Resistant Cancer Cells. Clin Cancer Res 2015; 21:2207-10. [PMID: 25810373 DOI: 10.1158/1078-0432.ccr-14-1370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/19/2015] [Indexed: 11/16/2022]
Abstract
Drug resistance remains a major impediment in the development of durable cancer therapies. Studies in acute myelogenous leukemia (AML) patients revealed a new form of multidrug resistance. Here, increased glioma-associated protein GLI1 leads to elevation of the UDP-glucuronosyl transferase (UGT) enzymes. UGTs add glucuronic acid to xenobiotics and metabolites. Traditionally, the loss of these enzymes is thought to contribute to cancer as a result of impaired clearance of environmental carcinogens. However, we demonstrate that overexpression of UGTs can contribute to oncogenesis by promoting drug resistance. Indeed, UGT levels in AML patients treated with ribavirin and/or cytarabine were elevated at relapse relative to diagnosis. This was reversed by GLI1 inhibition, suggesting a clinically relevant strategy to overcome drug resistance. Further, overexpression of UGTs can also lead to drug resistance in other cancers, such as certain Hsp90 inhibitors and vorinostat in colorectal and chronic lymphoblastic leukemia, respectively. Not all drugs are targets of glucuronidation, suggesting that UGT status could be relevant to treatment choice. Here, we describe several facets of UGT biology and how these could be exploited clinically. These studies demonstrate how drugs in cancer cells can be metabolized differentially than their normal counterparts. In summary, we describe a new form of drug resistance relevant to a variety of cancer contexts.
Collapse
Affiliation(s)
- Hiba Ahmad Zahreddine
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Abstract
Cancer cells rapidly evolve a multitude of defense mechanisms to evade the effects of the oncologist's drug arsenal. Unfortunately, clinical strategies to overcome these lag far behind. This mismatch likely underlies our inability to implement new durable treatment strategies. Here, a new form of multidrug resistance, inducible drug glucuronidation, is discussed. This form was discovered while developing means to target a specific oncogene, the eukaryotic translation initiation factor 4E (eIF4E), with its inhibitor ribavirin. In two clinical studies, ribavirin treatment led to substantial clinical responses, but all responding patients eventually relapsed. In most cases, this was due to the overexpression of the sonic hedgehog transcription factor Gli1, which elevated the UDP glucuronsyltransferase UGT1A enzymes. UGT1As add glucuronic acid to many drugs. Indeed, these cells are resistant to not only ribavirin, but also Ara-C, and likely other drugs. Inhibition of Gli1 reduced UGT1As, eliminated drug glucuronides, and renewed sensitivity to ribavirin and Ara-C. These studies highlight that cancer cells and their resistant counterparts metabolize drugs differently from each other as well as from normal cells. Likely, these inducible modifications go beyond glucuronidation. Understanding the extent of inducible drug modifications and the pathways that drive expression of the corresponding enzymatic machinery will better position us to finally make resistance futile.
Collapse
Affiliation(s)
- Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.
| |
Collapse
|
16
|
Chronic toxicity study of neosaxitoxin in rats. Mar Drugs 2014; 12:5055-71. [PMID: 25257789 PMCID: PMC4178483 DOI: 10.3390/md12095055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/06/2014] [Accepted: 07/07/2014] [Indexed: 01/31/2023] Open
Abstract
Neosaxitoxin (NeoSTX) is a specific reversible blocker of voltage gated sodium channels on excitable cells. In the last decade, it has been tested in a number of interesting clinical trials, however there is still little information available on mammalian toxicity. Rats were treated for 12 weeks with doses of 1, 3 or 6 μg/kg of subcutaneous NeoSTX. At weeks 12 and 17, animals were sacrificed and blood samples collected for hematological and biochemical analysis. Organs were harvested for weight determination and histopathological assessments. The lowest acute toxicity via the intraperitoneal (ip) route was (30.35 μg/kg) and there was no significant difference between intramuscular and subcutaneous routes (11.4 and 12.41 μg/kg). The NeoSTX adiministration did not produce lethality at week 12 and after five weeks of suspension. NeoSTX 6 μg/kg ip produced reductions (p < 0.05) in body weight and food intake, and increased blood level of total and direct bilirubin, GGT and SGOT at week 12; all of these were reversed in the recovery period. NeoSTX 1 and 3 μg/kg ip did not show significant changes with the control group. Histopathological presentations were normal in all groups. This study revealed that NeoSTX is safe in vivo, giving a reliable security margin for its use like a local anesthetic.
Collapse
|
17
|
Greer AK, Dates CR, Starlard-Davenport A, Edavana VK, Bratton SM, Dhakal IB, Finel M, Kadlubar SA, Radominska-Pandya A. A potential role for human UDP-glucuronosyltransferase 1A4 promoter single nucleotide polymorphisms in the pharmacogenomics of tamoxifen and its derivatives. Drug Metab Dispos 2014; 42:1392-400. [PMID: 24917585 PMCID: PMC4152870 DOI: 10.1124/dmd.114.058016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/10/2014] [Indexed: 01/19/2023] Open
Abstract
Tamoxifen (Tam) is a selective estrogen receptor modulator used to inhibit breast tumor growth. Tam can be directly N-glucuronidated via the tertiary amine group or O-glucuronidated after cytochrome P450-mediated hydroxylation. In this study, the glucuronidation of Tam and its hydroxylated and/or chlorinated derivatives [4-hydroxytamoxifen (4OHTam), toremifene (Tor), and 4-hydroxytoremifene (4OHTor)] was examined using recombinant human UDP-glucuronosyltransferases (UGTs) from the 1A subfamily and human hepatic microsomes. Recombinant UGT1A4 catalyzed the formation of N-glucuronides of Tam and its derivatives and was the most active UGT enzyme toward these compounds. Therefore, it was hypothesized that single nucleotide polymorphisms (SNPs) in the promoter region of UGT1A4 have the ability to significantly decrease the glucuronidation rates of Tam metabolites in the human liver. In vitro activity of 64 genotyped human liver microsomes was used to determine the association between the UGT1A4 promoter and coding region SNPs and the glucuronidation rates of Tam, 4OHTam, Tor, and 4OHTor. Significant decreases in enzymatic activity were observed in microsomes for individuals heterozygous for -163G/A and -217T/G. These alterations in glucuronidation may lead to prolonged circulating half-lives and may potentially modify the effectiveness of these drugs in the treatment of breast cancer.
