1
|
Suriyaamporn P, Pornpitchanarong C, Charoenying T, Dechsri K, Ngawhirunpat T, Opanasopit P, Pamornpathomkul B. Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment. Int J Pharm 2025; 669:125072. [PMID: 39675535 DOI: 10.1016/j.ijpharm.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The current study focused on the development of crosslinked hydrogel microneedle patches (cHMNs) incorporating 5-FU-hydroxypropyl beta-cyclodextrin inclusion complex-loaded flexible PEGylated liposomes (5-FU-HPβCD-loaded FP-LPs) to enhance treatment efficacy and reduce drug toxicity. The research utilized artificial intelligence (AI) algorithms to design, optimize, and evaluate the cHMNs. Various AI models were assessed for accuracy, with metrics such as root mean square error and coefficient of determination guiding the selection of the most effective formulation. The physicochemical and mechanical properties, swelling behavior, in vitro skin permeation, and safety of the chosen cHMNs were tested. The results demonstrated that the 5-FU-HPβCD-loaded FP-LPs, stabilized with limonene, had an optimal particle size of 36.23 ± 2.42 nm, narrow size distribution, and zeta potential of -10.24 ± 0.37 mV, with high encapsulation efficiency. The cHMNs exhibited a conical needle shape with sufficient mechanical strength to penetrate the stratum corneum up to approximately 467.87 ± 65.12 μm. The system provided a high skin permeation rate of 41.78 ± 4.26 % and significant drug accumulation in the skin. Additionally, the formulation was proven safe in cell culture while effectively inhibiting cancer growth and promoting apoptosis. This study highlights the potential of AI-enhanced cHMNs for delivering 5-FU-HPβCD-loaded FP-LPs transdermally, offering a promising new treatment avenue for non-melanoma skin cancers.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
Agrawal SS, Baliga V, Londhe VY. Liposomal Formulations: A Recent Update. Pharmaceutics 2024; 17:36. [PMID: 39861685 PMCID: PMC11769406 DOI: 10.3390/pharmaceutics17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/27/2025] Open
Abstract
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use. Scientists have developed new liposomal carrier medication release control and encapsulation methods to address these limits. Drug encapsulation can be optimized by creating lipid compositions that match a drug's charge and hydrophobicity. By selecting lipids and adding co-solvents or surfactants, scientists have increased drug loading in liposomal formulations while maintaining stability. Nanotechnology has also created multifunctional liposomes with triggered release and personalized drug delivery. Surface modification methods like PEGylation and ligand conjugation can direct liposomes to disease regions, improving therapeutic efficacy and reducing off-target effects. In addition to drug loading, researchers have focused on spatiotemporal modulation of liposomal carrier medication release. Stimuli-responsive liposomes release drugs in response to bodily signals. Liposomes can be pH- or temperature-sensitive. To improve therapeutic efficacy and reduce systemic toxicity, researchers added stimuli-responsive components to liposomal membranes to precisely control drug release kinetics. Advanced drug delivery technologies like magnetic targeting and ultrasound. Pro Drug, RNA Liposomes approach may improve liposomal medication administration. Magnetic targeting helps liposomes aggregate at illness sites and improves drug delivery, whereas ultrasound-mediated drug release facilitates on-demand release of encapsulated medicines. This review also covers recent preclinical and clinical research showing the therapeutic promise of next-generation liposomal formulations for cancer, infectious diseases, neurological disorders and inflammatory disorders. The transfer of these innovative liposomal formulations from lab to clinical practice involves key difficulties such scalability, manufacturing difficulty, and regulatory limits.
