1
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Recent updates on thienopyrimidine derivatives as anticancer agents. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractThienopyrimidine derivatives hold a unique place between fused pyrimidine compounds. They are important and widely represented in medicinal chemistry as they are structural analogs of purines. Thienopyrimidine derivatives have various biological activities. The current review discusses different synthetic methods for the preparation of heterocyclic thienopyrimidine derivatives. It also highlights the most recent research on the anticancer effects of thienopyrimidines through the inhibition of various enzymes and pathways, which was published within the last 9 years.
Graphical Abstract
Collapse
|
3
|
Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353:1127-1149. [PMID: 36528193 DOI: 10.1016/j.jconrel.2022.12.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| | | | - Monochura Saha
- Media lab, Massachusetts Institute of Technology (MIT), 75 Amherst Street, Cambridge 02139, USA
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea.
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
4
|
Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, Forouzandeh Moghadam M, Samadikuchaksaraei A. Designer Exosomes: A New Platform for Biotechnology Therapeutics. BioDrugs 2021; 34:567-586. [PMID: 32754790 PMCID: PMC7402079 DOI: 10.1007/s40259-020-00434-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limitations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineering approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes using parental cell-based engineering and their application in cancer treatment and regenerative medicine. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Davod Jafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Shajari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosna Gomari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ganji
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, Choi I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers (Basel) 2021; 13:1157. [PMID: 33800282 PMCID: PMC7962655 DOI: 10.3390/cancers13051157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India;
| | - Raied Badierah
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ehab H. Mattar
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
6
|
Multidirectional Strategies for Targeted Delivery of Oncolytic Viruses by Tumor Infiltrating Immune Cells. Pharmacol Res 2020; 161:105094. [PMID: 32795509 DOI: 10.1016/j.phrs.2020.105094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy has demonstrated to be a promising approach in cancer treatment due to tumor-specific oncolysis. However, their clinical use so far has been largely limited due to the lack of suitable delivery strategies with high efficacy. Direct 'intratumoral' injection is the way to cross the hurdles of systemic toxicity, while providing local effects. Progress in this field has enabled the development of alternative way using 'systemic' oncolytic virotherapy for producing better results. One major potential roadblock to systemic OV delivery is the low virus persistence in the face of hostile immune system. The delivery challenge is even greater when attempting to target the oncolytic viruses into the entire tumor mass, where not all tumor cells are equally exposed to exactly the same microenvironment. The microenvironment of many tumors is known to be massively infiltrated with various types of leucocytes in both primary and metastatic sites. Interestingly, this intratumoral immune cell heterogeneity exhibits a degree of organized distribution inside the tumor bed as evidenced, for example, by the hypoxic tumor microenviroment where predominantly recruits tumor-associated macrophages. Although in vivo OV delivery seems complicated and challenging, recent results are encouraging for decreasing the limitations of systemically administered oncolytic viruses and an improved efficiency of oncolytic viral therapy in targeting cancerous tissues in vitro. Here, we review the latest developments of carrier cell-based oncolytic virus delivery using tumor-infiltrating immune cells with a focus on the main features of each cellular vehicle.