Collapse
Affiliation(s)
- Aleksandra K Greer
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Centdrika R Dates
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Athena Starlard-Davenport
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Vineetha K Edavana
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Stacie M Bratton
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Ishwori B Dhakal
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Moshe Finel
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Susan A Kadlubar
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| | - Anna Radominska-Pandya
- Departments of Biochemistry and Molecular Biology (A.K.G., C.R.D., S.M.B., A.R.-P.), Medical Genetics (A.S.-D., V.K.E., S.A.K.), and Biostatistics (I.B.D.), College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (M.F.)
| |
Collapse
|
18
|
Issa AM. Clinical applications of pharmacogenomics to adverse drug reactions. Expert Rev Clin Pharmacol 2014; 1:251-60. [DOI: 10.1586/17512433.1.2.251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Jansen RJ, Robinson DP, Stolzenberg-Solomon RZ, Bamlet WR, Tan X, Cunningham JM, Li Y, Rider DN, Oberg AL, Rabe KG, Anderson KE, Sinha R, Petersen GM. Polymorphisms in metabolism/antioxidant genes may mediate the effect of dietary intake on pancreatic cancer risk. Pancreas 2013; 42:1043-53. [PMID: 24051964 PMCID: PMC3779344 DOI: 10.1097/mpa.0b013e3182968e00] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES A source of variation for inconsistent dietary-pancreatic cancer associations may be individuals carrying constitutional metabolism/antioxidant gene variants that differentially benefit compared to homozygous individuals. Seventy-six tag single-nucleotide polymorphisms were genotyped in 13 candidate genes to test differential associations with pancreatic adenocarcinoma. METHODS A clinic-based case-control design was used to rapidly ascertain 251 cases and 970 frequency matched controls who provided blood samples and completed a 144-item food frequency questionnaire. Single-nucleotide polymorphisms were evaluated using a dominant genetic model and dietary categories split on controls' median intake. Logistic regression was used to calculate odds ratios and 95% confidence intervals, adjusted for potential confounders. RESULTS Significant increased associations (Bonferroni corrected P ≤ 0.0007) were observed for carriers of greater than or equal to 1 minor allele for rs3816257 (glucosidase, α; acid [GAA]) and lower intake of deep-yellow vegetables (1.90 [1.28-2.83]); and carriers of no minor allele for rs12807961 (catalase [CAT]) and high total grains intake (2.48 [1.50-4.09]), whereas those with greater than or equal to 1 minor allele had a decreasing slope (across grains). The reference group was no minor alleles with low dietary intake. CONCLUSIONS Interindividual variation in metabolism/antioxidant genes could interact with dietary intake to influence pancreatic cancer risk.
Collapse
Affiliation(s)
- Rick J Jansen
- From the Divisions of *Epidemiology, and †Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN; ‡Department of Epidemiology, National Institutes of Health, Bethesda, MD; §Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN; and ∥Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tripathi SP, Bhadauriya A, Patil A, Sangamwar AT. Substrate selectivity of human intestinal UDP-glucuronosyltransferases (UGTs): in silico and in vitro insights. Drug Metab Rev 2013; 45:231-52. [PMID: 23461702 DOI: 10.3109/03602532.2013.767345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The current drug development process aims to produce safe, effective drugs within a reasonable time and at a reasonable cost. Phase II metabolism (glucuronidation) can affect drug action and pharmacokinetics to a considerable extent and so its studies and prediction at initial stages of drug development are very imperative. Extensive glucuronidation is an obstacle to oral bioavailability because the first-pass glucuronidation [or premature clearance by UDP-glucuronosyltransferases (UGTs)] of orally administered agents frequently results in poor oral bioavailability and lack of efficacy. Modeling of new chemical entities/drugs for UGTs and their kinetic data can be useful in understanding the binding patterns to be used in the design of better molecules. This review concentrates on first-pass glucuronidation by intestinal UGTs, including their topology, expression profile, and pharmacogenomics. In addition, recent advances are discussed with respect to substrate selectivity at the binding pocket, structural requirements, and mechanism of enzyme actions.
Collapse
Affiliation(s)
- Satya Prakash Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | | | | | | |
Collapse
|
21
|
Marklund M, Landberg R, Andersson R, Aman P, Kamal-Eldin A. Alkylresorcinol metabolism in Swedish adults is affected by factors other than intake of whole-grain wheat and rye. J Nutr 2012; 142:1479-86. [PMID: 22739366 DOI: 10.3945/jn.112.159244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The urinary alkylresorcinol (AR) metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-propanoic acid (DHPPA), could potentially serve as biomarkers for intake of whole-grain (WG) wheat and rye. Excretion of AR metabolites is largely dependent on the intake of AR but may also be influenced by other factors. This study aimed to investigate the validity of free and conjugated AR metabolites as biomarkers for WG intake of wheat and rye and to identify potential determinants of AR metabolites in urine. We quantified free aglycones and conjugates of AR metabolites in 24-h urine collections from 52 free-living Swedish adults and calculated correlation coefficients between urinary AR metabolite excretion and self-reported WG intake. We used partial least-squares regression to identify possible determinants of urinary AR metabolites. Approximately 50% of urinary AR metabolites were found as conjugates. Excretions of individually quantified free and conjugated AR metabolites and their sums were correlated to self-reported intake of WG rye and wheat (r = 0.50-0.68; P < 0.001). Excretion of urinary AR metabolites was mainly dependent on intake of 2 major dietary AR homologs, C19:0 and C21:0. Sex, BMI, and vitamin C intake were identified as determinants of the proportion of free and glucuronidated DHPPA in the present study. Urinary AR metabolites may be useful in reflecting short-term to medium-term intake of WG, but urine samples should be deconjugated prior to quantification. Anthropometric and dietary factors affecting the proportion of conjugated AR metabolites in urine may to some extent influence AR elimination and thereby the performance of urinary AR metabolites as biomarkers.
