1
|
Nagaraj K. Surfactant-based drug delivery systems for cancer therapy: Advances, challenges, and future perspectives. Int J Pharm 2025:125655. [PMID: 40320019 DOI: 10.1016/j.ijpharm.2025.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cancer is one of the most formidable global health challenges, needing ongoing progress in therapeutic approaches. Conventional cancer treatments, such as chemotherapy, frequently suffer from low solubility, systemic toxicity, and a lack of tailored drug delivery, resulting in unwanted side effects and limited efficacy. Surfactant-based drug delivery systems have emerged as a viable method for increasing drug solubility, stability, and tailored transport to tumor locations. Surfactants, due to their amphiphilic character, play an important role in the development of various drug delivery systems, such as micelles, liposomes, nanoemulsions, and lipid-based nanoparticles, which improve drug bioavailability and therapeutic index. This article looks at the fundamental role of surfactants in drug administration, including their classification (ionic, nonionic, amphoteric, and zwitterionic) and self-assembly behavior in the formation of micellar, vesicular, and emulsified nanocarriers. Various surfactant-based drug delivery platforms in oncology are explored, including polymeric and surfactant-stabilized micelles, liposomes (e.g., Doxil), nanoemulsions, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs). Furthermore, the use of surfactant-metal complexes in cancer therapy is emphasized because of their potential to improve therapeutic activity and selectivity. The review also looks at surfactant-enhanced drug targeting strategies, such as passive targeting using the enhanced permeability and retention (EPR) effect, active targeting with ligand-functionalized surfactant-based carriers, and stimuli-responsive systems designed for controlled drug release in the tumor microenvironment. Surfactant-based drug delivery advancements are explored, with an emphasis on current advances such as biodegradable and bio-inspired surfactants, combination therapies using surfactant-stabilized carriers, and AI-driven drug formulation techniques. Despite its potential, surfactant-based drug delivery systems confront several hurdles, including biocompatibility concerns, synthetic surfactant toxicity, stability issues, and scaling restrictions in pharmaceutical manufacture. Furthermore, regulatory barriers in clinical translation remain severe. Addressing these problems with innovative surfactant formulations, green chemical techniques, and sophisticated nanotechnological alterations will be critical to optimizing these systems for clinical use. This review provides a comprehensive analysis of the progress, challenges, and future perspectives of surfactant-based drug delivery systems in cancer therapy, highlighting their potential to revolutionize oncology treatments by improving drug efficacy, reducing systemic toxicity, and enabling precision medicine.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- Center for Global Health Research (CGHR), Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai 602105 Tamil Nadu, India.
| |
Collapse
|
2
|
Formica ML, Pernochi Scerbo JM, Awde Alfonso HG, Palmieri PT, Ribotta J, Palma SD. Nanotechnological approaches to improve corticosteroids ocular therapy. Methods 2025; 234:152-177. [PMID: 39675541 DOI: 10.1016/j.ymeth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The administration of corticosteroids is the first-line treatment of the clinical conditions with ocular inflammation. Nonetheless, ocular physiological mechanisms, anatomical barriers and corticosteroid properties prevent it from reaching the target site. Thus, frequent topical administered doses or ocular injections are required, leading to a higher risk of adverse events and poor patient compliance. Designing novel drug delivery systems based on nanotechnological tools is a useful approach to overcome disadvantages associated with the ocular delivery of corticosteroids. Nanoparticle-based drug delivery systems represent an alternative to the current dosage forms for the ocular administration of corticosteroids, since due to their particle size and the properties of their materials, they can increase their solubility, improve ocular permeability, control their release and increase bioavailability after their ocular administration. In this way, lipid and polymer-based nanoparticles have been the main strategies developed, giving rise to novel patent applications to protect these innovative drug delivery systems as a product, its preparation or administration method. Additionally, it should be noted that at least 10 clinical trials are being carried out to evaluate the ocular application of different pharmaceutical formulations based on corticosteroid-loaded nanoparticles. Through a comprehensive and extensive analysis, this review highlights the impact of nanotechnology applications in ocular inflammation therapy with corticosteroids.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Juan Matías Pernochi Scerbo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Pablo Tomás Palmieri
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Julieta Ribotta
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
3
|
Imantay A, Mashurov N, Zhaisanbayeva BA, Mun EA. Doxorubicin-Conjugated Nanoparticles for Potential Use as Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:133. [PMID: 39852748 PMCID: PMC11768029 DOI: 10.3390/nano15020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects. This makes them a viable vector for novel drug delivery systems. Currently, DOX is commonly conjugated to NPs by non-covalent conjugation-physical entrapping of the drug using electrostatic interactions, van der Waals forces, or hydrogen bonding. The reported downside of these methods is that they provide a low drug loading capacity and a higher drug leakage possibility. In comparison to this, the covalent conjugation of DOX via amide (typically formed by coupling carboxyl groups on DOX with amine groups on the nanoparticle or a linker, often facilitated by carbodiimide reagents), hydrazone (which results from the reaction between hydrazines and carbonyl groups, offering pH-sensitive cleavage for controlled release), or disulfide bonds (formed through the oxidation of thiol groups and cleavable by intracellular reducing agents such as glutathione) is more promising as it offers greater bonding strength. This review covers the covalent conjugation of DOX to three different types of NPs-metallic, silica/organosilica, and polymeric-including their corresponding release rates and mechanisms.
Collapse
Affiliation(s)
| | | | | | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (N.M.); (B.A.Z.)
| |
Collapse
|
4
|
Makarova AL, Kwiatkowski AL, Kuklin AI, Chesnokov YM, Philippova OE, Shibaev AV. Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers (Basel) 2024; 16:1430. [PMID: 38794623 PMCID: PMC11125886 DOI: 10.3390/polym16101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Dual networks formed by entangled polymer chains and wormlike surfactant micelles have attracted increasing interest in their application as thickeners in various fields since they combine the advantages of both polymer- and surfactant-based fluids. In particular, such polymer-surfactant mixtures are of great interest as novel hydraulic fracturing fluids with enhanced properties. In this study, we demonstrated the effect of the chemical composition of an uncharged polymer poly(vinyl alcohol) (PVA) and pH on the rheological properties and structure of its mixtures with a cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride already exploited in fracturing operations. Using a combination of several complementary techniques (rheometry, cryo-transmission electron microscopy, small-angle neutron scattering, and nuclear magnetic resonance spectroscopy), we showed that a small number of residual acetate groups (2-12.7 mol%) in PVA could significantly reduce the viscosity of the mixed system. This result was attributed to the incorporation of acetate groups in the corona of the micellar aggregates, decreasing the molecular packing parameter and thereby inducing the shortening of worm-like micelles. When these groups are removed by hydrolysis at a pH higher than 7, viscosity increases by five orders of magnitude due to the growth of worm-like micelles in length. The findings of this study create pathways for the development of dual semi-interpenetrating polymer-micellar networks, which are highly desired by the petroleum industry.
