1
|
Baran B, Derua R, Janssens V, Niewiadomski P. PP2A phosphatase regulatory subunit PPP2R3C is a new positive regulator of the hedgehog signaling pathway. Cell Signal 2024; 123:111352. [PMID: 39173855 DOI: 10.1016/j.cellsig.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cellular signaling pathways rely on posttranslational modifications (PTMs) to finely regulate protein functions, particularly transcription factors. The Hedgehog (Hh) signaling cascade, crucial for embryonic development and tissue homeostasis, is susceptible to aberrations that lead to developmental anomalies and various cancers. At the core of Hh signaling are Gli proteins, whose dynamic balance between activator (GliA) and repressor (GliR) states shapes cellular outcomes. Phosphorylation, orchestrated by multiple kinases, is pivotal in regulating Gli activity. While kinases in this context have been extensively studied, the role of protein phosphatases, particularly Protein Phosphatase 2A (PP2A), remains less explored. This study unveils a novel role for the B″gamma subunit of PP2A, PPP2R3C, in Hh signaling regulation. PPP2R3C interacts with Gli proteins, and its disruption reduces Hedgehog pathway activity as measured by reduced expression of Gli1/2 and Hh target genes upon Hh signaling activation, and reduced growth of a Hh signaling-dependent medulloblastoma cell line. Moreover, we establish an antagonistic connection between PPP2R3C and MEKK1 kinase in Gli protein phosphorylation, underscoring the intricate interplay between kinases and phosphatases in Hh signaling pathway. This study sheds light on the previously understudied role of protein phosphatases in Hh signaling and provides insights into their significance in cellular regulation.
Collapse
Affiliation(s)
- Brygida Baran
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Qi T, Hu Y, Wan J, Zhao B, Xiao J, Liu J, Cheng Y, Wu H, Lv Y, Ji F. Glioma-associated oncogene homolog 1 in breast invasive carcinoma: a comprehensive bioinformatic analysis and experimental validation. Front Cell Dev Biol 2024; 12:1478478. [PMID: 39483334 PMCID: PMC11524909 DOI: 10.3389/fcell.2024.1478478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Background Breast cancer, despite significant advancements in treatment, remains a major cause of cancer-related deaths among women. Immunotherapy, an emerging therapeutic strategy, offers promise for better outcomes, particularly through the modulation of immune functions. Glioma-Associated Oncogene Homolog 1 (GLI1), a transcription factor implicated in cancer biology, has shown varying roles in different cancers. However, its immunoregulatory functions in breast invasive carcinoma (BRCA) remain elusive. The current study aimed to unravel the expression patterns and immune-regulatory roles of GLI1 in BRCA. Methods Utilizing multiple bioinformatic platforms (TIMER2.0, GEPIA2, and R packages) based on The Cancer Genome Atlas (TCGA) and/or Genotype-Tissue Expression (GTEx) databases, we analyzed the expression of GLI1 in BRCA and its pan-cancer expression profiles. We further validated these findings by conducting qPCR and immunohistochemical staining on clinical BRCA samples. Kaplan-Meier analysis and Cox proportional hazards regression were performed to assess the prognostic value of GLI1. Additionally, the association between GLI1 expression and immune infiltration within the tumor immune microenvironment (TMIE) was examined. Results The findings reveal dysregulated expression of GLI1 in numerous cancers, with a significant decrease observed in BRCA. High GLI1 expression indicated better survival outcomes and was correlated with the age and stage of BRCA patients. GLI1 was involved in immune status, as evidenced by its strong correlations with immune and stromal scores and the infiltration levels of multiple immune cells. Meanwhile, GLI1 was co-expressed with multiple immune-related genes, and high GLI1 expression was associated with the activation of immune-related pathways, such as binding to proteasome and mismatch repair and retinol metabolism signaling pathways. Additionally, the differential expression of GLI1 may be related to the effect of immunotherapy on CTLA-4, PD-1, and other signals, and can effectively predict the immune efficacy. Conclusion Our study underscores the critical role of GLI1 in BRCA, both as a potential tumor suppressor and an immune regulator. The association between GLI1 expression and favorable prognosis suggests its potential as a prognostic biomarker and immunotherapeutic target in BRCA.
Collapse
Affiliation(s)
- Teng Qi
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yujie Hu
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Junhao Wan
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Bo Zhao
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Jinsuo Xiao
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Jie Liu
- Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Ye Cheng
- Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - He Wu
- Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Yonggang Lv
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
- Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Fuqing Ji
- Xi’an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Rather TB, Parveiz I, Rashid G, Akhtar K, Mudassar S, Wani RA, Besina S, Haq RIU. "GLI1 Subcellular Localization and Overexpression as Prognostic Factors for Disease-Free Survival in Colorectal Carcinoma". J Gastrointest Cancer 2024; 55:1359-1379. [PMID: 39018008 DOI: 10.1007/s12029-024-01090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Glioma-associated oncogene homolog-1 (GLI1) is amplified in human glioblastoma, and there is growing evidence suggesting its significant role in tumor development and metastasis. Our aim was to investigate the role of the GLI-1 gene in the progression of colorectal cancer (CRC) and its correlation with various clinicopathological features. Additionally, we examined the impact of the GLI-1 gene and other factors on the prognosis of CRC. METHODS We analyzed a total of 98 confirmed CRC cases and adjacent normal tissue controls. Patients suspected of having colon cancer underwent a colonoscopy and targeted biopsy, while those with rectal cancer underwent CT scans and MRI. GLI1 expression was detected using real-time PCR assay, Western blotting, and immunohistochemistry. RESULTS The GLI1 gene was observed to be overexpressed in tumor tissues at both the protein and mRNA levels (p < 0.05). In addition, GLI1 overexpression was significantly associated with various factors such as tumor invasion (T3/T4), presence of lymph nodes, lymph node metastasis (LNM), stage (III/IV), tumor site (colon), tumor size (≥ 3 cm), localization (nucleocytoplasmic), strong staining intensity and recurrence (p < 0.05). The results of survival analysis showed that the patients with overexpression of GLI1 had a significantly lower DFS rate which was 21 months compared to those with normal expression who had 31 months (p < 0.05). Moreover, individuals with early onset disease (15 months) were more likely to have cytoplasmic localization of the GLI1 gene as opposed to nucleo-cytoplasmic localization of GLI1 which presented late-onset disease( 23 months) (p < 0.05). Finally, Stage and PNI (p < 0.05) were found to independently affect outcomes of CRC according to Cox regression analysis. CONCLUSION High expression of GLI-1 in CRC is associated with adverse pathology and poor prognosis for patients. The correlation between cytoplasmic localization of GLI-1 and reduced disease-free survival holds potential for guiding prognosis and treatment. Further research is needed to develop strategies targeting GLI-1 for improved outcomes.
Collapse
Affiliation(s)
- Tahseen Bilal Rather
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Ishrat Parveiz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Gowhar Rashid
- Department of Medical Lab Technology, Amity Medical School Haryana, Amity University Haryana, Gurgaon, 125001, India
| | - Kulsum Akhtar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India.
| | - Rauf A Wani
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Syed Besina
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Rather Izhar Ul Haq
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar, 190006, Bengaluru, India
| |
Collapse
|
4
|
Abu Rabe D, Chdid L, Lamson DR, Laudeman CP, Tarpley M, Elsayed N, Smith GR, Zheng W, Dixon MS, Williams KP. Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells. Molecules 2024; 29:3095. [PMID: 38999049 PMCID: PMC11243198 DOI: 10.3390/molecules29133095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.
Collapse
Affiliation(s)
- Dina Abu Rabe
- INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA;
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - David R. Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Christopher P. Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Naglaa Elsayed
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Ginger R. Smith
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Maria S. Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
| | - Kevin P. Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (L.C.); (D.R.L.); (C.P.L.); (M.T.); (N.E.); (G.R.S.); (W.Z.)