Collapse
Affiliation(s)
- Surendra S. Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (M), Wardha 442001, Maharashtra, India;
| | - Vrinda Baliga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Vaishali Y. Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
3
|
Brüßeler MT, Zam A, Moreno-Zafra VM, Rouatbi N, Hassuneh OWM, Marrocu A, Liam-Or R, Abdel-Bar HM, Walters AA, Al-Jamal KT. Polyinosinic/Polycytidylic Lipid Nanoparticles Enhance Immune Cell Infiltration and Improve Survival in the Glioblastoma Mouse Model. Mol Pharm 2024; 21:6339-6352. [PMID: 39556101 PMCID: PMC11615939 DOI: 10.1021/acs.molpharmaceut.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Glioblastoma (GBM) immunotherapy is particularly challenging due to the pro-tumorigenic microenvironment, marked by low levels and inactive immune cells. Toll-like receptor (TLR) agonists have emerged as potent immune adjuvants but failed to show improved outcomes in clinical trials when administered as a monotherapy. We hypothesize that a combined nanoparticulate formulation of TLR agonist and immunogenic cell death-inducing drug (doxorubicin) will synergize to induce improved GBM immunotherapy. Lipid nanoparticle (LNP) formulations of the TLR agonists CpG and polyinosinic/polycytidylic (pIpC), with and without Dox, were first prepared, achieving an encapsulation efficiency >75% and a size <140 nm. In vitro studies identified that LNP pIpC was superior to CpG at activating bone marrow-derived immune cell populations (dendritic cells and macrophages) with minimal toxicity. It was also observed that the pIpC formulation can skew macrophage polarization toward the antitumorigenic M1 phenotype and increase macrophage phagocytosis of cancer cells. Upon intratumoral administration, pIpC Dox LNPs led to significant immune cell infiltration and activation. In survival models, the inclusion of Dox into pIpC LNP improved mice survival compared to control. However, addition of Dox did not show significant improvement in mice's survival compared to singly formulated pIpC LNP. This study has illustrated the potential of pIpC LNP formulations in prospective GBM immunotherapeutic regimes. Future studies will focus on optimizing dosage regimen and/or combination with other modalities, including the standard of care (temozolomide), immune checkpoint blockade, or cancer vaccines.
Collapse
Affiliation(s)
- Melanie
M. T. Brüßeler
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Ludwig
Maximilians University, Bayern, Munich, München 80539, Germany
| | - Alaa Zam
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Víctor M. Moreno-Zafra
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Nadia Rouatbi
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Osama W. M. Hassuneh
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Alessia Marrocu
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Revadee Liam-Or
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 999077, China
| | - Hend Mohamed Abdel-Bar
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, P.O. Box 32958, El Sadat, Egypt
| | - Adam Alexander Walters
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
| | - Khuloud T. Al-Jamal
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 999077, China
| |
Collapse
|
4
|
Georgievski A, Bellaye PS, Tournier B, Choubley H, Pais de Barros JP, Herbst M, Béduneau A, Callier P, Collin B, Végran F, Ballerini P, Garrido C, Quéré R. Valrubicin-loaded immunoliposomes for specific vesicle-mediated cell death in the treatment of hematological cancers. Cell Death Dis 2024; 15:328. [PMID: 38734740 PMCID: PMC11088660 DOI: 10.1038/s41419-024-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
| | - Pierre-Simon Bellaye
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Plateforme d'imagerie et de radiothérapie précliniques, Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Benjamin Tournier
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Service de Pathologie, Plateforme de génétique somatique des cancers de Bourgogne, CHU Dijon-Bourgogne, Dijon, France
| | - Hélène Choubley
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Plateforme DiviOmics, UMS58 Inserm BioSanD, Université de Bourgogne, Dijon, France
| | - Jean-Paul Pais de Barros
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Plateforme DiviOmics, UMS58 Inserm BioSanD, Université de Bourgogne, Dijon, France
| | - Michaële Herbst
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR6303 CNRS/Université de Bourgogne, Dijon, France
| | - Arnaud Béduneau
- LipSTIC Labex, Dijon, France
- Université de Franche-Comté, EFS, Inserm, UMR1098 RIGHT, Besançon, France
| | - Patrick Callier
- Laboratoire de Génétique Chromosomique et Moléculaire, CHU Dijon-Bourgogne, Dijon, France
| | - Bertrand Collin
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- Plateforme d'imagerie et de radiothérapie précliniques, Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Frédérique Végran
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Carmen Garrido
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France
- LipSTIC Labex, Dijon, France
- Centre Georges François Leclerc-Unicancer, Dijon, France
- Label of excellence from la Ligue Nationale contre le Cancer, Paris, France
| | - Ronan Quéré
- Center for Translational and Molecular Medicine, UMR1231 Inserm/Université de Bourgogne, Dijon, France.
