1
|
Zhou R, Zhen Y, Ma H, Wang Z, Liu L, Zhang X, Guo B. Transcriptome profiling of serum exosomes by RNA-Seq reveals lipid metabolic changes as a potential biomarker for evaluation of roxadustat treatment of chronic kidney diseases. Mol Omics 2025. [PMID: 40094436 DOI: 10.1039/d4mo00025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The incidence of chronic kidney disease (CKD) is increasing globally; however, effective preventive and therapeutic strategies are currently limited. Roxadustat is being clinically used to treat renal anemia in CKD patients to reduce anemia-related complications and improve patients' life quality. Exosomes are small vesicles carrying important information that contribute to cell-to-cell communication and are present in various body fluids. However, little is known about the role of serum exosomes and their association with CKD after roxadustat treatment. Next-generation sequencing approaches have revealed that exosomes are enriched in noncoding RNAs and thus exhibit great potential as sensitive nucleic acid biomarkers in various human diseases. In this study, we aimed to identify the changed mRNAs-lncRNAs after roxadustat treatment as novel biomarkers for assessing the efficiency of the treatment. Through our study using RNA-seq data, we identified 957 mRNAs (626 upregulated and 331 downregulated after roxadustat treatment) and 914 lncRNAs (444 upregulated and 470 downregulated) derived from exosomes that were significantly changed, which was highly correlated to lipid metabolism. Our analysis through whole transcriptome profiling of exosome RNAs encompasses an identified differentially expressed mRNA-lncRNA regulatory axis in a larger patient cohort for the validation of suitable biomarkers for assessing CKD after roxadustat treatment.
Collapse
Affiliation(s)
- Ru Zhou
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - YaXuan Zhen
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Hualin Ma
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Zhen Wang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - LiXia Liu
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xinzhou Zhang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Baochun Guo
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
2
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
3
|
Cotto N, Chauhan N, Adriano B, Chauhan DS, Cabrera M, Chauhan SC, Yallapu MM. Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:711-720. [PMID: 39483633 PMCID: PMC11522989 DOI: 10.1021/cbmi.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 11/03/2024]
Abstract
Milk-derived exosomes are widely used for diagnosis, delivery, imaging, and theranostic applications. Near-Infrared (NIR) based fluorescence bioimaging is an attractive and safer technique that is used for clinical applications. However, almost all NIR imaging agents tend to have poor photostability, short half-life, nonspecific protein binding, and concentration-dependent aggregation(s). Therefore, there is an unmet clinical need to develop newer and safer modalities to package and deliver NIR imaging agents. Bovine milk exosomes are natural, biocompatible, safe, and efficient nanocarriers that facilitate the delivery of micro- and macromolecules. Herein, we developed an exosome-based NIR dye loaded nanoimaging formulation that offers improved solubility and photostability of NIR dye. Following the acetic acid based extracellular vesicle (EV) treatment method, we extracted the bovine milk exosomes from a variety of pasteurized grade milk. The EVs were screened for their physicochemical properties such as particle size and concentration and zeta potential. The stability of these exosomes was also determined under different conditions, including storage temperatures, pH, and salt concentrations. Next, indocyanine green, a model NIR dye was loaded into these exosomes (Exo-Glow) via a sonication method and further assessed for their improved fluorescence intensity and photostability using an IVIS imaging system. Initial screening suggested that size of the selected bovine milk exosomes was ∼100-135 nm with an average particle concentration of 5.8 × 102 particles/mL. Exo-Glow further demonstrated higher fluorescence intensity in cancer cells and tissues when compared to free dye. These results showed that Exo-Glow has the potential to serve as a safer NIR imaging tool for cancer cells/tissues.
Collapse
Affiliation(s)
- Nycol
M. Cotto
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Neeraj Chauhan
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Benilde Adriano
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Deepak S. Chauhan
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Marco Cabrera
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C. Chauhan
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M. Yallapu
- Division
of Immunology and Microbiology, Medicine and Oncology Integrated Service
Unit, School of Medicine, The University
of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
4
|
Wu F, Song C, Zhen G, Jin Q, Li W, Liang X, Xu W, Guo W, Yang Y, Dong W, Jiang A, Kong P, Yan J. Exosomes derived from BMSCs in osteogenic differentiation promote type H blood vessel angiogenesis through miR-150-5p mediated metabolic reprogramming of endothelial cells. Cell Mol Life Sci 2024; 81:344. [PMID: 39133273 PMCID: PMC11335269 DOI: 10.1007/s00018-024-05371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.
Collapse
Affiliation(s)
- Feng Wu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Chengchao Song
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Guanqi Zhen
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Qin Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Wei Li
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Xiongjie Liang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, P.R. China
| | - Wenbo Xu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Wenhui Guo
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Yang Yang
- Department of Respiratory Diseases, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Wei Dong
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Anlong Jiang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Pengyu Kong
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Jinglong Yan
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China.
| |
Collapse
|
5
|
Li M, Yu Y, Li S, Wang F, Hong S, Sun Y, Fan A. A simple chemiluminescent method for the quantification of exosomes based on horseradish peroxidase adsorbed on two-dimensional nanomaterials. Talanta 2024; 275:126156. [PMID: 38692048 DOI: 10.1016/j.talanta.2024.126156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The development of simple methods for the isolation and quantification of exosomes in biological samples is important. By using the typical two-dimensional (2D) nanomaterials, graphene oxide (GO), the present work first studied the interaction of liposomes with the nanocomposites formed by adsorbing HRP on the GO surface and found the presence of liposomes led to the release of HRP from the GO surface to the solution phase triggering the luminol-H2O2 chemiluminescence (CL) reaction to emit light. Benefiting from the similarity of exosomes to liposomes in both composition and morphology aspects, the GO-HRP nanocomposites with a mass ratio of 120:1 and 160:1 were employed for the quantitative detection of exosomes in 100-fold diluted serum samples. The whole detection process took about 15 min and as low as 3.2 × 102 particles μL-1 of exosomes could be sensitively detected. In addition to GO-HRP nanocomposites, the CL responses of other nanocomposites obtained from adsorbing HRP on other 2D nanomaterials such as layered MoS2 for exosomes were also tested. MoS2-HRP exhibited similar behavior and the LODs for the detection of exosomes were 5.8 × 102 particles μL-1. The proposed assays were a biomarker-independent quantitative method that achieved the quantification of exosomes in serum samples directly without an isolation process.