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
5
|
Sharma AE, Dickson M, Singer S, Hameed MR, Agaram NP. GLI1 Coamplification in Well-Differentiated/Dedifferentiated Liposarcomas: Clinicopathologic and Molecular Analysis of 92 Cases. Mod Pathol 2024; 37:100494. [PMID: 38621503 PMCID: PMC11193651 DOI: 10.1016/j.modpat.2024.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
GLI1(12q13.3) amplification is identified in a subset of mesenchymal neoplasms with a distinct nested round cell/epithelioid phenotype. MDM2 and CDK4 genes are situated along the oncogenic 12q13-15 segment, amplification of which defines well-differentiated liposarcoma (WDLPS)/dedifferentiated liposarcoma (DDLPS). The 12q amplicon can occasionally include GLI1, a gene in close proximity to CDK4. We hereby describe the first cohort of GLI1/MDM2/CDK4 coamplified WD/DDLPS. The departmental database was queried retrospectively for all cases of WD/DDLPS having undergone next-generation (MSK-IMPACT) sequencing with confirmed MDM2, CDK4, and GLI1 coamplification. Clinicopathologic data was obtained from a review of the medical chart and available histologic material. Four hundred eighty-six WD/DDLPS cases underwent DNA sequencing, 92 (19%) of which harbored amplification of the GLI1 locus in addition to that of MDM2 and CDK4. These included primary tumors (n = 60), local recurrences (n = 29), and metastases (n = 3). Primary tumors were most frequently retroperitoneal (47/60, 78%), mediastinal (4/60, 7%), and paratesticular (3/60, 5%). Average age was 63 years, with a male:female ratio of 3:2. The cohort was comprised of DDLPS (86/92 [93%], 6 of which were WDLPS with early dedifferentiation) and WDLPS without any longitudinal evidence of dedifferentiation (6/92, 7%). One-fifth (13/86, 17%) of DDLPS cases showed no evidence of a well-differentiated component in any of the primary, recurrent, or metastatic specimens. Dedifferentiated areas mostly showed high-grade undifferentiated pleomorphic sarcoma-like (26/86,30%) and high-grade myxofibrosarcoma-like (13/86,16%) morphologies. A disproportionately increased incidence of meningothelial whorls with/without osseous metaplasia was observed as the predominant pattern in 16/86 (19%) cases, and GLI1-altered morphology as described was identified in a total of 10/86 (12%) tumors. JUN (1p32.1), also implicated in the pathogenesis of WD/DDLPS, was coamplified with all 3 of MDM2, CDK4, and GLI1 in 7/91 (8%) cases. Additional loci along chromosomal arms 1p and 6q, including TNFAIP3, LATS1, and ESR1, were also amplified in a subset of cases. In this large-scale cohort of GLI1 coamplified WD/DDLPS, we elucidate uniquely recurrent features including meningothelial whorl-like and GLI-altered morphology in dedifferentiated areas. Assessment of tumor location (retroperitoneal or mediastinal), identification of a well-differentiated liposarcoma component, and coamplification of other spatially discrete genomic segments (1p and 6q) might aid in distinction from tumors with true driver GLI1 alterations.
Collapse
Affiliation(s)
- Aarti E Sharma
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Hospital for Special Surgery, New York, New York
| | - Mark Dickson
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera R Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narasimhan P Agaram
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
6
|
Farheen S, PM MM, Rehman S, Hoda MF, Gupta Y, Ali A, Chosdol K, Shahi MH. Homeodomain Transcription Factors Nkx2.2 and Pax6 as Novel Biomarkers for Meningioma Tumor Treatment. Indian J Clin Biochem 2024; 39:47-59. [PMID: 38223000 PMCID: PMC10784245 DOI: 10.1007/s12291-022-01085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 10/14/2022]
Abstract
Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01085-1.
Collapse
Affiliation(s)
- Shirin Farheen
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Mubeena Mariyath PM
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Suhailur Rehman
- Department of Pathology, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Md. Fakhrul Hoda
- Department of Neurosurgery, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asif Ali
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| |
Collapse
|
7
|
Imran K, Iqbal MJ, Abid R, Ahmad MM, Calina D, Sharifi-Rad J, Cho WC. Cellular signaling modulated by miRNA-3652 in ovarian cancer: unveiling mechanistic pathways for future therapeutic strategies. Cell Commun Signal 2023; 21:289. [PMID: 37845675 PMCID: PMC10577948 DOI: 10.1186/s12964-023-01330-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play pivotal roles in regulating gene expression and have been implicated in the pathogenesis of numerous cancers. miRNA-3652, though relatively less explored, has recently emerged as a potential key player in ovarian cancer's molecular landscape. This review aims to delineate the functional significance and tumor progression role of miRNA-3652 in ovarian cancer, shedding light on its potential as both a diagnostic biomarker and therapeutic target. A comprehensive literature search was carried out using established databases, the focus was on articles that reported the role of miRNA-3652 in ovarian cancer, encompassing mechanistic insights, functional studies, and its association with clinical outcomes. This updated review highlighted that miRNA-3652 is intricately involved in ovarian cancer cell proliferation, migration, and invasion, its dysregulation was linked to altered expression of critical genes involved in tumor growth and metastasis; furthermore, miRNA-3652 expression levels were found to correlate with clinical stages, prognosis, and response to therapy in ovarian cancer patients. miRNA-3652 holds significant promise as a vital molecular player in ovarian cancer's pathophysiology. Its functional role and impact on tumor progression make it a potential candidate for diagnostic and therapeutic applications in ovarian cancer. Given the pivotal role of miRNA-3652 in ovarian cancer, future studies should emphasize in-depth mechanistic explorations, utilizing advanced genomic and proteomic tools. Collaboration between basic scientists and clinicians will be vital to translating these findings into innovative diagnostic and therapeutic strategies, ultimately benefiting ovarian cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Komal Imran
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Rameesha Abid
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Mushtaq Ahmad
- Department of Allied Health Sciences, International Institute of Science, Art and Technology, Gujranwala, Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Skóra B, Masicz M, Nowak P, Lachowska J, Sołtysek P, Biskup J, Matuszewska P, Szychowski KA. Suppression of sonic hedgehog pathway-based proliferation in glioblastoma cells by small-size silver nanoparticles in vitro. Arch Toxicol 2023; 97:2385-2398. [PMID: 37407723 PMCID: PMC10404180 DOI: 10.1007/s00204-023-03552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Glioblastomas (GBs) are one of the most aggressive and invasive intracranial cancers. Recently, it has been postulated that, among other factors, the hedgehog (HH) pathway may be a key factor in this phenomenon. Moreover, it has been reported that small-size silver nanoparticles (AgNPs) are characterized by a high cytotoxic effect towards GBs. However, their effect on the sonic hedgehog (SHH) pathway has never been demonstrated in any cancer cells. Therefore, the aim of the present study was to evaluate the impact of the anti-proliferative properties of 5-nm AgNPs on the SHH pathway in the GB cell line (U-87MG) in vitro. The results showed a time- and dose-dependent decrease in the metabolic activity in the U-87MG cells treated with AgNPs, with IC50 reaching 30.41 and 21.16 µg/mL after 24 h and 48 h, respectively, followed by an increase in the intracellular reactive oxygen species (ROS) level. The co-treatment of the cells with AgNPs and Robotnikinin (SHH inhibitor) abolished and/or strengthened the effect of AgNPs, especially on the SHH mRNA levels and on the PCNA, PTCH1, Gli1, and SUFU protein levels. Interestingly, no changes in the level of ERK1/2, Akt, and SRC kinase protein expression were detected, suggesting a direct impact of AgNPs and/or ROS on the inhibition of the canonical SHH pathway. However, more studies are needed due to the increase in the mTOR protein expression after the treatment of the cells with AgNPs, as in the Robotnikinin treatment. In conclusion, small-size AgNPs are able to inhibit the proliferation of GB cells in vitro by suppressing the canonical SHH pathway.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Martyna Masicz