Collapse
Affiliation(s)
- Anna L. Makarova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | - Alexander L. Kwiatkowski
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | | | - Yuri M. Chesnokov
- National Research Center, Kurchatov Institute, 123182 Moscow, Russia;
| | - Olga E. Philippova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | - Andrey V. Shibaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
- Chemistry Department, Karaganda E.A. Buketov University, University Street 28, Karaganda 100028, Kazakhstan
| |
Collapse
|
5
|
Kaur G, Khanna B, Yusuf M, Sharma A, Khajuria A, Alajangi HK, Jaiswal PK, Sachdeva M, Barnwal RP, Singh G. A Path of Novelty from Nanoparticles to Nanobots: Theragnostic Approach for Targeting Cancer Therapy. Crit Rev Ther Drug Carrier Syst 2024; 41:1-38. [PMID: 38305340 DOI: 10.1615/critrevtherdrugcarriersyst.2023046674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Pharmaceutical development of cancer therapeutics is a dynamic area of research. Even after decades of intensive work, cancer continues to be a dreadful disease with an ever-increasing global incidence. The progress of nanotechnology in cancer research has overcome inherent limitations in conventional cancer chemotherapy and fulfilled the need for target-specific drug carriers. Nanotechnology uses the altered patho-physiological microenvironment of malignant cells and offers various advantages like improved solubility, reduced toxicity, prolonged drug circulation with controlled release, circumventing multidrug resistance, and enhanced biodistribution. Early cancer detection has a crucial role in selecting the best drug regime, thus, diagnosis and therapeutics go hand in hand. Furthermore, nanobots are an amazing possibility and promising innovation with numerous significant applications, particularly in fighting cancer and cleaning out blood vessels. Nanobots are tiny robots, ranging in size from 1 to 100 nm. Moreover, the nanobots would work similarly to white blood cells, watching the bloodstream and searching for indications of distress. This review articulates the evolution of various organic and inorganic nanoparticles and nanobots used as therapeutics, along with their pros and cons. It also highlights the shift in diagnostics from conventional methods to more advanced techniques. This rapidly growing domain is providing more space for engineering desired nanoparticles that can show miraculous results in therapeutic and diagnostic trials.
Collapse
Affiliation(s)
- Gursharanpreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhawna Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mohammed Yusuf
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep K Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843, USA
| | - Mandip Sachdeva
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, FL, USA
| | | | | |
Collapse
|
6
|
Sohail M, Rahman HMAU, Asghar MN. Drug-ionic surfactant interactions: density, sound speed, spectroscopic, and electrochemical studies. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:735-747. [PMID: 37943328 DOI: 10.1007/s00249-023-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
The failure of antibiotics against infectious diseases has become a global health issue due to the incessant use of antibiotics in the community and a lack of entry of new antibacterial drugs onto the market. The limited knowledge of biophysical interactions of existing antibiotics with bio-membranes is one of the major hurdles to design and develop more effective antibiotics. Surfactant systems are the simplest biological membrane models that not only mimic the cell membrane functions but are also used to investigate the biophysical interactions between pharmaceutical drugs and bio-membranes at the molecular level. In this work, volumetric and acoustic studies were used to investigate the molecular interactions of moxifloxacin (MXF), a potential antibacterial drug, with ionic surfactants (dodecyl-tri-methyl-ammonium bromide (DTAB), a cationic surfactant and sodium dodecyl sulfate (SDS), an anionic surfactant) under physiological conditions (phosphate buffer, pH 7.4) at T = 298.15-313.15 K at an interval of 5 K. Various volumetric and acoustic parameters were computed from the density and sound speed data and interpreted in terms of MXF-ionic surfactant interaction using electrostriction effect and co-sphere overlap model. Absorption spectroscopy and cyclic voltammetry were further used to determine the binding, partitioning, and related free energies of MXF with ionic micelles.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | | | - Muhammad Nadeem Asghar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan.
| |
Collapse
|
7
|
Sripetthong S, Eze FN, Sajomsang W, Ovatlarnporn C. Development of pH-Responsive N-benzyl- N- O-succinyl Chitosan Micelles Loaded with a Curcumin Analog (Cyqualone) for Treatment of Colon Cancer. Molecules 2023; 28:2693. [PMID: 36985665 PMCID: PMC10057334 DOI: 10.3390/molecules28062693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023] Open
Abstract
This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less than 100 nm in size. The entrapment efficiency of CL in the micelles ranged from 13 to 39%. Drug release from pristine CL was less than 20% in PBS at pH 7.4, whereas the release from CL-NBSCh micelles was significantly higher. The release study of CL-NBSCh revealed that around 40% of CL content was released in simulated gastric fluid at pH 1.2; 79 and 85% in simulated intestinal fluids at pH 5.5 and 6.8, respectively; and 75% in simulated colonic fluid at pH 7.4. CL-NBSCh showed considerably high selective cytotoxicity towards mucosal epithelial human colon cancer (HT-29) cells and lower levels of toxicity towards mouse connective tissue fibroblasts (L929). CL-NBSCh was also more cytotoxic than the free CL. Furthermore, compared to free CL, CL-NBSCh micelles were found to be more efficient at arresting cell growth at the G2/M phase, and induced apoptosis earlier in HT-29 cells. Collectively, these results indicate the high prospective potential of CL-loaded NBSCh micelles as an oral therapeutic intervention for colon cancer.
Collapse
Affiliation(s)
- Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Fredrick Nwude Eze
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Warayuth Sajomsang
- Nanodelivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Phathum Thani 12120, Thailand;
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
8
|
Verma P, Gupta GD, Markandeywar TS, Singh D. A Critical Sojourn of Polymeric Micelles: Technological Concepts, Recent Advances, and Future Prospects. Assay Drug Dev Technol 2023; 21:31-47. [PMID: 36856457 DOI: 10.1089/adt.2022.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Poorly soluble drug molecules/phytoconstituents are still a growing concern for biopharmaceutical delivery in the body. Polymeric micelles are the amphiphilic block copolymers and have been widely investigated as targeted nanocarriers for the treatment of various ailments. The versatility of nanocarriers is the self-assembling properties in the aqueous medium and forms a stable isotropic system in vivo. The hydrophobic core-hydrophilic shell configuration of the polymers used to the mixed micelles makes easy encapsulation of hydrophobic and hydrophilic drugs into the core. Polymeric micelles can also be combined with targeting ligands that increase their uptake by specific cells, decreasing off-target effects, and provide enhanced therapeutic effect. In the present review, we primarily focused on a critical appraisal of Polymeric micelles along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials. In addition, the biological applications of this isotropic nanocarrier have been duly presented in each route of administration along with suitable case studies.
