1
|
Ilina Y, Kaufmann P, Press M, Uba TI, Bergmann A. Enhancing Stability and Bioavailability of Peptidylglycine Alpha-Amidating Monooxygenase in Circulation for Clinical Use. Biomolecules 2025; 15:224. [PMID: 40001527 PMCID: PMC11853079 DOI: 10.3390/biom15020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) is the only enzyme known to catalyze C-terminal amidation, a final post-translational modification step essential for the biological activity of over 70 bioactive peptides, including adrenomedullin (ADM), calcitonin gene-related peptide (CGRP), amylin, neuropeptide Y (NPY), and others. Bioactive (amidated) peptide hormones play crucial roles in various physiological processes and have been extensively explored as therapeutic compounds in clinical and preclinical research. However, their therapeutic viability is limited due to their short half-life and, in most cases, the need for prolonged infusion to maintain effective concentrations. PAM itself has also been considered as a therapeutic compound aiming to increase the level of amidated peptide hormones; however, similarly to peptide hormones, PAM's rapid degradation limits its utility. Here, we present a strategy to enhance PAM stability and bioavailability through PEGylation, significantly extending the enzyme's half-life in circulation assessed in healthy rats. Furthermore, single subcutaneous (s.c.), intramuscular (i.m.), or intraperitoneal (i.p.) administration of PEGylated PAM resulted in a sustained increase in circulating amidating activity, with peak activity observed at 12-24 h post-bolus administration. Notably, amidating activity remained significantly elevated above baseline levels for up to seven days post-administration, with no observable adverse effects. These findings highlight PEGylated PAM's potential as a viable therapeutic compound.
Collapse
Affiliation(s)
- Yulia Ilina
- PAM Theragnostics GmbH, 16761 Hennigsdorf, Germany
| | | | | | | | - Andreas Bergmann
- PAM Theragnostics GmbH, 16761 Hennigsdorf, Germany
- 4TEEN4 Pharmaceuticals GmbH, 16761 Hennigsdorf, Germany
| |
Collapse
|
2
|
Witzel R, Block A, Pollmann S, Oetzel L, Fleck F, Bonaterra GA, Kinscherf R, Schwarz A. PACAP regulates VPAC1 expression, inflammatory processes and lipid homeostasis in M1- and M2-macrophages. Front Cardiovasc Med 2023; 10:1264901. [PMID: 37900572 PMCID: PMC10611464 DOI: 10.3389/fcvm.2023.1264901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) acts as an anti-atherogenic neuropeptide and plays an important role in cytoprotective, as well as inflammatory processes, and cardiovascular regulation. Therefore, the aim of this study is to investigate the regulatory effects of PACAP and its receptor VPAC1 in relation to inflammatory processes and lipid homeostasis in different macrophage (MΦ) subtypes. Methods To investigate the role of PACAP deficiency in the pathogenesis of atherosclerosis under standard chow (SC) or cholesterol-enriched diet (CED) in vivo, PACAP-/- mice were crossbred with ApoE-/- to generate PACAP-/-/ApoE-/- mice. Lumen stenosis in the aortic arch and different MΦ-subtypes were analyzed in atherosclerotic plaques by quantitative immunohistochemistry. Undifferentiated bone marrow-derived cells (BMDC) from 30-weeks-old ApoE-/- and PACAP-/-/ApoE-/- mice were isolated, differentiated into BMDM1- and BMDM2-MΦ, and incubated with oxidized low-density lipoprotein (oxLDL). In addition, PMA-differentiated human THP-1 MΦ were further differentiated into M1-/M2-MΦ and subsequently treated with PACAP38, the VPAC1 agonist [(Ala11,22,28)VIP], the antagonist (PG 97-269), and/or oxLDL. Uptake/accumulation of oxLDL was analyzed by oxLDL-DyLight™488 and Bodipy™ 493/503. The mRNA expression was analyzed by qRT-PCR, protein levels by Western blot, and cytokine release by ELISA. Results In vivo, after 30 weeks of SC, PACAP-/-/ApoE-/- mice showed increased lumen stenosis compared with ApoE-/- mice. In atherosclerotic plaques of PACAP-/-/ApoE-/- mice under CED, immunoreactive areas of VPAC1, CD86, and CD163 were increased compared with ApoE-/- mice. In vitro, VPAC1 protein levels were increased in PACAP-/-/ApoE-/- BMDM compared with ApoE-/- BMDM, resulting in increased TNF-α mRNA expression in BMDM1-MΦ and decreased TNF-α release in BMDM2-MΦ. Concerning lipid homeostasis, PACAP deficiency decreased the area of lipid droplets in BMDM1-/M2-MΦ with concomitant increasing adipose differentiation-related protein level. In THP-1 M1-/M2-MΦ, the VPAC1 antagonist increased the uptake of oxLDL, whereas the VPAC1 agonist decreased the oxLDL-induced intracellular triglyceride content. Conclusion Our data suggest that PACAP via VPAC1 signaling plays an important regulatory role in inflammatory processes in atherosclerotic plaques and in lipid homeostasis in different MΦ-subtypes, thereby affecting foam cell formation. Therefore, VPAC1 agonists or PACAP may represent a new class of anti-atherogenic therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anja Schwarz
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
3
|
Xie X, Geng C, Li X, Liao J, Li Y, Guo Y, Wang C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022; 151:170753. [PMID: 35114316 DOI: 10.1016/j.peptides.2022.170753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
The intestinal barrier is a dynamic entity that is organized as a multilayer system and includes various intracellular and extracellular elements. The gut barrier functions in a coordinated manner to impede the passage of antigens, toxins, and microbiome components and simultaneously preserves the balanced development of the epithelial barrier and the immune system and the acquisition of tolerance to dietary antigens and intestinal pathogens.Numerous scientific studies have shown a significant association between gut barrier damage and gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and hepatic fibrosis. Various internal and external factors regulate the intestinal barrier. Gastrointestinal peptides originate from enteroendocrine cells in the luminal digestive tract and are critical gut barrier regulators. Recent studies have demonstrated that gastrointestinal peptides have a therapeutic effect on digestive tract diseases, enhancing epithelial barrier activity and restoring the gut barrier. This review demonstrates the roles and mechanisms of gastrointestinal polypeptides, especially somatostatin (SST) and vasoactive intestinal peptide (VIP), in intestinal barrier regulation.
Collapse
Affiliation(s)
- Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Liao
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Proteomic Analysis of Synovial Fibroblasts and Articular Chondrocytes Co-Cultures Reveals Valuable VIP-Modulated Inflammatory and Degradative Proteins in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126441. [PMID: 34208590 PMCID: PMC8235106 DOI: 10.3390/ijms22126441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.
Collapse
|
5
|
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021; 21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.
Collapse
Affiliation(s)
- Maya Schiller
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Asya Rolls
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Dulari Jayawardena, Arivarasu N Anbazhagan, Priyamvada S, Kumar A, Saksena S, Onyuksel H, Pradeep K Dudeja. Colonic delivery of vasoactive intestinal peptide nanomedicine alleviates colitis and shows promise as an oral capsule. Nanomedicine (Lond) 2020; 15:2459-2474. [PMID: 32975467 DOI: 10.2217/nnm-2020-0280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To evaluate the efficacy of locally delivered nanomedicine, vasoactive intestinal peptide in sterically stabilized micelles (VIP-SSM) to the colon and conduct in vitro release studies of a potential oral formulation. Materials & methods: Intracolonic instillation of VIP-SSM was tested in a mouse model of dextran sulfate sodium-induced colitis. Based on the effective mouse dose, human equivalent dose containing nanomedicine powder was filled into enteric coated capsules for in vitro release testing. Results: Colonic delivery of VIP-SSM significantly alleviated colitis. VIP-SSM containing capsules completely dissolved at colonic pH allowing micelles to reform with active VIP. Capsule formulations exhibited reproducible release profiles when stored up to 6 weeks demonstrating stability. Conclusion: VIP-SSM is an effective nanomedicine formulation which appears to have potential for oral treatment of colitis in humans. [Formula: see text].
Collapse
Affiliation(s)
- Dulari Jayawardena
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL 60612, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, IL 60612, USA
| | - Arivarasu N Anbazhagan
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Shubha Priyamvada
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Anoop Kumar
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Seema Saksena
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hayat Onyuksel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, IL 60612, USA
| | - Pradeep K Dudeja
- Department of Medicine, College of Medicine, University of Illinois at Chicago, IL 60612, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Vasoactive intestinal peptide axis is dysfunctional in patients with Graves' disease. Sci Rep 2020; 10:13018. [PMID: 32747757 PMCID: PMC7400547 DOI: 10.1038/s41598-020-70138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide with potent immunoregulatory properties. Reduced serum VIP levels and alterations in VIP receptors/signaling on immune cells have been associated with different inflammatory/autoimmune diseases. However, its role in autoimmune thyroid diseases (AITD) remains unknown. This study examined the interrelationship between VIP system, autoimmune background and thyroid hormones in peripheral immune cells in patients with AITD. Only Graves' disease (GD) patients showed significantly lower serum VIP levels when compared to healthy subjects and to Hashimoto's thyroiditis patients. Serum VIP levels were lower at the onset of GD, showing a significant negative correlation with thyroid hormone levels. The expression of VIP receptors, VPAC1 and VPAC2, was significantly upregulated in peripheral blood mononuclear cells (PBMC) from GD patients. There was an impairment of VIP signalling in these patients, probably attributable to a dysfunction of VPAC1 with preservation of VPAC2. The correlation between VPAC1 and thyroid hormone receptor expression in PBMC from healthy subjects was lost in GD patients. In summary, the VIP system is altered in peripheral immune cells of GD patients and this finding is associated with different thyroid hormone receptor patterns, showing a dynamic inter-regulation and a prominent role of VIP in this setting.