- Medical Biotechnology Student's Science Group "Helisa", Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Patrycja Nowak
- Medical Biotechnology Student's Science Group "Helisa", Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Jagoda Lachowska
- Medical Biotechnology Student's Science Group "Helisa", Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Paulina Sołtysek
- Medical Biotechnology Student's Science Group "Helisa", Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Justyna Biskup
- Medical Biotechnology Student's Science Group "Helisa", Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Paulina Matuszewska
- Medical Biotechnology Student's Science Group "Helisa", Medical College, University of Information Technology and Management, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
9
|
Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, Navarro-Martínez G, Torres Á, San Martín R, Roa JC, Quezada-Monrás C. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24087047. [PMID: 37108208 PMCID: PMC10139189 DOI: 10.3390/ijms24087047] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain cancer in adults. Without treatment the mean patient survival is approximately 6 months, which can be extended to 15 months with the use of multimodal therapies. The low effectiveness of GBM therapies is mainly due to the tumor infiltration into the healthy brain tissue, which depends on GBM cells' interaction with the tumor microenvironment (TME). The interaction of GBM cells with the TME involves cellular components such as stem-like cells, glia, endothelial cells, and non-cellular components such as the extracellular matrix, enhanced hypoxia, and soluble factors such as adenosine, which promote GBM's invasiveness. However, here we highlight the role of 3D patient-derived glioblastoma organoids cultures as a new platform for study of the modeling of TME and invasiveness. In this review, the mechanisms involved in GBM-microenvironment interaction are described and discussed, proposing potential prognosis biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- José Ignacio Erices
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ignacio Niechi
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Arnaldo Rosales
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Karen Fabres
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Giovanna Navarro-Martínez
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 8370003, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
10
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Zhou Y, Wang J, Huang Z, Gong P, Xie M. Deriving prognostic significance from a molecular subtype model of laryngeal carcinoma. Head Neck 2022; 44:2206-2219. [PMID: 35809031 DOI: 10.1002/hed.27137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study explored whether laryngeal carcinoma could be divided into different subtypes based on molecular differences using a molecular subtype-prediction model. METHODS We extracted data from the Cancer Genome Atlas and Gene Expression Omnibus databases and then performed unsupervised cluster analysis to identify discrete molecular subtypes of laryngeal carcinoma. Significance analysis of microarrays was performed to detect differentially expressed genes for each subtype, and gene set enrichment analysis and the GenCliP3 software were used to label gene functions and identify key pathways. RESULTS We categorized 126 patients into C1 and C2 molecular subtypes associated with pathologic grade. The C2 subtype appeared more aggressive, with a worse prognosis. The most significant enrichment pathway of the C2 subtype was the Hedgehog pathway, and GLI1 was a core gene. CONCLUSIONS Laryngeal carcinoma can be divided into two subtypes based on differences in molecular expression, which could identify key molecules associated with prognosis.
Collapse
Affiliation(s)
- Yibo Zhou
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head and Neck Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongxi Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Pinggui Gong
- Department of Otolaryngology Head and Neck Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Minqiang Xie
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| |
Collapse
|
12
|
Zeng S, Tan L, Sun Q, Chen L, Zhao H, Liu M, Yang H, Ren S, Ming T, Tang S, Tao Q, Meng X, Xu H. Suppression of colitis-associated colorectal cancer by scutellarin through inhibiting Hedgehog signaling pathway activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153972. [PMID: 35151214 DOI: 10.1016/j.phymed.2022.153972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) and mainly develops from long-term intestinal inflammation. Mounting evidence reveals that activated Hedgehog signaling pathway plays a vital role in the pathogenesis of CRC. Scutellarin is a type of phytochemical flavonoid with a powerful efficacy on various malignancies, including CRC. AIM Here, we studied the therapeutic effect of scutellarin on CRC and its direct regulating targets. METHODS The CAC model in mice was established by azomethane oxide (AOM) and sodium dextran sulfate (DSS), followed by detection of the efficacies of scutellarin on the carcinogenesis, apoptosis, inflammation, Hedgehog signaling cascade and complicated inflammatory networks in CAC tissues of mice. In CRC SW480 cells, the effects of scutellarin on malignant phenotype, apoptosis and Hedgehog signaling were examined. In TNF-α-stimulated IEC-6 intestinal epithelial cells, the actions of scutellarin on inflammatory response and Hedgehog signals were assessed as well. RESULTS Scutellarin significantly ameliorated AOM/DSS-caused CAC in mice and induced apoptosis in CAC tissues of mice, by inhibiting NF-κB (nuclear factor kappa B) -mediated inflammation and Hedgehog signaling axis. RNA-seq and transcriptome analysis indicated that scutellarin regulated complicated inflammatory networks in mouse CAC. Also, scutellarin suppressed the proliferation, migration, colony formation, and induced apoptosis of SW480 cells by down-regulation of Hedgehog signaling pathway activity. Additionally, scutellarin lessened NF-κB-mediated inflammatory response in TNF-α-stimulated IEC-6 cells, by attenuating Hedgehog signaling cascade. CONCLUSION Scutellarin potently ameliorates CAC by suppressing Hedgehog signaling pathway activity, underpinning the promising application of scutellarin to CRC in clinical settings.
Collapse
Affiliation(s)
- Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chongqing Medical and Health School, Chongqing 408000, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
GLI-1 polymorphisms of Hedgehog pathway as novel risk and prognostic biomarkers in melanoma patients. Melanoma Res 2022; 32:11-17. [PMID: 34939981 DOI: 10.1097/cmr.0000000000000789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In adult organisms, deregulation of the sonic hedgehog (SHH) signaling pathway is significantly correlated with different malignancies. Currently, data associating genetic polymorphisms in the SHH pathway with melanoma are scarce and largely unknown. The objective of our study was to elucidate an association between gene polymorphisms in the SHH pathway and prognosis of melanoma skin cancer patients. The current study investigated the association of PTCH1 (rs357564), SMO (rs2228617) and GLI1 (rs2228224, rs2228226), polymorphisms with melanoma predisposition and prognosis. Single-nucleotide polymorphisms were assessed by TaqMan SNP Genotyping Assays. The study involved 93 melanoma patients and 97 individuals in the control group. Melanoma patients with the variant mutant genotype GG of GLI1 rs2228226 polymorphism had poorer overall survival and recurrence-free survival (P = 0.0001 and P = 0.037, respectively). The multivariate analysis revealed that disease progression [hazard ratio (HR) = 14.434, P = 0.0001] and the GLI1 rs2228226 polymorphism (HR = 4.161, P = 0.006) persisted as independent prognostic factors. Mutated allele carriers (combined heterozygous and mutated genotypes) for GLI1 rs2228224 G and GLI1 rs2228226 G allele significantly increased melanoma risk [odds ratio (OR) = 2.261, P = 0.007; OR = 2.176, P = 0.010]. Our study demonstrated that genetic variants in GLI1, downstream member of the HH signaling pathway, are the risk factors for melanoma susceptibility and it can be a novel marker for melanoma prognosis. As a crucial SHH signaling member, GLI1 can also be regarded as a novel drug target for anti-cancer treatment in melanoma.