Collapse
Affiliation(s)
- Princi Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
9
|
de Morais FAP, De Oliveira ACV, Balbinot RB, Lazarin-Bidóia D, Ueda-Nakamura T, de Oliveira Silva S, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Caetano W, Nakamura CV. Multifunctional Nanoparticles as High-Efficient Targeted Hypericin System for Theranostic Melanoma. Polymers (Basel) 2022; 15:polym15010179. [PMID: 36616529 PMCID: PMC9824163 DOI: 10.3390/polym15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Biotin, spermine, and folic acid were covalently linked to the F127 copolymer to obtain a new drug delivery system designed for HY-loaded PDT treatment against B16F10 cells. Chemical structures and binders quantification were performed by spectroscopy and spectrophotometric techniques (1NMR, HABA/Avidin reagent, fluorescamine assay). Critical micelle concentration, critical micelle temperature, size, polydispersity, and zeta potential indicate the hydrophobicity of the binders can influence the physicochemical parameters. Spermine-modified micelles showed fewer changes in their physical and chemical parameters than the F127 micelles without modification. Furthermore, zeta potential measurements suggest an increase in the physical stability of these carrier systems. The phototherapeutic potential was demonstrated using hypericin-loaded formulation against B16F10 cells, which shows that the combination of the binders on F127 copolymer micelles enhances the photosensitizer uptake and potentializes the photodynamic activity.
Collapse
Affiliation(s)
- Flávia Amanda Pedroso de Morais
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| | | | - Rodolfo Bento Balbinot
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Tânia Ueda-Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Sueli de Oliveira Silva
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Celso Vataru Nakamura
- Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, State University of Maringá, Maringá 87020-900, PR, Brazil
- Correspondence: (F.A.P.d.M.); (C.V.N.); Tel.: +55-(44)-3011-3680 (F.A.P.d.M. & C.V.N.)
| |
Collapse
|
10
|
Kwiatkowski AL, Molchanov VS, Kuklin AI, Chesnokov YM, Philippova OE. Salt-Induced Transformations of Hybrid Micelles Formed by Anionic Surfactant and Poly(4-vinylpyridine). Polymers (Basel) 2022; 14:polym14235086. [PMID: 36501481 PMCID: PMC9741239 DOI: 10.3390/polym14235086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Salt-induced structural transformation of charged hybrid surfactant/polymer micelles formed by potassium oleate and poly(4-vinylpyridine) was investigated by cryo-TEM, SANS with contrast variation, DLS, and 2D NOESY. Cryo-TEM data show, that at small salt concentration beads-on-string aggregates on polymer chains are formed. KCl induces the transformation of those aggregates into rods, which is due to the screening of the electrostatic repulsion between similarly charged beads by added salt. In a certain range of salt concentration, the beads-on-string aggregates coexist with the rodlike ones. In the presence of polymer, the sphere-to-rod transition occurs at higher salt concentration than in pure surfactant system indicating that hydrophobic polymer favors the spherical packing of potassium oleate molecules. The size of micelles was estimated by DLS. The rods that are formed in the hybrid system are much shorter than those in polymer-free surfactant solution suggesting the stabilization of the semi-spherical endcaps of the rods by embedded polymer. 2D NOESY data evidence that in the spherical aggregates the polymer penetrates deep into the core, whereas in tighter packed rodlike aggregates it is located mainly at core/corona interface. According to SANS with contrast variation, inside the rodlike aggregates the polymer adopts more compact coil conformation than in the beads-on-string aggregates. Such adaptive self-assembled polymer-surfactant nanoparticles with water-insoluble polymer are very promising for various applications including drag reduction at transportation of fluids.
Collapse
Affiliation(s)
- Alexander L. Kwiatkowski
- Physics Department, Moscow State University, 119991 Moscow, Russia
- Correspondence: (A.L.K.); (V.S.M.)
| | - Vyacheslav S. Molchanov
- Physics Department, Moscow State University, 119991 Moscow, Russia
- Correspondence: (A.L.K.); (V.S.M.)
| | | | - Yuri M. Chesnokov
- National Research Center, Kurchatov Institute, 123182 Moscow, Russia
| | | |
Collapse
|
11
|
Noh K, Uthaman S, Lee CS, Kim Y, Pillarisetti S, Hwang HS, Park IK, Huh KM. Tumor intracellular microenvironment-responsive nanoparticles for magnetically targeted chemotherapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Buckinx A, Rubens M, Cameron NR, Bakkali-Hassani C, Sokolova A, Junkers T. The effects of molecular weight dispersity on block copolymer self-assembly. Polym Chem 2022. [DOI: 10.1039/d2py00318j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of dispersity in the molecular weight distributions in the core forming block for block copolymer (BCP) self-assembly is analyzed via an automated flow synthesis approach. Polystyrenes with increasing...
Collapse
|
13
|
Wang A, Leible M, Lin J, Weiss J, Zhong Q. Caffeic Acid Phenethyl Ester Loaded in Skim Milk Microcapsules: Physicochemical Properties and Enhanced In Vitro Bioaccessibility and Bioactivity against Colon Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14978-14987. [PMID: 33140648 DOI: 10.1021/acs.jafc.0c05143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) has various biological activities but low water solubility and poor bioavailability. In this study, CAPE was encapsulated in skim milk powder (SMP) by spray drying warm aqueous ethanol solutions with different mass ratios of SMP and CAPE. The loading capacity and encapsulation efficiency were up to 10.1 and 41.7%, respectively. Differential scanning calorimetry and X-ray diffraction results confirmed the loss of crystallinity of CAPE after encapsulation. Fourier-transform infrared and fluorescence spectroscopy results indicated the hydrophobic binding between CAPE and caseins. Scanning electron microscopy and static light scattering results showed spherical capsules with an average diameter of around 26 μm. The CAPE loaded in SMP microcapsules showed significantly improved in vitro bioaccessibility and antiproliferation activity against human colon cancer cells compared to free CAPE. The simple, scalable, and low-cost approach in the present study may be significant for industrial encapsulation of CAPE and other lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Malte Leible
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Food Science and Biotechnology, University of Hohenheim, Stuttgart 70174, Germany
| | - Jun Lin
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jochen Weiss
- Department of Food Science and Biotechnology, University of Hohenheim, Stuttgart 70174, Germany
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
Makhathini SS, Omolo CA, Gannimani R, Mocktar C, Govender T. pH-Responsive Micelles From an Oleic Acid Tail and Propionic Acid Heads Dendritic Amphiphile for the Delivery of Antibiotics. J Pharm Sci 2020; 109:2594-2606. [PMID: 32473209 DOI: 10.1016/j.xphs.2020.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to synthesize a novel biocompatible pH-responsive oleic acid-based dendritic lipid amphiphile (OLA-SPDA) which self-assembled into stable micelles (OLA-SPDA -micelles) with a relatively low critical micelle concentration (CMC) of 5.6 × 10-6 M. The formulated micelles had particle size, polydispersity index (PDI) and zeta potential (ZP) of 84.16 ± 0.184 nm, 0.199 ± 0.011 and -42.6 ± 1.98 mV, respectively, at pH 7.4. The vancomycin (VCM) encapsulation efficiency was 78.80 ± 3.26%. The micelles demonstrated pH-responsiveness with an increase in particle size to 141.1 ± 0.0707 nm and a much faster release profile at pH 6.0, as compared to pH 7.4. The minimum inhibitory concentration (MIC) of VCM-OLA-SPDA-micelle against methicillin-resistant staphylococcus aureus (MRSA) was 8-fold lower compared to bare VCM, and the formulation had a 4-fold lower MIC at pH 6.0 when compared to the formulation's MIC at pH 7.4. MRSA viability assay showed the micelles had a percentage killing of 93.39% when compared bare-VCM (58.21%) at the same MIC (0.98 μg/mL). In vivo mice (BALB/c) skin infection models showed an 8-fold reduction in MRSA burden after treatment with VCM-OLA-SPDA-micelles when compared with bare VCM. The above results suggest that pH-responsive VCM-OLA-SPDA-micelles has the potential to be an effective carrier to enhance therapeutic outcomes against infections characterised by low pH.