Collapse
Affiliation(s)
- Meilin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yifan Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shanshan Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Sile Hong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yinuo Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
7
|
Lee KWA, Chan LKW, Hung LC, Phoebe LKW, Park Y, Yi KH. Clinical Applications of Exosomes: A Critical Review. Int J Mol Sci 2024; 25:7794. [PMID: 39063033 PMCID: PMC11277529 DOI: 10.3390/ijms25147794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes, small membrane-bound vesicles secreted by cells, have gained significant attention for their therapeutic potential. Measuring 30-100 nm in diameter and derived from various cell types, exosomes play a crucial role in intercellular communication by transferring proteins, lipids, and RNA between cells. This review analyzes existing literature on the clinical applications of exosomes. We conducted a comprehensive search of peer-reviewed articles and clinical trial data to evaluate the benefits, limitations, and challenges of exosome-based therapies. Key areas of focus included regenerative medicine, cancer therapy, gene therapy, and diagnostic biomarkers. This review highlights the vast clinical applications of exosomes. In regenerative medicine, exosomes facilitate tissue repair and regeneration. In cancer therapy, exosomes can deliver therapeutic agents directly to tumor cells. In gene therapy, exosomes serve as vectors for gene delivery. As diagnostic biomarkers, they are useful in diagnosing various diseases. Challenges such as the isolation, purification, and characterization of exosomes were identified. Current clinical trials demonstrate the potential of exosome-based therapies, though they also reveal significant hurdles. Regulatory issues, including the need for standardization and validation of exosome products, are critical for advancing these therapies. While significant progress has been made in understanding exosome biology, further research is essential to fully unlock their clinical potential. Addressing challenges in isolation, purification, and regulatory standardization is crucial for their successful application in clinical practice. This review provides a concise overview of the clinical applications of exosomes, emphasizing both their therapeutic promise and the obstacles that need to be overcome.
Collapse
Affiliation(s)
- Kar Wai Alvin Lee
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (L.C.H.)
| | | | - Lee Cheuk Hung
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (L.C.H.)
| | | | | | - Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul B1F 450, Republic of Korea
| |
Collapse
|
8
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
9
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
10
|
Liu Y, Jiang P, Qu Y, Liu C, Zhang D, Xu B, Zhang Q. Exosomes and exosomal miRNAs: A new avenue for the future treatment of rheumatoid arthritis. Heliyon 2024; 10:e28127. [PMID: 38533025 PMCID: PMC10963384 DOI: 10.1016/j.heliyon.2024.e28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease that involves mainly synovitis and joint injury and is one of the main causes of disability. The pathogenesis of rheumatoid arthritis is complicated, and the treatment cycle is long. The traditional methods of inhibiting inflammation and immunosuppression are no longer sufficient for treatment of the disease, so there is an urgent need to seek new treatments. The exocrine microenvironment is a kind of microvesicle with a lipid bilayer membrane structure that can be secreted by most cells in the body. This structure contains cell-specific proteins, lipids and nucleic acids that can transmit this information from one cell to another. To achieve cell-to-cell communication. Exocrine microRNAs can be contained in exocrine cells and can be selectively transferred to target receptor cells via exocrine signaling, thus regulating the physiological function of target cells. This article focuses on the pathological changes that occur during the development of rheumatoid arthritis and the biological regulation of exocrine and exocrine microRNAs in rheumatoid joints. Research on the roles of exocrine and exocrine microRNAs in regulating the inflammatory response, cell proliferation/apoptosis, autophagy, effects on fibroblast-like synoviocytes and immune regulation in rheumatoid arthritis was reviewed. In addition, the challenges faced by this new treatment are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Ping Jiang
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Tenchov R, Sapra AK, Sasso J, Ralhan K, Tummala A, Azoulay N, Zhou QA. Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers. ACS Pharmacol Transl Sci 2024; 7:586-613. [PMID: 38481702 PMCID: PMC10928905 DOI: 10.1021/acsptsci.3c00346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 01/04/2025]
Abstract
Cancer is one of the leading causes of death worldwide. Early cancer detection is critical because it can significantly improve treatment outcomes, thus saving lives, reducing suffering, and lessening psychological and economic burdens. Cancer biomarkers provide varied information about cancer, from early detection of malignancy to decisions on treatment and subsequent monitoring. A large variety of molecular, histologic, radiographic, or physiological entities or features are among the common types of cancer biomarkers. Sizeable recent methodological progress and insights have promoted significant developments in the field of early cancer detection biomarkers. Here we provide an overview of recent advances in the knowledge related to biomolecules and cellular entities used for early cancer detection. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, as well as from the biomarker datasets at Excelra, and analyze the publication landscape of recent research. We also discuss the evolution of key concepts and cancer biomarkers development pipelines, with a particular focus on pancreatic and liver cancers, which are known to be remarkably difficult to detect early and to have particularly high morbidity and mortality. The objective of the paper is to provide a broad overview of the evolving landscape of current knowledge on cancer biomarkers and to outline challenges and evaluate growth opportunities, in order to further efforts in solving the problems that remain. The merit of this review stems from the extensive, wide-ranging coverage of the most up-to-date scientific information, allowing unique, unmatched breadth of landscape analysis and in-depth insights.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Aparna K. Sapra
- Excelra
Knowledge Solutions Pvt. Ltd., Hyderabad-500039, India
| | - Janet Sasso
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Anusha Tummala
- Excelra
Knowledge Solutions Pvt. Ltd., Hyderabad-500039, India
| | - Norman Azoulay
- Excelra
Knowledge Solutions Pvt. Ltd., Hyderabad-500039, India
| | | |
Collapse
|
12
|
Wang M, Chen L, Li J, You Y, Qian Z, Liu J, Jiang Y, Zhou T, Gu Y, Zhang Y. An omics review and perspective of researches on intrahepatic cholestasis of pregnancy. Front Endocrinol (Lausanne) 2024; 14:1267195. [PMID: 38260124 PMCID: PMC10801044 DOI: 10.3389/fendo.2023.1267195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is one of the common pregnancy complications that may threaten the health of both pregnant women and their fetuses. Hence, it is of vital importance to identify key moleculars and the associated functional pathways of ICP, which will help us to better understand the pathological mechanisms as well as to develop precise clinical biomarkers. The emerging and developing of multiple omics approaches enable comprehensive studies of the genome, transcriptome, proteome and metabolome of clinical samples. The present review collected and summarized the omics based studies of ICP, aiming to provide an overview of the current progress, limitations and future directions. Briefly, these studies covered a broad range of research contents by the comparing of different experimental groups including ICP patients, ICP subtypes, ICP fetuses, ICP models and other complications. Correspondingly, the studied samples contain various types of clinical samples, in vitro cultured tissues, cell lines and the samples from animal models. According to the main research objectives, we further categorized these studies into two groups: pathogenesis and diagnosis analyses. The pathogenesis studies identified tens of functional pathways that may represent the key regulatory events for the occurrence, progression, treatment and fetal effects of ICP. On the other hand, the diagnosis studies tested more than 40 potential models for the early-prediction, diagnosis, grading, prognosis or differential diagnosis of ICP. Apart from these achievements, we also evaluated the limitations of current studies, and emphasized that many aspects of clinical characteristics, sample processing, and analytical method can greatly affect the reliability and repeatability of omics results. Finally, we also pointed out several new directions for the omics based analyses of ICP and other perinatal associated conditions in the future.