Collapse
|
7
|
Šelemetjev S, Bartolome A, Išić Denčić T, Đorić I, Paunović I, Tatić S, Cvejić D. Overexpression of epidermal growth factor receptor and its downstream effector, focal adhesion kinase, correlates with papillary thyroid carcinoma progression. Int J Exp Pathol 2018; 99:87-94. [PMID: 29665129 DOI: 10.1111/iep.12268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/25/2018] [Indexed: 01/18/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) and its downstream effector, focal adhesion kinase (FAK), have been shown to be overexpressed frequently in human malignancies and implicated in tumour aggressiveness. We aimed to investigate the relationship between EGFR and FAK expression and their possible correlation with the clinical phenotype of patients with papillary thyroid carcinoma (PTC). Expression profiles of EGFR and FAK were analysed in PTC tissue samples (n = 104) by immunohistochemistry and Western blotting. Additionally, EGFR and FAK were immunohistochemically analysed in 20 primary tumours paired with their metastatic tissue in lymph nodes. High expression of EGFR and FAK was found in 55.77% and 57.69% cases, respectively, with a strong positive association between them (P < 0.0001, Spearman's correlation coefficient = 0.844). Expression of each molecule and their coexpression correlated significantly with the presence of lymph node metastasis (LNM), degree of tumour infiltration, extrathyroid invasion and pT status of the patients. Western blot analysis confirmed that coexpression of high levels of EGFR and FAK correlated with adverse clinicopathological features. When compared to the corresponding primary tumour, increased or maintained high levels of EGFR and FAK were found in LNM, indicating their concordant expression during lymphatic spread. In conclusion, high levels of EGFR and its downstream effector, FAK, in association with lymphatic spread and tumour infiltration indicate their involvement in PTC progression and suggest that both molecules may predict its aggressive behaviour. Furthermore, FAK could be a potential target for anticancer therapy in patients with advanced thyroid cancer.
Collapse
Affiliation(s)
- Sonja Šelemetjev
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade-Zemun, Serbia
| | - Aleksandar Bartolome
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade-Zemun, Serbia
| | - Tijana Išić Denčić
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade-Zemun, Serbia
| | - Ilona Đorić
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade-Zemun, Serbia
| | - Ivan Paunović
- Center for Endocrine Surgery, Institute for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Belgrade, Serbia
| | - Svetislav Tatić
- Medical Faculty, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Dubravka Cvejić
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade-Zemun, Serbia
| |
Collapse
|
8
|
Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, Fang Y, Xia Y, Cheng G, He X, Zheng SY. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res 2018; 78:798-808. [PMID: 29217761 PMCID: PMC5811376 DOI: 10.1158/0008-5472.can-17-2880] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Extracellular nanovesicles (ENV) released by many cells contain lipids, proteins, and nucleic acids that contribute to intercellular communication. ENVs have emerged as biomarkers and therapeutic targets but they have also been explored as drug delivery vehicles. However, for the latter application, clinical translation has been limited by low yield and inadequate targeting effects. ENV vectors with desired targeting properties can be produced from parental cells engineered to express membrane-bound targeting ligands, or they can be generated by fusion with targeting liposomes; however, neither approach has met clinical requirements. In this study, we demonstrate that mechanical extrusion of approximately 107 cells grafted with lipidated ligands can generate cancer cell-targeting ENV and can be prepared in approximately 1 hour. This rapid and economic approach could pave the way for clinical implementation in the future.Significance: A new and rapid method for production of drug-targeting nanovesicles has implications for cancer treatment by chimeric antigen receptor T cells and other therapies. Cancer Res; 78(3); 798-808. ©2017 AACR.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Lixue Wang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Qin Zheng
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | | | - Jinlong Tong
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yuan Fang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Gong Cheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
9
|
Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev 2017. [PMID: 28629761 DOI: 10.1016/j.cytogfr.2017.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells. Additionally, their antitumor activity can be redirected and further improved with chimeric antigen receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained from a growing body of literature support CIK cells as a very promising cell population for adoptive immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role of the cytokines involved in CIK cell generation, expansion and functionalization.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
10
|
Fischer T, Krüger T, Najjar A, Totzke F, Schächtele C, Sippl W, Ritter C, Hilgeroth A. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg Med Chem Lett 2017; 27:2708-2712. [DOI: 10.1016/j.bmcl.2017.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/24/2022]
|
11
|
Abstract
The past decade of cancer research has been marked by a growing appreciation of the role of immunity in cancer. Mutations in the tumour genome can cause tumours to express mutant proteins that are tumour specific and not expressed on normal cells (neoantigens). These neoantigens are an attractive immune target because their selective expression on tumours may minimize immune tolerance as well as the risk of autoimmunity. In this Review we discuss the emerging evidence that neoantigens are recognized by the immune system and can be targeted to increase antitumour immunity. We also provide a framework for personalized cancer immunotherapy through the identification and selective targeting of individual tumour neoantigens, and present the potential benefits and obstacles to this approach of targeted immunotherapy.