- LipSTIC Labex, Dijon, France.
| |
Collapse
|
5
|
Yang X, Varini K, Godard M, Gassiot F, Sonnette R, Ferracci G, Pecqueux B, Monnier V, Charles L, Maria S, Hardy M, Ouari O, Khrestchatisky M, Lécorché P, Jacquot G, Bardelang D. Preparation and In Vitro Validation of a Cucurbit[7]uril-Peptide Conjugate Targeting the LDL Receptor. J Med Chem 2023. [PMID: 37339060 DOI: 10.1021/acs.jmedchem.3c00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, 13013 Marseille, France
| | | | | | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | |
Collapse
|
6
|
Hariharan K, Mehta T, Shah J, Dave H, Sami A, Omri A. Localized Delivery of Erlotinib Using Liposomal Gel Formulations for the Treatment of Oral Squamous Cell Carcinoma. Int J Pharm 2023:123144. [PMID: 37330155 DOI: 10.1016/j.ijpharm.2023.123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Oral cancer accounts for more than 350000 cases worldwide with 90% of them being oral squamous cell carcinomas (OSCC). The current treatment modalities of chemoradiation have poor outcomes along with harmful effects to neighbouring healthy tissues. The present study aimed to deliver Erlotinib (ERB), locally at the site of tumor arising in the oral cavity. ERB was encapsulated in liposomal formulations (ERB Lipo) and optimized using full factorial, 32 experimental design. The optimized batch was then coated with chitosan to obtain CS-ERB Lipo and were characterized further. Both liposomal ERB formulations had size less than 200nm and PDI less than 0.4. Zeta potential was upto -50mV for ERB Lipo and upto + 25mV for CS-ERB Lipo indicating stable formulation. Liposomal formulations were freeze dried and loaded into gel to study in-vitro release and chemotherapeutic evaluation. CS-ERB Lipo showed sustained release upto 36 h from gel as compared to control formulation. In-vitro cell viability studies showed potent anti-cancer activity on KB-cells. In-vivo studies showed better pharmacological efficacy in terms of tumor volume reduction for ERB LIPO gel (49.19%) and CS-ERB Lipo gel (55.27%) as compared to plain ERB Gel (38.88%) applied locally. Histology also revealed that formulation could alleviate dysplasia condition to hyperplasia. The locoregional therapy of ERB Lipo gel and CS-ERB Lipo gel thus show promising outcome in improving pre-malignant and early-stage oral cavity cancers.
Collapse
Affiliation(s)
- Kartik Hariharan
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Heena Dave
- Institute of Science, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Ontario, Canada
| |
Collapse
|
7
|
Pachauri A, Chitme H, Visht S, Chidrawar V, Mohammed N, Abdel-Wahab BA, Khateeb MM, Habeeb MS, Orabi MAA, Bakir MB. Permeability-Enhanced Liposomal Emulgel Formulation of 5-Fluorouracil for the Treatment of Skin Cancer. Gels 2023; 9:gels9030209. [PMID: 36975657 PMCID: PMC10048565 DOI: 10.3390/gels9030209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The plain 5-fluorouracil (5FU) formulations available in the market are associated with adverse effects such as skin irritation, pruritus, redness, blisters, allergy, and dryness on the site of application. The objective of the present study was to develop a liposomal emulgel of 5FU with increased skin permeability and efficacy using clove oil and eucalyptus oil along with pharmaceutically acceptable carriers, excipients, stabilizers, binders, and additives. A series of seven formulations were developed and evaluated for their entrapment efficiency, in vitro release profile, and cumulative drug release profile. The compatibility of drugs and excipients, as confirmed by FTIR (fourier-transform infrared spectroscopy) and DSC (differential scanning calorimetry) as well as SEM (scanning electron microscopy) and TEM (transmission electron microscopy) studies, revealed that the size and shape of liposomes are smooth and spherical, and the liposomes are non-aggregated. To understand their efficacy, the optimized formulations were evaluated for cytotoxicity using B16-F10 mouse skin melanoma cells. The eucalyptus oil and clove oil-containing preparation significantly produced a cytotoxic effect against a melanoma cell line. The addition of clove oil and eucalyptus oil increased the efficacy of the formulation by improving skin permeability and reducing the dose required for the anti-skin cancer activity.