Collapse
Affiliation(s)
- Min Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Lingyan Chen
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jingyang Li
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yilan You
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiayu Liu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Jiang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tao Zhou
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Gu
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Koksal AR, Ekmen N, Aydin Y, Nunez K, Sandow T, Delk M, Moehlen M, Thevenot P, Cohen A, Dash S. A Single-Step Immunocapture Assay to Quantify HCC Exosomes Using the Highly Sensitive Fluorescence Nanoparticle-Tracking Analysis. J Hepatocell Carcinoma 2023; 10:1935-1954. [PMID: 37936599 PMCID: PMC10627088 DOI: 10.2147/jhc.s423043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Extracellular vesicles could serve as a non-invasive biomarker for early cancer detection. However, limited methods to quantitate cancer-derived vesicles in the native state remain a significant barrier to clinical translation. Aim This research aims to develop a rapid, one-step immunoaffinity approach to quantify HCC exosomes directly from a small serum volume. Methods HCC-derived exosomes in the serum were captured using fluorescent phycoerythrin (PE)-conjugated antibodies targeted to GPC3 and alpha-fetoprotein (AFP). Total and HCC-specific exosomes were then quantified in culture supernatant or patient-derived serums using fluorescence nanoparticle tracking analysis (F-NTA). The performance of HCC exosome quantification in the serum was compared with the tumor size determined by MRI. Results Initially we tested the detection limits of the F-NTA using synthetic fluorescent and non-fluorescent beads. The assay showed an acceptable sensitivity with a detection range of 104-108 particles/mL. Additionally, the combination of immunocapture followed by size-exclusion column purification allows the isolation of smaller-size EVs and quantification by F-NTA. Our assay demonstrated that HCC cell culture releases a significantly higher quantity of GPC3 or GPC3+AFP positive EVs (100-200 particles/cell) compared to non-HCC culture (10-40 particles/cell) (p<0.01 and p<0.05 respectively). The F-NTA enables absolute counting of HCC-specific exosomes in the clinical samples with preserved biological immunoreactivity. The performance of F-NTA was clinically validated in serum from patients ± cirrhosis and with confirmed HCC. F-NTA quantification data show selective enrichment of AFP and GPC3 positive EVs in HCC serum compared to malignancy-free cirrhosis (AUC values for GPC3, AFP, and GPC3/AFP were found 0.79, 0.71, and 0.72 respectively). The MRI-confirmed patient cohort indicated that there was a positive correlation between total tumor size and GPC3-positive exosome concentration (r:0.78 and p<0.001). Conclusion We developed an immunocapture assay that can be used for simultaneous isolation and quantification of HCC-derived exosomes from a small serum volume with high accuracy.
Collapse
Affiliation(s)
- Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Kelley Nunez
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Tyler Sandow
- Department of Radiology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Molly Delk
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Martin Moehlen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Paul Thevenot
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Ari Cohen
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Health, New Orleans, LA, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
14
|
Umeche IE, Olaniyan MF. Exosomes: emerging biomarkers unveiling cellular mysteries—a narrative review. JOURNAL OF BIO-X RESEARCH 2023; 06:104-115. [DOI: 10.1097/jbr.0000000000000146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Affiliation(s)
- Ijeoma Evangeline Umeche
- Department of Medical Laboratory Science, Faculty of Applied Health Sciences, Edo State University Uzairue, Edo State, Nigeria
| | - Mathew Folaranmi Olaniyan
- Department of Medical Laboratory Science, Faculty of Applied Health Sciences, Edo State University Uzairue, Edo State, Nigeria
| |
Collapse
|
15
|
Zhou Z, Zhang D, Wang Y, Liu C, Wang L, Yuan Y, Xu X, Jiang Y. Urinary exosomes: a promising biomarker of drug-induced nephrotoxicity. Front Med (Lausanne) 2023; 10:1251839. [PMID: 37809338 PMCID: PMC10556478 DOI: 10.3389/fmed.2023.1251839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Drug-induced nephrotoxicity (DIN) is a big concern for clinical medication, but the clinical use of certain nephrotoxic drugs is still inevitable. Current testing methods make it hard to detect early renal injury accurately. In addition to understanding the pathogenesis and risk factors of drug-induced nephrotoxicity, it is crucial to identify specific renal injury biomarkers for early detection of DIN. Urine is an ideal sample source for biomarkers related to kidney disease, and urinary exosomes have great potential as biomarkers for predicting DIN, which has attracted the attention of many scholars. In the present paper, we will first introduce the mechanism of DIN and the biogenesis of urinary exosomes. Finally, we will discuss the changes in urinary exosomes in DIN and compare them with other predictive indicators to enrich and boost the development of biomarkers of DIN.
Collapse
Affiliation(s)
- Zunzhen Zhou
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Dailiang Zhang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yongjing Wang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yi Yuan
- Orthopedic Department, Dazhou Integrated TCM and Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, China
| | - Xiaodan Xu
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuan Jiang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Liu X, Ren F, Li S, Zhang N, Pu JJ, Zhang H, Xu Z, Tan Y, Chen X, Chang J, Wang H. Acute myeloid leukemia cells and MSC-derived exosomes inhibiting transformation in myelodysplastic syndrome. Discov Oncol 2023; 14:115. [PMID: 37382733 DOI: 10.1007/s12672-023-00714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
AIMS To investigate the mechanism of exosomes' role in the transformation of MDS to AML. METHODS Exosomes in culture supernatants of MDS and AML cell lines, were extracted by ultrafiltration and identified in three ways: morphology, size, and exosome protein surface markers. Exosomes from AML cell lines were then co-cultured with MDS cell lines and their impacts on MDS cell microenvironment, proliferation, differentiation, cell cycle, and apoptosis were analyzed by CCK-8 assay and flow cytometry. Furthermore, exosomes from MSC were extracted for further authentication. RESULTS The transmission electron microscopy, nanoparticle tracking analysis, Western blotting, and flow cytometry methods all verify that ultrafiltration is a reliable method to extract exosomes in the culture medium. Exosomes from AML cell lines inhibit the proliferation of MDS cell lines, block cell cycle progression, and promote apoptosis and cell differentiation. It also leads to increased secretion of tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) in MDS cell lines. In addition, MSC-derived exosomes were found to inhibit the proliferation of MDS cell lines, arrest cell cycle progression, promote apoptosis, and inhibit differentiation. CONCLUSION Ultrafiltration is a proper methodology in extracting exosomes. The exosomes of AML origin and MSC origin may play a role in MDS leukemia transformation via targeting TNF-α/ROS-Caspase3 pathway.