Collapse
Affiliation(s)
- Sifiso S Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya.
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
15
|
Molecular Interactions and Mechanisms in the 1H NMR Relaxation of Residual CHCl3 in Deuterochloroform Solution of a Two-Chain Ionic Surfactant. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0789-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
|
17
|
Wei W, Zhang X, Chen X, Zhou M, Xu R, Zhang X. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. NANOSCALE 2016; 8:8118-8125. [PMID: 27025546 DOI: 10.1039/c5nr09167e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.
Collapse
Affiliation(s)
- Weijia Wei
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiujuan Zhang
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xianfeng Chen
- School of Chemistry and Forensic Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Mengjiao Zhou
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ruirui Xu
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaohong Zhang
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
18
|
Barros SM, Whitaker SK, Sukthankar P, Avila LA, Gudlur S, Warner M, Beltrão EIC, Tomich JM. A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Arch Biochem Biophys 2016; 596:22-42. [PMID: 26926258 PMCID: PMC4841695 DOI: 10.1016/j.abb.2016.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
Various strategies are being developed to improve delivery and increase the biological half-lives of pharmacological agents. To address these issues, drug delivery technologies rely on different nano-sized molecules including: lipid vesicles, viral capsids and nano-particles. Peptides are a constituent of many of these nanomaterials and overcome some limitations associated with lipid-based or viral delivery systems, such as tune-ability, stability, specificity, inflammation, and antigenicity. This review focuses on the evolution of bio-based drug delivery nanomaterials that self-assemble forming vesicles/capsules. While lipid vesicles are preeminent among the structures; peptide-based constructs are emerging, in particular peptide bilayer delimited capsules. The novel biomaterial-Branched Amphiphilic Peptide Capsules (BAPCs) display many desirable properties. These nano-spheres are comprised of two branched peptides-bis(FLIVI)-K-KKKK and bis(FLIVIGSII)-K-KKKK, designed to mimic diacyl-phosphoglycerides in molecular architecture. They undergo supramolecular self-assembly and form solvent-filled, bilayer delineated capsules with sizes ranging from 20 nm to 2 μm depending on annealing temperatures and time. They are able to encapsulate different fluorescent dyes, therapeutic drugs, radionuclides and even small proteins. While sharing many properties with lipid vesicles, the BAPCs are much more robust. They have been analyzed for stability, size, cellular uptake and localization, intra-cellular retention and, bio-distribution both in culture and in vivo.
Collapse
Affiliation(s)
- Sheila M Barros
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA; Department of Biochemistry, Federal University of Pernambuco-UFPE, Recife, Pernambuco, 50670-901, Brazil
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Pinakin Sukthankar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - L Adriana Avila
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sushanth Gudlur
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Matt Warner
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Eduardo I C Beltrão
- Department of Biochemistry, Federal University of Pernambuco-UFPE, Recife, Pernambuco, 50670-901, Brazil
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
19
|
Garello F, Stefania R, Aime S, Terreno E, Delli Castelli D. Successful Entrapping of Liposomes in Glucan Particles: An Innovative Micron-Sized Carrier to Deliver Water-Soluble Molecules. Mol Pharm 2014; 11:3760-5. [DOI: 10.1021/mp500374f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francesca Garello
- Department of Molecular
Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza, 52, 10126 Torino, Italy
| | - Rachele Stefania
- Department of Molecular
Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza, 52, 10126 Torino, Italy
| | - Silvio Aime
- Department of Molecular
Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza, 52, 10126 Torino, Italy
- Center for Preclinical
Imaging, University of Torino, Via Ribes, 5, 10010 Colleretto Giacosa (TO), Italy
| | - Enzo Terreno
- Department of Molecular
Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza, 52, 10126 Torino, Italy
- Center for Preclinical
Imaging, University of Torino, Via Ribes, 5, 10010 Colleretto Giacosa (TO), Italy
| | - Daniela Delli Castelli
- Department of Molecular
Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza, 52, 10126 Torino, Italy
| |
Collapse
|
20
|
pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012; 64:979-92. [PMID: 21996056 DOI: 10.1016/j.addr.2011.09.006] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 01/06/2023]
Abstract
Titratable polyanions, and more particularly polymers bearing carboxylate groups, have been used in recent years to produce a variety of pH-sensitive colloids. These polymers undergo a coil-to-globule conformational change upon a variation in pH of the surrounding environment. This conformational change can be exploited to trigger the release of a drug from a drug delivery system in a pH-dependent fashion. This review describes the current status of pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates and their performance as nano-scale drug delivery systems, with emphasis on our recent contribution to this field.
Collapse
|
21
|
Yoo J, D’Mello SR, Graf T, Salem AK, Bowden NB. Synthesis of the first poly(diaminosulfide)s and an investigation of their applications as drug delivery vehicles. Macromolecules 2012; 45:688-697. [PMID: 22347726 PMCID: PMC3280910 DOI: 10.1021/ma2023167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper reports the first examples of poly(diaminosulfide)s that were synthesized by the reaction of a sulfur transfer reagent and several secondary diamines. The diaminosulfide group has the general structure of R(2)N-S-NR(2) and, although it has been used in the synthesis of small molecules, it has never been utilized in the synthesis of macromolecules until this report. A series of poly(diaminosulfide)s were synthesized at elevated temperatures, and the molecular weights of the polymers were as high as 12,400 g mol(-1) with conversions for the polymerization reaction up to 99%. The rate constants for the transamination reactions that lead to the polymers were measured in several solvents to provide an understanding the reaction conditions necessary to polymerize the monomers. The degradation of diaminosulfides were studied in D(2)O, C(6)D(6), CD(3)OD, CDCl(3), and DMSO-d(6)/D(2)O to demonstrate that they were very stable in organic solvents but degraded within hours under aqueous conditions. These results clearly demonstrated that diaminosulfides are very stable in organic solvents under ambient conditions. Poly(diaminosulfide)s have sufficient stabilities to be useful for many applications. The ability of these polymers to function as drug delivery vehicles were studied by the fabrication of nanoparticles of a water-insoluble poly(diaminosulfide) with a dye. The microparticles were readily absorbed into human embryonic 293 cells and possessed no measureable toxicity towards these same cells.