Collapse
|
8
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
9
|
Gomariz RP, Juarranz Y, Carrión M, Pérez-García S, Villanueva-Romero R, González-Álvaro I, Gutiérrez-Cañas I, Lamana A, Martínez C. An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front Endocrinol (Lausanne) 2019; 10:729. [PMID: 31695683 PMCID: PMC6817626 DOI: 10.3389/fendo.2019.00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions.
Collapse
Affiliation(s)
- Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Rosa P. Gomariz
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection. PLoS One 2018; 13:e0204567. [PMID: 30252907 PMCID: PMC6155558 DOI: 10.1371/journal.pone.0204567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/11/2018] [Indexed: 12/23/2022] Open
Abstract
Citrobacter rodentium infection is a model for infection with attaching and effacing pathogens, such as enteropathogenic Escherichia coli. The vasoactive intestinal peptide (VIP) has emerged as an anti-inflammatory agent, documented to inhibit Th1 immune responses and successfully treat animal models of inflammation. VIP is also a mucus secretagogue. Here, we found that colonic levels of VIP decrease during murine C. rodentium infection with a similar time dependency as measurements reflecting mitochondrial function and epithelial integrity. The decrease in VIP appears mainly driven by changes in the cytokine environment, as no changes in VIP levels were detected in infected mice lacking interferon gamma (IFNγ). VIP supplementation alleviated the reduction of activity and levels of mitochondrial respiratory complexes I and IV, mitochondrial phosphorylation capacity, transmembrane potential and ATP generation caused by IFNγ, TNFα and C. rodentium infection, in an in vitro mucosal surface. Similarly, VIP treatment regimens that included the day 5–10 post infection period alleviated decreases in enzyme complexes I and IV, phosphorylation capacity, mitochondrial transmembrane potential and ATP generation as well as increased apoptosis levels during murine infection with C. rodentium. However, VIP treatment failed to alleviate colitis, although there was a tendency to decreased pathogen density in contact with the epithelium and in the spleen. Both in vivo and in vitro, NO generation increased during C. rodentium infection, which was alleviated by VIP. Thus, therapeutic VIP administration to restore the decreased levels during infection had beneficial effects on epithelial cells and their mitochondria, but not on the overall infection outcome.
Collapse
|
11
|
Seoane IV, Martínez C, García-Vicuña R, Ortiz AM, Juarranz Y, Talayero VC, González-Álvaro I, Gomariz RP, Lamana A. Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. Sci Rep 2018; 8:2035. [PMID: 29391448 PMCID: PMC5794878 DOI: 10.1038/s41598-018-20400-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
We previously reported that early arthritis (EA) patients with low vasoactive intestinal peptide (VIP) serum levels demonstrate a worse clinical disease course. In this study, we analysed whether variants in the VIP gene correlated with its serum levels and clinical EA parameters. The VIP gene was sequenced in patients with extremely high/low VIP levels, measured by enzyme immunoassay. Sixteen single nucleotide polymorphisms (SNPs) were differentially distributed between both groups, which were subsequently genotyped in two patients’ sets. We observed that patients with rs688136 CC genotype showed higher VIP levels in both discovery (n = 91; p = 0.033) and validation populations (n = 131; p = 0.007). This effect was attenuated by the presence of minor alleles rs35643203 and rs12201140, which showed a clear trend towards low VIP level association (p = 0.118 and p = 0.049, respectively). Functional studies with miR-205-5p, which has a target site in the 3′ UTR close to rs688136, revealed a miRNA-mediated regulatory mechanism explaining the higher VIP gene expression in homozygous patients. Moreover, patients with an rs688136 CC genotype and no minor alleles of the other polymorphisms required less treatment (p = 0.009). We concluded that the identification of polymorphisms associated with VIP serum levels would complement the clinical assessment of the disease severity in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Iria V Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Ana M Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Vanessa C Talayero
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| |
Collapse
|
12
|
Verma AK, Manohar M, Upparahalli Venkateshaiah S, Mishra A. Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine Growth Factor Rev 2017; 38:37-48. [PMID: 28964637 DOI: 10.1016/j.cytogfr.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
Abstract
Worldwide increase incidences of allergic diseases have heightened the interest of clinicians and researchers to understand the role of neuroendocrine cells in the recruitment and activation of inflammatory cells. Several pieces of evidence revealed the association of neuropeptides in the pathogenesis of allergic diseases. Importantly, one such peptide that is secreted by neuronal cells and immune cells exerts a wide spectrum of immunological functions as cytokine/chemokine is termed as Vasoactive Intestinal Peptide (VIP). VIP mediates immunological function through interaction with specific receptors namely VPAC-1, VPAC-2, CRTH2 and PAC1 that are expressed on several immune cells such as eosinophils, mast cells, neutrophils, and lymphocytes; therefore, provide the basis for the action of VIP on the immune system. Additionally, VIP mediated action varies according to target organ depending upon the presence of specific VIP associated receptor, involved immune cells and the microenvironment of the organ. Herein, we present an integrative review of the current understanding on the role of VIP and associated receptors in allergic diseases, the presence of VIP receptors on various immune cells with particular emphasis on the role of VIP in the pathogenesis of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. Being crucial signal molecule of the neuroendocrine-immune network, the development of stable VIP analogue and/or antagonist may provide the future therapeutic drug alternative for the better treatment of these allergic diseases. Taken together, our current review summarizes the current understandings of VIP biology and further explore the significance of neuroendocrine cells derived VIP in the recruitment of inflammatory cells in allergic diseases that may be helpful to the investigators for planning the experiments and accordingly predicting new therapeutic strategies for combating allergic diseases. Summarized graphical abstract will help the readers to understand the significance of VIP in allergic diseases.
Collapse
Affiliation(s)
- Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
13
|
Carrión M, Pérez-García S, Martínez C, Juarranz Y, Estrada-Capetillo L, Puig-Kröger A, Gomariz RP, Gutiérrez-Cañas I. VIP impairs acquisition of the macrophage proinflammatory polarization profile. J Leukoc Biol 2016; 100:1385-1393. [PMID: 27381006 DOI: 10.1189/jlb.3a0116-032rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022] Open
Abstract
This study tested the hypothesis that vasoactive intestinal peptide (VIP) is able to modify the macrophage inflammatory profile, thus supporting its therapeutic role in autoimmune diseases. Macrophages are innate immune cells that display a variety of functions and inflammatory profiles in response to the environment that critically controls their polarization. Deregulation between the pro- and anti-inflammatory phenotypes has been involved in different pathologies. Rheumatoid arthritis (RA) is an autoimmune disease, in which macrophages are considered central effectors of synovial inflammation, displaying a proinflammatory profile. VIP is a pleiotropic neuropeptide with proven anti-inflammatory actions. As modulation of the macrophage phenotype has been implicated in the resolution of inflammatory diseases, we evaluated whether VIP is able to modulate human macrophage polarization. In vitro-polarized macrophages by GM-CSF (GM-MØ), with a proinflammatory profile, expressed higher levels of VIP receptors, vasoactive intestinal polypeptide receptors 1 and 2 (VPAC1 and VPAC2, respectively), than macrophages polarized by M-CSF (M-MØ) with anti-inflammatory activities. RA synovial macrophages, according to their GM-CSF-like polarization state, expressed both VPAC1 and VPAC2. In vitro-generated GM-MØ exposed to VIP exhibited an up-regulation of M-MØ gene marker expression, whereas their proinflammatory cytokine profile was reduced in favor of an anti-inflammatory function. Likewise, in GM-MØ, generated in the presence of VIP, VIP somehow changes the macrophages physiology profile to a less-damaging phenotype. Therefore, these results add new value to VIP as an immunomodulatory agent on inflammatory diseases.
Collapse
Affiliation(s)
- Mar Carrión
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| | - Selene Pérez-García
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| | - Carmen Martínez
- Faculty of Medicine, Department of Cell Biology, Complutense University, Madrid, Spain; and
| | - Yasmina Juarranz
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| | - Lizbeth Estrada-Capetillo
- Immuno-metabolism Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Amaya Puig-Kröger
- Immuno-metabolism Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rosa P Gomariz
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain;
| | - Irene Gutiérrez-Cañas
- Faculty of Biology, Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
14
|
Seoane IV, Ortiz AM, Piris L, Lamana A, Juarranz Y, García-Vicuña R, González-Álvaro I, Gomariz RP, Martínez C. Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity. PLoS One 2016; 11:e0149141. [PMID: 26881970 PMCID: PMC4755558 DOI: 10.1371/journal.pone.0149141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background The vasoactive intestinal peptide (VIP) receptors VPAC1 and VPAC2 mediate anti-inflammatory and immunoregulatory responses in rheumatoid arthritis (RA). Data on the expression of these receptors could complement clinical assessment in the management of RA. Our goal was to investigate the correlation between expression of both receptors and the 28-Joint Disease Activity Score (DAS28) in peripheral blood mononuclear cells (PBMCs) from patients with early arthritis (EA). We also measured expression of IL-6 to evaluate the association between VIP receptors and systemic inflammation. Methods We analyzed 250 blood samples collected at any of the 5 scheduled follow-up visits from 125 patients enrolled in the Princesa Early Arthritis Register Longitudinal study. Samples from 22 healthy donors were also analyzed. Sociodemographic, clinical, and therapeutic data were systematically recorded. mRNA expression levels were determined using real-time PCR. Then, longitudinal multivariate analyses were performed. Results PBMCs from EA patients showed significantly higher expression of VPAC2 receptors at baseline compared to healthy donors (p<0.001). With time, however, VPAC2 expression tended to be significantly lower while VPAC1 receptor expression increased in correlation with a reduction in DAS28 index. Our results reveal that more severe inflammation, based on high levels of IL-6, is associated with lower expression of VPAC1 (p<0.001) and conversely with increased expression of VPAC2 (p<0.001). A major finding of this study is that expression of VPAC1 is lower in patients with increased disease activity (p = 0.001), thus making it possible to differentiate between patients with various degrees of clinical disease activity. Conclusion Patients with more severe inflammation and higher disease activity show lower levels of VPAC1 expression, which is associated with patient-reported impairment. Therefore, VPAC1 is a biological marker in EA.
