1
|
Mainali N, Balasubramaniam M, Pahal S, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Altered protein homeostasis in cardiovascular diseases contributes to Alzheimer's-like neuropathology. Basic Res Cardiol 2025:10.1007/s00395-025-01109-w. [PMID: 40332607 DOI: 10.1007/s00395-025-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVD is known to increase the risk of subsequent neurodegeneration but the mechanism(s) and proteins involved have yet to be elucidated. We previously showed that myocardial infarction (MI), induced in mice and compared to sham-MI mice, leads to increases in protein aggregation, endoplasmic reticulum (ER) stress in both heart and brain, and changes in proteostatic pathways. In this study, we further investigate the molecular mechanisms altered by induced MI in mice, which were also implicated by proteomics of postmortem human hippocampal aggregates from Alzheimer's disease (AD) and cardiovascular disease (CVD) patients, vs. age-matched controls (AMC). We utilized intra-aggregate crosslinking to identify protein-protein contacts or proximities, and thus to reconstruct aggregate "contactomes" (nonfunctional interactomes). We used leave-one-out analysis (LOOA) to determine the contribution of each protein to overall aggregate cohesion, and gene ontology meta-analyses of constituent proteins to define critical organelles, processes, and pathways that distinguish AD and/or CVD from AMC aggregates. We identified influential proteins in both AD and CVD aggregates, many of which are associated with pathways or processes previously implicated in neurodegeneration such as mitochondrial, oxidative, and endoplasmic-reticulum stress; protein aggregation and proteostasis; the ubiquitin proteasome system and autophagy; axonal transport; and synapses.
Collapse
Affiliation(s)
- Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Azrak O, Garic D, Nasir A, Swanson MR, Grzadzinski RL, Al-Ali K, Shen MD, Girault JB, St John T, Pandey J, Zwaigenbaum L, Estes AM, Wolff JJ, Dager SR, Schultz RT, Evans AC, Elison JT, Yacoub E, Kim SH, McKinstry RC, Gerig G, Pruett JR, Piven J, Botteron KN, Hazlett H, Marrus N, Styner MA. Early White Matter Microstructure Alterations in Infants with Down Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.26.25322913. [PMID: 40061339 PMCID: PMC11888504 DOI: 10.1101/2025.02.26.25322913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Importance Down syndrome, resulting from trisomy 21, is the most prevalent chromosomal disorder and a leading cause of intellectual disability. Despite its significant impact on brain development, research on the white matter microstructure in infants with Down syndrome remains limited. Objective To investigate early white matter microstructure in infants with Down syndrome using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Design Infants were recruited and scanned between March 2019 and May 2024 as participants in prospective studies conducted by the Infant Brain Imaging Study (IBIS) Network. Data were analyzed in October 2024. Setting Data collection occurred at five research centers in Minnesota, Missouri, North Carolina, Pennsylvania, and Washington. Participants Down syndrome and control infants were scanned at 6 months of age. Control infants had no Down syndrome diagnosis and either had a typically developing older sibling or, if they had an older sibling with autism, were confirmed not to meet clinical best estimate criteria for an autism diagnosis. Exposure Diagnosis of Down syndrome. Main Outcomes and Measures The outcome of interest was white matter microstructure quantified using DTI and NODDI measures. Results A total of 49 Down syndrome (28 [57.14%] female) and 37 control (18 [48.65%] female) infants were included. Infants with Down syndrome showed significant reductions in fractional anisotropy and neurite density index across multiple association tracts, particularly in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus II, consistent with reduced structural integrity and neurite density. These tracts also demonstrated increased radial diffusivity, suggesting delayed myelination. The inferior fronto-occipital fasciculus and uncinate fasciculus exhibited increased neurite dispersion and fanning in Down syndrome infants, reflected by elevated orientation dispersion index. Notably, the optic tracts in Down syndrome infants exhibited a distinct pattern of elevated fractional anisotropy and axial diffusivity, and lower radial diffusivity and orientation dispersion index, suggesting an early maturation of these pathways. Conclusions and Relevance This first characterization of white matter microstructure in Down syndrome infants reveals widespread white matter developmental delays. These findings provide new insights into the early neurodevelopment of Down syndrome and may inform early therapeutic interventions.