Collapse
Affiliation(s)
- Jun Yoo
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Tyler Graf
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Ned B. Bowden
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
22
|
Santos H, Bimbo L, Das Neves J, Sarmento B, INEB. Nanoparticulate targeted drug delivery using peptides and proteins. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.2.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Zhang L, He Y, Ma G, Song C, Sun H. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:925-34. [PMID: 22101107 DOI: 10.1016/j.nano.2011.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 07/27/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to develop polymeric nanoscale drug-delivery system (nano-DDS) for paclitaxel (PTX) from poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL, PCEC) copolymers, intended to be intravenously administered, able to improve the therapeutic efficacy of the drug and devoid of the adverse effects of Cremophor EL. Both of the PTX-loaded polymeric micelles and polymersomes were successfully prepared from PCEC copolymers. The obtained PTX-loaded micelles exhibited core-shell morphology with satisfactory size (93 nm), and were favorable for intravenous injection. In vitro cytotoxicity demonstrated that the cytotoxic effect of PTX-loaded micelles was lower than that of Taxol (Bristol-Myers Squibb, Princeton, New Jersey). Pharmacokinetic results indicated that the PTX-loaded micelles had longer systemic circulation time and slower plasma elimination rate than those of Taxol. Furthermore, PTX-loaded micelles showed greater tumor growth-inhibition effect in vivo on EMT6 breast tumor, in comparison with Taxol. Therefore, the prepared polymeric micelles might be potential nano-DDS for PTX delivery in cancer chemotherapy.
Collapse
Affiliation(s)
- Linhua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release 2011; 152:13-20. [PMID: 21352878 DOI: 10.1016/j.jconrel.2011.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/04/2011] [Accepted: 02/11/2011] [Indexed: 11/26/2022]
Abstract
Polymer micelles have been used widely for delivery of poorly water-soluble drugs. Such drug delivery, however, has been based primarily on hydrophobic interactions. For better drug loading and improved stability, hydrotropic polymer micelles were used. To develop a versatile polymer micelle for solubilizing various poorly soluble drugs, two different hydrotropic agents were examined. The solubilizing properties of two hydrotropic agents, N,N-diethylnicotinamide (DENA) and N,N-dimethylbenzamide (DMBA), in polymeric form were investigated for their ability to solubilize five drugs with low aqueous solubility covering a wide range of hydrophobicity and molecular structures. The hydrotropes were covalently linked to the hydrophobic block of a block copolymer that also had a hydrophilic poly(ethylene glycol) (PEG) block. The solubilizing capacity of the polymeric hydrotropes was compared with that of the non polymeric hydrotropes, as well as of two conventional (non hydrotropic) copolymer systems. The solubilizing capacity of polymeric hydrotropes reflects combined effects of the micellar solubilization by the hydrophobic micelle core and hydrotropic solubilization. Because of the highly localized configuration, hydrotropes in the polymeric form are more powerful solubilizers than in the monomeric (non-polymeric) solution. It is possible to produce 1~3 orders of magnitude increase in solubility with polymeric hydrotropes at the 1% (w/v) level. Of the two hydrotropic polymeric systems in this study, the DENA-based system is highly specific, whereas the DMBA-based system is a general solubilizer of hydrophobic drugs. An additional advantage of polymeric hydrotropes over the non-polymeric form is absence of high concentrations of free hydrotropes in the formulation. Solubilization vehicles based on polymeric hydrotropes are expected to provide a new and versatile means of preparing formulations for various poorly soluble drugs and drug candidates without using organic solvents. This advantage is accompanied with the inherent controlled release property of the hydrotropic polymer micelles, making them ideal for pharmaceutical formulations used in drug candidate screening and toxicology studies.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
25
|
Hevus I, Kohut A, Voronov A. Interfacial micellar phase transfer using amphiphilic invertible polymers. Polym Chem 2011. [DOI: 10.1039/c1py00399b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Davaran S, Asgari D, Rashidi MR, Salehi R, Omidi Y. Synthesis, characterization, and drug-release behavior of novel PEGylated bovine serum albumin as a carrier for anticancer agents. J Appl Polym Sci 2010. [DOI: 10.1002/app.32858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Kim KT, Meeuwissen SA, Nolte RJM, van Hest JCM. Smart nanocontainers and nanoreactors. NANOSCALE 2010; 2:844-858. [PMID: 20648280 DOI: 10.1039/b9nr00409b] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We highlight recent advances in the synthesis of nanocarriers and nanoreactors from synthetic and biological building blocks with emphasis on the stimulus-responsive regulation of their function.
Collapse
Affiliation(s)
- Kyoung Taek Kim
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525, AJ, The Netherlands
| | | | | | | |
Collapse
|
28
|
Goswami M, Sumpter BG, Mays J. Controllable stacked disk morphologies of charged diblock copolymers. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, Cheng RH, Wang L, Lam KS. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 2009; 30:6006-16. [PMID: 19660809 DOI: 10.1016/j.biomaterials.2009.07.015] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Paclitaxel (PTX) is one of the most effective chemotherapeutic drugs for the treatment of a variety of cancers. However, it is associated with serious side effects caused by PTX itself and the Cremophor EL emulsifier. In the present study, we report the development of a well-defined amphiphilic linear-dendritic copolymer (named as telodendrimer) composed of polyethylene glycol (PEG), cholic acid (CA, a facial amphiphilic molecule) and lysine, which can form drug-loaded core/shell micelles when mixed with hydrophobic drug, such as PTX, under aqueous condition. We have used PEG(5k)-CA(8), a representive telodendrimer, to prepare paclitaxel-loaded nanoparticles (PTX-PEG(5k)-CA(8) NPs) with high loading capacity (7.3 mg PTX/mL) and a size of 20-60 nm. This novel nanoformulation of PTX was found to exhibit similar in vitro cytotoxic activity against ovarian cancer cells as the free drug (Taxol) or paclitaxel/human serum albumin nanoaggregate (Abraxane). The maximum tolerated doses (MTDs) of PTX-PEG(5k)-CA(8) NPs after single dose and five consecutive daily doses in mice were approximately 75 and 45 mg PTX/kg, respectively, which were 2.5-fold higher than those of Taxol. In both subcutaneous and orthotopic intraperitoneal murine models of ovarian cancer, PTX-PEG(5k)-CA(8) NPs achieved superior toxicity profiles and anti-tumor effects compared to Taxol and Abraxane at equivalent PTX doses, which were attributed to their preferential tumor accumulation, and deep penetration into tumor tissue, as confirmed by near infrared fluorescence (NIRF) imaging.