Collapse
Affiliation(s)
- Xiaoli Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China
| | - Fanggang Ren
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China.
| | - Shuo Li
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China
| | - Na Zhang
- Department of Medical Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jeffrey J Pu
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Hongyu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China
| | - Zhifang Xu
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China
| | - Yanhong Tan
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China
| | - Xiuhua Chen
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China
| | - Jianmei Chang
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China
| | - Hongwei Wang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, People's Republic of China.
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
17
|
Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpää M, Kesharwani P, Alavizadeh SH, Sahebkar A. Role of exosomes in tumour growth, chemoresistance and immunity: state-of-the-art. J Drug Target 2023; 31:32-50. [PMID: 35971773 DOI: 10.1080/1061186x.2022.2114000] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most lethal diseases, and limited available treatment options contribute to its high mortality rate. Exosomes are considered membrane-bound nanovesicles that include different molecules such as lipids, proteins, and nucleic acids. Virtually most cells could release exosomes via exocytosis in physiological and pathological conditions. Tumour-derived exosomes (TDEs) play essential roles in tumorigenesis, proliferation, progression, metastasis, immune escape, and chemoresistance by transferring functional biological cargos, triggering different autocrine, and paracrine signalling cascades. Due to their antigen-presenting properties, exosomes are widely used as biomarkers and drug carriers and have a prominent role in cancer immunotherapy. They offer various advantages in carrier systems (e.g. in chemotherapy, siRNA, and miRNA), delivery of diagnostic agents owing to their stability, loading of hydrophobic and hydrophilic agents, and drug targeting. Novel exosomes-based carriers can be generated as intelligent systems using various sources and crosslinking chemistry extracellular vesicles (EVs). Exosomes studded with targeting ligands, including peptides, can impart in targeted delivery of cargos to tumour cells. In this review, we comprehensively summarised the important role of tumour-derived exosomes in dictating cancer pathogenesis and resistance to therapy. We have therefore, investigated in further detail the pivotal role of tumour-derived exosomes in targeting various cancer cells and their applications, and prospects in cancer therapy and diagnosis. Additionally, we have implicated the potential utility and significance of tumour exosomes-based nanoparticles as an efficient and novel therapeutic carrier and their applications in treating advanced cancers.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Lan X, Ma H, Xiong Y, Zou L, Yuan Z, Xiao Y. Bone marrow mesenchymal stem cells‐derived exosomes mediate nuclear receptor coactivator‐3 expression in osteoblasts by delivering miR‐532‐5p to influence osteonecrosis of the femoral head development. Cell Biol Int 2022; 46:2185-2197. [DOI: 10.1002/cbin.11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- XiaoYong Lan
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - HaiPing Ma
- Department of Nursing Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - YiPin Xiong
- Department of Ultrasound (Musculoskeletal Ultrasound) Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - LingFeng Zou
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - Zhen Yuan
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - YuHong Xiao
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| |
Collapse
|
19
|
Hepatic, Extrahepatic and Extracellular Vesicle Cytochrome P450 2E1 in Alcohol and Acetaminophen-Mediated Adverse Interactions and Potential Treatment Options. Cells 2022; 11:cells11172620. [PMID: 36078027 PMCID: PMC9454765 DOI: 10.3390/cells11172620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol and several therapeutic drugs, including acetaminophen, are metabolized by cytochrome P450 2E1 (CYP2E1) into toxic compounds. At low levels, these compounds are not detrimental, but higher sustained levels of these compounds can lead to life-long problems such as cytotoxicity, organ damage, and cancer. Furthermore, CYP2E1 can facilitate or enhance the effects of alcohol-drug and drug-drug interactions. In this review, we discuss the role of CYP2E1 in the metabolism of alcohol and drugs (with emphasis on acetaminophen), mediating injury/toxicities, and drug-drug/alcohol-drug interactions. Next, we discuss various compounds and various nutraceuticals that can reduce or prevent alcohol/drug-induced toxicity. Additionally, we highlight experimental outcomes of alcohol/drug-induced toxicity and potential treatment strategies. Finally, we cover the role and implications of extracellular vesicles (EVs) containing CYP2E1 in hepatic and extrahepatic cells and provide perspectives on the clinical relevance of EVs containing CYP2E1 in intracellular and intercellular communications leading to drug-drug and alcohol-drug interactions. Furthermore, we provide our perspectives on CYP2E1 as a druggable target using nutraceuticals and the use of EVs for targeted drug delivery in extrahepatic and hepatic cells, especially to treat cellular toxicity.
Collapse
|
20
|
Turner NJ, Quijano LM, Hussey GS, Jiang P, Badylak SF. Matrix Bound Nanovesicles have Tissue Specific Characteristics that Suggest a Regulatory Role. Tissue Eng Part A 2022; 28:879-892. [PMID: 35946072 DOI: 10.1089/ten.tea.2022.0091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies have identified an extracellular vesicle population that is tightly anchored within the extracellular matrix of tissues and organs until released by matrix turnover events. Evidence suggests that these matrix-bound nanovesicles (MBV) are a ubiquitous component of the ECM, raising questions regarding their tissue specific identity and their biologic function(s). The primary objective of this study was to examine MBV isolated from six different tissues and compare their physical and compositional characteristics to determine the common and differentially expressed features. Accordingly, the results of this characterization show that while MBV are a ubiquitous component of the ECM they contain a protein and miRNA cargo that is tissue specific. The results furthermore suggest that MBV have an important role in regulating tissue homeostasis.