Collapse
Affiliation(s)
- Matti Marklund
- Department of Food Science, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Chu XM, Zhang LF, Wang GJ, Zhang SN, Zhou JH, Hao HP. Influence of UDP-glucuronosyltransferase polymorphisms on valproic acid pharmacokinetics in Chinese epilepsy patients. Eur J Clin Pharmacol 2012; 68:1395-401. [DOI: 10.1007/s00228-012-1277-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
|
23
|
Chitchumroonchokchai C, Riedl KM, Suksumrarn S, Clinton SK, Kinghorn AD, Failla ML. Xanthones in mangosteen juice are absorbed and partially conjugated by healthy adults. J Nutr 2012; 142:675-80. [PMID: 22399525 PMCID: PMC3301988 DOI: 10.3945/jn.111.156992] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proposed health-promoting effects of the pericarp from mangosteen fruit have been attributed to a family of polyphenols referred to as xanthones. The purpose of this study was to determine the bioavailability of xanthones from 100% mangosteen juice in healthy adult participants (n = 10). Pericarp particles accounted for 1% of the mass and 99% of the xanthone concentration in the juice. The juice provided 5.3 ± 0.1 mmol/L total xanthones with α-mangostin, garcinones (C, D, and E), γ-mangostin, gartanins, and other identified xanthones accounting for 58, 2, 6, 4, and 5%, respectively. Participants ingested 60 mL mangosteen juice with a high-fat breakfast. Free and conjugated (glucuronidated/sulfated) xanthones were detected in serum and urine. There was marked variation in the AUC (762-4030 nmol/L × h), maximum concentration (113 ± 107 nmol/L), and time to maximum concentration (3.7 ± 2.4 h) for α-mangostin in sera during the 24-h collection. Similarly, xanthones in 24-h urine ranged from 0.9 to 11.1 μmol and accounted for 2.0 ± 0.3% (range 0.3-3.4%) of the ingested dose. There were no significant differences between female and male participants in mean pharmacokinetic values of α-mangostin in serum and urinary xanthones. Only 15.4 ± 0.7% of total xanthones in pericarp particles in the juice partitioned into mixed micelles during in vitro digestion. These results show that xanthones in mangosteen juice are absorbed when ingested along with a high-fat meal, although release of xanthones from pericarp particles during digestion may be limited.
Collapse
Affiliation(s)
| | - Kenneth M. Riedl
- Department of Food Science & Technology,Food Innovation Center, The Ohio State University, Columbus, OH, and
| | - Sunit Suksumrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Steven K. Clinton
- Department of Human Nutrition,Division of Medical Oncology, Department of Internal Medicine,Food Innovation Center, The Ohio State University, Columbus, OH, and
| | | | - Mark L. Failla
- Department of Human Nutrition,Food Innovation Center, The Ohio State University, Columbus, OH, and
| |
Collapse
|
24
|
Navarro SL, Chen Y, Li L, Li SS, Chang JL, Schwarz Y, King IB, Potter JD, Bigler J, Lampe JW. UGT1A6 and UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled diet of select fruits and vegetables. Drug Metab Dispos 2011; 39:1650-7. [PMID: 21666065 PMCID: PMC3164274 DOI: 10.1124/dmd.111.039149] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP) glucuronidation is thought to occur mainly by UDP-glucuronosyltransferases (UGT) in the UGT1A family. Interindividual variation in APAP glucuronidation is attributed in part to polymorphisms in UGT1As. However, evidence suggests that UGT2B15 may also be important. We evaluated, in a controlled feeding trial, whether APAP conjugation differed by UGT1A6 and UGT2B15 genotypes and whether supplementation of known dietary inducers of UGT (crucifers, soy, and citrus) modulated APAP glucuronidation compared with a diet devoid of fruits and vegetables (F&V). Healthy adults (n = 66) received 1000 mg of APAP orally on days 7 and 14 of each 2-week feeding period and collected saliva and urine over 12 h. Urinary recovery of the percentage of the APAP dose as free APAP was higher (P = 0.02), and the percentage as APAP glucuronide (APAPG) was lower (P = 0.004) in women. The percentage of APAP was higher among UGT1A6*1/*1 genotypes, relative to *1/*2 and *2/*2 genotypes (P = 0.045). For UGT2B15, the percentage of APAPG decreased (P < 0.0001) and that of APAP sulfate increased (P = 0.002) in an allelic dose-dependent manner across genotypes from *1/*1 to *2/*2. There was a significant diet × UGT2B15 genotype interaction for the APAPG ratio (APAPG/total metabolites × 100) (P = 0.03), with *1/*1 genotypes having an approximately 2-fold higher F&V to basal diet difference in response compared with *1/*2 and *2/*2 genotypes. Salivary APAP maximum concentration (C(max)) was significantly higher in women (P = 0.0003), with F&V (P = 0.003), and among UGT1A6*2/*2 and UGT2B15*1/*2 genotypes (P = 0.02 and 0.002, respectively). APAP half-life was longer in UGT2B15*2/*2 genotypes with F&V (P = 0.009). APAP glucuronidation was significantly influenced by the UGT2B15*2 polymorphism, supporting a role in vivo for UGT2B15 in APAP glucuronidation, whereas the contribution of UGT1A6*2 was modest. Selected F&V known to affect UGT activity led to greater glucuronidation and less sulfation.
Collapse
Affiliation(s)
- Sandi L Navarro
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 2011; 24:1169-214. [PMID: 21688801 PMCID: PMC3156293 DOI: 10.1021/tx200135s] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center , Albany, New York 12201, United States.
| | | |
Collapse
|
26
|
UDP-glucuronosyltransferase 1A6 overexpression in breast cancer cells resistant to methotrexate. Biochem Pharmacol 2011; 81:60-70. [DOI: 10.1016/j.bcp.2010.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 11/20/2022]
|
27
|
Song WY, Ji HY, Baek NI, Jeong TS, Lee HS. In vitro metabolism of jaceosidin and characterization of cytochrome P450 and UDP-glucuronosyltransferase enzymes in human liver microsomes. Arch Pharm Res 2010; 33:1985-96. [PMID: 21191764 DOI: 10.1007/s12272-010-1214-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Jaceosidin is an active component in Artemisia species as well as Eupatorium species and it exhibits antiallergic, anticancer, antioxidant, anti-inflammatory, and antimutagenic activities. Jaceosidin was metabolized to jaceosidin glucuronide, 6-O-desmethyljaceosidin, hydroxyjaceosidin, 6-O-desmethyljaceosidin glucuronide, and hydroxyjaceosidin glucuronide in human liver microsomes. This study characterized the human liver cytochrome P450 (CYP) and UDPglucuronosyltransferase (UGT) enzymes responsible for the metabolism of jaceosidin. CYP1A2 was identified as the major enzyme responsible for the formation of 6-O-desmethyljaceosidin and hydroxyjaceosidin from jaceosidin on the basis of a combination of correlation analysis and experiments including immuno-inhibition, chemical inhibition in human liver microsomes, and metabolism by human cDNA-expressed CYP enzymes. Jaceosidin glucuronidation was catalyzed by UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, and UGT1A10. These results suggest that the pharmacokinetics of jaceosidin may be dramatically affected by polymorphic CYP1A2, UGT1A1, and UGT1A7 responsible for the metabolism of jaceosidin or by the coadministration of relevant CYP1A2 or UGT inhibitors or inducers.