Collapse
Affiliation(s)
- Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Burles A Johnson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Eric R Lutz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Daniel A Laheru
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| |
Collapse
|
12
|
Hempel C, Totzke F, Schächtele C, Najjar A, Sippl W, Ritter C, Hilgeroth A. Discovery of novel dual inhibitors of receptor tyrosine kinases EGFR and IGF-1R. J Enzyme Inhib Med Chem 2017; 32:271-276. [PMID: 28097905 PMCID: PMC6009933 DOI: 10.1080/14756366.2016.1247062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Novel 4-benzylamino benzo-anellated pyrrolo[2,3-b]pyridines have been synthesized with varied substitution patterns both at the molecular scaffold of the benzo-anellated ring and at the 4-benzylamino residue. With a structural similarity to substituted thieno[2,3-d]pyrimidines as epidermal growth factor receptor (EGFR) inhibitors, we characterized the inhibition of EGFR for our novel compounds. As receptor heterodimerization gained certain interest as mechanism of cancer cells to become resistant against novel protein kinase inhibitors, we additionally measured the inhibition of insulin-like growth factor receptor IGF-1R which is a prominent receptor for such heterodimerizations with EGFR. Structure–activity relationships are discussed for both kinase inhibitions depending on the varied substitution patterns. We discovered novel dual inhibitors of both receptor tyrosine kinases with interest for further studies to reduce inhibitor resistance developments in cancer treatment.
Collapse
Affiliation(s)
- Cornelius Hempel
- a Department of Pharmaceutical Chemistry , Institute of Pharmacy, Martin Luther University , Halle , Germany
| | | | | | - Abdulkarim Najjar
- a Department of Pharmaceutical Chemistry , Institute of Pharmacy, Martin Luther University , Halle , Germany
| | - Wolfgang Sippl
- a Department of Pharmaceutical Chemistry , Institute of Pharmacy, Martin Luther University , Halle , Germany
| | - Christoph Ritter
- c Department of Clinical Pharmacy , Institute of Pharmacy, Ernst Moritz Arndt University Greifswald , Germany
| | - Andreas Hilgeroth
- a Department of Pharmaceutical Chemistry , Institute of Pharmacy, Martin Luther University , Halle , Germany
| |
Collapse
|
13
|
Kersh AE, Sasaki M, Cooper LA, Kissick HT, Pollack BP. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model. Front Pharmacol 2016; 7:327. [PMID: 27729860 PMCID: PMC5052536 DOI: 10.3389/fphar.2016.00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient's cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of 'personalized medicine', it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation.
Collapse
Affiliation(s)
- Anna E Kersh
- Medical Scientist Training Program, Emory University School of Medicine Atlanta, GA, USA
| | | | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of MedicineAtlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of TechnologyAtlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine Atlanta, GA, USA
| | - Brian P Pollack
- Atlanta VA Medical CenterDecatur, GA, USA; Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
14
|
Growth factor pathways in hypertrophic scars: Molecular pathogenesis and therapeutic implications. Biomed Pharmacother 2016; 84:42-50. [PMID: 27636511 DOI: 10.1016/j.biopha.2016.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/26/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
Hypertrophic scars represent the most common complication of skin injury and are caused by excessive cutaneous wound healing characterized by hypervascularity and pathological deposition of extracellular matrix (ECM) components. To date, the optimal and specific treatment methods for hypertrophic scars have not been available in the clinic. Current paradigm has established fibroblasts and myofibroblasts as pivotal effector cells in the pathophysiology of wound healing. Their biological properties including origin, proliferation, migration, contraction and ECM regulation have profound impacts on the progression and regression of hypertrophic scars. These complex processes are executed and modulated by a signaling network involving a number of growth factors and cytokines. Of particular importance is transforming growth factor-β, platelet-derived growth factor, connective tissue growth factor, epidermal growth factor, and vascular endothelial growth factor. This review article briefly describes the biological functions of fibroblasts and myofibroblasts during hypertrophic scars, and thereafter examines the up-to-date molecular knowledge on the roles of key growth factor pathways in the pathophysiology of hypertrophic scars. Importantly, the therapeutic implications and future challenges of these molecular discoveries are critically discussed in the hope of advancing therapeutic approaches to limit pathological scar formation.