Collapse
MESH Headings
- Adult
- Aged
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/physiopathology
- Case-Control Studies
- Female
- Gene Expression Regulation
- Humans
- Interleukin-6/blood
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/metabolism
- Longitudinal Studies
- Male
- Middle Aged
- Receptors, Vasoactive Intestinal Peptide, Type II/blood
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/blood
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Severity of Illness Index
- Signal Transduction
- Social Class
- Time Factors
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Iria V. Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana M. Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Lorena Piris
- Unidad de Apoyo Metodológico, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, Madrid, Spain
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Di Giovangiulio M, Verheijden S, Bosmans G, Stakenborg N, Boeckxstaens GE, Matteoli G. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease. Front Immunol 2015; 6:590. [PMID: 26635804 PMCID: PMC4653294 DOI: 10.3389/fimmu.2015.00590] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Collapse
Affiliation(s)
- Martina Di Giovangiulio
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Simon Verheijden
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Goele Bosmans
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Nathalie Stakenborg
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Guy E Boeckxstaens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Gianluca Matteoli
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| |
Collapse
|
16
|
Jimeno R, Leceta J, Garín M, Ortiz AM, Mellado M, Rodríguez-Frade JM, Martínez C, Pérez-García S, Gomariz RP, Juarranz Y. Th17 polarization of memory Th cells in early arthritis: the vasoactive intestinal peptide effect. J Leukoc Biol 2015; 98:257-69. [PMID: 25957307 DOI: 10.1189/jlb.3a0714-327r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 04/12/2015] [Indexed: 01/15/2023] Open
Abstract
Several studies in humans indicate the implication of Th17 cells in RA. Therapies targeting their pathogenicity, as well as their plasticity to the Th17/1 phenotype, could ameliorate the progression of the pathology. The neuroendocrine environment has a major impact on the differentiation of lymphoid cells. VIP is present in the microenvironment of the joint, and its known therapeutic effects are supported by several studies on RA. We examine the ability of VIP to modulate the differentiation of Th17 cells. Peripheral blood CD4(+)CD45RO(+) T cells from HD and eRA patients were expanded under Th17-polarizing conditions in the presence of TGF-β. After 7 days, the higher IL-17A, IL-21, and IL-9 levels and lower IL-22 levels indicate the nonpathogenic profile for Th17 cells in HD. In contrast, Th17 cells from eRA patients produced significantly more IL-22 and IFN-γ, and these cells show a more Th17/1 profile, indicating a pathogenic phenotype. Interestingly, when VIP was present in the Th17 conditioned medium, increased levels of IL-10 and IL-9 were detected in HD and eRA patients. VIP also reduced the levels of IL-22 in eRA patients. These data suggest that VIP reduces the pathogenic profile of the Th17-polarized cells. This effect was accompanied by an increased in the Treg/Th17 profile, as shown by the increase levels of Foxp3. In conclusion, this report addresses a novel and interesting question on the effect of VIP on human Th17 cells and adds clinical relevance by analyzing, in parallel, HD and eRA patients.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marina Garín
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana M Ortiz
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Mellado
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jose Miguel Rodríguez-Frade
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de *Biología y Medicina, Universidad Complutense de Madrid, Madrid, Spain; División de Terapias Innovadoras en el S. Hematopoyético, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad Mixta de Terapias Avanzadas, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/IIS Fundación Jiménez Díaz, Madrid, Spain; Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital La Princesa, Madrid, Spain; and Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Tan YV, Abad C, Wang Y, Lopez R, Waschek J. VPAC2 (vasoactive intestinal peptide receptor type 2) receptor deficient mice develop exacerbated experimental autoimmune encephalomyelitis with increased Th1/Th17 and reduced Th2/Treg responses. Brain Behav Immun 2015; 44:167-175. [PMID: 25305591 PMCID: PMC4275378 DOI: 10.1016/j.bbi.2014.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 01/01/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide (PACAP) are two structurally-related neuropeptides with widespread expression in the central and peripheral nervous systems. Although these peptides have been repeatedly shown to exert potent anti-inflammatory actions when administered in animal models of inflammatory disease, mice deficient in VIP and PACAP were recently shown to exhibit different phenotypes (ameliorated and exacerbated, respectively) in response to experimental autoimmune encephalomyelitis (EAE). Therefore, elucidating what are the specific immunoregulatory roles played by each of their receptor subtypes (VPAC1, VPAC2, and PAC1) is critical. In this study, we found that mice with a genetic deletion of VIPR2, encoding the VPAC2 receptor, exhibited exacerbated (MOG35-55)-induced EAE compared to wild type mice, characterized by enhanced clinical and histopathological features, increased proinflammatory cytokines (TNF-α, IL-6, IFN-γ (Th1), and IL-17 (Th17)) and reduced anti-inflammatory cytokines (IL-10, TGFβ, and IL-4 (Th2)) in the CNS and lymph nodes. Moreover, the abundance and proliferative index of lymph node, thymus and CNS CD4(+)CD25(+)FoxP3(+) Tregs were strikingly reduced in VPAC2-deficient mice with EAE. Finally, the in vitro suppressive activity of lymph node and splenic Tregs from VPAC2-deficient mice was impaired. Overall, our results demonstrate critical protective roles for PACAP and the VPAC2 receptor against autoimmunity, promoting the expansion and maintenance of the Treg pool.
Collapse
Affiliation(s)
| | | | | | | | - James Waschek
- Corresponding author: James A. Waschek, Ph.D. 635 Charles E Young Drive South Los Angeles CA 90095 Phone number (310)-825-0179 FAX (310)-206-5061
| |
Collapse
|
18
|
Nunan R, Sivasathiaseelan H, Khan D, Zaben M, Gray W. Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release. Glia 2014; 62:1313-27. [PMID: 24801739 PMCID: PMC4336555 DOI: 10.1002/glia.22682] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 01/23/2023]
Abstract
Neurogenesis, the production of new neurons from neural stem/progenitor cells (NSPCs), occurs throughout adulthood in the dentate gyrus of the hippocampus, where it supports learning and memory. The innate and adaptive immune systems are increasingly recognized as important modulators of hippocampal neurogenesis under both physiological and pathological conditions. However, the mechanisms by which the immune system regulates hippocampal neurogenesis are incompletely understood. In particular, the role of microglia, the brains resident immune cell is complex, as they have been reported to both positively and negatively regulate neurogenesis. Interestingly, neuronal activity can also regulate the function of the immune system. Here, we show that depleting microglia from hippocampal cultures reduces NSPC survival and proliferation. Furthermore, addition of purified hippocampal microglia, or their conditioned media, is trophic and proliferative to NSPCs. VIP, a neuropeptide released by dentate gyrus interneurons, enhances the proliferative and pro-neurogenic effect of microglia via the VPAC1 receptor. This VIP-induced enhancement is mediated by IL-4 release, which directly targets NSPCs. This demonstrates a potential neuro-immuno-neurogenic pathway, disruption of which may have significant implications in conditions where combined cognitive impairments, interneuron loss, and immune system activation occurs, such as temporal lobe epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Nunan
- Division of Clinical Neurosciences, University of Southampton, Southampton, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor vagal nucleus (DMX). J Mol Neurosci 2014; 54:188-98. [PMID: 24643520 PMCID: PMC4156783 DOI: 10.1007/s12031-014-0274-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 02/07/2023]
Abstract
The main goal of our research was to study the possible alterations of the chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric region following prolonged acetylsalicylic acid supplementation. Fast Blue (FB) was injected into the studied area of the stomach. Since the seventh day following the FB injection, acetylsalicylic acid (ASA) was given orally to the experimental gilts. All animals were euthanized on the 28th day after FB injection. Medulla oblongata sections were then processed for double-labeling immunofluorescence for choline acetyltransferase (ChAT), pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the control DMX, only PACAP was observed in 30.08 ± 1.97 % of the FB-positive neurons, while VIP, NOS, GAL, SP, LENK, and CART were found exclusively in neuronal processes running between FB-labeled perikarya. In the ASA DMX, PACAP was revealed in 49.53 ± 5.73 % of traced vagal perikarya. Moreover, we found de novo expression of VIP in 40.32 ± 7.84 %, NOS in 25.02 ± 6.08 %, and GAL in 3.37 ± 0.85 % of the FB-labeled neurons. Our results suggest that neuronal PACAP, VIP, NOS, and GAL are mediators of neural response to aspirin-induced stomach inflammatory state.