Collapse
Affiliation(s)
- Won Young Song
- Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | |
Collapse
|
28
|
Ishii Y, Nurrochmad A, Yamada H. Modulation of UDP-glucuronosyltransferase activity by endogenous compounds. Drug Metab Pharmacokinet 2010; 25:134-48. [PMID: 20460819 DOI: 10.2133/dmpk.25.134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucuronidation is one of the major pathways of metabolism of endo- and xenobiotics. UDP-Glucuronosyltransferase (UGT)-catalyzed glucuronidation accounts for up to 35% of phase II reactions. The expression and function of UGT is modulated by gene regulation, post-translational modifications and protein-protein association. Many studies have focused on drug-drug interactions involving UGT, and there are a number of reports describing the inhibition of UGT by xenobiotics. However, studies about the role of endogenous compounds as an inhibitor or activator of UGT are limited, and it is important to understand any change in the function and regulation of UGT by endogenous compounds. Recent studies in our laboratory have shown that fatty acyl-CoAs are endogenous activators of UGT, although fatty acyl-CoAs had been considered as inhibitors of UGT. Further, we have also suggested that adenine and related compounds are endogenous allosteric inhibitors of UGT. In this review, we summarize the endogenous modulators of UGT and discuss their relevance to UGT function.
Collapse
|
29
|
Moskal JR, Kroes RA, Dawson G. The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert Rev Neurother 2009; 9:1529-45. [PMID: 19831842 DOI: 10.1586/ern.09.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oligosaccharides that decorate cell surface glycoconjugates play important roles in intercellular recognition and cell-extracellular matrix interactions, and thus the regulation of cellular migration, metastasis and invasivity. Virtually all tumor cells display aberrant cell-surface glycosylation patterns brought about by alterations in their biosynthetic machinery. This holds true for highly invasive, malignant brain tumors as well as tumor cells that metastasize to the brain. The field of glycobiology is well established with essentially all of the biochemical pathways for oligosaccharide metabolism characterized and all of the 'glycogenes' involved in these pathways cloned. Yet there has been a paucity of progress toward the development of therapeutics. However, recent studies aimed at controlled glycosylation of therapeutic antibodies and mucins with anticancer vaccine potential, the emergence of new and highly sensitive tools for the identification of tumor-associated biomarkers and the manipulation of the expression of glycogenes that inhibit brain tumor invasivity have emerged. The opportunity now exists to answer questions as to how glycogenes are regulated at the genomic and transcriptomic level and how altered glycogene expression patterns lead to altered cell surface glycoconjugates. These studies should lead to the development of ways to directly regulate tumor cell glycogene expression, which should have significant therapeutic potential.
Collapse
Affiliation(s)
- Joseph R Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60201, USA.
| | | | | |
Collapse
|
30
|
The red wine polyphenol resveratrol reduces polycyclic aromatic hydrocarbon-induced DNA damage in MCF-10A cells. Br J Nutr 2009; 102:1462-8. [DOI: 10.1017/s0007114509990481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are procarcinogens that can be commonly found in our food and environment. Upon biotransformation in our body system, they can cause DNA damage through the generation of genotoxic species and oxidative stress. Phase I and II enzymes are pivotal in the process of proximate carcinogen formation and elimination. Some dietary phytochemicals are strong inhibitors to the phase I enzymes. In the present study, we investigated the effect of the red wine compound resveratrol on DNA damage induced by PAH in a non-tumorigenic breast cell line MCF-10A. Resveratrol ranging from 1 to 5 μm could significantly suppress the expressions of cytochrome P450 (CYP) 1A1, CYP1B1 and UDP-glucuronosyltransferase (UGT) 1A1 induced by 7,12-dimethylbenz[a]anthracene (DMBA). The comet assay indicated that DMBA introduced DNA damage to these cells, and co-treatment of resveratrol at 5 or 10 μm could alleviate the damage. Further investigation illustrated that resveratrol reduced the binding of DMBA metabolites to DNA with no effect on DMBA-induced oxidative DNA damage. Since the phase II enzyme UGT1A1 was suppressed, the elimination of DMBA metabolites would not have contributed to the reduction in the DMBA metabolite–DNA binding. In summary, resveratrol might protect breast cells against PAH-induced DNA damage. The underlying mechanism was mediated by phase I enzyme suppression rather than phase II enzyme induction or oxidative DNA repair.
Collapse
|
31
|
Lampe JW. Interindividual differences in response to plant-based diets: implications for cancer risk. Am J Clin Nutr 2009; 89:1553S-1557S. [PMID: 19297461 PMCID: PMC2677005 DOI: 10.3945/ajcn.2009.26736d] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic differences in taste preference, food tolerance, and phytochemical absorption and metabolism all potentially influence the effect of plant-based diets on cancer risk. Diet is a mixture of carcinogens, mutagens, and protective agents, many of which are metabolized by biotransformation enzymes. Genetic polymorphisms that alter protein expression or enzyme function can modify risk. Genotypes associated with more favorable handling of carcinogens may be associated with less favorable handling of phytochemicals. For example, glutathione S-transferases detoxify polycyclic aromatic hydrocarbons and metabolize isothiocyanates, which are chemopreventive compounds in cruciferous vegetables. A polymorphism in the GSTM1 gene results in lack of GSTM1-1 protein. Pharmacokinetic studies suggest that lack of GSTM1 enzyme is associated with more rapid excretion of the isothiocyanate sulforaphane; therefore, individuals who have this genetic variation may derive less benefit from consuming cruciferous vegetables. Flavonoids are conjugated with glucuronide and sulfate and are excreted in urine and bile. Polymorphisms in UDP-glucuronosyltransferases and sulfotransferases may contribute to variability in phytochemical clearance and efficacy. Genetic polymorphisms in enzymes that metabolize phytochemicals may account in part for variation in disease risk and also have to be considered in the context of other aspects of human genetics, gut bacterial genetics, and environmental exposures.