Collapse
Affiliation(s)
- Omar Azrak
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dea Garic
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aleeshah Nasir
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Meghan R Swanson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca L Grzadzinski
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Khalid Al-Ali
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark D Shen
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tanya St John
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lonnie Zwaigenbaum
- Autism Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Annette M Estes
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Jason J Wolff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen R Dager
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, US
| | - Guido Gerig
- Tandon School of Engineering, New York University, New York, NY, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
3
|
LaSalle JM. DNA methylation biomarkers of intellectual/developmental disability across the lifespan. J Neurodev Disord 2025; 17:10. [PMID: 39972408 PMCID: PMC11841270 DOI: 10.1186/s11689-025-09598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Epigenetic mechanisms, including DNA methylation, act at the interface of genes and environment by allowing a static genome to respond and adapt to a dynamic environment during the lifespan of an individual. Genome-wide DNA methylation analyses on a wide range of human biospecimens are beginning to identify epigenetic biomarkers that can predict risk of intellectual/developmental disabilities (IDD). DNA methylation-based epigenetic signatures are becoming clinically useful in categorizing benign from pathogenic genetic variants following exome sequencing. While DNA methylation marks differ by tissue source, recent studies have shown that accessible perinatal tissues, such as placenta, cord blood, newborn blood spots, and cell free DNA may serve as accessible surrogate tissues for testing epigenetic biomarkers relevant to understanding genetic, environmental, and gene by environment interactions on the developing brain. These DNA methylation signatures may also provide important information about the biological pathways that become dysregulated prior to disease progression that could be used to develop early pharmacological interventions. Future applications could involve preventative screenings using DNA methylation biomarkers during pregnancy or the newborn period for IDDs and other neurodevelopmental disorders. DNA methylation biomarkers in adolescence and adulthood are also likely to be clinically useful for tracking biological aging or co-occurring health conditions that develop across the lifespan. In conclusion, DNA methylation biomarkers are expected to become more common in clinical diagnoses of IDD, to improve understanding of complex IDD etiologies, to improve endpoints for clinical trials, and to monitor potential health concerns for individuals with IDD as they age.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Thorwald MA, Godoy-Lugo JA, Kerstiens E, Garcia G, Kim M, Shemtov SJ, Silva J, Durra S, O'Day PA, Mack WJ, Hiniker A, Vermulst M, Benayoun BA, Higuchi-Sanabria R, Forman HJ, Head E, Finch CE. Down syndrome with Alzheimer's disease brains have increased iron and associated lipid peroxidation consistent with ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636731. [PMID: 39975068 PMCID: PMC11839036 DOI: 10.1101/2025.02.05.636731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Cerebral microbleeds (MB) are associated with sporadic Alzheimer's Disease (AD) and Down Syndrome with AD (DSAD). Higher MB iron may cause iron mediated lipid peroxidation. We hypothesize that amyloid deposition is linked to MB iron and that amyloid precursor protein (APP) triplication increases iron load and lipid peroxidation. METHODS Prefrontal cortex and cerebellum of cognitively normal (CTL), AD and DSAD ApoE3,3 carriers were examined for proteins that mediated iron metabolism, antioxidant response, and amyloid processing in lipid rafts. RESULTS Iron was 2-fold higher in DSAD than CTL and AD. Iron storage proteins and lipid peroxidation were increased in prefrontal cortex, but not in the cerebellum. The glutathione synthesis protein GCLM was decreased by 50% in both AD and DSAD. Activity of lipid raft GPx4, responsible for membrane repair, was decreased by at least 30% in AD and DSAD. DISCUSSION DSAD shows greater lipid peroxidation than AD consistent with greater MBs and iron load.