Collapse
|
20
|
Fraccaroli L, Grasso E, Hauk V, Cortelezzi M, Pérez Leirós C, Ramhorst R. Contribution of vasoactive intestinal peptide to immune homeostasis in trophoblast-maternal leukocyte interaction under LPS stimulation. Neuroimmunomodulation 2014; 21:21-30. [PMID: 24135863 DOI: 10.1159/000355039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The maternal-fetal interface is a unique immunological site that generates an adequate microenvironment during pregnancy, recognizing and eliminating infections and tolerating the trophoblast/placenta unit. For that purpose, trophoblast cells display several tolerogenic mechanisms to allow fetal survival, such as production of the neuropeptide vasoactive intestinal peptide (VIP). Here we investigated the contribution of VIP to maintain homeostasis at the maternal-placental interface under lipopolysaccharide (LPS) stimulation. METHODS We performed cocultures between trophoblast cells (Swan-71 cell line) and maternal leukocytes obtained from fertile women as an in vitro model of maternal-placental interaction, and we focused on the effects of LPS on the modulation of VIP and their receptors (VPAC1 and VPAC2). RESULTS VIP could prevent the upregulation of IL-6, MCP-1, and nitrite production and maintain the production of IL-10 and TGF-β under LPS (10 µg/ml) stimulation after 48 h of coculture. To gain deeper insight into the mechanisms of how VIP could contribute to a tolerogenic microenvironment even in the presence of LPS, we investigated VIP production by maternal leukocytes and observed a significant increase in the frequency of CD4+VIP+ cells after interaction with Swan-71 cells in the presence of LPS. LPS increased VIP and inducible receptor VPAC2 expression directly on trophoblast cells in a dose- and time-dependent manner. CONCLUSIONS The present results suggest that VIP might act as an additional homeostatic mechanism during early stages at the maternal-placental interface to control exacerbated inflammatory responses such as the ones observed in intrauterine infections.
Collapse
Affiliation(s)
- Laura Fraccaroli
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN-CONICET (National Research Council of Science and Technology, CONICET), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
21
|
Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol 2013; 2013:705232. [PMID: 24382974 PMCID: PMC3870621 DOI: 10.1155/2013/705232] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/03/2022]
Abstract
Currently, it is generally accepted that multiple sclerosis (MS) is a complex multifactorial disease involving genetic and environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other autoimmune diseases.
Collapse
|
22
|
Localization and chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric area in the physiological state and after stomach partial resection. J Mol Neurosci 2013; 52:90-100. [PMID: 24458741 DOI: 10.1007/s12031-013-0102-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
The aim of our study was to localize and define immunocytochemical characteristic of the dorsal motor nucleus of the vagus (DMX) neurons projecting to the porcine stomach prepyloric region in the physiological state and after gastric partial resection. To identify the stomach-projecting perikarya, the neuronal retrograde tracer--Fast Blue (FB) was injected into the studied region of control and resection group (RES). In the RES group, on 22nd day after FB injection, the partial resection of the stomach region previously injected with FB was performed. Sections were immunostained with ChAT, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu-enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the DMX of control and RES group, the stomach-projecting perikarya were found in the entire extent of the nucleus bilaterally. Within control animals, 30.08 ± 1.97 % of the gastric DMX perikarya expressed PACAP, while other substances were found only in the neuronal fibers. In the RES group DMX, PACAP was found in 45.58 ± 2.2 %, VIP in 28.83 ± 3.63 %, NOS in 21.22 ± 3.32 %, and GAL in 5.67 ± 1.49 % of the FB-labeled gastric perikarya. Our data implicate PACAP, VIP, NOS, and GAL as neuronal survival promoting substances and the CART-, LENK-, SP- NOS-, and GAL-immunoreactive processes in control of the gastric vagal neurons in the pig.
Collapse
|
23
|
Fraccaroli L, Grasso E, Hauk V, Cortelezzi M, Calo G, Pérez Leirós C, Ramhorst R. Defects in the vasoactive intestinal peptide (VIP)/VPAC system during early stages of the placental-maternal leucocyte interaction impair the maternal tolerogenic response. Clin Exp Immunol 2012; 170:310-20. [PMID: 23121672 PMCID: PMC3518891 DOI: 10.1111/j.1365-2249.2012.04668.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/17/2022] Open
Abstract
Successful embryo implantation occurs followed by a local inflammatory/T helper type 1 (Th1) response, subsequently redirected towards a tolerogenic predominant profile. The lack of control of this initial local inflammatory response may be an underlying cause of early pregnancy complications as recurrent spontaneous abortions (RSA). Considering that vasoactive intestinal peptide (VIP) mediates anti-inflammatory and tolerogenic effects in several conditions we hypothesized that VIP might contribute to tolerance towards trophoblast antigens during the early interaction of maternal leucocytes and trophoblast cells. In this study we investigated VIP/VPAC system activity and expression on maternal peripheral blood mononuclear cells (PBMCs) after interaction with immortalized trophoblast cells (Swan-71 cell line) as an in-vitro model of feto-maternal interaction, and we analysed whether it modulates maternal regulatory T cell (T(reg))/Th1 responses. We also investigated the contribution of the endogenous VIP/VPAC system to RSA pathogenesis. VIP decreased T-bet expression significantly, reduced monocyte chemotactic protein-1 (MCP-1) and nitrite production in co-cultures of PBMCs from fertile women with trophoblast cells; while it increased the frequency of CD4(+) CD25(+) forkhead box protein 3 (Foxp3)(+) cells, transforming growth factor (TGF)-β expression and interleukin (IL)-10 secretion. These effects were prevented by VIP-specific antagonist. Interestingly, PBMCs from RSA patients displayed significantly higher T-bet expression, lower T(reg) frequency and lower frequency of VIP-producer CD4 lymphocytes after the interaction with trophoblast cells. Moreover, the patients displayed a significantly lower frequency of endometrial CD4(+) VIP(+) cells in comparison with fertile women. VIP showed a Th1-limiting and T(reg) -promoting response in vitro that would favour early pregnancy outcome. Because RSA patients displayed defects in the VIP/VPAC system, this neuropeptide could be a promising candidate for diagnostic biomarker or surrogate biomarker for recurrent spontaneous abortions.
Collapse
Affiliation(s)
- L Fraccaroli
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and National Research Council (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
24
|
VIP deficient mice exhibit resistance to lipopolysaccharide induced endotoxemia with an intrinsic defect in proinflammatory cellular responses. PLoS One 2012; 7:e36922. [PMID: 22615845 PMCID: PMC3355097 DOI: 10.1371/journal.pone.0036922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide with immunomodulatory properties. The administration of this peptide has been shown to have beneficial effects in murine models of inflammatory diseases including septic shock, rheumatoid arthritis, multiple sclerosis (MS) and Crohn's disease. However, the role of the endogenous peptide in inflammatory disease remains obscure because VIP-deficient mice were recently found to exhibit profound resistance in a model of MS. In the present study, we analyzed the response of female VIP deficient (KO) mice to intraperitoneal lipopolysaccharide (LPS) administration. We observed significant resistance to LPS in VIP KO mice, as evidenced by lower mortality and reduced tissue damage. The increased survival was associated with decreased levels of proinflammatory cytokines (TNFα, IL-6 and IL-12) in sera and peritoneal suspensions of these mice. Moreover, the expression of TNFα and IL-6 mRNA was reduced in peritoneal cells, spleens and lungs from LPS-treated VIP KO vs. WT mice, suggesting that the resistance might be mediated by an intrinsic defect in the responsiveness of immune cells to endotoxin. In agreement with this hypothesis, peritoneal cells isolated from VIP KO naive mice produced lower levels of proinflammatory cytokines in response to LPS in vitro. Finally, decreased NF-κB pathway activity in peritoneal cells was observed both in vivo and in vitro, as determined by assay of phosphorylated I-κB. The results demonstrate that female VIP KO mice exhibit resistance to LPS-induced shock, explainable in part by the presence of an intrinsic defect in the responsiveness of inflammatory cells to endotoxin.
Collapse
|
25
|
Couvineau A, Laburthe M. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins. Br J Pharmacol 2012; 166:42-50. [PMID: 21951273 PMCID: PMC3415636 DOI: 10.1111/j.1476-5381.2011.01676.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 02/05/2023] Open
Abstract
The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Alain Couvineau
- Centre de recherche biomédicale Bichat-Beaujon, Faculté de médecine X. Bichat, Paris, France. or
| | | |
Collapse
|
26
|
Korkmaz O, Ay H, Ulupinar E, Tunçel N. Vasoactive intestinal peptide enhances striatal plasticity and prevents dopaminergic cell loss in Parkinsonian rats. J Mol Neurosci 2012; 48:565-73. [PMID: 22544516 DOI: 10.1007/s12031-012-9781-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 01/18/2023]
Abstract
Destruction of the nigrostriatal dopaminergic pathway by the administration of 6-OHDA generates an animal model of Parkinson's disease. The main characteristic of this progressive neurological disorder is the loss of the dopaminergic neurons located in the substantia nigra pars compacta (SNc). Dopaminergic inputs from the SNc innervate the medium spiny neurons of the striatum and modulate the spontaneous activity of the primary output nuclei of the basal ganglia, globus pallidus interna, and substantia nigra pars reticulata. In our previous studies, we showed that systematically administered vasoactive intestinal peptide (VIP) is effective at reversing motor deficits, decreasing neuronal cell death, and repairing the myelin sheet in parkinsonian rats. In the current study, the effects of VIP on the dendritic morphology of the striatal neurons and the number of dopaminergic neurons in the SNc were examined in 6-OHDA-lesioned rats using Golgi-Cox staining and design-based stereological methods, respectively. Adult Sprague-Dawley rats were separated into sham-operated, bilaterally 6-OHDA lesioned and lesioned + i.p. VIP-injected (25 ng/kg) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection (every 2 days for 15 days). The 6-OHDA significantly decreased the total number of dopaminergic neurons, branching, and spine density of the medium spiny neurons in the striatum. VIP significantly increased the number of neurons immunostained with tyrosine hydroxylase and the density of spines without altering the branching and the total length of dendrites. In conclusion, VIP might display synaptogenetic activity by enhancing the spine density in the striatum of the parkinsonian rats.