Collapse
Affiliation(s)
- Johanna W Lampe
- Fred Hutchinson Cancer Research Center and Nutritional Sciences Program, Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Saracino MR, Bigler J, Schwarz Y, Chang JL, Li S, Li L, White E, Potter JD, Lampe JW. Citrus fruit intake is associated with lower serum bilirubin concentration among women with the UGT1A1*28 polymorphism. J Nutr 2009; 139:555-60. [PMID: 19141701 PMCID: PMC2646224 DOI: 10.3945/jn.108.097279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UDP-glucuronosyltransferase (UGT) 1A1 glucuronidates bilirubin, estrogens, and xenobiotic compounds. The UGT1A1*28 polymorphism results in lower promoter activity due to 7 thymine-adenine (TA) repeats rather than the more common 6 TA repeats. Previously, we showed that serum bilirubin, a marker of UGT1A1 activity, was lower among individuals homozygous for the UGT1A1*28 polymorphism (7/7) when randomized to a high fruit and vegetable (F&V) diet, whereas there was no effect in individuals with the wild-type (6/6) and heterozygous (6/7) genotypes. Our objective here was to determine if we could detect genotype x diet interactions on bilirubin concentrations in an observational study. Healthy nonsmoking men (n = 146) and women (n = 147), recruited from the Seattle area, provided blood samples for genotyping and bilirubin measurements. We used multiple linear regression to assess the relationships among UGT1A1 genotype, bilirubin concentrations, and consumption of specific F&V [cruciferous vegetables, citrus fruits, and soy foods (n = 268)] based on FFQ and F&V from 6 botanical families [Cruciferae, Rosaceae, Rutaceae, Umbelliferae, Solanaceae, and Leguminosae (n = 261)] based on 3-d food records. We observed a significant interaction of UGT1A1 genotype and citrus consumption among women. Women with the 7/7 genotype who consumed > or = 0.5 daily servings of citrus fruit or foods from the Rutaceae botanical family had approximately 30% lower serum bilirubin than those with the same genotype who consumed less, whereas 6/6 and 6/7 genotypes did not differ by consumption (P for interaction = 0.006 and 0.03, respectively). These results suggest that citrus consumption may increase UGT1A1 activity among women with the 7/7 genotype.
Collapse
Affiliation(s)
- Misty R. Saracino
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Jeannette Bigler
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Yvonne Schwarz
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Jyh-Lurn Chang
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Shiuying Li
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Lin Li
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - John D. Potter
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
33
|
Ah YM, Kim YM, Kim MJ, Choi YH, Park KH, Son IJ, Kim SG. Drug-induced Hyperbilirubinemia and the Clinical Influencing Factors. Drug Metab Rev 2008; 40:511-37. [DOI: 10.1080/03602530802341133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Guo J, Liu A, Cao H, Luo Y, Pezzuto JM, van Breemen RB. Biotransformation of the chemopreventive agent 2',4',4-trihydroxychalcone (isoliquiritigenin) by UDP-glucuronosyltransferases. Drug Metab Dispos 2008; 36:2104-12. [PMID: 18653743 PMCID: PMC2615638 DOI: 10.1124/dmd.108.021857] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2',4',4-trihydroxychalcone (isoliquiritigenin), a chalcone found in licorice root and shallots, exhibits antioxidant, estrogenic, and antitumor activities. To complement our previous studies concerning the phase 1 metabolism of isoliquiritigenin, the phase 2 transformation of isoliquiritigenin by human hepatocytes and pooled human liver microsomes (HLMs) was investigated using liquid chromatography/tandem mass spectrometry and UV absorbance. Five glucuronides were detected corresponding to monoglucuronides of isoliquiritigenin and liquiritigenin, but no sulfate conjugates were observed. The UDP-glucuronosyltransferases (UGTs) involved in the formation of the major glucuronide conjugates were identified using recombinant human UGTs in combination with liquid chromatography/mass spectrometry. UGT1A1 and UGT1A9 were the major enzymes responsible for the formation of the most abundant conjugate, isoliquiritigenin 4'-O-glucuronide (MG5), with Km values of 4.30+/-0.47 and 3.15+/-0.24 microM, respectively. UGT1A1 and UGT1A10 converted isoliquiritigenin to the next most abundant phase 2 metabolite, isoliquiritigenin 2'-O-glucuronide (MG4), with Km values of 2.98+/-0.8 and 25.8+/-1.3 microM, respectively. In addition, isoliquiritigenin glucuronides MG4 and MG5 were formed by pooled human intestine and kidney microsomes, respectively. Based on the in vitro determination of a 25.3-min half-life for isoliquiritigenin when incubated with HLMs, the intrinsic clearance of isoliquiritigenin was estimated to be 36.4 ml/min/kg. These studies indicate that isoliquiritigenin will be conjugated rapidly in the liver to form up to five monoglucuronides.
Collapse
Affiliation(s)
- Jian Guo
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612-7231, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gaiser BK, Lockley DJ, Staines AG, Baarnhielm C, Burchell B. Almokalant glucuronidation in human liver and kidney microsomes: evidence for the involvement of UGT1A9 and 2B7. Xenobiotica 2008; 33:1073-83. [PMID: 14660172 DOI: 10.1080/00498250310001609129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. Almokalant, a class III antiarrythmic drug, is metabolized to form isomeric glucuronides identified in human urine. Synthesis of the total glucuronide was studied in human liver and kidney microsomes. Recombinant UDP-glucuronosyltransferases (UGTs) were screened for activity and kinetic analysis was performed to identify the isoform(s) responsible for the formation of almokalant glucuronide in man. 2. From a panel of recombinant isoforms used, both UGT1A9 and 2B7 catalysed the glucuronidation of almokalant. The Km values in both instances were similar with 1.06 mM for the 1A9 and 0.97 mM for the 2B7. Vmax for 1A9 was fourfold higher than that measured for UGT2B7, 92 compared with 21 pmol min(-1) mg(-1), respectively, but UGT1A9 was expressed at approximately twofold higher level than the UGT2B7 in the recombinant cell lines. Therefore, the contribution of UGT2B7 to almokalant glucuronidation could be as significant as that of UGT1A9 in man. 3. Liver and kidney microsomes displayed similar Km values to the cloned expressed UGTs, with the liver and kidney microsomes at 1.68 and 1.06 mM almost identical to the 1A9. 4. The results suggest a significant role for UGT1A9 and 2B7 in the catalysis of almokalant glucuronidation.
Collapse
Affiliation(s)
- B K Gaiser
- Department of Molecular and Cellular Pathology, Ninewells Medical School, University of Dundee DD1 9SY, UK
| | | | | | | | | |
Collapse
|
36
|
Argikar UA, Iwuchukwu OF, Nagar S. Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin Drug Metab Toxicol 2008; 4:879-94. [DOI: 10.1517/17425255.4.7.879] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Abstract
Intrahepatic cholestasis of pregnancy (ICP) occurs mainly in the third trimester and is characterised by pruritus and elevated serum bile acid levels. ICP is associated with an increased perinatal risk and higher rates of foetal morbidity and mortality. Although the pathogenesis of this disease is unknown, a genetic hypersensitivity to female hormones (oestrogen and/or progesterone) or their metabolites is thought to impair bile secretory function. Recent data suggest that mutations or polymorphisms of genes expressing hepatobiliary transport proteins or their nuclear regulators may contribute to the development and/or severity of ICP. Unidentified environmental factors may also influence pathogenesis of the disease. This review summarises current knowledge on the potential mechanisms involved in ICP at the molecular level.