Collapse
|
14
|
GLI3 and androgen receptor are mutually dependent for their malignancy-promoting activity in ovarian and breast cancer cells. Cell Signal 2022; 92:110278. [DOI: 10.1016/j.cellsig.2022.110278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
|
15
|
Chai JY, Sugumar V, Alshanon AF, Wong WF, Fung SY, Looi CY. Defining the Role of GLI/Hedgehog Signaling in Chemoresistance: Implications in Therapeutic Approaches. Cancers (Basel) 2021; 13:4746. [PMID: 34638233 PMCID: PMC8507559 DOI: 10.3390/cancers13194746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Insight into cancer signaling pathways is vital in the development of new cancer treatments to improve treatment efficacy. A relatively new but essential developmental signaling pathway, namely Hedgehog (Hh), has recently emerged as a major mediator of cancer progression and chemoresistance. The evolutionary conserved Hh signaling pathway requires an in-depth understanding of the paradigm of Hh signaling transduction, which is fundamental to provide the necessary means for the design of novel tools for treating cancer related to aberrant Hh signaling. This review will focus substantially on the canonical Hh signaling and the treatment strategies employed in different studies, with special emphasis on the molecular mechanisms and combination treatment in regard to Hh inhibitors and chemotherapeutics. We discuss our views based on Hh signaling's role in regulating DNA repair machinery, autophagy, tumor microenvironment, drug inactivation, transporters, epithelial-to-mesenchymal transition, and cancer stem cells to promote chemoresistance. The understanding of this Achilles' Heel in cancer may improve the therapeutic outcome for cancer therapy.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad 10072, Iraq;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| |
Collapse
|
16
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
17
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
18
|
He S, Yang F, Yang M, An W, Maguire EM, Chen Q, Xiao R, Wu W, Zhang L, Wang W, Xiao Q. miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia. Stem Cell Res Ther 2020; 11:465. [PMID: 33143723 PMCID: PMC7640405 DOI: 10.1186/s13287-020-01989-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Inflammatory smooth muscle cells (iSMCs) generated from adventitial stem/progenitor cells (AdSPCs) have been recognised as a new player in cardiovascular disease, and microRNA-214-3p (miR-214-3p) has been implicated in mature vascular SMC functions and neointimal hyperplasia. Here, we attempted to elucidate the functional involvements of miR-214-3p in iSMC differentiation from AdSPCs and unravel the therapeutic potential of miR-214-3p signalling in AdSPCs for injury-induced neointimal hyperplasia. Methods The role of miR-214-3p in iSMC differentiation from AdSPCs was evaluated by multiple biochemistry assays. The target of miR-214-3p was identified through binding site mutation and reporter activity analysis. A murine model of injury-induced arterial remodelling and stem cell transplantation was conducted to study the therapeutic potential of miR-214-3p. RT-qPCR analysis was performed to examine the gene expression in healthy and diseased human arteries. Results miR-214-3p prevented iSMC differentiation/generation from AdSPCs by restoring sonic hedgehog-glioma-associated oncogene 1 (Shh-GLI1) signalling. Suppressor of fused (Sufu) was identified as a functional target of miR-214-3p during iSMC generation from AdSPCs. Mechanistic studies revealed that miR-214-3p over-expression or Sufu inhibition can promote nuclear accumulation of GLI1 protein in AdSPCs, and the consensus sequence (GACCACCCA) for GLI1 binding within smooth muscle alpha-actin (SMαA) and serum response factor (SRF) gene promoters is required for their respective regulation by miR-214-3p and Sufu. Additionally, Sufu upregulates multiple inflammatory gene expression (IFNγ, IL-6, MCP-1 and S100A4) in iSMCs. In vivo, transfection of miR-214-3p into the injured vessels resulted in the decreased expression level of Sufu, reduced iSMC generation and inhibited neointimal hyperplasia. Importantly, perivascular transplantation of AdSPCs increased neointimal hyperplasia, whereas transplantation of AdSPCs over-expressing miR-214-3p prevented this. Finally, decreased expression of miR-214-3p but increased expression of Sufu was observed in diseased human arteries. Conclusions We present a previously unexplored role for miR-214-3p in iSMC differentiation and neointima iSMC hyperplasia and provide new insights into the therapeutic effects of miR-214-3p in vascular disease. Supplementary information Supplementary information accompanies this paper at 10.1186/s13287-020-01989-w.
Collapse
Affiliation(s)
- Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Feng Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Rui Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wei Wu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Wen Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK. .,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
19
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
20
|
Ikehara H, Fujii K, Miyashita T, Ikemoto Y, Nagamine M, Shimojo N, Umezawa A. Establishment of a Gorlin syndrome model from induced neural progenitor cells exhibiting constitutive GLI1 expression and high sensitivity to inhibition by smoothened (SMO). J Transl Med 2020; 100:657-664. [PMID: 31758086 DOI: 10.1038/s41374-019-0346-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
The hedgehog signaling pathway is a vital factor for embryonic development and stem cell maintenance. Dysregulation of its function results in tumor initiation and progression. The aim of this research was to establish a disease model of hedgehog-related tumorigenesis with Gorlin syndrome-derived induced pluripotent stem cells (GS-iPSCs). Induced neural progenitor cells from GS-iPSCs (GS-NPCs) show constitutive high GLI1 expression and higher sensitivity to smoothened (SMO) inhibition compared with wild-type induced neural progenitor cells (WT-NPCs). The differentiation process from iPSCs to NPCs may have similarity in gene expression to Hedgehog signal-related carcinogenesis. Therefore, GS-NPCs may be useful for screening compounds to find effective drugs to control Hedgehog signaling activity.
Collapse
Affiliation(s)
- Hajime Ikehara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yu Ikemoto
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Marina Nagamine
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
21
|
|
22
|
Chang Y, Chen H, Duan J, Wu W, Le F, Mou F. The inhibitory effect and safety of GANT61 on HeLa cells in nude mice. Exp Mol Pathol 2019; 113:104352. [PMID: 31809711 DOI: 10.1016/j.yexmp.2019.104352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The Hedgehog (Hh) pathway effector Gli1 plays an important role in cervical cancer, and GANT61 is an Hh signaling inhibitor. In this study, we aimed to investigate the inhibitory effect of GANT61 on cervical cancer and to study its safety in nude mice. We used in vivo experiments to assess the effect of GANT61 on the growth of cervical cancer HeLa cells, and we measured the WBC, HGB, PLT, ALT, AST and Cre levels in nude mice. Next, we examined the organ and tumor morphology and distant metastasis by HE staining. We used immunohistochemistry to monitor the expression levels of Gli1, FoxM1, Ki-67, cyclinD1, E-cadherin, vimentin, survivin, caspase-3 and CD34+. Western blotting and RT-RCR were used to measure Gli1 expression. GANT61 inhibited the growth and metastasis of HeLa cervical cancer cells upon their transplantation into nude mice, and we preliminarily propose that GANT61 is safe for nude mice. These findings suggest that GANT61 could be used as a Hedgehog inhibitor to inhibit EMT and proliferation and to promote apoptosis via Gli1 downregulation.
Collapse
Affiliation(s)
- Yanan Chang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, PR China
| | - Hong Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, PR China.
| | - Jie Duan
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, PR China
| | - Wang Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, PR China
| | - Fangshu Le
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, PR China
| | - Fen Mou
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, PR China
| |
Collapse
|
23
|
Salama YA, El-karef A, El Gayyar AM, Abdel-Rahman N. Beyond its antioxidant properties: Quercetin targets multiple signalling pathways in hepatocellular carcinoma in rats. Life Sci 2019; 236:116933. [DOI: 10.1016/j.lfs.2019.116933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
|
24
|
Magic M, Zeljic K, Jovandic S, Stepic J, Pejovic M, Colic S, Magic Z, Supic G. Hedgehog signaling pathway and vitamin D receptor gene variants as potential risk factors in odontogenic cystic lesions. Clin Oral Investig 2018; 23:2675-2684. [DOI: 10.1007/s00784-018-2686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023]
|
25
|
Sirkisoon SR, Carpenter RL, Rimkus T, Anderson A, Harrison A, Lange AM, Jin G, Watabe K, Lo HW. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 2018; 37:2502-2514. [PMID: 29449694 PMCID: PMC5948110 DOI: 10.1038/s41388-018-0132-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), glioma oncogene homolog 1 (GLI1), and truncated GLI1 (tGLI1) are oncogenic transcription factors playing important roles in breast cancer. tGLI1 is a gain-of-function GLI1 isoform. Whether STAT3 physically and/or functionally interacts with GLI1/tGLI1 has not been explored. To address this knowledge gap, we analyzed 47 node-positive breast cancer specimens using immunohistochemical staining and found that phosphorylated-STAT3 (Y705), GLI1, and tGLI1 are co-overexpressed in the majority of triple-negative breast carcinomas (64%) and HER2-enriched (68%) breast carcinomas, and in lymph node metastases (65%). Using gene set enrichment analysis, we analyzed 710 breast tumors and found that STAT3 activation and GLI1/tGLI1 activation signatures are co-enriched in triple-negative subtypes of breast cancers and HER2-enriched subtypes of breast cancers, but not in luminal subtypes of breast cancers. Patients with high levels of STAT3 and GLI1/tGLI1 co-activation in their breast tumors had worse metastasis-free survival compared to those with low levels. Since these proteins co-overexpress in breast tumors, we examined whether they form complexes and observed that STAT3 interacted with both GLI1 and tGLI1. We further found that the STAT3-GLI1 and STAT3-tGLI1 complexes bind to both consensus GLI1-binding and STAT3-binding sites using chromatin immunoprecipitation (ChIP) assay, and that the co-overexpression markedly activated a promoter controlled by GLI1-binding sites. To identify genes that can be directly co-activated by STAT3 and GLI1/tGLI1, we analyzed three ChIP-seq datasets and identified 34 potential target genes. Following validations using reverse transcription polymerase chain reaction and survival analysis, we identified three genes as novel transcriptional targets of STAT3 and GLI1/tGLI1, R-Ras2, Cep70, and UPF3A. Finally, we observed that co-overexpression of STAT3 with GLI1/tGLI1 promoted the ability of breast cancer cells to form mammospheres and that STAT3 only cooperates with tGLI1 in immortalized mammary epithelial cells. In summary, our study identified novel physical and functional cooperation between two families of oncogenic transcription factors, and the interaction contributes to aggressiveness of breast cancer cells and poor prognosis of triple-negative breast cancers and HER2-enriched breast cancers.