Collapse
Affiliation(s)
- Neill J Turner
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania, United States, 15212;
| | - Lina Maria Quijano
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States;
| | - George S Hussey
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Dr., Pittsburgh, Pennsylvania, United States, 15219;
| | - Peng Jiang
- Cleveland State University, Center for Gene Regulation in Health and Disease, Cleveland, Ohio, United States;
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania, United States, 15219;
| |
Collapse
|
21
|
Yu EYW, Zhang H, Fu Y, Chen YT, Tang QY, Liu YX, Zhang YX, Wang SZ, Wesselius A, Li WC, Zeegers MP, Xu B. Integrative Multi-Omics Analysis for the Determination of Non-Muscle Invasive vs. Muscle Invasive Bladder Cancer: A Pilot Study. CURRENT ONCOLOGY (TORONTO, ONT.) 2022; 29:5442-5456. [PMID: 36005168 PMCID: PMC9406560 DOI: 10.3390/curroncol29080430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/28/2022]
Abstract
Objectives: The molecular landscape of non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) bladder cancer based on molecular characteristics is essential but poorly understood. In this pilot study we aimed to identify a multi-omics signature that can distinguish MIBC from NMIBC. Such a signature can assist in finding potential mechanistic biomarkers and druggable targets. Methods: Patients diagnosed with NMIBC (n = 15) and MIBC (n = 11) were recruited at a tertiary-care hospital in Nanjing from 1 April 2021, and 31 July 2021. Blood, urine and stool samples per participant were collected, in which the serum metabolome, urine metabolome, gut microbiome, and serum extracellular vesicles (EV) proteome were quantified. The differences of the global profiles and individual omics measure between NMIBC vs. MIBC were assessed by permutational multivariate analysis and the Mann–Whitney test, respectively. Logistic regression analysis was used to assess the association of each identified analyte with NMIBC vs. MIBC, and the Spearman correlation was used to investigate the correlations between identified analytes, where both were adjusted for age, sex and smoking status. Results: Among 3168 multi-omics measures that passed the quality control, 159 were identified to be differentiated in NMIBC vs. MIBC. Of these, 46 analytes were associated with bladder cancer progression. In addition, the global profiles showed significantly different urine metabolome (p = 0.029), gut microbiome (p = 0.036), and serum EV (extracellular vesicles) proteome (p = 0.039) but not serum metabolome (p = 0.059). We also observed 17 (35%) analytes that had been developed as drug targets. Multiple interactions were obtained between the identified analytes, whereas for the majority (61%), the number of interactions was at 11–20. Moreover, unconjugated bilirubin (p = 0.009) and white blood cell count (p = 0.006) were also shown to be different in NMIBC and MIBC, and associated with 11 identified omics analytes. Conclusions: The pilot study has shown promising to monitor the progression of bladder cancer by integrating multi-omics data and deserves further investigations.
Collapse
Affiliation(s)
- Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China; (Y.-T.C.); (Y.-X.L.); (Y.-X.Z.)
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.W.); (M.P.Z.)
- Correspondence: (E.Y.-W.Y.); (H.Z.)
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
- Nanjing EVLiXiR Biotechnology Co., Ltd., Nanjing 210032, China
- Correspondence: (E.Y.-W.Y.); (H.Z.)
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China;
- Westlake Intelligent Biomarker Discovery Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Ya-Ting Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China; (Y.-T.C.); (Y.-X.L.); (Y.-X.Z.)
| | - Qiu-Yi Tang
- Medical School of Southeast University, Nanjing 210009, China;
| | - Yu-Xiang Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China; (Y.-T.C.); (Y.-X.L.); (Y.-X.Z.)
| | - Yan-Xi Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China; (Y.-T.C.); (Y.-X.L.); (Y.-X.Z.)
| | - Shi-Zhi Wang
- Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Ministry of Education, Nanjing 210009, China;
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.W.); (M.P.Z.)
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Wen-Chao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; (W.-C.L.); (B.X.)
| | - Maurice P. Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.W.); (M.P.Z.)
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; (W.-C.L.); (B.X.)
| |
Collapse
|
22
|
Jokar S, Marques IA, Khazaei S, Martins-Marques T, Girao H, Laranjo M, Botelho MF. The Footprint of Exosomes in the Radiation-Induced Bystander Effects. Bioengineering (Basel) 2022; 9:bioengineering9060243. [PMID: 35735486 PMCID: PMC9220715 DOI: 10.3390/bioengineering9060243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells nearby are known as bystander effects, while effects far from the ionising radiation-exposed cells are known as abscopal effects. These effects are presented as a consequence of intercellular communications. Therefore, a better understanding of the involved intercellular signals may bring promising new strategies for radiation risk assessment and potential targets for developing novel radiotherapy strategies. Recent studies indicate that radiation-derived extracellular vesicles, particularly exosomes, play a vital role in intercellular communications and may result in radioresistance and non-targeted effects. This review describes exosome biology, intercellular interactions, and response to different environmental stressors and diseases, and focuses on their role as functional mediators in inducing radiation-induced bystander effect (RIBE).
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês A. Marques
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran P94V+927, Iran;
| | - Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (I.A.M.); (M.L.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (T.M.-M.); (H.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
23
|
Barranco I, Salas-Huetos A, Berlanga A, Spinaci M, Yeste M, Ribas-Maynou J. Involvement of extracellular vesicle-encapsulated miRNAs in human reproductive disorders: a systematic review. Reprod Fertil Dev 2022; 34:751-775. [PMID: 35527383 DOI: 10.1071/rd21301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as essential players in cell-to-cell communication, particularly having an active regulating role in biological systems. Because reproductive-associated processes are not exempt of this communication, multiple studies have been devoted to this realm, focusing on gamete maturation, embryo implantation or fetal development. The aim of the present review was to comprehensively and systematically collect evidence about the function of the microRNA (miRNA) encapsulated in EVs isolated from different reproductive tissues or fluids in reproductive-related diseases. Following PRISMA guidelines, we conducted a systematic search of the literature published in MEDLINE-PubMed until the end of February 2021. After selection, 32 studies were included in the qualitative review comparing the miRNA expression profile in EVs between different pathological disorders. Most reports showed the potential of the miRNAs carried by EVs to be used as putative biomarkers of reproductive disorders, including pregnancy affections, disease progression and quality of preimplantation embryos. The most relevant miRNAs were found to be highly heterogeneous among studies, with some conflicting results. Further research is thus warranted to address whether cofounding factors, such as the methods to isolate EVs and miRNAs, the subset of EVs, the criteria of patient selection, the timing of sample retrieval, or any other factor, may explain the inconsistencies between studies.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Albert Salas-Huetos
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; and Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angel Berlanga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
24
|
Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression. Nat Commun 2022; 13:897. [PMID: 35173168 PMCID: PMC8850492 DOI: 10.1038/s41467-022-28438-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/24/2022] [Indexed: 12/27/2022] Open
Abstract
The formation of pre-metastatic niche is a key step in the metastatic burden. The pluripotent factor Lin28B is frequently expressed in breast tumors and is particularly upregulated in the triple negative breast cancer subtype. Here, we demonstrate that Lin28B promotes lung metastasis of breast cancer by building an immune-suppressive pre-metastatic niche. Lin28B enables neutrophil recruitment and N2 conversion. The N2 neutrophils are then essential for immune suppression in pre-metastatic lung by PD-L2 up-regulation and a dysregulated cytokine milieu. We also identify that breast cancer-released exosomes with low let-7s are a prerequisite for Lin28B-induced immune suppression. Moreover, Lin28B-induced breast cancer stem cells are the main sources of low-let-7s exosomes. Clinical data further verify that high Lin28B and low let-7s in tumors are both indicators for poor prognosis and lung metastasis in breast cancer patients. Together, these data reveal a mechanism by which Lin28B directs the formation of an immune-suppressive pre-metastatic niche. The establishment of a pre-metastatic niche is a key step preceding metastasis formation. Here the authors show that tumor-intrinsic Lin28B, a RNA-binding protein, has an essential role in the formation of an immune-suppressive pre-metastatic niche, promoting lung metastasis of breast cancer.