Collapse
Affiliation(s)
- Kai Xiao
- Division of Hematology & Oncology, Department of Internal Medicine, UCD Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Husseini GA, Pitt WG. Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci 2009; 98:795-811. [PMID: 18506804 DOI: 10.1002/jps.21444] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of nanoparticles and ultrasound in medicine continues to evolve. Great strides have been made in the areas of producing micelles, nanoemulsions, and solid nanoparticles that can be used in drug delivery. An effective nanocarrier allows for the delivery of a high concentration of potent medications to targeted tissue while minimizing the side effect of the agent to the rest of the body. Polymeric micelles have been shown to encapsulate therapeutic agents and maintain their structural integrity at lower concentrations. Ultrasound is currently being used in drug delivery as well as diagnostics, and has many advantages that elevate its importance in drug delivery. The technique is noninvasive, thus no surgery is needed; the ultrasonic waves can be easily controlled by advanced electronic technology so that they can be focused on the desired target volume. Additionally, the physics of ultrasound are widely used and well understood; thus ultrasonic application can be tailored towards a particular drug delivery system. In this article, we review the recent progress made in research that utilizes both polymeric micelles and ultrasonic power in drug delivery.
Collapse
Affiliation(s)
- Ghaleb A Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates.
| | | |
Collapse
|
31
|
Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet 2009; 47:619-34. [PMID: 18783294 DOI: 10.2165/00003088-200847100-00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since their discovery in the early 1980s, polymeric micelles have been the subject of several studies as delivery systems that can potentially improve the therapeutic performance and modify the toxicity profile of encapsulated drugs by changing their pharmacokinetic characteristics. The efforts in this area have led in recent years to the advancement of several polymeric micellar formulations to clinical trials, some of which have shown promise in changing the biodistribution of the incorporated drug after intravenous administration as a means of tumour-targeted drug delivery. Recently, the possible benefit of polymeric micellar delivery in enhancing the absorption and bioavailability of incorporated drugs from alternative routes of drug administration has attracted interest. This article provides an overview of the effect of polymeric micellar delivery on absorption, distribution, metabolism and excretion of incorporated therapeutic agents. It also aims to assess the current information on the performance of polymeric micellar delivery systems in modifying the pharmacokinetics/pharmacodynamics of the incorporated drugs in clinical trials, and to re-examine the important structural factors required for successful design of polymeric micellar delivery systems capable of inducing favourable changes in the pharmacokinetics of the encapsulated drug.
Collapse
|
32
|
Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci U S A 2008; 105:12128-33. [PMID: 18713866 DOI: 10.1073/pnas.0805374105] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many cancer therapeutic agents elicit resistance that renders them ineffective and often produces cross-resistance to other drugs. One of the most common mechanisms of resistance involves P-glycoprotein (Pgp)-mediated drug efflux. To address this problem, new agents have been sought that are less prone to inducing resistance and less likely to serve as substrates for Pgp efflux. An alternative to this approach is to deliver established agents as molecular transporter conjugates into cells through a mechanism that circumvents Pgp-mediated efflux and allows for release of free drug only after cell entry. Here we report that the widely used chemotherapeutic agent Taxol, ineffective against Taxol-resistant human ovarian cancer cell lines, can be incorporated into a releasable octaarginine conjugate that is effective against the same Taxol-resistant cell lines. It is significant that the ability of the Taxol conjugates to overcome Taxol resistance is observed both in cell culture and in animal models of ovarian cancer. The generality and mechanistic basis for this effect were also explored with coelenterazine, a Pgp substrate. Although coelenterazine itself does not enter cells because of Pgp efflux, its octaarginine conjugate does so readily. This approach shows generality for overcoming the multidrug resistance elicited by small-molecule cancer chemotherapeutics and could improve the prognosis for many patients with cancer and fundamentally alter search strategies for novel therapeutic agents that are effective against resistant disease.
Collapse
|
33
|
Besić E. Physical mechanisms and methods employed in drug delivery to tumors. ACTA PHARMACEUTICA 2007; 57:249-68. [PMID: 17878107 DOI: 10.2478/v10007-007-0021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to several well-known drug delivery strategies developed to facilitate effective chemotherapy with anticancer agents, some new approaches have been recently established, based on specific effects arising from the applications of ultrasound, magnetic and electric fields on drug delivery systems. This paper gives an overview of newly developed methods of drug delivery to tumors and of the related anticancer therapies based on the combined use of different physical methods and specific drug carriers. The conventional strategies and new approaches have been put into perspective to revisit the existing and to propose new directions to overcome the threatening problem of cancer diseases.
Collapse
Affiliation(s)
- Erim Besić
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10002 Zagreb, Croatia.
| |
Collapse
|
34
|
Rossi J, Giasson S, Khalid MN, Delmas P, Allen C, Leroux JC. Long-circulating poly(ethylene glycol)-coated emulsions to target solid tumors. Eur J Pharm Biopharm 2007; 67:329-38. [PMID: 17490868 DOI: 10.1016/j.ejpb.2007.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 03/14/2007] [Accepted: 03/21/2007] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to develop oil-in-water emulsions (100-120 nm in diameter) and to correlate the surface properties of the emulsions with blood residence time and accumulation into neoplastic tissues by passive targeting. We investigated the effect of phospholipid and sphingolipid emulsifiers, hydrogenated soybean phosphatidylcholine (HSPC) and egg sphingomyelin (ESM), in combination with polysorbate 80 (PS-80) and 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE)-PEG lipids of various PEG chain lengths and structures in prolonging circulation time and enhancing accumulation into B16 melanoma or C26 colon adenocarcinoma. The relationship between amphiphile molecular packing at the air/water interface on emulsion stability upon dilution in albumin and circulation longevity in vivo was also explored for non-PEGylated emulsions. PEGylation of the droplet surface with 10-15 mol% of DSPE-PEG 2000 or 5000 enhanced the circulation time of the emulsions, however, accumulation was only observed in the C26 tumor model. The tighter molecular packing observed with ESM/PS-80 monolayers at the air/water interface compared to HSPC/PS-80 correlated with improved emulsion stability in vitro, however, enhanced circulation time in vivo was not observed. A better understanding of the relationships between composition and performance will result in improved emulsion-based drug delivery vehicles for cancer therapy.