Collapse
Affiliation(s)
- OrhanTansel Korkmaz
- Department of Physiology and Neurophysiology, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| | | | | | | |
Collapse
|
27
|
Pérez-García S, Juarranz Y, Carrión M, Gutiérrez-Cañas I, Margioris A, Pablos JL, Tsatsanis C, Gomariz RP. Mapping the CRF-urocortins system in human osteoarthritic and rheumatoid synovial fibroblasts: effect of vasoactive intestinal peptide. J Cell Physiol 2011; 226:3261-9. [PMID: 21360527 DOI: 10.1002/jcp.22687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to the brain and pituitary gland, the corticotrophin-releasing factor (CRF) system is expressed in peripheral tissues. In this study we characterize the expression of CRF, urocortins (UCN1, UCN2, and UCN3), and their receptors (CRFR1 and CRFR2) in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). Moreover, we analyze the vasoactive intestinal peptide (VIP) effect on the CRF system, as well as its physiological consequences on mediators of inflammatory/destructive processes. CRF and UCNs exhibit differential pattern in OA and RA-FLS. By real-time PCR we detected more expression of CRF and UCN1 in RA, and UCN2 and UCN3 in OA, while the CRFR2 expression was similar. In RA-FLS VIP treatment resulted in a significant decrease of the proinflammatory peptides, CRF and UCN1, and a significant increase of the potential anti-inflammatory agents, UCN3 and CRFR2. Using Western blot assays, we showed that the ratio between phospho-CREB (p-CREB) and c-AMP response element-binding (CREB) is higher in OA and significantly lower in RA-FLS after VIP treatment, with consequences upon cAMP response element in CRF and UCN1 genes. Real-time PCR and EIA proved that VIP significantly inhibits cycloxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in RA-FLS. In all cases, we consider significant data when P < 0.05. These data indicate a role of endogenous CRF, UCNs, and CRFR2 in the OA and RA joint microenvironment. We confirm the anti-inflammatory function of VIP, through the modulation of the expression of CRF system that impacts in a reduction of mediators with inflammatory/destructive functions, supporting its therapeutic potential in rheumatic diseases.
Collapse
Affiliation(s)
- Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeting VIP and PACAP receptor signalling: new therapeutic strategies in multiple sclerosis. ASN Neuro 2011; 3:AN20110024. [PMID: 21895607 PMCID: PMC3189630 DOI: 10.1042/an20110024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MS (multiple sclerosis) is a chronic autoimmune and neurodegenerative pathology of the CNS (central nervous system) affecting approx. 2.5 million people worldwide. Current and emerging DMDs (disease-modifying drugs) predominantly target the immune system. These therapeutic agents slow progression and reduce severity at early stages of MS, but show little activity on the neurodegenerative component of the disease. As the latter determines permanent disability, there is a critical need to pursue alternative modalities. VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate cyclase-activating peptide) have potent anti-inflammatory and neuroprotective actions, and have shown significant activity in animal inflammatory disease models including the EAE (experimental autoimmune encephalomyelitis) MS model. Thus, their receptors have become candidate targets for inflammatory diseases. Here, we will discuss the immunomodulatory and neuroprotective actions of VIP and PACAP and their signalling pathways, and then extensively review the structure–activity relationship data and biophysical interaction studies of these peptides with their cognate receptors.
Collapse
|
29
|
Tannu SA, Renzetti LM, Tare N, Ventre JD, Lavelle D, Lin TA, Morschauser A, Paciorek J, Bolin DR, Michel H, Singer L, Hargaden M, Knowles I, Gardiner P, Cazzola M, Calzetta L, Matera MG, Hicks A. Dual bronchodilatory and pulmonary anti-inflammatory activity of RO5024118, a novel agonist at vasoactive intestinal peptide VPAC2 receptors. Br J Pharmacol 2011; 161:1329-42. [PMID: 20735404 DOI: 10.1111/j.1476-5381.2010.00975.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Vasoactive intestinal peptide is expressed in the respiratory tract and induces its effects via its receptors, VPAC(1) and VPAC(2). RO5024118 is a selective VPAC(2) receptor agonist derived via chemical modification of an earlier VPAC(2) agonist, RO0251553. In the present studies, we characterized the pharmacological activity of RO5024118. EXPERIMENTAL APPROACH Stability of RO5024118 to human neutrophil elastase was assessed. Bronchodilatory activity of RO5024118 was investigated in guinea pig and human isolated airway smooth muscle preparations and in a guinea pig bronchoconstriction model. Pulmonary anti-inflammatory activity of RO5024118 was investigated in a lipopolysaccharide mouse model and in a porcine pancreatic elastase (PPE) rat model. KEY RESULTS RO5024118 demonstrated increased stability to neutrophil elastase compared with RO0251553. In human and guinea pig isolated airway preparations, RO5024118 induced bronchodilatory effects comparable with RO0251553 and the long-acting β-agonist salmeterol and was significantly more potent than native vasoactive intestinal peptide and the short-acting β-agonist salbutamol. In 5-HT-induced bronchoconstriction in guinea pigs, RO5024118 exhibited inhibitory activity with similar efficacy as, and longer duration than, RO0251553. In a lipopolysaccharide-mouse model, RO5024118 inhibited neutrophil and CD8(+) cells and myeloperoxidase levels. In rats, intratracheal instillation of PPE induced airway neutrophilia that was resistant to dexamethasone. Pretreatment with RO5024118 significantly inhibited PPE-induced neutrophil accumulation. CONCLUSIONS AND IMPLICATIONS These results demonstrate that RO5024118 induces dual bronchodilatory and pulmonary anti-inflammatory activity and may be beneficial in treating airway obstructive and inflammatory diseases. LINKED ARTICLES This article is part of a themed section on Analytical Receptor Pharmacology in Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2010.161.issue-6.
Collapse
Affiliation(s)
- S A Tannu
- RNA Therapeutics, Roche, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tunçel N, Korkmaz OT, Tekin N, Şener E, Akyüz F, İnal M. Antioxidant and Anti-Apoptotic Activity of Vasoactive Intestinal Peptide (VIP) Against 6-Hydroxy Dopamine Toxicity in the Rat Corpus Striatum. J Mol Neurosci 2011; 46:51-7. [DOI: 10.1007/s12031-011-9618-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/04/2011] [Indexed: 01/17/2023]
|
31
|
Jimeno R, Leceta J, Martínez C, Gutiérrez-Cañas I, Pérez-García S, Carrión M, Gomariz RP, Juarranz Y. Effect of VIP on the balance between cytokines and master regulators of activated helper T cells. Immunol Cell Biol 2011; 90:178-86. [PMID: 21445087 DOI: 10.1038/icb.2011.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD4T helper cells are decisive in the struggle against pathogens and in maintaining immune homeostasis. Nevertheless, they also drive immune-mediated disease. Recently, emerging evidence suggests that seemingly committed Th cells possess plasticity and may convert into other types of effector cells. Vasoactive Intestinal Peptide (VIP) is an immunomodulator neuropeptide, which is able to promote or inhibit individually the differentiation or function of some T-helper subsets. We conducted ex vivo study with erythrocyte-depleted spleen cells from healthy mice to check the balance between cytokines and master regulators of different T-helper subsets. This neuropeptide adversely affected the differentiation and functionality phases of Th17 cells and had a negative influence on cytokines related to Th1 function, increasing Th17 cells over those of the Th1 cell subset. With respect to Th2 subsets, VIP augmented the interleukin (IL)-4/IL-9 mRNA ratio, and a negative correlation between IL-4 and IL-9 was observed in culture supernatants. VIP augmented Th2 relative to Th1 in cell subsets. VIP decreased the iTreg/Th17 balance. Regarding the induced T-regulatory (iTreg)/Th1 balance, VIP increased the presence of immunoregulatory cytokines in relation to IFNγ. Although additional studies are needed to clarify the role of VIP on the balance between cytokines and master regulators during T-helper differentiation, our data show that VIP reduces Th17/Th1 and Th1/Th2 ratios. However, the iTreg/Th17 ratio was differently counterbalanced, probably because of culture conditions. Finally, this is the first study showing that VIP also modulates Th2/Th9 and iTreg/Th1 ratios.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yu R, Zhang H, Huang L, Liu X, Chen J. Anti-hyperglycemic, antioxidant and anti-inflammatory effects of VIP and a VPAC1 agonist on streptozotocin-induced diabetic mice. Peptides 2011; 32:216-22. [PMID: 21129425 DOI: 10.1016/j.peptides.2010.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 11/13/2010] [Accepted: 11/15/2010] [Indexed: 01/29/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide with potent anti-inflammatory properties, and its receptor, VPAC1, mediates most of the anti-inflammatory effects of VIP. Diabetes mellitus is characterized by increased oxidation and inflammation due to persistent hyperglycemia. This research was performed to investigate the effects of VIP and a VPAC1 agonist on streptozotocin (STZ)-induced type 1 diabetic mice. Intraperitoneal injection of VIP and VPAC1 agonist (50nmol/kg/day in saline) over a 28-day period (1) decreased food intake, (2) increased body weight, (3) improved visceral index, (4) increased the fasting plasma insulin levels, (5) decreased the fasting plasma glucose, (6) improved the glucose tolerance, (7) decreased pancreas H(2)O(2) and malondialdehyde (MDA) and (8) increased total antioxidant activity (T-AOC) in the liver, spleen and pancreas. The results of histopathological and immunohistochemical analysis showed that VIP and the VPAC1 agonist improved the structure and cellularity of islets and ameliorated the insulin-secreting activity of islets. Additionally, administration of VIP or the VPAC1 agonist not only significantly decreased the plasma TNFα and CRP and promoted IL-10 in diabetic mice but also blocked the increased NF-κB activity of pancreatic tissue in diabetic mice. Furthermore, the VPAC1 agonist displayed stronger effects than VIP. These results show that both VIP and VPAC1 agonist ameliorated STZ-induced diabetes and protected mice against oxidative stress and inflammation associated diabetes, with VPAC1 being the receptor most responsible for these positive effects in diabetic mice.