Collapse
|
25
|
Mantuano E, Azmoon P, Banki MA, Sigurdson CJ, Campana WM, Gonias SL. A Soluble PrP C Derivative and Membrane-Anchored PrP C in Extracellular Vesicles Attenuate Innate Immunity by Engaging the NMDA-R/LRP1 Receptor Complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:85-96. [PMID: 34810220 PMCID: PMC8702456 DOI: 10.4049/jimmunol.2100412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Nonpathogenic cellular prion protein (PrPC) demonstrates anti-inflammatory activity; however, the responsible mechanisms are incompletely defined. PrPC exists as a GPI-anchored membrane protein in diverse cells; however, PrPC may be released from cells by ADAM proteases or when packaged into extracellular vesicles (EVs). In this study, we show that a soluble derivative of PrPC (S-PrP) counteracts inflammatory responses triggered by pattern recognition receptors in macrophages, including TLR2, TLR4, TLR7, TLR9, NOD1, and NOD2. S-PrP also significantly attenuates the toxicity of LPS in mice. The response of macrophages to S-PrP is mediated by a receptor assembly that includes the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1). PrPC was identified in EVs isolated from human plasma. These EVs replicated the activity of S-PrP, inhibiting cytokine expression and IκBα phosphorylation in LPS-treated macrophages. The effects of plasma EVs on LPS-treated macrophages were blocked by PrPC-specific Ab, by antagonists of LRP1 and the NMDA-R, by deleting Lrp1 in macrophages, and by inhibiting Src family kinases. Phosphatidylinositol-specific phospholipase C dissociated the LPS-regulatory activity from EVs, rendering the EVs inactive as LPS inhibitors. The LPS-regulatory activity that was lost from phosphatidylinositol-specific phospholipase C-treated EVs was recovered in solution. Collectively, these results demonstrate that GPI-anchored PrPC is the essential EV component required for the observed immune regulatory activity of human plasma EVs. S-PrP and EV-associated PrPC regulate innate immunity by engaging the NMDA-R/LRP1 receptor system in macrophages. The scope of pattern recognition receptors antagonized by S-PrP suggests that released forms of PrPC may have broad anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, CA
| | | | - Wendy M Campana
- Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, CA; and
- Veterans Administration San Diego Healthcare System, San Diego, CA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA;
| |
Collapse
|
26
|
Bai X, Liu X, Wu H, Feng J, Chen H, Zhou D. CircFUNDC1 knockdown alleviates oxygen-glucose deprivation-induced human brain microvascular endothelial cell injuries by inhibiting PTEN via miR-375. Neurosci Lett 2021; 770:136381. [PMID: 34906568 DOI: 10.1016/j.neulet.2021.136381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The maintenance of human brain microvascular endothelial cell (HBMEC) function is crucial to improve the outcomes of ischemic stroke (IS). Emerging evidence shows that circular RNAs (circRNAs) are involved in IS progression. This study aimed to investigate the role of circRNA FUN14 domain containing 1 (circFUNDC1) in oxygen-glucose deprivation (OGD)-treated HBMECs. METHODS The expression of circFUNDC1, miR-375 and phosphatase and tensin homolog (PTEN) mRNA was detected by quantitative real-time PCR (qPCR). Cell viability, apoptosis, migration and angiogenesis were determined by CCK-8 assay, flow cytometry assay, transwell assay and tube formation assay. The protein level of PTEN was detected by western blot. The relationship between miR-375 and circFUNDC1 or PTEN was confirmed by pull-down assay, dual-luciferase reporter assay and RIP assay. Exosomes were identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). RESULTS CircFUNDC1 expression was increased in peripheral blood of IS patients and OGD-treated HBMECs. CircFUNDC1 knockdown alleviated OGD-induced cell apoptosis and promoted OGD-blocked cell viability, migration and angiogenesis of HBMECs. MiR-375 was a target of circFUNDC1, and miR-375 restoration played similar effects with circFUNDC1 knockdown. The inhibition of miR-375 reversed the effects of circFUNDC1 knockdown. In addition, PTEN was a downstream target of miR-375, and PTEN overexpression abolished the effects of miR-375 restoration. The expression of circFUNDC1 was elevated in serum-derived exosomes of IS patients, and circFUNDC1 harbored diagnostic values. CONCLUSION CircFUNDC1 knockdown alleviates OGD-induced HBMECs injuries by inhibiting PTEN via enriching miR-375.
Collapse
Affiliation(s)
- Xiumei Bai
- Pharmaceutical Department, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Xi Liu
- Pharmaceutical Department, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Haixia Wu
- Department of Circulatory Medicine, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Jiaqing Feng
- Department of Endocrinology, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Hua Chen
- Department of Neurosurgery, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China
| | - Diangui Zhou
- Department of Neurology, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China.
| |
Collapse
|
27
|
Ahn HR, Baek GO, Yoon MG, Son JA, You D, Yoon JH, Cho HJ, Kim SS, Cheong JY, Eun JW. HMBS is the most suitable reference gene for RT-qPCR in human HCC tissues and blood samples. Oncol Lett 2021; 22:791. [PMID: 34584568 PMCID: PMC8461756 DOI: 10.3892/ol.2021.13052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription-quantitative (RT-q) PCR is the most feasible and useful technique for identifying and evaluating cancer biomarkers; however, the method requires suitable reference genes for gene expression analysis. The aim of the present study was to identify the most suitable reference gene for the normalization of relative gene expression in human hepatocellular carcinoma (HCC) tissue and blood samples. First, 14 candidate reference genes were selected through a systematic literature search. The expression levels of these genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, PGK1, PPIA, RPLP0, RPL13A, SDHA, TBP, TFRC and YWHAZ) were evaluated using human multistage HCC transcriptome data (dataset GSE114564), which included normal liver (n=15), chronic hepatitis (n=20), liver cirrhosis (n=10), and early (n=18) and advanced HCC (n=45). From the 14 selected genes, five genes, whose expression levels were stable in all liver disease statuses (ACTB, GAPDH, HMBS, PPIA and RPLP0), were further assessed using RT-qPCR in 40 tissues (20 paired healthy tissues and 20 tissues from patients with HCC) and 40 blood samples (20 healthy controls and 20 samples from patients with HCC). BestKeeper statistical algorithms were used to identify the most stable reference genes, of which HMBS was found to be the most stable in both HCC tissues and blood samples. Therefore, the results of the present study suggest HMBS as a promising reference gene for the normalization of relative RT-qPCR techniques in HCC-related studies.