Collapse
|
15
|
Cheng Q, Wållberg H, Grafström J, Lu L, Thorell JO, Hägg Olofsson M, Linder S, Johansson K, Tegnebratt T, Arnér ESJ, Stone-Elander S, Ahlzén HSM, Ståhl S. Preclinical PET imaging of EGFR levels: pairing a targeting with a non-targeting Sel-tagged Affibody-based tracer to estimate the specific uptake. EJNMMI Res 2016; 6:58. [PMID: 27388754 PMCID: PMC4936982 DOI: 10.1186/s13550-016-0213-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023] Open
Abstract
Background Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors. Methods The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST). The proteins were site-specifically labeled with DyLight488 for flow cytometry and ex vivo tissue analyses or with 11C for in vivo PET studies. Kinetic scans with the 11C-labeled proteins were performed in healthy mice and in mice bearing xenografts from human FaDu (squamous cell carcinoma) and A431 (epidermoid carcinoma) cell lines. Changes in tracer uptake in A431 xenografts over time were also monitored, followed by ex vivo proximity ligation assays (PLA) of EGFR expressions. Results Flow cytometry and ex vivo tissue analyses confirmed EGFR targeting by ZEGFR:2377-ST-DyLight488. [Methyl-11C]-labeled ZEGFR:2377-ST-CH3 and ZTaq:3638-ST-CH3 showed similar distributions in vivo, except for notably higher concentrations of the former in particularly the liver and the blood. [Methyl-11C]-ZEGFR:2377-ST-CH3 successfully visualized FaDu and A431 xenografts with moderate and high EGFR expression levels, respectively. However, in FaDu tumors, the non-specific uptake was large and sometimes equally large, illustrating the importance of proper controls. In the A431 group observed longitudinally, non-specific uptake remained at same level over the observation period. Specific uptake increased with tumor size, but changes varied widely over time in individual tumors. Total (membranous and cytoplasmic) EGFR in excised sections increased with tumor growth. There was no positive correlation between total EGFR and specific tracer uptake, which, since ZEGFR:2377 binds extracellularly and is slowly internalized, indicates a discordance between available membranous and total EGFR expression levels. Conclusions Same-day in vivo dual tracer imaging enabled by the Sel-tag technology and 11C-labeling provides a method to non-invasively monitor membrane-localized EGFR as well as factors affecting non-specific uptake of the PET ligand. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0213-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Wållberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Grafström
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Li Lu
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Karolinska Experimental Research and Imaging Center, Department of Comparative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Olov Thorell
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Neuroradiology Department, R3:00, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Maria Hägg Olofsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Johansson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tetyana Tegnebratt
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.,Neuroradiology Department, R3:00, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Elias S J Arnér
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Stone-Elander
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden. .,Neuroradiology Department, R3:00, Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | | | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
16
|
Development and Validation of a Method for Quantifying HER1 Extracellular Domain in Culture Supernatant by RP-HPLC. Chromatographia 2016. [DOI: 10.1007/s10337-016-3032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Ren H, Ning H, Chang J, Zhao M, He Y, Chong Y, Qi C. Evaluation of 18F-labeled icotinib derivatives as potential PET agents for tumor imaging. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4671-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Hempel C, Najjar A, Totzke F, Schächtele C, Sippl W, Ritter C, Hilgeroth A. Discovery of dually acting small-molecule inhibitors of cancer-resistance relevant receptor tyrosine kinases EGFR and IGF-1R. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00329j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-molecule inhibitors of cancer-relevant receptor tyrosine kinases EGFR and IGF-1R have been discovered.