Collapse
|
38
|
Assessment of urinary mephenytoin metrics to phenotype for CYP2C19 and CYP2B6 activity. Eur J Clin Pharmacol 2007; 64:387-98. [DOI: 10.1007/s00228-007-0416-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 11/12/2007] [Indexed: 11/26/2022]
|
39
|
Liu X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: determination of the UDP-glucuronosyltransferase isoforms responsible for the metabolism of flavonoids in intact Caco-2 TC7 cells using siRNA. Mol Pharm 2007; 4:873-82. [PMID: 17927138 DOI: 10.1021/mp0601190] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Our recent study indicates that microsomal glucuronidation rates are not predictive of the cellular glucuronide excretion rates and whole cell systems are needed to accurately determine the metabolic rates. This study aims to determine the contribution of UGT isoforms responsible for the metabolism of flavonoids in intact Caco-2 cells and cell lysates using siRNA. The results showed that UGT1A6 activities (as measured by p-nitrophenol glucuronidation) and expression were typically decreased 60-80% by siRNA treatment. Using siRNA-mediated silencing, we also showed that in intact cells, siRNA treatment substantially decreased the rate of excretion of apigenin glucuronide at low and high concentrations (>35%, p < 0.05), although it only moderately decreased the rate of excretion of genistein glucuronide at a high concentration (29%). The results also indicated that well-expressed UGT isoforms in the Caco-2 cells, UGT1A1, UGT1A3, UGT1A6, and UGT2B7, were capable of metabolizing apigenin faster than genistein and that UGT1A6 silencing did not substantially increase the level of expression of genistein-metabolizing UGT isoforms. We also determined the contribution of UGT1A6 to the apigenin and genistein metabolisms as a function of concentration, and the results indicated that metabolism of apigenin and genistein was saturable and siRNA treatment greatly reduced the rate of metabolism of apigenin but not that of genistein. In conclusion, we show for the first time that siRNA can be used effectively to determine which UGT isoform contributes to the metabolism of its substrate in intact cells. The results also indicate that UGT1A6 is a major contributor to glucuronidation of apigenin but not genistein in intact Caco-2 cells and in cell lysates.
Collapse
Affiliation(s)
- Xing Liu
- Department of Pharmacological and Pharmaceutical Sciences and Department of Clinical Sciences and Administration, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
40
|
Leung HY, Wang Y, Leung LK. Differential effect of over-expressing UGT1A1 and CYP1A1 on xenobiotic assault in MCF-7 cells. Toxicology 2007; 242:153-9. [PMID: 17981384 DOI: 10.1016/j.tox.2007.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 09/14/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Gene mutation has been considered as a major step of carcinogenesis. Some defective genes may induce spontaneous tumorigenesis, while others are required to interact with the environment to induce cancer. CYP1A1 and UGT1A1 are encoded for the respective phase I and II drug-metabolizing enzymes. Their expressions have been associated with breast cancer incidence in women, and some xenobiotics are substrates of these two enzymes. In the current study, cytochrome P450 (CYP) 1A1 and UDP-glucuronosyltransferase (UGT) 1A1 were over-expressed in the breast cancer MCF-7 cells, and potential interactions between these enzymes and estrogen or polycyclic aromatic hydrocarbon were evaluated. Compared with control cells (MCF-7(VEC)), reduced cell proliferation was seen in cells expressing UGT1A1 (MCF-7(UGT1A1)) under estradiol treatment. 7,12-Dimethylbenz[a]anthracene (DMBA) is an established breast cancer initiator in animal model. Over-expressing UGT1A1 reduced the binding of DMBA to DNA, and increased MCF-7(UGT1A1) intact cells under DMBA treatment was verified by comet assay. On the other hand, intensified DMBA binding and damages were observed in MCF-7(CYP1A1) cells. This study supported that UGT1A1 but not CYP1A1 expression could protect against xenobiotic assault.
Collapse
Affiliation(s)
- Hau Y Leung
- Food and Nutritional Sciences Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | |
Collapse
|
41
|
Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. ACTA ACUST UNITED AC 2007; 260:35-112. [PMID: 17482904 DOI: 10.1016/s0074-7696(06)60002-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes that catalyze the biotransformation of drugs and xenobiotics are generally referred to as drug-metabolizing enzymes (DMEs). DMEs can be classified into two main groups: oxidative or conjugative. The NADPH-cytochrome P450 reductase (P450R)/cytochrome P450 (P450) electron transfer systems are oxidative enzymes that mediate phase I reactions, whereas the UDP-glucuronosyltransferases (UGTs) are conjugative enzymes that mediate phase II enzymes. Both enzyme systems are localized to the endoplasmic reticulum (ER) where a number of drugs are sequentially metabolized. DMEs, including P450s and UGTs, generally have a highly plastic active site that can accommodate a wide variety of substrates. The P450 and UGT genes constitute a supergene family, in which UGT proteins are encoded by distinct genes and a complex gene. Both the P450 and UGT genes have evolved to diversify their functions. This chapter reviews advances in understanding the structure and function of the P450R/P450 and UGT enzyme systems. In particular, the coordinate biotransformation of xenobiotics by phase I and II enzymes in the ER membrane is examined.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
42
|
Peterkin VC, Bauman JN, Goosen TC, Menning L, Man MZ, Paulauskis JD, Williams JA, Myrand SP. Limited influence of UGT1A1*28 and no effect of UGT2B7*2 polymorphisms on UGT1A1 or UGT2B7 activities and protein expression in human liver microsomes. Br J Clin Pharmacol 2007; 64:458-68. [PMID: 17555467 PMCID: PMC2048551 DOI: 10.1111/j.1365-2125.2007.02923.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS UGT1A1 and UGT2B7 are enzymes that commonly contribute to drug glucuronidation. Since genetic factors have been suggested to contribute to variability in activities and expression levels of these enzymes, a quantitative assessment of the influence of the major genotypes (UGT1A1*28 or UGT2B7*2) on enzyme activities was conducted. METHODS Using a bank of microsomal samples from 59 human livers, the effect of UGT1A1*28 or UGT2B7*2 polymorphisms were investigated on rates of estradiol 3-glucuronidation (a marker of UGT1A1 enzyme activity) or zidovudine glucuronidation (a marker of UGT2B7 enzyme activity) and levels of immunoreactive protein for each enzyme. Glucuronidation rates for both enzymes were measured at K(m)/S(50) and 10 times K(m)/S(50) concentrations. RESULTS UGT1A1 and UGT2B7 enzyme activities varied up to 16-fold and sixfold, respectively. Rates at K(m)/S(50) concentration closely correlated with rates at 10 times K(m)/S(50) concentration for both enzymes (but not at 1/10th K(m) for UGT2B7). Enzyme activities correlated with relative levels of immunoreactive protein for UGT1A1 and UGT2B7. Furthermore, rates of zidovudine glucuronidation correlated well with rates of glucuronidation of the UGT2B7 substrate gemcabene, but did not correlate with UGT1A1 enzyme activities. For the UGT1A1*28 polymorphism, consistent with levels of UGT1A1 immunoreactive protein, mean UGT1A1 activity was 2.5- and 3.2-fold lower for TA(6)/TA(7) (P < 0.05) and TA(7)/TA(7) (P < 0.001) genotypes in comparison with the TA(6)/TA(6) genotype. CONCLUSIONS Relative to the observed 16-fold variability in UGT1A1 activity, these data indicate only a partial (approximately 40%) contribution of the UGT1A1*28 polymorphism to variability of interindividual differences in UGT1A1 enzyme activity. For the UGT2B7*2 polymorphism, genotype had no influence on immunoreactive UGT2B7 protein or the rate of 3'-azido-3'-deoxythymidine glucuronidation.