Collapse
Affiliation(s)
- Rongjie Yu
- Bio-engineering Institute of Jinan University, Jinan University, Guangzhou 510632, China. rongjie
| | | | | | | | | |
Collapse
|
33
|
Yadav M, Huang MC, Goetzl EJ. VPAC1 (vasoactive intestinal peptide (VIP) receptor type 1) G protein-coupled receptor mediation of VIP enhancement of murine experimental colitis. Cell Immunol 2011; 267:124-32. [PMID: 21295288 DOI: 10.1016/j.cellimm.2011.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
Distinct roles of the two T cell G protein-coupled receptors for vasoactive intestinal peptide (VIP), termed VPAC1 and VPAC2, in VIP regulation of autoimmune diseases were investigated in the dextran sodium sulfate (DSS)-induced murine acute colitis model for human inflammatory bowel diseases. In mice lacking VPAC2 (VPAC2-KO), DSS-induced colitis appeared more rapidly with greater weight loss and severe histopathology than in wild-type mice. In contrast, DSS-induced colitis in VPAC1-KO mice was milder than in wild-type mice and VPAC2-KO mice. Tissues affected by colitis showed significantly higher levels of myeloperoxidase, IL-6, IL-1β and MMP-9 in VPAC2-KO mice than wild-type mice, but there were no differences for IL-17, IFN-γ, IL-4, or CCR6. Suppression of VPAC1 signals in VPAC2-KO mice by PKA inhibitors reduced the clinical and histological severity of DSS-induced colitis, as well as tissue levels of IL-6, IL-1β and MMP-9. Thus VIP enhancement of the severity of DSS-induced colitis is mediated solely by VPAC1 receptors.
Collapse
Affiliation(s)
- Mahesh Yadav
- Department of Medicine, University of California Medical Center, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
34
|
Sheikine Y, Deodato B, Olofsson PS, Söderström LA, Lundberg AM, Bodin I, Rudling M, Theodorsson E, Hansson GK. Activation of VPAC1 receptors aggravates early atherosclerosis in hypercholesterolemic apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2010; 402:471-6. [DOI: 10.1016/j.bbrc.2010.10.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 12/30/2022]
|
35
|
Couvineau A, Ceraudo E, Tan YV, Laburthe M. VPAC1 receptor binding site: contribution of photoaffinity labeling approach. Neuropeptides 2010; 44:127-132. [PMID: 20031208 DOI: 10.1016/j.npep.2009.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/13/2009] [Accepted: 11/14/2009] [Indexed: 02/08/2023]
Abstract
The vasoactive intestinal peptide (VIP) is a prominent 28 aminoacid neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP has a large spectrum of biological functions including exocrine secretions, hormone release, foetal development, immune response and also exerts beneficial effect in neuro-degenerative and inflammatory diseases. Few years ago, it has been shown that VIP can be a promising anti-inflammatory agent. VIP mechanisms of action implicate two sub-types of receptors (VPAC1 and VPAC2) which are members of class B receptors belonging to the super-family of G protein-coupled receptor (GPCR). Because, VPAC1 receptor plays an important role in the modulation of the ant-inflammatory response and represent an archetype of class B GPCR, we have extensively studied the structure-function relationship of this receptor, which allowed us to define the molecular basis of that receptor in term of affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies showed the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP binding. Using different techniques including photoaffinity labeling, NMR, molecular modeling and molecular dynamic simulation, it has been possible to define how VIP interacts with its receptor. We have shown that most of the VIP molecule, 1-28 (alpha-helix) sequence, tightly binds the N-ted part of the receptor which is himself structured as a <> domain. In contrast, the N-terminal part of the specific antagonist PG97-269 is in physical contact with the N-ted but in different region. These studies define the molecular mechanism implicated in the activation of class B VPAC1 receptor and should allow the development of new VIP pharmacology using rational synthesis of agonist molecules.
Collapse
Affiliation(s)
- A Couvineau
- INSERM 773, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), Faculté de Médecine Xavier Bichat, Université Paris 7, 75870 Paris Cedex 18, France.
| | | | | | | |
Collapse
|
36
|
Jimeno R, Gomariz RP, Gutiérrez-Cañas I, Martínez C, Juarranz Y, Leceta J. New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes. Immunol Cell Biol 2010; 88:734-45. [PMID: 20309012 DOI: 10.1038/icb.2010.29] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Type I diabetes is an autoimmune T-cell-mediated disease associated with overexpression of inflammatory mediators and the disturbance of different T-cell subsets. Vasoactive intestinal peptide (VIP) is a potent anti-inflammatory agent with regulatory effects on activated T cells. As the equilibrium between different T-cell subsets is involved in the final outcome, leading to tolerance or autoimmunity, we studied the evolution of markers for T cells in nonobese diabetic (NOD) mice. The study of different transcription factors, cytokines or cytokine receptors, shows that VIP interferes with functional phase of T helper 17 (Th17) cells and prevents the increase in the proportion of Th1 to Th17 cells. On the other hand, VIP-treated NOD mice show an increase in the proportion of CD4(+)CD25(+) cells in the spleen. Thus, VIP switches the Tregs/Th17 ratio leading to tolerance in NOD mice. Similarly, VIP reverses the ratio of Th1-/Th2-cell subsets associated with autoimmune pathology. All these effects on the ratio of T-cell subsets and the anti-inflammatory effect of VIP in decreasing proinflammatory mediators result in a reduction of β-cell destruction in pancreas. Taken together, these results show that VIP provides significant protection against spontaneous diabetes by modulating T-cell subsets and counterbalancing tolerance and immunity.
Collapse
Affiliation(s)
- Rebeca Jimeno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Giunta S, Castorina A, Adorno A, Mazzone V, Carnazza ML, D'Agata V. PACAP and VIP affect NF1 expression in rat malignant peripheral nerve sheath tumor (MPNST) cells. Neuropeptides 2010; 44:45-51. [PMID: 19919880 DOI: 10.1016/j.npep.2009.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/14/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
In our previous study we have identified PACAP, VIP and their receptors in rat malignant peripheral nerve sheath tumor (MPNST) cells, thus showing anti-apoptotic roles. Recently it has been shown that the tumor suppressor neurofibromin, encoded by the Neurofibromatosis type I (NF1) gene, promotes MPNST cells sensitivity to apoptosis after serum withdrawal. In the present study we investigated whether PACAP or VIP negatively regulate NF1 expression under normal or serum-dependent pro-apoptotic culture conditions. Results indicated that serum itself significantly influenced gene and protein levels. In fact, the low NF1 levels of cells cultured in normal serum-containing medium were remarkably increased in cells switched to low- or no-serum after 24h and 48 h. Treatment with 100 nM PACAP or VIP did not affect NF1 expression when using normal amounts of serum, whereas it significantly inhibited transcript and protein levels both in low- or no-serum cultured cells. In particular, PACAP reduced NF1 levels already after 24h in low-serum cultured cells, while VIP showed a similar effect only after serum deprivation. However, both PACAP and VIP downregulated gene and protein levels within 48 h either in low-dose and serum-starved cells. Results were confirmed by fluorescence microscopy, showing that 100 nM PACAP or VIP attenuated neurofibromin cytoplasmic localization only in low- or no-serum cultured cells. The present study provides a comprehensive analysis of both neuropeptides effect on NF1 expression in normal, low- or serum-starved MPNST cells, ameliorating the hypothesis that resistance to apoptosis in serum-deprived cells might be correlated to PACAP-/VIP-induced NF1 inhibition.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Anatomy, Diagnostic Pathology, Legal Medicine, Hygiene and Public Health, University of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Gürkan A, Emingil G, Nizam N, Doğanavşargil B, Sezak M, Kütükçüler N, Atilla G. Therapeutic Efficacy of Vasoactive Intestinal Peptide inEscherichia coliLipopolysaccharide-Induced Experimental Periodontitis in Rats. J Periodontol 2009; 80:1655-64. [DOI: 10.1902/jop.2009.090031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Fraccaroli L, Alfieri J, Larocca L, Calafat M, Roca V, Lombardi E, Ramhorst R, Leirós CP. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells. Br J Pharmacol 2009; 156:116-26. [PMID: 19133995 DOI: 10.1111/j.1476-5381.2008.00055.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Successful embryo implantation is followed by a local pro-inflammatory and Th1 response, subsequently controlled by a Th2 response. Vasoactive intestinal peptide (VIP) has anti-inflammatory effects and promotes tolerogenic/Th2 responses while favouring embryonic development. We investigated the potential regulatory role of VIP on human trophoblast cells, maternal pro-inflammatory responses and trophoblast-maternal leukocyte interactions. EXPERIMENTAL APPROACH We tested VIP effects directly on a trophoblast cell line (Swan 71 cells) and after co-culture with maternal peripheral blood mononuclear cells (PBMCs) as models of the feto-maternal dialogue. We also co-cultured maternal and paternal PBMCs to test effects of endogenous VIP on maternal alloresponses. KEY RESULTS Swan 71 cells express VPAC(1) receptors and VIP induced their proliferation and the expression of leukaemia inhibitor factor, a pro-implantatory marker. After interaction with trophoblast cells, VIP increased Foxp3, the proportion of CD4+CD25+Foxp3+ cells within maternal PBMCs and transforming growth factor beta expression. Also, during the trophoblast-maternal PBMCs interaction, VIP reduced pro-inflammatory mediators [interleukin (IL)-6, monocyte chemoattractant protein 1, nitric oxide], while increasing IL-10. Trophoblast cells produced VIP which dose-dependently suppressed allomaternal responses, accompanied by reduced expression of the T cell transcription factor, T-bet. CONCLUSIONS AND IMPLICATIONS Vasoactive intestinal peptide induced pro-implantatory markers and trophoblast cell proliferation, while controlling the initial pro-inflammatory response, by increasing maternal regulatory T cells and anti-inflammatory cytokines. As an autocrine regulatory peptide VIP might contribute to fetal survival through two mechanisms; a direct trophic effect on trophoblast cells and an immunomodulatory effect that favours tolerance to fetal antigens.