Collapse
Affiliation(s)
- Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Donglim You
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae Yeon Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
28
|
Adriano B, Cotto NM, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioact Mater 2021; 6:2479-2490. [PMID: 33553829 PMCID: PMC7856328 DOI: 10.1016/j.bioactmat.2021.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a unique subpopulation of naturally occurring extracellular vesicles which are smaller intracellular membrane nanoparticle vesicles. Exosomes have proven to be excellent nanocarriers for carrying lipids, proteins, mRNAs, non-coding RNAs, and DNAs, and disseminating long-distance intercellular communications in various biological processes. Among various cell-line or biological fluid derived exosomes, milk exosomes are abundant in nature and exhibit many nanocarrier characteristics favorable for theranostic applications. To be an effective delivery carrier for their clinical translation, exosomes must inbuilt loading, release, targeting, and imaging/tracking characteristics. Considering the unmet gaps of milk exosomes in theranostic technology it is essential to focus the current review on drug delivery and imaging applications. This review delineates the efficiency of exosomes to load therapeutic or imaging agents and their successful delivery approaches. It is emphasized on possible modifications of exosomes towards increasing the stability and delivery of agents. This article also summarizes the specific applications and the process of developing milk exosomes as a future pharmaceutical drug delivery vehicle.
Collapse
Affiliation(s)
- Benilde Adriano
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Nycol M. Cotto
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| |
Collapse
|
29
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
30
|
Zhang Z, Liang X, Zhou J, Meng M, Gao Y, Yi G, Fu M. Exosomes in the pathogenesis and treatment of ocular diseases. Exp Eye Res 2021; 209:108626. [PMID: 34087205 DOI: 10.1016/j.exer.2021.108626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Exosomes have diverse functions and rich content and are involved in intercellular communication, immune regulation, viral infection, tissue regeneration, and the occurrence, development and metastasis of tumours. Notably, various stem cell-derived exosomes are expected to become new therapeutic approaches for inflammatory diseases and tumours and have good clinical application prospects. However, few studies have examined exosomes in ophthalmic diseases. Therefore, based on the functions of exosomes, this paper summarizes progress in the possible use of exosomes as treatment for specific ophthalmic diseases, aiming to determine the pathogenesis of exosomes to achieve more effective clinical diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihan Zhang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaotian Liang
- Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Zhou
- Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Meng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Ya Gao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Exosomes derived from miR-1228 overexpressing bone marrow-mesenchymal stem cells promote growth of gastric cancer cells. Aging (Albany NY) 2021; 13:11808-11821. [PMID: 33883305 PMCID: PMC8109060 DOI: 10.18632/aging.202878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 01/23/2023]
Abstract
There has been increasing evidence that microRNAs (miRNAs) are related to glioma progression, and that genetically engineered mesenchymal stem cells (MSCs) can inhibit the growth of gliomas. However, the underlying mechanism of bone marrow-MSCs (BM--MSCs) and miRs in gastric cancer still remains unclear. Patients with gastric cancer treated in Shijiazhuang First Hospital as well as healthy individuals undergoing physical examinations were recruited to measure the expression of exosomal miR-1228. Receiver operating characteristic (ROC) curves were plotted and the patients were followed up. BM--MSCs from healthy subjects were collected and exosomes were extracted. The MSC cells were transfected with lentiviral vectors carrying miR-1228 and MMP-14 over-expression sequences and scramble sequence, followed by exosome extraction. The exosomes were co-cultured with SGC-7901 and MGC-823 cells to detect cell proliferation, invasion, apoptosis and migration. The correlation between miR-1228 and MMP-14 was determined by dual-luciferase reporter assay. miR-1228 was highly expressed in serum exosomes of patients with gastric cancer with a area under ROC curve (AUC) of 0.865. The exosomes derived from BM-MSCs are expected to be efficient nanocarriers. Up-regulation of miR-1228 can down-regulate the expression of MMP-14 and effectively hinders the development and progression of gastric cancer.
Collapse
|
32
|
Wang X, Yao Y, Jin M. Circ-0001068 is a novel biomarker for ovarian cancer and inducer of PD1 expression in T cells. Aging (Albany NY) 2020; 12:19095-19106. [PMID: 33028742 PMCID: PMC7732319 DOI: 10.18632/aging.103706] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Ovarian cancer is a primary gynecological malignancy with a global 5-year survival rate of 44%. The majority of patients present with advanced disease at initial diagnosis because of the lack of an effective early detection screening test. Circular RNAs (circRNAs) within exosomes in the circulatory system are effective diagnostic and therapeutic biomarkers for many diseases, especially tumors. In this study, we used microarrays to identify 6 circRNAs that were upregulated and 37 circRNAs that were downregulated in exosomes from ovarian cancer patients as compared to healthy volunteers. We validated the accumulation trends for the 6 upregulated circRNAs in the training set using qRT-PCR and found that circ-0001068 was significantly higher in the serum exosomes from the ovarian cancer patients as than healthy volunteers. Circ-0001068 was next evaluated further in a larger cohort. As with the training set, results from the larger cohort revealed that levels of circ-0001068 in the exosomes were significantly higher in ovarian cancer patients than healthy volunteers. Circ-0001068 was also delivered into T cells and induced PD1 expression by acting as a competing endogenous RNA (ceRNA) for miR-28-5p through the exosomes.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Gynecology and Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingyu Yao
- Department of Gynecology and Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Meiyuan Jin
- Department of Gynecology and Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
33
|
Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary and metastatic brain tumors are usually serious conditions with poor prognosis, which reveal the urgent need of developing rapid diagnostic tools and efficacious treatments. To achieve these objectives, progress must be made in the understanding of brain tumor biology, for example, how they resist natural defenses and therapeutic intervention. One resistance mechanism involves extracellular vesicles that are released by tumors to meet target cells nearby or distant via circulation and reprogram them by introducing their cargo. This consists of different molecules among which are microRNAs (miRNAs) and molecular chaperones, the focus of this article. miRNAs modify target cells in the immune system to avoid antitumor reaction and chaperones are key survival molecules for the tumor cell. Extracellular vesicles cargo reflects the composition and metabolism of the original tumor cell; therefore, it is a source of markers, including the miRNAs and chaperones discussed in this article, with potential diagnostic and prognostic value. This and their relatively easy availability by minimally invasive procedures (e.g., drawing venous blood) illustrate the potential of extracellular vesicles as useful materials to manage brain tumor patients. Furthermore, understanding extracellular vesicles circulation and interaction with target cells will provide the basis for using this vesicle for delivering therapeutic compounds to selected tumor cells.