Collapse
|
35
|
Monahan SD, Subbotin VM, Budker VG, Slattum PM, Neal ZC, Herweijer H, Wolff JA. Rapidly Reversible Hydrophobization: An Approach to High First-Pass Drug Extraction. ACTA ACUST UNITED AC 2007; 14:1065-77. [PMID: 17884638 DOI: 10.1016/j.chembiol.2007.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 08/06/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
We have investigated a rapidly reversible hydrophobization of therapeutic agents for improving first-pass uptake in locoregional drug therapy. This approach involves the attachment of a hydrophobic moiety to the drug by highly labile chemical linkages that rapidly hydrolyze upon injection. Hydrophobization drastically enhances cell-membrane association of the prodrug and, consequently, drug uptake, while the rapid lability protects nontargeted tissues from exposure to the highly active agent. Using the membrane-impermeable DNA intercalator propidium iodide, and melphalan, we report results from in vitro cellular internalization and toxicity studies. Additionally, we report in vivo results after a single liver arterial bolus injection, demonstrating both tumor targeting and increased survival in a mouse tumor model.
Collapse
Affiliation(s)
- Sean D Monahan
- Mirus Bio Corporation, 505 South Rosa Road, Madison, WI 53719, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Li Z, Chen Z, Cui H, Hales K, Wooley KL, Pochan DJ. Controlled stacking of charged block copolymer micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4689-94. [PMID: 17397196 DOI: 10.1021/la063292b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Using poly(acrylic acid)-b-poly(methyl acrylate)-b-polystyrene (PAA-b-PMA-b-PS) triblock copolymers or a mixture of different molecular weight PAA-b-PS diblock copolymers, stacks of polymeric micellar assemblies, such as disks and Y-shaped cylinders, were formed through intermicellar interactions. Whereas micelles hierarchically stacked together, micellar interactions within the stack defined a uniform micelle geometry and size for up to micrometers in length. The kinetic pathway dependence and stability of the stacked assemblies were studied, and possible intermicellar interactions between micelles within the stacks are proposed.
Collapse
Affiliation(s)
- Zhibin Li
- Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Despite several advancements in chemotherapy, the real therapy of cancer still remains a challenge. The development of new anti-cancer drugs for the treatment of cancer has not kept pace with the progress in cancer therapy, because of the nonspecific drug distribution resulting in low tumour concentrations and systemic toxicity. The main hindrance for the distribution of anti-cancer agents to the tumour site is the highly disorganized tumour vasculature, high blood viscosity in the tumour, and high interstitial pressure within the tumour tissue. Recently, several approaches such as drug modifications and development of new carrier systems for anti-cancer agents have been attempted to enhance their tumour reach. Approaches such as drug delivery through enhanced permeability and retention (EPR) effect have resulted in a significant improvement in concentration in tumours, while approaches such as drug-carrier implants and microparticles have resulted in improvement in local chemotherapy of cancer. This review discusses different strategies employed for the delivery of anti-cancer agents to tumours, such as through EPR effect, local chemotherapeutic approaches using drug delivery systems, and special strategies such as receptor-mediated delivery, pH-based carriers, application of ultrasound and delivery to resistant tumour cells and brain using nanoparticles.
Collapse
Affiliation(s)
- L Harivardhan Reddy
- Drug Delivery Research Laboratory, Center of Relevance and Excellence in NDDS, Pharmacy Department, Fatehgunj, M.S. University of Baroda, Baroda-390002, Gujarat, India.
| |
Collapse
|
38
|
Khalid MN, Simard P, Hoarau D, Dragomir A, Leroux JC. Long Circulating Poly(Ethylene Glycol)-Decorated Lipid Nanocapsules Deliver Docetaxel to Solid Tumors. Pharm Res 2006; 23:752-8. [PMID: 16550475 DOI: 10.1007/s11095-006-9662-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 12/06/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the ability of poly(ethylene glycol)-coated lipid nanocapsules (LN) to deliver the highly potent hydrophobic anticancer drug docetaxel to solid tumors. METHODS Docetaxel-loaded nanocapsules (80-120 nm) were produced by a solvent-free phase inversion process and were coated with polyethylene glycol distearoylphosphatidylethanolamine conjugate by a postinsertion step. In vivo studies were conducted in mice bearing subcutaneously implanted C26 colon adenocarcinoma to assess the pharmacokinetics and biodistribution of both the drug and LN. RESULTS Incorporation of docetaxel into the LN dramatically increased the drug's biological half-life while providing substantial accumulation at the tumoral site. The pharmacokinetics and biodistribution pattern were found to depend on the specific surface area and shell composition of the nanocapsules. CONCLUSION This study demonstrates that docetaxel physically entrapped into a lipid colloidal drug carrier can be efficiently targeted to neoplastic tissues.
Collapse
Affiliation(s)
- Mohamed Nabil Khalid
- Faculty of Pharmacy, University of Montreal, C.P. 6128 Succ, Centre-ville, Montreal, (QC), H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
Polymeric micelles have been the subject of many studies in the field of drug delivery for the past two decades. The interest has specifically been focused on the potential application of polymeric micelles in three major areas in drug delivery: drug solubilisation, controlled drug release and drug targeting. In this context, polymeric micelles consisting of poly(ethylene oxide)-b-poly(propylene oxide), poly(ethylene oxide)-b-poly(ester)s and poly(ethylene oxide)-b-poly(amino acid)s have shown a great promise and are in the front line of development for various applications. The purpose of this manuscript is to provide an update on the current status of polymeric micelles for each application and highlight important parameters that may lead to the development of successful polymeric micellar systems for individual delivery requirements.
Collapse
|
40
|
Dufresne MH, Gauthier MA, Leroux JC. Thiol-functionalized polymeric micelles: from molecular recognition to improved mucoadhesion. Bioconjug Chem 2005; 16:1027-33. [PMID: 16029046 DOI: 10.1021/bc050007b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface-modified colloids which can selectively interact with biological species or surfaces show promise as drug delivery systems. However, the preparation of such targeted devices remains challenging, especially when considering polyion complex micelles for which side reactions with the ionic core components (typically carboxylic acid or amino groups) can occur. To solve this issue, an innovative synthetic strategy is proposed and used to prepare an asymmetric poly(ethylene glycol)-block-poly(2-(N,N-dimethylamino)ethyl methacrylate) copolymer presenting a thiol group at the end of the poly(ethylene glycol) chain. Thiol groups are highly appealing given that they react almost exclusively and quantitatively with maleimides under physiological conditions, thereby facilitating the chemical functionalization of the copolymer. The simplicity of the derivatization procedure is illustrated by preparing model biotin-capped copolymers. The biotinylated copolymers are shown to self-assemble with an oligonucleotide in aqueous media to form polyion complex micelles with biotin groups at their outer surface. These micelles are capable of molecular recognition toward streptavidin. Alternatively, thiol-decorated (nonderivatized) micelles are prepared and show improved mucoadhesion through the formation of disulfide bonds with mucin. Finally, intermicellar disulfide bonds are generated under oxidative conditions to promote the formation of stimuli-responsive micellar networks.