Collapse
Affiliation(s)
- Cornelius Hempel
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- Martin Luther University
- 06120 Halle
- Germany
| | - Abdulkarim Najjar
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- Martin Luther University
- 06120 Halle
- Germany
| | | | | | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- Martin Luther University
- 06120 Halle
- Germany
| | - Christoph Ritter
- Department of Clinical Pharmacy
- Institute of Pharmacy
- Ernst Moritz Arndt University of Greifswald
- 17489 Greifswald
- Germany
| | - Andreas Hilgeroth
- Department of Pharmaceutical Chemistry
- Institute of Pharmacy
- Martin Luther University
- 06120 Halle
- Germany
| |
Collapse
|
19
|
Ren X, Ma W, Lu H, Yuan L, An L, Wang X, Cheng G, Zuo S. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother 2015; 64:1517-29. [PMID: 26386966 PMCID: PMC11029695 DOI: 10.1007/s00262-015-1757-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.
Collapse
Affiliation(s)
- Xuequn Ren
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China
| | - Wanli Ma
- General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan Province, China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan Province, China
| | - Lei Yuan
- Experimental Center of Molecular Medicine, Luohe Medical College, Luohe, 462002, Henan Province, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China
| | - Xicai Wang
- Tumor Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Guanchang Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China.
| | - Shuguang Zuo
- Translational Medicine Center, Huaihe Hospital of Henan University, No. 115, Simon Street, Kaifeng, 475001, Henan Province, China.
| |
Collapse
|
20
|
Assessment of the impact of manufacturing changes on the physicochemical properties and biological activity of Her1-ECD vaccine during product development. Vaccine 2015; 33:4292-9. [PMID: 26003492 DOI: 10.1016/j.vaccine.2015.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022]
Abstract
Vaccine preparations based on the extracellular domain of Her1 (Her1-ECD) have demonstrated, in vitro and in vivo, a potent antimetastatic effect on EGFR(+) Lewis lung carcinoma model, while associated side effects were absent. The Her1-ECD is a glycoprotein with a molecular weight of 105 kDa and has 11 potential sites for N-glycosylation. Currently Her1-ECD based vaccine has been evaluated in patients with hormone refractory prostate cancer. Her1-ECD molecule used for in clinical trials was obtained from culture supernatant of HEK 293 transfectomes used the protein free culture media and is purified by immunoaffinity chromatography. In order to increase the cell growth and productivity, new defined culture media have been developed (alternative culture media) in Her1-ECD vaccine production process. In this work, a comparability study was performed to evaluate the impact of process changes in the characteristics physic-chemical and biologicals of the Her1-ECD protein and the degree of similitude between both variants. Techniques such as: SDS-PAGE, SEC-HPLC, isoelectric point, peptide mapping, mass spectrometric, SCX-HPLC, oligosaccharide map, ELISA and flow cytometric were used with this aim. Results indicated that this process change decreases the degree of sialylation of the protein but does not affect its biological activity (measured as titers of Abs and recognition for A431 cell line).