Collapse
Affiliation(s)
- Laura Fraccaroli
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lv B, Tang Y, Chen F, Xiao X. Vasoactive Intestinal Peptide and pituary adenylate cyclase-activating polypeptide inhibit tissue factor expression in monocyte in vitro and in vivo. Shock 2009; 31:185-91. [PMID: 18650785 DOI: 10.1097/shk.0b013e31817d423a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tissue factor (TF), which is expressed on the surface of activated monocytes, is the major procoagulant that initiates thrombus formation in sepsis. Two endogenous neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), are attractive candidates for the development of therapies against septic shock. The purpose of this study was to examine whether VIP or PACAP inhibit the LPS-induced TF expression in monocytes. Treatment of freshly isolated human monocytes or cultured monocytic THP-1 cells with VIP or PACAP leads to reduced LPS-induced TF protein, mRNA expression and activity, as demonstrated by Western blot, real-time polymerase chain reaction, and TF activity assay, respectively. In an endotoxemic model, VIP blunts the increase of LPS-induced TF expression in blood cells at the transcriptional level, as demonstrated by real-time polymerase chain reaction. However, neither neuropeptide affects the expression of TF pathway inhibitor in monocytes. In vitro, LPS increases the migration of c-Rel/p65 into the nucleus and the phosphorylation of p38 and JNK, all of which are essential for LPS-induced TF expression. In addition, interestingly, VIP and PACAP block both the migration of c-Rel/p65 and the phosphorylation of p38 and JNK, as demonstrated by Western blot analysis. These data indicate that VIP and PACAP inhibit LPS-induced TF expression in monocytes in vitro and in vivo, confirming these peptides as candidates for the multitarget therapy of septic shock.
Collapse
Affiliation(s)
- Ben Lv
- Departments of Hemotology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
41
|
Nam BH, Kim YO, Kong HJ, Kim WJ, Lee SJ, Choi TJ. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet Immunol Immunopathol 2009; 127:249-58. [DOI: 10.1016/j.vetimm.2008.10.320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 10/09/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
|
42
|
Önyüksel H, Mohanty PS, Rubinstein I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int J Pharm 2009; 365:157-61. [PMID: 18793708 PMCID: PMC2631986 DOI: 10.1016/j.ijpharm.2008.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/29/2008] [Accepted: 08/13/2008] [Indexed: 02/01/2023]
Abstract
17-Allylamino-17-demethoxy geldanamycin (17-AAG), an inhibitor of heat shock protein 90 (Hsp90) function, is being developed as antitumor drug in patients with breast cancer. However, water-insolubility and hepatotoxicity limit its use. The purpose of this study was to begin to address these issues by determining whether 17-AAG can be formulated in long-circulating (PEGylated), biocompatible and biodegradable sterically stabilized phospholipid nanomicelles (SSM) to which vasoactive intestinal peptide (VIP) was grafted as an active targeting moiety and, if so, whether these nanomicelles are cytotoxic to MCF-7 human breast cancer cells. We found that particle size of 17-AAG loaded in VIP surface-grafted SSM was 16+/-1 nm and drug content was 97+/-2% (300 microg/ml). Cytotoxicity of 17-AAG loaded in VIP surface-grafted SSM to MCF-7 cells was significantly higher than that of 17-AAG loaded in non-targeted SSM (p<0.05) and similar to that of 17-AAG dissolved in dimethylsulfoxide. Collectively, these data demonstrate that 17-AAG is solubilized at therapeutically relevant concentrations in actively targeted VIP surface-grafted SSM. Cytotoxicity of these nanomicelles to MCF-7 cells is retained implying high affinity VIP receptors overexpressed on these cells mediate, in part, their intracellular uptake thereby amplifying drug potency. We propose that 17-AAG loaded in VIP surface-grafted SSM should be further developed as actively targeted nanomedicine for breast cancer.
Collapse
Affiliation(s)
- Hayat Önyüksel
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| | - Prem S. Mohanty
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| | - Israel Rubinstein
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- Jesse Brown VA Medical Center, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
43
|
Dickson L, Finlayson K. VPAC and PAC receptors: From ligands to function. Pharmacol Ther 2008; 121:294-316. [PMID: 19109992 DOI: 10.1016/j.pharmthera.2008.11.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase activating polypeptides (PACAPs) share 68% identity at the amino acid level and belong to the secretin peptide family. Following the initial discovery of VIP almost four decades ago a substantial amount of knowledge has been presented describing the mechanisms of action, distribution and pleiotropic functions of these related peptides. It is now known that the physiological actions of these widely distributed peptides are produced through activation of three common G-protein coupled receptors (VPAC(1), VPAC(2) and PAC(1)R) which preferentially stimulate adenylate cyclase and increase intracellular cAMP, although stimulation of other intracellular messengers, including calcium and phospholipase D, has been reported. Using a range of in vitro and in vivo approaches, including cell-based functional assays, transgenic animals and rodent models of disease, VPAC/PAC receptor activation has been associated with numerous physiological processes (e.g. control of circadian rhythms) and clinical conditions (e.g. pulmonary hypertension), which underlies on-going research efforts and makes these peptides and their cognate receptors attractive targets for the pharmaceutical industry. However, despite the considerable interest in VPAC/PAC receptors and the processes which they mediate, there is still a paucity of selective and available, non-peptide ligands, which has hindered further advances in this field both at the basic research and clinical level. This review summarises the current knowledge of VIP/PACAP and the VPAC/PAC receptors with regard to their distribution, pharmacology, signalling pathways, splice variants and finally, the utility of animal models in exploring their physiological roles.
Collapse
Affiliation(s)
- Louise Dickson
- Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, UK
| | | |
Collapse
|
44
|
Hook V, Toneff T, Baylon S, Sei C. Differential activation of enkephalin, galanin, somatostatin, NPY, and VIP neuropeptide production by stimulators of protein kinases A and C in neuroendocrine chromaffin cells. Neuropeptides 2008; 42:503-11. [PMID: 18619673 PMCID: PMC2745396 DOI: 10.1016/j.npep.2008.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/01/2008] [Accepted: 05/03/2008] [Indexed: 01/22/2023]
Abstract
Neuropeptides function as peptide neurotransmitters and hormones to mediate cell-cell communication. The goal of this study was to understand how different neuropeptides may be similarly or differentially regulated by protein kinase A (PKA) and protein kinase C (PKC) intracellular signaling mechanisms. Therefore, this study compared the differential effects of treating neuroendocrine chromaffin cells with stimulators of PKA and PKC on the production of the neuropeptides (Met)enkephalin, galanin, somatostatin, NPY, and VIP. Significantly, selective increases in production of these neuropeptides were observed by forskolin or phorbol myristate acetate (PMA) which stimulate PKA and PKC mechanisms, respectively. (Met)enkephalin production was stimulated by up to 2-fold by forskolin treatment, but not by PMA. In contrast, PMA treatment (but not forskolin) resulted in a 2-fold increase in production of galanin and somatostatin, and a 3-fold increase in NPY production. Notably, VIP production was highly stimulated by forskolin and PMA, with increases of 3-fold and 10-15-fold, respectively. Differences in elevated neuropeptides occurred in cell extracts compared to secretion media, which consisted of (i) increased NPY primarily in secretion media, (ii) increased (Met)enkephalin and somatostatin in secretion media (not cell extracts), and (iii) increased galanin and VIP in both cell extracts and secretion media. Involvement of PKA or PKC for forskolin or PMA regulation of neuropeptide biosynthesis, respectively, was confirmed with direct inhibitors of PKA and PKC. The selective activation of neuropeptide production by forskolin and PMA demonstrates that PKA and PKC pathways are involved in the differential regulation of neuropeptide production.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC 0744, La Jolla, CA 92093-0744, USA.