Collapse
Affiliation(s)
- Ankur Pachauri
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
- Correspondence: ; Tel.: +91-135-7144000
| | - Sharad Visht
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Vijay Chidrawar
- Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu 515721, Andhra Pradesh, India
| | - Nawaj Mohammed
- Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu 515721, Andhra Pradesh, India
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Masood Medleri Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | | | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Marwa B. Bakir
- Department of Pharmacology, College of Medicine, Najran University, Najran P.O. Box 1988, Saudi Arabia
| |
Collapse
|
8
|
Myocardial Cell Preservation from Potential Cardiotoxic Drugs: The Role of Nanotechnologies. Pharmaceutics 2022; 15:pharmaceutics15010087. [PMID: 36678717 PMCID: PMC9865222 DOI: 10.3390/pharmaceutics15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiotoxic therapies, whether chemotherapeutic or antibiotic, represent a burden for patients who may need to interrupt life-saving treatment because of serious complications. Cardiotoxicity is a broad term, spanning from forms of heart failure induction, particularly left ventricular systolic dysfunction, to induction of arrhythmias. Nanotechnologies emerged decades ago. They offer the possibility to modify the profiles of potentially toxic drugs and to abolish off-target side effects thanks to more favorable pharmacokinetics and dynamics. This relatively modern science encompasses nanocarriers (e.g., liposomes, niosomes, and dendrimers) and other delivery systems applicable to real-life clinical settings. We here review selected applications of nanotechnology to the fields of pharmacology and cardio-oncology. Heart tissue-sparing co-administration of nanocarriers bound to chemotherapeutics (such as anthracyclines and platinum agents) are discussed based on recent studies. Nanotechnology applications supporting the administration of potentially cardiotoxic oncological target therapies, antibiotics (especially macrolides and fluoroquinolones), or neuroactive agents are also summarized. The future of nanotechnologies includes studies to improve therapeutic safety and to encompass a broader range of pharmacological agents. The field merits investments and research, as testified by its exponential growth.
Collapse
|
9
|
Permeation enhancers loaded bilosomes for improved intestinal absorption and cytotoxic activity of doxorubicin. Int J Pharm 2022; 630:122427. [PMID: 36435504 DOI: 10.1016/j.ijpharm.2022.122427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The clinical utility of doxorubicin is compromised due to dose related toxic side effects and limited oral bioavailability with no oral formulation being marketed. Enhancement of intestinal absorption and magnification of cytotoxicity can overcome these limitations. Accordingly, the objective was to probe penetration enhancers, bilosomes and their combinations for enhanced intestinal absorption and improved cytotoxicity of doxorubicin. Piperine and dipyridamole were tested as enhancers alone or encapsulated in bilosomes comprising Span60, cholesterol and bile salts. Bilosomes were nanosized spherical vesicles with negative zeta potential and were able to entrap doxorubicin with efficiency ranging from 45.3 % to 53 %. Intestinal absorption studies utilized in-situ rabbit intestinal perfusion which revealed site dependent doxorubicin absorption correlating with regional distribution of efflux transporters. Co-perfusion with the enhancer increased intestinal absorption with further augmentation after bilosomal encapsulation. The latter increased the % fraction absorbed by 4.5-6 and 1.8-2.5-fold from jejuno-ileum and colon, respectively, depending on bilosomes composition. Additionally, doxorubicin cytotoxicity against breast cancer cells (MCF-7) was significantly improved after bilosomal encapsulation and the recorded doxorubicin IC50 value was reduced from 13.3 μM to 0.1 μM for the best formulation. The study introduced bilosomes encapsulating absorption enhancers as promising carriers for enhanced cytotoxicity and oral absorption of doxorubicin.