Collapse
Affiliation(s)
| | | | - Tadas Rimkus
- Department of Cancer Biology, Winston-Salem, NC, USA
| | | | | | | | - Guangxu Jin
- Department of Radiology, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Winston-Salem, NC, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Winston-Salem, NC, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
26
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
27
|
Zhang R, Wu J, Ferrandon S, Glowacki KJ, Houghton JA. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing. Oncotarget 2018; 7:80190-80207. [PMID: 27863397 PMCID: PMC5348313 DOI: 10.18632/oncotarget.13376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Jiahui Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katie J Glowacki
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Janet A Houghton
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| |
Collapse
|
28
|
Comparative genomic analysis of intracranial germ cell tumors - the preliminary study focused on Sonic Hedgehog signaling pathway. Contemp Oncol (Pozn) 2018; 21:279-284. [PMID: 29416433 PMCID: PMC5798419 DOI: 10.5114/wo.2017.72390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022] Open
Abstract
Aim of the study Examination of copy number changes in a group of intracranial germ cell tumors (GCTs) with particular focus on putative aberrations of the main genes coding SHh pathway proteins. Material and methods The study was performed on DNA isolated from fresh-frozen tumor tissue samples from eight GCTs, including six intracranial GCTs. The intracranial group consisted of three germinomas, two mature teratomas and one mixed germ cell tumor. Comparative genomic profiling analysis was carried out using microarray-CGH method (Cytosure ISCA UPD 4×180k, OGT). The results were analyzed with Feature Extraction (Agilent Technologies) and Nexus Copy Number (BioDiscovery) softwares. Results and conclusions Chromosomal aberrations were found in two intracranial germinomas. These tumors were characterized by complex genomic profiles encompassing chromosomes 7, 8, 9, 10, 11, 12, 16, 17 and 19. Common findings were gain at 12p13.33p11.1 of 35 Mbp and gain at 17q11.1q25.3 of 55 Mbp. In one tumor, also SHh (7q36.3), SMO (7q32.1) and GLI3 (7p14.1) copy gains occurred together with 9q21.11q34.3 loss, including PTCH1, all being elements of SHh signaling pathway. Moreover, both tumors showed various copy gain of genes being ligands, regulators, receptors or target genes of SHh (MTSS1; PRKACA and FKBP8) as well as gain of genes of SHh coopting WNT pathway (WNT3, WNT5B, WNT9B in both tumors; WNT16, WNT2 in pineal lesion). Further studies on larger group are needed to characterize SHh-related gene alterations in intracranial GCTs and for searching genotype-phenotype relations.
Collapse
|
29
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
30
|
Ehe BK, Lamson DR, Tarpley M, Onyenwoke RU, Graves LM, Williams KP. Identification of a DYRK1A-mediated phosphorylation site within the nuclear localization sequence of the hedgehog transcription factor GLI1. Biochem Biophys Res Commun 2017; 491:767-772. [PMID: 28735864 PMCID: PMC5594740 DOI: 10.1016/j.bbrc.2017.07.107] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
GLI1 is a key downstream transcription effector of the Hedgehog (Hh) signaling pathway that is involved in promoting cell growth, differentiation and tissue patterning in embryonic development. GLI1 over-activation and its nuclear localization has also been linked to the increased aggressiveness of a number of cancers. It has previously been demonstrated that DYRK1A (dual-specificity tyrosine-regulated kinase 1A) can phosphorylate GLI1 and promote GLI1 nuclear localization and its transcriptional activity. Utilizing recombinant human GLI1 and DYRK1A proteins and phospho-peptide mass spectrometry, we demonstrated that GLI1 is phosphorylated by DYRK1A at Ser408, a phospho-site that falls within the putative nuclear localization sequence (NLS) of GLI1, suggesting a possible mechanistic role in modulating its translocation. Further, we showed that the Ser408 site on GLI1 was not phosphorylated in the presence of the selective DYRK1A inhibitor harmine. The data described herein provide the first identification of a DYRK1A-mediated site of phosphorylation on GLI1 within its NLS and may serve as a valuable mechanism for further understanding Hh signaling modulation.
Collapse
Affiliation(s)
- Ben K Ehe
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Lee M Graves
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
31
|
Buongusto F, Bernardazzi C, Yoshimoto AN, Nanini HF, Coutinho RL, Carneiro AJV, Castelo-Branco MT, de Souza HS. Disruption of the Hedgehog signaling pathway in inflammatory bowel disease fosters chronic intestinal inflammation. Clin Exp Med 2017; 17:351-369. [PMID: 27655445 DOI: 10.1007/s10238-016-0434-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Hedgehog (Hh) signaling is essential for intestinal homeostasis and has been associated with inflammation and tissue repair. We hypothesized that Hh signaling could affect the inflammatory process in inflammatory bowel disease (IBD). For this purpose, colon specimens from the inflamed and non-inflamed mucosa of 15 patients with Crohn's disease (CD), 15 with ulcerative colitis, and 15 controls were analyzed by immunohistochemistry and real-time PCR. The production and modulation of cytokines were measured by ELISA from culture explants. Apoptosis was assessed by TUNEL and caspase-3 activity assays. Chemotaxis was evaluated using a transwell system. Primary human intestinal and skin fibroblasts were used for analyzing migration and BrdU incorporation. Hh proteins were generally expressed at the superficial epithelium, and a marked reduction was observed in CD. In the lamina propria, Gli-1 predominantly co-localized with vimentin- and alpha-smooth muscle actin-positive cells, with lower levels observed in CD. In colon explants, Hh stimulation resulted in reduction, while blockade increased, TNF α, IL-17, and TGF β levels. Apoptotic rates were higher in inflamed samples, and they increased after Hh blockade. Levels of Gli-1 mRNA were negatively correlated with caspase-3 activity. Hh blockade increased chemoattraction of monocytes. Primary fibroblasts incorporated more BrdU, but migrated less after Hh blockade. These results suggest that Hh signaling provides a negative feedback to the lamina propria, down-regulating inflammatory cytokines, and inhibiting leukocyte migration and fibroblast proliferation, while favoring fibroblast migration. Therefore, Hh signaling is strongly implicated in the pathogenesis of intestinal inflammation, and it may represent a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Fernanda Buongusto
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Agnes N Yoshimoto
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Hayandra F Nanini
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Raquel L Coutinho
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Antonio Jose V Carneiro
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil
| | - Morgana T Castelo-Branco
- Laboratório de Imunologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Heitor S de Souza
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Department of Internal Medicine, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ, 21941-913, Brazil.