Collapse
|
21
|
Knudsen SLJ, Mac ASW, Henriksen L, van Deurs B, Grøvdal LM. EGFR signaling patterns are regulated by its different ligands. Growth Factors 2014; 32:155-63. [PMID: 25257250 DOI: 10.3109/08977194.2014.952410] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
EGF receptor (EGFR) and its signaling have been investigated for many years, but how its different ligands regulate signaling has not been thoroughly explored. When investigating EGFR activation and downstream signaling in HeLa cells using a panel of ligands, we found a ligand-dependent differential activation of EGFR and the signaling pathways Akt, PLCγ and STAT with HB-EGF and BTC being the most potent ligands. All the tested ligands induced full activation of Erk signaling at 1 nM, whereas only HB-EGF and partly BTC and EGF induced strong activation of Akt, STAT3 and PLCγ at this concentration. Interestingly, we also found that the high activation potencies of HB-EGF and BTC could only partially be explained by their binding affinities, and are therefore likely to be regulated by other mechanisms. We thus suggest that the signaling pathways initiated from the EGFR vary depending on the ligands bound in a cell specific manner.
Collapse
Affiliation(s)
- Stine Louise Jeppe Knudsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen , Denmark
| | | | | | | | | |
Collapse
|
22
|
Kaspersen SJ, Han J, Nørsett KG, Rydså L, Kjøbli E, Bugge S, Bjørkøy G, Sundby E, Hoff BH. Identification of new 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. Eur J Pharm Sci 2014; 59:69-82. [DOI: 10.1016/j.ejps.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 11/27/2022]
|
23
|
Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 2014; 124:453-62. [PMID: 24891321 DOI: 10.1182/blood-2014-04-567933] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genome sequencing has revealed a large number of shared and personal somatic mutations across human cancers. In principle, any genetic alteration affecting a protein-coding region has the potential to generate mutated peptides that are presented by surface HLA class I proteins that might be recognized by cytotoxic T cells. To test this possibility, we implemented a streamlined approach for the prediction and validation of such neoantigens derived from individual tumors and presented by patient-specific HLA alleles. We applied our computational pipeline to 91 chronic lymphocytic leukemias (CLLs) that underwent whole-exome sequencing (WES). We predicted ∼22 mutated HLA-binding peptides per leukemia (derived from ∼16 missense mutations) and experimentally confirmed HLA binding for ∼55% of such peptides. Two CLL patients that achieved long-term remission following allogeneic hematopoietic stem cell transplantation were monitored for CD8(+) T-cell responses against predicted or confirmed HLA-binding peptides. Long-lived cytotoxic T-cell responses were detected against peptides generated from personal tumor mutations in ALMS1, C6ORF89, and FNDC3B presented on tumor cells. Finally, we applied our computational pipeline to WES data (N = 2488 samples) across 13 different cancer types and estimated dozens to thousands of predicted neoantigens per individual tumor, suggesting that neoantigens are frequent in most tumors.
Collapse
|
24
|
Schenone S, Radi M, Musumeci F, Brullo C, Botta M. Biologically Driven Synthesis of Pyrazolo[3,4-d]pyrimidines As Protein Kinase Inhibitors: An Old Scaffold As a New Tool for Medicinal Chemistry and Chemical Biology Studies. Chem Rev 2014; 114:7189-238. [DOI: 10.1021/cr400270z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Silvia Schenone
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Marco Radi
- Dipartimento
di Farmacia, Università degli Studi di Parma Viale delle
Scienze, 27/A, 43124 Parma, Italy
| | - Francesca Musumeci
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Dipartimento
di Farmacia, Università degli Studi di Genova Viale Benedetto
XV, 3, 16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena Via Aldo Moro, 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
25
|
A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:75-87. [PMID: 24747178 DOI: 10.1016/j.bbcan.2014.04.005] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Exosomes denote a class of secreted nanoparticles defined by size, surface protein and lipid composition, and the ability to carry RNA and proteins. They are important mediators of intercellular communication and regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest them to be important both for diagnostic and therapeutic purposes, prompting the idea of using exosomes as drug delivery vehicles, especially for gene therapy. This review covers the current status of evidence presented in the field of exosome-based drug delivery systems. Components for successful exosome-based drug delivery, such as choice of donor cell, therapeutic cargo, use of targeting peptide, loading method and administration route are highlighted and discussed with a general focus pertaining to the results obtained in models of different cancer types. In addition, completed and on-going clinical trials are described, evaluating exosome-based therapies for the treatment of different cancer types. Due to their endogenous origin, exosome-based drug delivery systems may have advantages in the treatment of cancer, but their design needs further refinement to justify their usage on the clinical scale.