| | | | | | | |
Collapse
|
45
|
PACAP inhibit the release and cytokine activity of HMGB1 and improve the survival during lethal endotoxemia. Int Immunopharmacol 2008; 8:1646-51. [PMID: 18713653 DOI: 10.1016/j.intimp.2008.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/16/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
The pathogenesis of sepsis is mediated in part by bacterial endotoxin (lipopolysaccharide; LPS), which stimulates macrophages/monocytes to sequentially release early (e.g., TNF-alpha, IL-1beta) and late [e.g., high mobility group box 1 (HMGB1) protein] pro-inflammatory cytokines. Specifically targeting early mediators has not been effective clinically, in part, because peak mediator activity often has passed before therapy can be initiated. Recent discovery of HMGB1 as a late mediator of lethal sepsis has provided a new target for the treatment of septic shock. Here, we demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide, significantly attenuated circulating HMGB1 levels and increased survival in animals with established endotoxemia, even if treatment began after acute cytokine response has occurred. In vitro, PACAP suppressed LPS-induced HMGB1 release from macrophages/monocytes, even when given 2-4 h after LPS stimulation. PACAP also suppressed HMGB1 release induced by TNF-alpha or IFN-gamma. Moreover, PACAP inhibits HMGB1-induced cytokine release in vitro and in vivo. These results indicate that PACAP inhibits the release and pro-inflammatory activity of HMGB1 and improves survival during lethal endotoxemia, which confirms this peptide as a candidate for therapy of septic shock.
Collapse
|
46
|
Neumann JM, Couvineau A, Murail S, Lacapère JJ, Jamin N, Laburthe M. Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci 2008; 33:314-319. [PMID: 18555686 DOI: 10.1016/j.tibs.2008.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/15/2008] [Accepted: 05/08/2008] [Indexed: 02/05/2023]
Abstract
The class B family of G-protein-coupled receptors (GPCRs) regulates essential physiological functions such as exocrine and endocrine secretions, feeding behaviour, metabolism, growth, and neuro- and immuno-modulations. These receptors are activated by endogenous peptide hormones including secretin, glucagon, vasoactive intestinal peptide, corticotropin-releasing factor and parathyroid hormone. We have identified a common structural motif that is encoded in all class B GPCR-ligand N-terminal sequences. We propose that this local structure, a helix N-capping motif, is formed upon receptor binding and constitutes a key element underlying class B GPCR activation. The folded backbone conformation imposed by the capping structure could serve as a template for a rational design of drugs targeting class B GPCRs in several diseases.
Collapse
Affiliation(s)
- Jean-Michel Neumann
- CEA, Institut de Biologie et Technologies de Saclay, URA CNRS 2096, Laboratoire des Protéines Membranaires, 91191Gif sur Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Juarranz Y, Gutiérrez-Cañas I, Santiago B, Carrión M, Pablos JL, Gomariz RP. Differential expression of vasoactive intestinal peptide and its functional receptors in human osteoarthritic and rheumatoid synovial fibroblasts. ACTA ACUST UNITED AC 2008; 58:1086-95. [PMID: 18383383 DOI: 10.1002/art.23403] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Vasoactive intestinal peptide (VIP) has shown potent antiinflammatory effects in murine arthritis and ex vivo in human rheumatoid arthritis (RA) synovial cells. To investigate the potential endogenous participation of this system in the pathogenesis of RA, we analyzed the expression and regulation of VIP and its functional receptors in human fibroblast-like synoviocytes (FLS) from patients with osteoarthritis (OA) and patients with RA. METHODS The expression of VIP was studied by reverse transcription-polymerase chain reaction (RT-PCR), enzyme immunoassay, and immunofluorescence in cultured FLS, and by immunohistochemical analysis in synovial tissue. The expression and function of the potential VIP receptors in FLS were studied by RT-PCR, determination of intracellular cAMP production, cell membrane adenylate cyclase (AC) activity, and interleukin-6, CCL2, and CXCL8 production in response to VIP or specific agonists and antagonists. RESULTS VIP expression was detected in human FLS at the messenger RNA and protein levels, and it was significantly decreased in RA FLS compared with OA FLS. VIP receptor type 1 (VPAC1) was the dominant AC-coupled receptor in OA FLS, in contrast with RA FLS, in which VPAC2 was dominant. Tumor necrosis factor alpha-treated OA FLS reproduced the VIP and VPAC receptor expression pattern of RA FLS. The antagonistic effects of VIP on FLS proinflammatory factor production were reproduced by VPAC1- and VPAC2-specific agonists in OA FLS and RA FLS, respectively. CONCLUSION VIP expression is down-regulated in RA and in tumor necrosis factor alpha-treated FLS, suggesting that down-regulation of this endogenous antiinflammatory factor may contribute to the pathogenesis of RA. In RA FLS, VPAC2 mediates the antiinflammatory effects of VIP, suggesting that VPAC2 agonists may be an alternative to VIP as antiinflammatory agents.
Collapse
Affiliation(s)
- Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Arranz A, Gutiérrez-Cañas I, Carrión M, Juarranz Y, Pablos JL, Martínez C, Gomariz RP. VIP reverses the expression profiling of TLR4-stimulated signaling pathway in rheumatoid arthritis synovial fibroblasts. Mol Immunol 2008; 45:3065-73. [PMID: 18452992 DOI: 10.1016/j.molimm.2008.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/11/2008] [Accepted: 03/15/2008] [Indexed: 12/29/2022]
Abstract
Since recent evidences point out the potential involvement of Toll-like receptors (TLRs) in the therapeutic effect of vasoactive intestinal peptide (VIP), the purpose of this study is to elucidate the role of VIP as a negative regulator of TLR-signaling. To this aim, we analyzed in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) or osteoarthritis (OA), the expression profile of TLR-pathway related molecules, as well as the alterations induced by LPS stimulation in RA-FLS and the effect of VIP treatment. Cultured FLS were obtained from patients with RA or OA. RA-FLS were next stimulated with lipopolysaccharide (LPS) in presence or absence of VIP. The gene expression profiling of molecules involved in LPS-mediated TLR4-signaling was studied by cRNA microarray analysis. Twenty three molecules involved in TLR signaling resulted over-expressed at mRNA level in basal RA-FLS compared to OA-FLS. Moreover, in RA-FLS, 23 of the analyzed genes were found to be up-regulated by LPS stimulation whereas 30 were not affected. VIP down-regulated the LPS-induced RNA expression of molecules involved in TLR signaling pathway. Up-regulation of RNA expression of CD14, MD2, TRAM, TRIF, IRAK4, TAB2, TRAF6 and TBK1 was corroborated by RT-PCR as well as the VIP regulatory effect. Increased protein levels of TRAF6, TBK1 and pIRAK1 after exposure to LPS, and the inhibitory effect of VIP, were described by Western blotting. As functional consequences, it was observed the VIP-induced impaired production of IL-6 and RANTES/CCL5 after LPS stimulation. In conclusion, VIP acts as a negative modulator of the TLR4-signaling by overturning the production of several checkpoints molecules of the cascade and thus, widening its potential therapeutic effects.
Collapse
Affiliation(s)
- Alicia Arranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Gomariz RP, Arranz A, Juarranz Y, Gutierrez-Cañas I, Garcia-Gomez M, Leceta J, Martínez C. Regulation of TLR expression, a new perspective for the role of VIP in immunity. Peptides 2007; 28:1825-32. [PMID: 17706836 DOI: 10.1016/j.peptides.2007.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 12/20/2022]
Abstract
The contribution of VIP immune functions to the regulation of homeostasis and health is well known. Modulation of immune responses through new therapeutics is one of the main goals of physicians and scientists seeking to control inflammatory/autoimmune diseases in humans. Initial therapeutic strategies targeted adaptive immune responses; discovery of Toll-like receptors (TLR) has widened the horizon to include targeting the innate immune system. In this review we have summarized recent information about VIP modulation of TLR function, and we suggest that VIP represents a new therapeutic option in the management of several pathologies.
Collapse
Affiliation(s)
- R P Gomariz
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Caraglia M, Carteni M, Dicitore A, Cassese D, De Maria S, Ferranti P, Giuberti G, Abbruzzese A, Stiuso P. Experimental study on vasoactive intestinal peptide (VIP) and its diaminopropane bound (VIP-DAP) analog in solution. Amino Acids 2007; 35:275-81. [PMID: 17619118 DOI: 10.1007/s00726-007-0567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Bioactive peptides represent an exciting area of research in the fields of biochemistry and medicine and in particular the VIP/PACAP network appears to be of interest. Vasoactive intestinal peptide (VIP) is a pleiotropic factor that exerts a physiological regulatory influence and is involved in the pathogenesis of several human disorders. In this paper we have reported structural characterization of VIP by experimental and computational methods as well as a comparative analysis of the peptide with its transglutaminase catalyzed analog VIP-Diaminopropane (VIP-DAP).
Collapse
Affiliation(s)
- M Caraglia
- Dipartimento di Oncologia Sperimentale, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|