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281-100, Brazil.
| |
Collapse
|
32
|
Lilley M, Farassati F. The role of KPNβ 1 in neuro-oncology. Onco Targets Ther 2017; 10:2067-2068. [PMID: 28435297 PMCID: PMC5391822 DOI: 10.2147/ott.s136247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Megan Lilley
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center.,School of Medicine, University of Missouri
| | - Faris Farassati
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center.,Saint Luke's Cancer Institute-Saint Luke's Marion Bloch Neuroscience Institute, Kansas City, MO, USA
| |
Collapse
|
33
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
34
|
Wang D, Hu G, Du Y, Zhang C, Lu Q, Lv N, Luo S. Aberrant activation of hedgehog signaling promotes cell proliferation via the transcriptional activation of forkhead Box M1 in colorectal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:23. [PMID: 28148279 PMCID: PMC5288899 DOI: 10.1186/s13046-017-0491-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent evidence suggests that the aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas, including colorectal cancer (CRC). Forkhead box M1 (FoxM1) controls the expression of a number of cell cycle regulatory proteins, and FoxM1 expression is elevated in a broad range of human malignancies, which suggests that it plays a crucial role in tumorigenesis. However, the mechanisms underlying FoxM1 expression are not fully understood. Here, we aim to further investigate the molecular mechanism by which Gli1 regulates FoxM1 in CRC. METHODS Western blotting and immunohistochemistry (IHC) were used to evaluate FoxM1 and Gli1 protein expression, respectively, in CRC tissues and matched adjacent normal mucosa. BrdU (5-bromo-2'-deoxyuridine) and clone formation assays were used to clarify the influence of FoxM1 on CRC cell growth and proliferation. Chromatin immunoprecipitation (ChIP) and luciferase experiments were performed to explore the potential mechanisms by which Gli1 regulates FoxM1. Additionally, the protein and mRNA expression levels of Gli1 and FoxM1 in six CRC cell lines were measured using Western blotting and real-time PCR. Finally, the effect of Hh signaling on the expression of FoxM1 was studied in cell biology experiments, and the effects of Hh signaling activation and FoxM1 inhibition on the distribution of CRC cells among cell cycle phases was assessed by flow cytometry. RESULTS Gli1 and FoxM1 were abnormally elevated in human CRC tissues compared with matched adjacent normal mucosa samples, and FoxM1 is a downstream target gene of the transcription factor Gli1 in CRC and promoted CRC cell growth and proliferation. Moreover, the aberrant activation of Hh signaling promoted CRC cell proliferation by directly binding to the promoter of FoxM1 and transactivating the activity of FoxM1 in CRC cells. CONCLUSION The dysregulation of the Hh-Gli1-FoxM1 axis is essential for the proliferation and growth of human CRC cells and offers a potent target for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- DeJie Wang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Ying Du
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Cheng Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Nonghua Lv
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China. .,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China.
| |
Collapse
|
35
|
Enzenhofer E, Parzefall T, Haymerle G, Schneider S, Kadletz L, Heiduschka G, Pammer J, Oberndorfer F, Wrba F, Loader B, Grasl MC, Perisanidis C, Erovic BM. Impact of Sonic Hedgehog Pathway Expression on Outcome in HPV Negative Head and Neck Carcinoma Patients after Surgery and Adjuvant Radiotherapy. PLoS One 2016; 11:e0167665. [PMID: 27918595 PMCID: PMC5137890 DOI: 10.1371/journal.pone.0167665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION HPV positive patients suffering from head and neck cancer benefit from intensified radiotherapy when applied as a primary as well as an adjuvant treatment strategy. However, HPV negative patients treated with surgery and adjuvant radiotherapy lack validated prognostic biomarkers. It is therefore important to define prognostic biomarkers in this particular patient population. Especially, ´high-risk groups´ need to be defined in order to adapt treatment protocols. Since dysregulation of the sonic hedgehog pathway plays an important role in carcinogenesis, we aimed to assess whether members of the sonic hedgehog-signaling pathway may act as prognostic factors in patients with HPV negative head and neck squamous cell carcinoma. MATERIALS AND METHODS In this prospective study, pretreatment tumor biopsies of patients with head and neck squamous cell carcinoma were taken during panendoscopy (2005 to 2008). All patients were treated with surgery and postoperative radiotherapy. After assessment of HPV and p16 status, protein expression profiles of the Sonic hedgehog-signaling pathway were determined by immunohistochemistry and tissue microarray analyses in 36 HPV negative tumor biopsies. Expression profiles of Sonic hedgehog, Indian hedgehog, Patched, Smoothened, Gli-1, Gli-2 and Gli-3 were correlated with patients´ clinical data, local-control rate, disease-free as well as overall survival. Data from The Cancer Genome Atlas databank were used for external validation of our results. RESULTS Gli-1 (p = 0.04) and Gli-2 (p = 0.02) overexpression was significantly linked to improved overall survival of HPV negative patients. Gli-2 (p = 0.04) overexpression correlated significantly with prolonged disease-free survival. Cox-multivariate analysis showed that overexpression of Gli-2 correlated independently (HR 0.40, 95% CI 0.16-0.95, p = 0.03) with increased overall survival. DISCUSSION Gli-1 and Gli-2 overexpression represents a substantial prognostic factor for overall and disease-free survival in patients with locally advanced HPV negative head and neck cancer undergoing surgery and postoperative radiotherapy.
Collapse
Affiliation(s)
- Elisabeth Enzenhofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Parzefall
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Georg Haymerle
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sven Schneider
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Pammer
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Fritz Wrba
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Loader
- Department of Otorhinolaryngology, Head and Neck Surgery, Rudolfstiftung, Vienna, Austria
| | - Matthäus Christoph Grasl
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christos Perisanidis
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna, Austria
| | - Boban M. Erovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
36
|
Wang Y, Hsu JM, Kang Y, Wei Y, Lee PC, Chang SJ, Hsu YH, Hsu JL, Wang HL, Chang WC, Li CW, Liao HW, Chang SS, Xia W, Ko HW, Chou CK, Fleming JB, Wang H, Hwang RF, Chen Y, Qin J, Hung MC. Oncogenic Functions of Gli1 in Pancreatic Adenocarcinoma Are Supported by Its PRMT1-Mediated Methylation. Cancer Res 2016; 76:7049-7058. [PMID: 27758883 PMCID: PMC5135656 DOI: 10.1158/0008-5472.can-16-0715] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
The oncogenic transcription factor Gli1 is a critical effector in the Hedgehog (Hh) pathway, which is necessary for the development and progression of pancreatic ductal adenocarcinoma (PDAC). Although TGFβ and K-Ras are known regulators of Gli1 gene transcription in this setting, it is not understood how Gli1 functional activity is regulated. Here, we report the identification of Gli1 as a substrate for the protein arginine N-methyltransferase PRMT1 in PDAC. We found that PRMT1 methylates Gli1 at R597, promoting its transcriptional activity by enhancing the binding of Gli1 to its target gene promoters. Interruption of Gli1 methylation attenuates oncogenic functions of Gli1 and sensitizes PDAC cells to gemcitabine treatment. In human PDAC specimens, the levels of both total Gli1 and methylated Gli1 were correlated positively with PRMT1 protein levels. Notably, PRMT1 regulated Gli1 independently of the canonical Hh pathway as well as the TGFβ/Kras-mediated noncanonical Hh pathway, thereby signifying a novel regulatory mechanism for Gli1 transcriptional activity. Taken together, our results identified a new posttranslational modification of Gli1 that underlies its pivotal oncogenic functions in PDAC. Cancer Res; 76(23); 7049-58. ©2016 AACR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shing-Jyh Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Hsin Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung-Ling Wang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsin-Wei Liao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Jun Qin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
38
|
Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers (Basel) 2015; 7:2330-51. [PMID: 26633513 PMCID: PMC4695894 DOI: 10.3390/cancers7040894] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance.