Collapse
|
26
|
Ekert JE, Johnson K, Strake B, Pardinas J, Jarantow S, Perkinson R, Colter DC. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One 2014; 9:e92248. [PMID: 24638075 PMCID: PMC3956916 DOI: 10.1371/journal.pone.0092248] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor microenvironment.
Collapse
Affiliation(s)
- Jason E. Ekert
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Kjell Johnson
- Arbor Analytics, LLC, Ann Arbor, Michigan, United States of America
| | | | - Jose Pardinas
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Stephen Jarantow
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - Robert Perkinson
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| | - David C. Colter
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, United States of America
| |
Collapse
|
27
|
Bugge S, Kaspersen SJ, Larsen S, Nonstad U, Bjørkøy G, Sundby E, Hoff BH. Structure–activity study leading to identification of a highly active thienopyrimidine based EGFR inhibitor. Eur J Med Chem 2014; 75:354-74. [DOI: 10.1016/j.ejmech.2014.01.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
|
28
|
Qiu P, Xu L, Gao L, Zhang M, Wang S, Tong S, Sun Y, Zhang L, Jiang T. Exploring pyrimidine-substituted curcumin analogues: Design, synthesis and effects on EGFR signaling. Bioorg Med Chem 2013; 21:5012-20. [DOI: 10.1016/j.bmc.2013.06.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 01/22/2023]
|
29
|
Castoldi R, Ecker V, Wiehle L, Majety M, Busl-Schuller R, Asmussen M, Nopora A, Jucknischke U, Osl F, Kobold S, Scheuer W, Venturi M, Klein C, Niederfellner G, Sustmann C. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32:5593-601. [PMID: 23812422 PMCID: PMC3898114 DOI: 10.1038/onc.2013.245] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023]
Abstract
Simultaneous targeting of epidermal growth factor receptor (EGFR) and Met in cancer therapy is under pre-clinical and clinical evaluation. Here, we report the finding that treatment with EGFR inhibitors of various tumor cells, when stimulated with hepatocyte growth factor (HGF) and EGF, results in transient upregulation of phosphorylated AKT. Furthermore, EGFR inhibition in this setting stimulates a pro-invasive phenotype as assessed in Matrigel-based assays. Simultaneous treatment with AKT and EGFR inhibitors abrogates this invasive growth, hence functionally linking signaling and phenotype. This observation implies that during treatment of tumors a balanced ratio of EGFR and Met inhibition is required. To address this, we designed a bispecific antibody targeting EGFR and Met, which has the advantage of a fixed 2:1 stoichiometry. This bispecific antibody inhibits proliferation in tumor cell cultures and co-cultures with fibroblasts in an additive manner compared with treatment with both single agents. In addition, cell migration assays reveal a higher potency of the bispecific antibody in comparison with the antibodies' combination at low doses. We demonstrate that the bispecific antibody inhibits invasive growth, which is specifically observed with cetuximab. Finally, the bispecific antibody potently inhibits tumor growth in a non-small cell lung cancer xenograft model bearing a strong autocrine HGF-loop. Together, our findings strongly support a combination treatment of EGFR and Met inhibitors and further evaluation of resistance mechanisms to EGFR inhibition in the context of active Met signaling.
Collapse
Affiliation(s)
- R Castoldi
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - V Ecker
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - L Wiehle
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Majety
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - R Busl-Schuller
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Asmussen
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - A Nopora
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - U Jucknischke
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - F Osl
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - S Kobold
- Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - W Scheuer
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - M Venturi
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - C Klein
- pRED, Roche Glycart AG, Schlieren, Switzerland
| | - G Niederfellner
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - C Sustmann
- Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|