Collapse
|
10
|
Liu XM, Zhu WT, Jia ML, Li YT, Hong Y, Liu ZQ, Yan PK. Rapamycin Liposomes Combined with 5-Fluorouracil Inhibits Angiogenesis and Tumor Growth of APC (Min/+) Mice and AOM/DSS-Induced Colorectal Cancer Mice. Int J Nanomedicine 2022; 17:5049-5061. [PMID: 36325149 PMCID: PMC9621024 DOI: 10.2147/ijn.s373777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Transgenic C57BL/6-APC(Min/+) spontaneous cancer mouse model and the Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) chemically induced orthotopic colorectal cancer mouse model represented distinct pathogenesis of colorectal cancers. Our previous study revealed that the combination of Rapamycin liposomes (Rapa/Lps) and 5-Fluorouracil (5-FU) has anti-colorectal cancer effects. However, the therapeutic efficacy of Rapa/Lps and 5-FU in other colorectal cancer mice models is yet to be thoroughly explored. The purpose of this study was to investigate the anti-tumor effect of Rapa/Lps combined with 5-FU in vivo and in vitro. METHODS In this study, we evaluated the effect of Rapa/Lps and 5-FU on APC (Min/+) mice and AOM/DSS-induced colorectal cancer mice. The small intestine, colorectum, serum, and plasma of mice in each group were collected following sacrifice to record the number of tumors. HE staining was utilized for observing pathological damage to intestine tissues. Tube formation assay, Transwell assay, wound healing assay, Western Blot were used to explore the anti-angiogenesis effect of drugs in HUVECs. RESULTS As expected, Rapa/Lps and 5-FU significantly suppressed tumor formation, decreased the number of tumors, and tumor load both in two mouse models, and had no influence on mouse weight. Mechanically, the anti-tumor effect of the drug also was associated in inhibiting angiogenesis and proliferation. Furthermore, we found that Rapa/Lps obviously inhibited HUVECs tube formation and migration. CONCLUSION Altogether, we revealed the Rapa/Lps synergism with 5-FU decreased colon and small intestinal tumorigenesis in AOM/DSS-treated and APC (Min/+) mice, respectively, and correlated with anti-angiogenesis.
Collapse
Affiliation(s)
- Xiao-Min Liu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wen-Ting Zhu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Meng-Lei Jia
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yu-Ting Li
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ye Hong
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China,Correspondence: Zhong-Qiu Liu, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China, Email
| | - Peng-Ke Yan
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China,Peng-Ke Yan, Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China, Email
| |
Collapse
|
11
|
Iscaro A, Jones C, Forbes N, Mughal A, Howard FN, Janabi HA, Demiral S, Perrie Y, Essand M, Weglarz A, Cruz LJ, Lewis CE, Muthana M. Targeting circulating monocytes with CCL2-loaded liposomes armed with an oncolytic adenovirus. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102506. [PMID: 34875352 DOI: 10.1016/j.nano.2021.102506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Oncolytic viruses (OVs) selectively replicate in and destroy cancer cells resulting in anti-tumor immunity. However, clinical use remains a challenge because of virus clearance upon intravenous delivery. OV packaging using a nanomedicine approach could overcome this. Here we encapsulate an oncolytic adenovirus (Ad[I/PPT-E1A]) into CCL2-coated liposomes in order to exploit recruitment of CCR2-expressing circulating monocytes into tumors. We demonstrate successful encapsulation of Ad[I/PPT-E1A] into CCL2-coated liposomes that were preferentially taken up by CCR2-expressing monocytes. No complex-related toxicities were observed following incubation with prostate tumor cells and the encapsulation did not affect virus oncolytic activity in vitro. Furthermore, intravenous administration of our nanomedicine resulted in a significant reduction in tumor size and pulmonary metastasis in prostate cancer-bearing mice whereby a 1000-fold less virus was needed compared to Ad[I/PPT-E1A] alone. Taken together our data provide an opportunity to target OVs via circulation to inaccessible tumors using liposome-assisted drug delivery.