Collapse
Affiliation(s)
- Marie-Hélène Dufresne
- Canada Research Chair in Drug Delivery, Faculty of Pharmacy, University of Montreal, P.O. Box 6128, Downtown Station, Montreal (QC), Canada, H3C 3J7
| | | | | |
Collapse
|
41
|
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2005; 1:193-212. [PMID: 17292079 DOI: 10.1016/j.nano.2005.06.004] [Citation(s) in RCA: 387] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/28/2005] [Indexed: 01/02/2023]
Abstract
The use of nanotechnology in drug delivery and imaging in vivo is a rapidly expanding field. The emphases of this review are on biophysical attributes of the drug delivery and imaging platforms as well as the biological aspects that enable targeting of these platforms to injured and diseased tissues and cells. The principles of passive and active targeting of nanosized carriers to inflamed and cancerous tissues with increased vascular leakiness, overexpression of specific epitopes, and cellular uptake of these nanoscale systems are discussed. Preparation methods-properties of nanoscale systems including liposomes, micelles, emulsions, nanoparticulates, and dendrimer nanocomposites, and clinical indications are outlined separately for drug delivery and imaging in vivo. Taken together, these relatively new and exciting data indicate that the future of nanomedicine is very promising, and that additional preclinical and clinical studies in relevant animal models and disease states, as well as long-term toxicity studies, should be conducted beyond the "proof-of-concept" stage. Large-scale manufacturing and costs of nanomedicines are also important issues to be addressed during development for clinical indications.
Collapse
Affiliation(s)
- Otilia M Koo
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, Illinois 60612-7231, USA
| | | | | |
Collapse
|
42
|
Sant VP, Smith D, Leroux JC. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release 2005; 97:301-12. [PMID: 15196757 DOI: 10.1016/j.jconrel.2004.03.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/25/2004] [Indexed: 11/16/2022]
Abstract
The objective of the present study was to synthesize novel pH-sensitive block copolymers forming supramolecular assemblies and to explore their potential as poorly water-soluble drug carriers for oral delivery. Diblock copolymers of polyethylene glycol and t-butyl methacrylate (tBMA), ethyl acrylate (EA) or n-butyl acrylate (nBA) were synthesized by atom transfer radical polymerization (ATRP). The pH-sensitive polymers obtained by hydrolysis of t-butyl groups were characterized for aggregation behaviour. Poorly water-soluble model drugs, i.e., indomethacin (IND), fenofibrate (FNB) and progesterone (PRG), were incorporated in supramolecular assemblies by dialysis or oil-in-water (O/W) emulsion methods. Process parameters for emulsion method were studied to maximize drug loading. Progesterone release was evaluated in vitro as a function of pH. Polymers with controlled molecular weights and low polydispersities were obtained by ATRP. All polymers exhibited pH-dependent aggregation behaviour and their critical aggregation concentration (CAC) decreased with increase in the hydrophobic block length. Drug loadings of <6% and 6-14% w/w were achieved by the dialysis and emulsion methods, respectively. Polymer composition, drug concentration and solubilization of polymer in water or dichloromethane (DCM) affected the loading. Progesterone release from supramolecular assemblies increased when the pH of the release medium was raised from 1.2 to 7.2. The results suggest that these supramolecular assemblies with high drug loadings and pH-dependent release kinetics can potentially enhance the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Vinayak P Sant
- Canada Research Chair in Drug Delivery, Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, Canada H3C 3J7
| | | | | |
Collapse
|
43
|
Kang N, Perron ME, Prud'homme RE, Zhang Y, Gaucher G, Leroux JC. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. NANO LETTERS 2005; 5:315-319. [PMID: 15794618 DOI: 10.1021/nl048037v] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Monodisperse stereocomplex block copolymer micelles were obtained through the self-assembly of equimolar mixtures of poly(ethylene glycol)-block-poly(l-lactide) and poly(ethylene glycol)-block-poly(d-lactide) in water. These micelles possessed partially crystallized cores and mean hydrodynamic diameters ranging from 31 to 56 nm, depending on the lactide content. They exhibited kinetic stability and redispersion properties superior to micelles prepared with isotactic or racemic polymers alone. This study demonstrates the advantages of stereocomplex formation in the design of stabilized water-soluble nanoparticles.
Collapse
Affiliation(s)
- Ning Kang
- Canada Research Chair in Drug Delivery, Faculty of Pharmacy and Department of Chemistry, University of Montreal, C.P. 6128 succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Preparation, characterization, cytotoxicity and biodistribution of docetaxel-loaded polymeric micelle formulations. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50015-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Le Garrec D, Gori S, Luo L, Lessard D, Smith DC, Yessine MA, Ranger M, Leroux JC. Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release 2004; 99:83-101. [PMID: 15342183 DOI: 10.1016/j.jconrel.2004.06.018] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 06/19/2004] [Indexed: 10/26/2022]
Abstract
The majority of novel anticancer drugs developed to date are intended for parenteral administration. Paradoxically, most of these drugs are water-insoluble, delaying their clinical development. A common approach to confering water solubility to drugs is to use amphiphilic, solubilizing agents, such as polyethoxylated castor oil (e.g., Cremophor EL, CrmEL). However, these vehicles are themselves associated with a number of pharmacokinetic and pharmaceutical concerns. The present work is aimed at evaluating a novel polymeric solubilizer for anticancer drugs, i.e., poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) (PVP-b-PDLLA). This copolymer self-assembles in water to yield polymeric micelles (PM) that efficiently solubilize anticancer drugs, such as paclitaxel (PTX), docetaxel (DCTX), teniposide (TEN) and etoposide (ETO). A PM-PTX formulation was evaluated, both, in vitro on three different cancer cell lines and in vivo for its safety, pharmacokinetics, biodistribution and antitumor activity. In vitro, cytotoxicity studies revealed that the drug-loaded PM formulation was equipotent to the commercial PTX formulation (Taxol). In the absence of drug, PVP-b-PDLLA with 37% DLLA content was less cytotoxic than CrmEL. In vivo, acute toxicity was assessed in mice after a single injection of escalating dose levels of formulated PTX. PM-PTX was well tolerated and the maximum tolerated dose (MTD) was not reached even at 100 mg/kg, whereas the MTD of Taxol was established at 20 mg/kg. At 60 mg/kg, PM-PTX demonstrated greater in vivo antitumor activity than Taxol injected at its MTD. Finally, it was shown in mice and rabbits that the areas under the plasma concentration-time curves were inversely related to PM drug loading.
Collapse
Affiliation(s)
- D Le Garrec
- Canada Research Chair in Drug Delivery, Faculty of Pharmacy, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal (Québec) Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|