Collapse
|
39
|
Bao J, Qin L, Cui L, Wang X, Meng Q, Zhu L, Zhang S. Microarray data analysis of neuroblastoma: Expression of SOX2 downregulates the expression of MYCN. Mol Med Rep 2015; 12:6867-72. [PMID: 26398570 DOI: 10.3892/mmr.2015.4311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to identify the genes directly or indirectly correlated with the amplification of MYCN in neuroblastoma (NB). Microarray data (GSE53371) were downloaded from Gene Expression Omnibus, and included 10 NB cell lines with MYCN amplification and 10 NB cell lines with normal MYCN copy numbers. Differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Data package, and a false discovery rate of <0.05 and |log2FC (fold change)|>1 were selected as cut‑off criteria. Hierarchical clustering analysis and Gene Ontology analysis were respectively performed for the DEGs using the Pheatmap package in R language and The Database for Annotation, Visualization and Integrated Discovery. A protein‑protein interaction network (PPI) was constructed for the DEGs using the Search Tool for the Retrieval of Interacting Genes database. Pathway analysis was performed for the DEGs in the PPI network using the WEB‑based GEne SeT AnaLysis Toolkit. The correlation between MYCN and the key gene associated with MYCN was determined using Pearson's correlation coefficient. In total, 137 downregulated and 35 upregulated DEGs were identified. Functional enrichment analysis indicated that KCNMB4 was involved in the regulation of action potential in neuron term, and the FOS, GLI3 and GLI1 genes were involved in the extracellular matrix‑receptor interaction pathway. The PPI network and correlation analysis revealed that the expression of SOX2 was directly correlated with the expression of MYCN, and the correlation coefficient of SOX2 and MYCN was ‑0.83. Therefore, SOX2, KCNMB4, FOS, GLI3 and GLI1 may be involved in the pathogenesis of NB, with the expression of SOX2 downregulating the expression of MYCN.
Collapse
Affiliation(s)
- Juntao Bao
- Department of Pediatric Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Luying Qin
- Nursing College, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Lingling Cui
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaohui Wang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Qinglei Meng
- Department of Pediatric Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Linchao Zhu
- Department of Pediatric Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shufeng Zhang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
40
|
Torii D, Soeno Y, Fujita K, Sato K, Aoba T, Taya Y. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia. In Vitro Cell Dev Biol Anim 2015; 52:89-99. [PMID: 26334330 DOI: 10.1007/s11626-015-9951-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.
Collapse
Affiliation(s)
- Daisuke Torii
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Yuuichi Soeno
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Kazuya Fujita
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Kaori Sato
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Takaaki Aoba
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Yuji Taya
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
41
|
Abstract
Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.
Collapse
|
42
|
Effect of itraconazole on mouse mesencephalic neurons. Int J Dev Neurosci 2015; 44:75-83. [DOI: 10.1016/j.ijdevneu.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/13/2015] [Accepted: 06/06/2015] [Indexed: 01/14/2023] Open
|
43
|
Akhtar N, Makki MS, Haqqi TM. MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes. Arthritis Rheumatol 2015; 67:423-34. [PMID: 25385442 DOI: 10.1002/art.38952] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/04/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hedgehog (HH) signaling has recently been associated with cartilage degradation in osteoarthritis (OA). Because interleukin-1β (IL-1β) has been implicated as a principal instigator of OA, we sought to determine whether IL-1β induces the expression of sonic HH (SHH) and its regulation by microRNAs (miRNAs) in human chondrocytes. METHODS Expression of SHH protein in human OA cartilage and in an animal model of OA was determined by immunohistochemical analysis and immunofluorescence analysis, respectively. Gene and protein expression in IL-1β- or SHH-stimulated OA chondrocytes was determined by TaqMan assays and Western blotting, respectively. The effect of overexpression of miRNA-602 (miR-602) and miR-608 or their antagomirs on SHH expression was evaluated by transient transfection of human chondrocytes and HEK 293 cells. The role of signaling pathways was evaluated using small molecule inhibitors. Binding of miRNAs with the putative seed sequence in SHH messenger RNA (mRNA) was validated using a luciferase reporter assay. RESULTS Expression of SHH, patched 1, Gli-1, HH-interacting protein, matrix metalloproteinase 13 (MMP-13), and Colα1(X) was high in damaged OA cartilage. In damaged cartilage and in IL-1β-stimulated OA chondrocytes, expression of SHH was inversely correlated with expression of miR-608. Cotransfection of OA chondrocytes with miR-608 or miR-602 mimic inhibited reporter activity, and mutation of the miRNA seed sequences abolished the repression of reporter activity. Overexpression of miR-602 or miR-608 inhibited the expression of SHH mRNA and protein, and this was abrogated by antagomirs. Stimulation with recombinant human SHH protein up-regulated MMP-13 expression, and inhibition of HH signaling blocked MMP-13 expression in OA chondrocytes. CONCLUSION MiR-602 and miR-608 are important posttranscription regulators of SHH expression in OA chondrocytes, and their suppression by IL-1β may contribute to the enhanced expression of SHH and MMP-13 in OA.
Collapse
|
44
|
Mechanisms regulating glioma invasion. Cancer Lett 2015; 362:1-7. [PMID: 25796440 DOI: 10.1016/j.canlet.2015.03.015] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness.
Collapse
|
45
|
Hadden MK. Targeting GLI proteins in human cancer by small molecules (WO2014116651 A1): a patent evaluation. Expert Opin Ther Pat 2015; 25:613-7. [PMID: 25772316 DOI: 10.1517/13543776.2015.1019467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The invention reviewed in this patent evaluation is the synthesis and application of small molecule inhibitors of Gli transcriptional activity as potential anticancer agents. The oncogenic nature of Gli proteins has been traditionally associated with the hedgehog (Hh) signaling pathway; however, the recent identification of aberrant Gli activation unrelated to Hh signaling has prompted drug discovery efforts directly targeting Gli proteins. The central core of the compounds described in this patent (WO2014116651 A1) is structurally analogous to the pyrazoline scaffold previously disclosed by these inventors. Data describing the inhibitory activity of these compounds against the Hh pathway in vitro and in Hh-dependent in vivo models of human cancer are not provided. For this patent disclosure, the inventors primarily focus on the anticancer properties of their compounds in lung and lung-related malignancies. The compounds are moderately active in these models, but they do not exhibit the overall preclinical profile generally required for advancement into clinical trials.
Collapse
Affiliation(s)
- M Kyle Hadden
- University of Connecticut, Department of Pharmaceutical Sciences , 69 N Eagleville Rd, Unit 3092, Storrs, CT , USA +1 860 846 8446; +1 860 486 6857;
| |
Collapse
|
46
|
Li H, Da LJ, Fan WD, Long XH, Zhang XQ. Transcription factor glioma-associated oncogene homolog 1 is required for transforming growth factor-β1-induced epithelial-mesenchymal transition of non-small cell lung cancer cells. Mol Med Rep 2015; 11:3259-68. [PMID: 25586417 PMCID: PMC4368139 DOI: 10.3892/mmr.2015.3150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells depolarize and acquire a mesenchymal phenotype, and is a common early step in the process of metastasis. Patients with lung cancer frequently already have distant metastases when they are diagnosed, highlighting the requirement for early and effective interventions to control metastatic disease. Transforming growth factor-β1 (TGF-β1) is able to induce EMT, however the molecular mechanism of this remains unclear. In the current study, TGF-β1 was reported to induce EMT and promote the migration of non-small cell lung cancer (NSCLC) cells. A notable observation was that EMT induction was accompanied by the upregulation of human glioma-associated oncogene homolog 1 (Gli1) mRNA and protein levels. Furthermore, Gli1 levels were depleted by small interfering RNA, and the Gli1 inhibitor GANT 61 attenuated the TGF-β1-mediated induction of EMT and cell migration. The results of the current study suggest that Gli1 regulates TGF-β1-induced EMT, which may provide a novel therapeutic target to inhibit metastasis in patients with NSCLC.