Collapse
Affiliation(s)
- Vincent C Peterkin
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lampe JW, Chang JL. Interindividual differences in phytochemical metabolism and disposition. Semin Cancer Biol 2007; 17:347-53. [PMID: 17588771 PMCID: PMC2080835 DOI: 10.1016/j.semcancer.2007.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/08/2007] [Indexed: 01/06/2023]
Abstract
Many phytochemicals, the bioactive nonnutrient compounds found in plant foods, possess biologic effects associated with reduced risk of various diseases such as cancer. Genetic variation in pathways affecting absorption, metabolism, and distribution of phytochemicals is likely to influence exposure at the tissue level, thus modifying disease risk in individuals. Few studies have examined these gene-phytochemical interactions in humans. In this review, we discuss the sources of variation in metabolism and disposition of phytochemicals, and focus on two aspects of phytochemical handling that have received some attention: the impact of intestinal bacteria and genetically polymorphic phase II, conjugating enzymes.
Collapse
Affiliation(s)
- Johanna W Lampe
- Fred Hutchinson Cancer Research Center and Nutritional Sciences Program, Department of Epidemiology, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
44
|
Nagar S, Blanchard RL. Pharmacogenetics of uridine diphosphoglucuronosyltransferase (UGT) 1A family members and its role in patient response to irinotecan. Drug Metab Rev 2006; 38:393-409. [PMID: 16877259 DOI: 10.1080/03602530600739835] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucuronidation, catalyzed by the glucuronosyltransferase (UGT) superfamily, is a major biotransformation pathway for several drugs, including irinotecan. Irinotecan is commonly used in colorectal cancer chemotherapy. Irinotecan undergoes metabolism in humans and is converted to its active metabolite SN-38, a topoisomerase I inhibitor. SN-38 is inactivated via glucuronidation catalyzed by various hepatic and extrahepatic UGT1A isozymes. Although the role of the UGT1A1 *28 genetic variant has received much attention in altered toxicity upon irinotecan treatment, other UGT1A enzymes also play an important role. This review summarizes pharmacokinetic, toxicologic, and pharmacogenetic studies carried out to date in irinotecan and SN-38 disposition.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
45
|
Jann MW, Hon YY, Shamsi SA, Zheng J, Awad EA, Spratlin V. Lack of Pharmacokinetic Interaction Between Lamotrigine and Olanzapine in Healthy Volunteers. Pharmacotherapy 2006; 26:627-33. [PMID: 16637792 DOI: 10.1592/phco.26.5.627] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To investigate the potential drug-drug interaction between lamotrigine, an antiepileptic agent used to treat bipolar disorders, and olanzapine, an atypical antipsychotic drug also used to treat bipolar disorders, both of which are metabolized by the uridine diphosphate glucuronosyltransferase system. DESIGN Prospective cohort study. SETTING University center for clinical research. SUBJECTS Fourteen nonsmoking, healthy volunteers. INTERVENTION Subjects received lamotrigine 25 mg/day for 5 days, then 50 mg/day for 10 days to achieve steady-state concentrations. On day 15, blood samples were obtained before and 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 hours after the dose. Lamotrigine 50 mg/day was then given for an additional 3 days. On the next day, lamotrigine 50 mg and olanzapine 5 mg were coadministered. Blood samples were obtained at the same times as before and at 48, 72, and 96 hours after dosing. MEASUREMENTS AND MAIN RESULTS Blood samples were assayed for lamotrigine and olanzapine concentrations by means of high-performance liquid chromatography. Olanzapine did not significantly affect lamotrigine disposition, as we observed no differences in the area under the concentration-time curve from 0-24 hours or in lamotrigine plasma concentrations at baseline or at 24 hours. For lamotrigine, the mean time to reach maximum concentration was significantly prolonged during olanzapine coadministration (mean +/- SD 1.9 +/- 1.3 vs 4.0 +/- 3.0 hrs, p = 0.025), possibly because of the anticholinergic properties associated with olanzapine. Mild sedation was the only adverse effect that occurred during lamotrigine and olanzapine coadministration. CONCLUSION Lamotrigine and olanzapine can safely be combined in healthy volunteers at the low doses studied, without a clinically significant interaction. When prescribing high doses of olanzapine and lamotrigine for bipolar disorder, patients must be carefully monitored.