Collapse
|
34
|
Cai L, Chao G, Li W, Zhu J, Li F, Qi B, Wei Y, Chen S, Zhou G, Lu X, Xu J, Wu X, Fan G, Li J, Liu S. Activated CD4 + T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY) 2020; 12:7380-7396. [PMID: 32327611 PMCID: PMC7202529 DOI: 10.18632/aging.103084] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022]
Abstract
Cardiac fibrosis is a primary phenotype of cardiac remodeling that contributes to cardiac dysfunction and heart failure. The expansion and activation of CD4+ T cells in the heart has been identified to facilitate pathological cardiac remodeling and dysfunction; however, the underlying mechanisms remained not well clarified. Herein, we found that exosomes derived from activated CD4+ T cells (CD4-activated Exos) evoked pro-fibrotic effects of cardiac fibroblasts, and their delivery into the heart aggravated cardiac fibrosis and dysfunction post-infarction. Mechanistically, miR-142-3p that was enriched in CD4-activated Exos recapitulated the pro-fibrotic effects of CD4-activated Exos in cardiac fibroblasts, and vice versa. Furthermore, miR-142-3p directly targeted and inhibited the expression of Adenomatous Polyposis Coli (APC), a negative WNT signaling pathway regulator, contributing to the activation of WNT signaling pathway and cardiac fibroblast activation. Thus, CD4-activated Exos promote post-ischemic cardiac fibrosis through exosomal miR-142-3p-WNT signaling cascade-mediated activation of myofibroblasts. Targeting miR-142-3p in CD4-activated Exos may hold promise for treating cardiac remodeling post-MI.
Collapse
Affiliation(s)
- Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Gong Chao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Jumo Zhu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Fangfang Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Baozhen Qi
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai 200080, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| | - Guangjian Fan
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou District, Shanghai 201620, China
| |
Collapse
|
35
|
Syed SN, Brüne B. MicroRNAs as Emerging Regulators of Signaling in the Tumor Microenvironment. Cancers (Basel) 2020; 12:E911. [PMID: 32276464 PMCID: PMC7225969 DOI: 10.3390/cancers12040911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
A myriad of signaling molecules in a heuristic network of the tumor microenvironment (TME) pose a challenge and an opportunity for novel therapeutic target identification in human cancers. MicroRNAs (miRs), due to their ability to affect signaling pathways at various levels, take a prominent space in the quest of novel cancer therapeutics. The role of miRs in cancer initiation, progression, as well as in chemoresistance, is being increasingly investigated. The canonical function of miRs is to target mRNAs for post-transcriptional gene silencing, which has a great implication in first-order regulation of signaling pathways. However, several reports suggest that miRs also perform non-canonical functions, partly due to their characteristic non-coding small RNA nature. Examples emerge when they act as ligands for toll-like receptors or perform second-order functions, e.g., to regulate protein translation and interactions. This review is a compendium of recent advancements in understanding the role of miRs in cancer signaling and focuses on the role of miRs as novel regulators of the signaling pathway in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
| |
Collapse
|
36
|
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M, Xu S. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis 2020; 11:32. [PMID: 31949130 PMCID: PMC6965119 DOI: 10.1038/s41419-020-2230-9] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022]
Abstract
Circular RNAs (circRNAs) have been identified play a vital role in various different types of cancer via sponging miRNAs (microRNAs). However, their role in lung adenocarcinoma (LUAD) remains largely unclear. In this study, we systematically characterized the circRNA expression profiles in the LUAD cancer tissues and paired adjacent non-cancerous tissues. Three circRNAs were found to be significantly upregulated. Among them, has-circRNA-002178 was further confirmed to be upregulated in the LUAD tissues, and LUAD cancer cells. Subsequently, we also found has-circRNA-002178 could enhance PDL1 expression via sponging miR-34 in cancer cells to induce T-cell exhaustion. More importantly, circRNA-002178 could be detected in exosomes of plasma from LUAD patients and could serve as biomarkers for LUAD early diagnosis. Finally, we found circRNA-002178 could be delivered into CD8+ T cells to induce PD1 expression via exosomes. Taken together, our study revealed that circRNA-002178 could act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma.
Collapse
Affiliation(s)
- JunFeng Wang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - XuHai Zhao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - YanBo Wang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - FengHai Ren
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - DaWei Sun
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - YuBo Yan
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - XiangLong Kong
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - JianLong Bu
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - MengFeng Liu
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - ShiDong Xu
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
37
|
Yao B, Qu S, Hu R, Gao W, Jin S, Liu M, Zhao Q. A panel of miRNAs derived from plasma extracellular vesicles as novel diagnostic biomarkers of lung adenocarcinoma. FEBS Open Bio 2019; 9:2149-2158. [PMID: 31677346 PMCID: PMC6886307 DOI: 10.1002/2211-5463.12753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related morbidity and mortality worldwide, with lung adenocarcinoma (LUAD) being the most common histological subtype (approximately 40%). In the absence of reliable screening biomarkers for early diagnosis, most patients with LUAD are inevitably diagnosed at an advanced stage. MicroRNAs (miRNAs) encapsulated within plasma‐derived extracellular vesicles (EVs) may be suitable for use as noninvasive diagnostic biomarkers for aggressive malignancies, including LUAD. In this study, we first investigated the miRNA profiles of plasma‐derived EVs from LUAD patients and healthy donors, and then systematically evaluated the expression patterns of selected plasma‐derived EV miRNAs in a large cohort of patients with LUAD and healthy controls. Notably, we observed that miR‐451a, miR‐194‐5p, and miR‐486‐5p were significantly increased in EVs from LUAD patients, compared to healthy controls. The area under the curve values for the three miRNAs were 0.9040 (95% confidence interval [CI], 0.8633–0.9447) for miR‐451a, 0.7492 (95% CI, 0.6992–0.7992) for miR‐194‐5p, and 0.9574 (95% CI, 0.9378–0.9769) for miR‐486‐5p, while the AUC of the combination of these three miRNAs was 0.9650. Thus, these results suggest that these EV miRNAs may be promising candidates for the development of highly effective, noninvasive biomarkers for early LUAD diagnosis. Lung cancer is the leading cause of cancer‐related morbidity and mortality worldwide, with lung adenocarcinoma (LUAD) being the most common histological subtype (approximately 40%). In this study, we observed that miR‐451a, miR‐194‐5p, and miR‐486‐5p in extracellular vesicles derived from plasma may be suitable as highly effective and noninvasive biomarkers for early LUAD diagnosis.![]()
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Shuang Qu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| |
Collapse
|