Collapse
Affiliation(s)
- Hua Li
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Li-Jun Da
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wei-Dong Fan
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiao-Hong Long
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xian-Quan Zhang
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
47
|
Kageyama-Yahara N, Yamamichi N, Takahashi Y, Nakayama C, Shiogama K, Inada KI, Konno-Shimizu M, Kodashima S, Fujishiro M, Tsutsumi Y, Ichinose M, Koike K. Gli regulates MUC5AC transcription in human gastrointestinal cells. PLoS One 2014; 9:e106106. [PMID: 25166306 PMCID: PMC4148389 DOI: 10.1371/journal.pone.0106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
MUC5AC is a well-known gastric differentiation marker, which has been frequently used for the classification of stomach cancer. Immunohistochemistry revealed that expression of MUC5AC decreases accompanied with increased malignant property of gastric mucosa, which further suggests the importance of MUC5AC gene regulation. Alignment of the 5′-flanking regions of MUC5AC gene of 13 mammal species denoted high homology within 200 bp upstream of the coding region. Luciferase activities of the deletion constructs containing upstream 451 bp or shorter fragments demonstrated that 15 bp region between −111 and −125 bp plays a critical role on MUC5AC promoter activity in gastrointestinal cells. We found a putative Gli-binding site in this 15 bp sequence, and named this region a highly conserved region containing a Gli-binding site (HCR-Gli). Overexpression of Gli homologs (Gli1, Gli2, and Gli3) clearly enhanced MUC5AC promoter activity. Exogenous modulation of Gli1 and Gli2 also affected the endogenous MUC5AC gene expression in gastrointestinal cells. Chromatin immunoprecipitation assays demonstrated that Gli1 directly binds to HCR-Gli: Gli regulates MUC5AC transcription via direct protein-DNA interaction. Conversely, in the 30 human cancer cell lines and various normal tissues, expression patterns of MUC5AC and Gli did not coincide wholly: MUC5AC showed cell line-specific or tissue-specific expression whereas Gli mostly revealed ubiquitous expression. Luciferase promoter assays suggested that the far distal MUC5AC promoter region containing upstream 4010 bp seems to have several enhancer elements for gene transcription. In addition, treatments with DNA demethylation reagent and/or histone deacetylase inhibitor induced MUC5AC expression in several cell lines that were deficient in MUC5AC expression. These results indicated that Gli is necessary but not sufficient for MUC5AC expression: namely, the multiple regulatory mechanisms should work in the distal promoter region of MUC5AC gene.
Collapse
Affiliation(s)
- Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chiemi Nakayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuya Shiogama
- 1st Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ken-ichi Inada
- 1st Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Maki Konno-Shimizu
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinya Kodashima
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Tsutsumi
- 1st Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masao Ichinose
- Second Department of Internal Medicine, Wakayama Medical College, Kimiidera, Wakayama, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
48
|
AMABLE LAUREN, FAIN JASON, GAVIN ELAINE, REED EDDIE. Gli1 contributes to cellular resistance to cisplatin through altered cellular accumulation of the drug. Oncol Rep 2014; 32:469-74. [PMID: 24926795 PMCID: PMC4091882 DOI: 10.3892/or.2014.3257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/30/2013] [Indexed: 11/29/2022] Open
Abstract
Cellular resistance to platinum anticancer compounds is governed by no less than two molecular processes; DNA repair and cellular accumulation of drug. Gli1 is an upstream regulator of nucleotide excision repair, effecting this process through c-jun. We, therefore, investigated whether Gli1 plays a role in cellular accumulation of cisplatin. Using a Gli1-specific shRNA, we explored the role of Gli1 in the cellular accumulation and efflux of cisplatin, in cisplatin-resistant A2780-CP70 human ovarian cancer cells. When Gli1 is inhibited, cellular uptake of cisplatin was approximately 33% of the level of uptake under control conditions. When Gli1 is inhibited, cellular efflux of cisplatin was completely abrogated, over a 12-h period of observation. We assayed nuclear lysates from these cells, for the ability to bind the DNA sequence that is the Gli-binding site (GBS) in the 5'UTR for each of five known cisplatin transmembrane transporters. Four of these transporters are active in cisplatin uptake; and, one is active in cisplatin efflux. In each case, nuclear lysate from A2780-CP70 cells binds the GBS of the respective cisplatin transport gene. We conclude that Gli1 plays a strong role in total cellular accumulation of cisplatin in these cells; and, that the combined effects on cellular accumulation of drug and on DNA repair may indicate a role for Gli1 in protecting cellular DNA from lethal types of DNA damage.
Collapse
Affiliation(s)
- LAUREN AMABLE
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - JASON FAIN
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - ELAINE GAVIN
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - EDDIE REED
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
49
|
Niu Y, Li F, Tang B, Shi Y, Hao Y, Yu P. Clinicopathological correlation and prognostic significance of sonic hedgehog protein overexpression in human gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5144-5153. [PMID: 25197388 PMCID: PMC4152078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVES This study investigated the expression of Sonic Hedgehog (Shh) protein in gastric cancer, and correlated it with clinicopathological parameters. The prognostic significance of Shh protein was analyzed. METHODS Shh protein expression was evaluated in 113 cases of gastric cancer and 60 cases of normal gastric mucosa. The immunoreactivity was scored semi quantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely non-overexpression group with score 0 or 1, and overexpression group with score 2 or 3. The overexpression of Shh protein was correlated with clinicopathological parameters. Survival analysis was then performed to determine the Shh protein prognostic significance in gastric cancer. RESULTS In immunohistochemistry study, nineteen (31.7%) normal gastric mucosa revealed Shh protein overexpression, while eighty-one (71.7%) gastric cancer revealed overexpression. The expression of Shh protein were significantly higher in gastric cancer tissues than in normal gastric mucosa (P < 0.001), which was statistically correlated with age (P = 0.006), tumor differentiation (P < 0.001), depth of invasion (P = 0.042), pathologic staging (P = 0.017), and nodal metastasis (P = 0.019). We found no significant difference in both overall and disease free survival rates between Shh overexpression and non-expression groups P = 0.168 and 0.071). However, Shh overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 1.187, P = 0.041). CONCLUSIONS Shh protein expression is upregulated and is statistically correlated with age, tumor differentiation, depth of invasion, pathologic staging, and nodal metastasis. The Shh protein overexpression is a significant independent prognostic factor in multivariate Cox regression analysis in gastric cancer.
Collapse
Affiliation(s)
- Yanyang Niu
- General Surgery Center of People’s Liberation Army, Military General Surgery Center, Southwest Hospital, The Third Military Medical UniversityGaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China
| | - Fang Li
- Department of Stomatology, Southwest Hospital, The Third Military Medical UniversityGaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China
| | - Bo Tang
- General Surgery Center of People’s Liberation Army, Military General Surgery Center, Southwest Hospital, The Third Military Medical UniversityGaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China
| | - Yan Shi
- General Surgery Center of People’s Liberation Army, Military General Surgery Center, Southwest Hospital, The Third Military Medical UniversityGaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China
| | - Yingxue Hao
- General Surgery Center of People’s Liberation Army, Military General Surgery Center, Southwest Hospital, The Third Military Medical UniversityGaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China
| | - Peiwu Yu
- General Surgery Center of People’s Liberation Army, Military General Surgery Center, Southwest Hospital, The Third Military Medical UniversityGaotanyan Street, Shapingba District, Chongqing 400038, People’s Republic of China
| |
Collapse
|
50
|
Avesson L, Barry G. The emerging role of RNA and DNA editing in cancer. Biochim Biophys Acta Rev Cancer 2014; 1845:308-16. [PMID: 24607277 DOI: 10.1016/j.bbcan.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/25/2014] [Accepted: 03/01/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Nucleotide sequence modification through single base editing in animals is emerging as an important player in tumorigenesis. RNA editing especially has increased greatly during mammalian evolution and modulates diverse cellular functions presumably in a context-dependent manner. Sequence editing impacts development, including pluripotency and hematopoiesis, and multiple recent studies have shown that dysregulation of editing is associated with tumor biology. Much is yet to be learned about the role of sequence editing in human biology but this process is a critical modulator of cell regulation and may present an attractive option for therapeutic intervention in cancer in the future. SIGNIFICANCE Sequence editing provides an additional regulatory layer of cancer initiation and progression that may be amenable to therapeutic design. Although editing of both RNA and DNA substrates has been known to occur for some time, the extent and implications of these modifications have been grossly underappreciated until recent genome-wide and disease-association studies were reported. This review highlights the cellular processes controlled by sequence editing, their implications in normal and cancerous states and considers potential targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lotta Avesson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Guy Barry
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|