Collapse
Affiliation(s)
- Michael W Jann
- Department of Clinical and Administrative Sciences, Mercer University, Southern School of Pharmacy, Atlanta, Georgia 30341, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mutlib AE, Goosen TC, Bauman JN, Williams JA, Kulkarni S, Kostrubsky S. Kinetics of Acetaminophen Glucuronidation by UDP-Glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential Implications in Acetaminophen−Induced Hepatotoxicity. Chem Res Toxicol 2006; 19:701-9. [PMID: 16696573 DOI: 10.1021/tx050317i] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The importance of uridine 5'-diphosphate-glucuronosyltranferases (UGT) 2B15 and other UGT enzymes (1A1, 1A6, and 1A9) in glucuronidating acetaminophen (APAP) is demonstrated. The kinetics and contributions of various UGTs in glucuronidating APAP are presented using clinically and toxicologically relevant concentrations of the substrate. UGT 1A9 and UGT 2B15 contribute significantly toward glucuronidating APAP when incubations were conducted in either phosphate or Tris-HCl buffers at 0.1 and 1.0 mM substrate concentrations. At 10 mM APAP, UGT 1A9 is a significant enzyme responsible for metabolizing APAP in either one of the buffers. UGT 1A1 is the next most important enzyme in glucuronidating APAP at this high substrate concentration. The contribution of UGT 1A6 at 10 mM APAP concentration became obscured by similar relative activities exhibited by UGTs 1A7, 1A8, and 2B7. These observations may reflect the differences in kinetic parameters for APAP glucuronidation by the individual UGTs. UGT 1A1 demonstrated Hill kinetics while UGT 1A9 displayed Michaelis-Menten kinetics. Substrate inhibition kinetics is observed with UGT 1A6, UGT 2B15, and human liver microsomes. The substrate inhibition is confirmed by employing stable isotope-labeled APAP as the substrate, while APAP glucuronide is used to test for inhibition of d4-APAP glucuronide. The in vitro hepatotoxicity caused by APAP in combination with phenobarbital or phenytoin is demonstrated in this study. The inhibition of APAP glucuronidation by phenobarbital leads to an increase in APAP-mediated toxicity in human hepatocytes. The toxicity to hepatocytes was further increased by coadministering APAP with phenytoin and phenobarbital. This synergistic increase in toxicity is postulated to be due to inhibition of UGTs (1A6, 1A9, and 2B15) responsible for detoxifying APAP through the glucuronidation pathway.
Collapse
Affiliation(s)
- Abdul E Mutlib
- Department of Pharmacokinetics, Pfizer Inc., 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The uridine diphosphoglucuronosyltransferases (UGTs) belong to a superfamily of enzymes that catalyse the glucuronidation of numerous endobiotics and xenobiotics. Several human hepatic and extrahepatic UGT isozymes have been characterized with respect to their substrate specificity, tissue expression and gene structure. Genetic polymorphisms have been identified for almost all the UGT family members. A wide variety of anticancer drugs, dietary chemopreventives and carcinogens are known to be conjugated by members of both UGT1A and UGT2B subfamilies. This review examines in detail each UGT isozyme known to be associated with cancer and carcinogenesis. The cancer-related substrates for several UGTs are summarized, and the functionally relevant genetic polymorphisms of UGTs are reviewed. A number of genotype-phenotype association studies have been carried out to characterize the role of UGT pharmacogenetics in several types of cancer, and these examples are discussed here. In summary, this review focuses on the role of the human UGT genetic polymorphisms in carcinogenesis, chemoprevention and cancer risk.
Collapse
Affiliation(s)
- S Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
48
|
Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 2006; 6:130-40. [PMID: 16491072 DOI: 10.1038/nrc1801] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) show indisputable promise as chemopreventive agents. Possible targets include cancers of the colon, stomach, breast and lung. However, recent studies raise concern about potential cardiovascular toxicity associated with the use of NSAIDs that specifically target the enzyme cyclooxygenase 2. These findings, and others that show that inherited genetic characteristics might determine preventive success, argue for new strategies that are tailored to individual medical history and genetic make-up.
Collapse
Affiliation(s)
- Cornelia M Ulrich
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
49
|
Jaquenoud Sirot E, van der Velden JW, Rentsch K, Eap CB, Baumann P. Therapeutic Drug Monitoring and Pharmacogenetic Tests as Tools in Pharmacovigilance. Drug Saf 2006; 29:735-68. [PMID: 16944962 DOI: 10.2165/00002018-200629090-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Therapeutic drug monitoring (TDM) and pharmacogenetic tests play a major role in minimising adverse drug reactions and enhancing optimal therapeutic response. The response to medication varies greatly between individuals, according to genetic constitution, age, sex, co-morbidities, environmental factors including diet and lifestyle (e.g. smoking and alcohol intake), and drug-related factors such as pharmacokinetic or pharmacodynamic drug-drug interactions. Most adverse drug reactions are type A reactions, i.e. plasma-level dependent, and represent one of the major causes of hospitalisation, in some cases leading to death. However, they may be avoidable to some extent if pharmacokinetic and pharmacogenetic factors are taken into consideration. This article provides a review of the literature and describes how to apply and interpret TDM and certain pharmacogenetic tests and is illustrated by case reports. An algorithm on the use of TDM and pharmacogenetic tests to help characterise adverse drug reactions is also presented. Although, in the scientific community, differences in drug response are increasingly recognised, there is an urgent need to translate this knowledge into clinical recommendations. Databases on drug-drug interactions and the impact of pharmacogenetic polymorphisms and adverse drug reaction information systems will be helpful to guide clinicians in individualised treatment choices.
Collapse
|
50
|
Shipkova M, Wieland E. Glucuronidation in therapeutic drug monitoring. Clin Chim Acta 2005; 358:2-23. [PMID: 15893300 DOI: 10.1016/j.cccn.2005.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/21/2005] [Accepted: 02/22/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glucuronidation is a major drug-metabolizing reaction in humans. A pharmacological effect of glucuronide metabolites is frequently neglected and the value of therapeutic drug monitoring has been questioned. However, this may not always be true. METHODS In this review the impact of glucuronidation on therapeutic drug monitoring has been evaluated on the basis of a literature search and experience from the own laboratory. RESULTS The potential role of monitoring glucuronide metabolite concentrations to optimize therapeutic outcome is addressed on the basis of selected examples of drugs which are metabolized to biologically active/reactive glucuronides. Furthermore indirect effects of glucuronide metabolites on parent drug pharmacokinetics are presented. In addition, factors that may modulate the disposition of these metabolites (e.g. genetic polymorphisms, disease processes, age, and drug-drug interactions) are briefly mentioned and their relevance for the clinical situation is critically discussed. CONCLUSION Glucuronide metabolites can have indirect as well as direct pharmacological or toxicological effects. Although convincing evidence to support the introduction of glucuronide monitoring into clinical practice is currently missing, measurement of glucuronide concentrations may be advantageous in specific situations. If the glucuronide metabolite has an indirect effect on the pharmacokinetics of the parent compound, monitoring of the parent drug may be considered. Furthermore pharmacogenetic approaches considering uridine diphosphate (UDP) glucuronosyltransferases polymorphisms may become useful in the future to optimize therapy with drugs subject to glucuronidation.
Collapse
Affiliation(s)
- Maria Shipkova
- Department of Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Stuttgart, Germany.
| | | |
Collapse
|