Collapse
Affiliation(s)
- Alessandra Iscaro
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Christian Jones
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Neil Forbes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Amina Mughal
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | | | - Haider Al Janabi
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Secil Demiral
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aleksandra Weglarz
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Luis J Cruz
- Department of Radiology, Division Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Claire E Lewis
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Munitta Muthana
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Shaw TK, Paul P. Recent approaches and success of liposome-based nanodrug carriers for the treatment of brain tumor. Curr Drug Deliv 2021; 19:815-829. [PMID: 34961462 DOI: 10.2174/1567201818666211213102308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
Brain tumors are nothing but a collection of neoplasms originated either from areas within the brain or from systemic metastasized tumors of other organs that have spread to the brain. It is a leading cause of death worldwide. The presence of the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and some other factors may limit the entry of many potential therapeutics into the brain tissues in tumor area at the therapeutic concentration required for satisfying effectiveness. Liposomes are taking an active role in delivering many drugs through the BBB into the tumor due to their nanosize and their physiological compatibility. Further, this colloidal carrier can encapsulate both lipophilic and hydrophilic drugs due to its unique structure. The surface of the liposomes can be modified with various ligands that are very specific to the numerous receptors overexpressed onto the BBB as well as onto the diseased tumor surface site (i.e., BBTB) to deliver selective drugs into the tumor site. Moreover, the enhanced permeability and retention (EPR) effect can be an added advantage for nanosize liposomes to concentrate into the tumor microenvironment through relatively leaky vasculature of solid tumor in the brain where no restriction of penetration applies compared to normal BBB. Here in this review, we have tried to compilethe recent advancement along with the associated challenges of liposomes containing different anticancer chemotherapeutics across the BBB/BBTB for the treatment of gliomas that will be very helpful for the readers for better understanding of different trends of brain tumor targeted liposomes-based drug delivery and for pursuing fruitful research on the similar research domain.
Collapse
Affiliation(s)
- Tapan K Shaw
- Department of Pharmaceutical Technology, JIS University, Kolkata, West Bengal. India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, West Bengal. India
| |
Collapse
|
13
|
Nanomedicine Reformulation of Chloroquine and Hydroxychloroquine. Molecules 2020; 26:molecules26010175. [PMID: 33396545 PMCID: PMC7794963 DOI: 10.3390/molecules26010175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The chloroquine family of antimalarials has a long history of use, spanning many decades. Despite this extensive clinical experience, novel applications, including use in autoimmune disorders, infectious disease, and cancer, have only recently been identified. While short term use of chloroquine or hydroxychloroquine is safe at traditional therapeutic doses in patients without predisposing conditions, administration of higher doses and for longer durations are associated with toxicity, including retinotoxicity. Additional liabilities of these medications include pharmacokinetic profiles that require extended dosing to achieve therapeutic tissue concentrations. To improve chloroquine therapy, researchers have turned toward nanomedicine reformulation of chloroquine and hydroxychloroquine to increase exposure of target tissues relative to off-target tissues, thereby improving the therapeutic index. This review highlights these reformulation efforts to date, identifying issues in experimental designs leading to ambiguity regarding the nanoformulation improvements and lack of thorough pharmacokinetics and safety evaluation. Gaps in our current understanding of these formulations, as well as recommendations for future formulation efforts, are presented.
Collapse
|
14
|
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Antibody-Drug Conjugates: The New Frontier of Chemotherapy. Int J Mol Sci 2020; 21:ijms21155510. [PMID: 32752132 PMCID: PMC7432430 DOI: 10.3390/ijms21155510] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.
Collapse
|