Collapse
Affiliation(s)
- Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Jose A Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Elizabeth Kerstiens
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Sarah J Shemtov
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Justine Silva
- Department of Pathology and Laboratory Medicine, University of California, Medical Sciences, Irvine, CA 92617
| | - Salma Durra
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Peggy A O'Day
- Life and Environmental Sciences Department, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Wendy J Mack
- Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, 1975 Zonal Ave Los Angeles, CA 90033
| | - Annie Hiniker
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; 1975 Zonal Ave, Los Angeles, CA 90033
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
- School of Natural Sciences, University of California Merced, 5200 N. Lake Rd., Merced, CA 95343
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Medical Sciences, Irvine, CA 92617
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089
- Dornsife College, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089
| |
Collapse
|
5
|
Escamilla S, Salas-Lucia F. Thyroid Hormone and Alzheimer Disease: Bridging Epidemiology to Mechanism. Endocrinology 2024; 165:bqae124. [PMID: 39276028 DOI: 10.1210/endocr/bqae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The identification of critical factors that can worsen the mechanisms contributing to the pathophysiology of Alzheimer disease is of paramount importance. Thyroid hormones (TH) fit this criterion. Epidemiological studies have identified an association between altered circulating TH levels and Alzheimer disease. The study of human and animal models indicates that TH can affect all the main cellular, molecular, and genetic mechanisms known as hallmarks of Alzheimer disease. This is true not only for the excessive production in the brain of protein aggregates leading to amyloid plaques and neurofibrillary tangles but also for the clearance of these molecules from the brain parenchyma via the blood-brain barrier and for the escalated process of neuroinflammation-and even for the effects of carrying Alzheimer-associated genetic variants. Suboptimal TH levels result in a greater accumulation of protein aggregates in the brain. The direct TH regulation of critical genes involved in amyloid beta production and clearance is remarkable, affecting the expression of multiple genes, including APP (related to amyloid beta production), APOE, LRP1, TREM2, AQP4, and ABCB1 (related to amyloid beta clearance). TH also affects microglia by increasing their migration and function and directly regulating the immunosuppressor gene CD73, impacting the immune response of these cells. Studies aiming to understand the mechanisms that could explain how changes in TH levels can contribute to the brain alterations seen in patients with Alzheimer disease are ongoing. These studies have potential implications for the management of patients with Alzheimer disease and ultimately can contribute to devising new interventions for these conditions.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Alicante 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Alicante 03550, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
| | | |
Collapse
|
6
|
Sheikh AM, Tabassum S, Yano S, Abdullah FB, Wang R, Ikeue T, Nagai A. A Cationic Zn-Phthalocyanine Turns Alzheimer's Amyloid β Aggregates into Non-Toxic Oligomers and Inhibits Neurotoxicity in Culture. Int J Mol Sci 2024; 25:8931. [PMID: 39201616 PMCID: PMC11354870 DOI: 10.3390/ijms25168931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Amyloid β peptide (Aβ) aggregation and deposition are considered the main causes of Alzheimer's disease. In a previous study, we demonstrated that anionic Zn-phthalocyanine (ZnPc) can interact with the Aβ peptide and inhibit the fibril-formation process. However, due to the inability of anionic ZnPc to cross the intact blood-brain barrier, we decided to explore the interaction of cationic methylated Zn-phthalocyanine (cZnPc) with the peptide. Using a ThT fluorescence assay, we observed that cZnPc dose-dependently and time-dependently inhibited Aβ1-42 fibril levels under in vitro fibril-formation conditions. Electron microscopy revealed that it caused Aβ1-42 peptides to form small aggregates. Western blotting and dot immunoblot oligomer experiments demonstrated that cZnPc increased rather than decreased the levels of oligomers from the very early stages of incubation. A binding assay confirmed that cZnPc could bind with the peptide. Docking simulations indicated that the oligomer species of Aβ1-42 had a higher ability to interact with cZnPc. ANS fluorescence assay results indicated that cZnPc did not affect the hydrophobicity of the peptide. However, cZnPc significantly increased intrinsic tyrosine fluorescence of the peptide after 8 h of incubation in fibril-formation conditions. Importantly, cell culture experiments demonstrated that cZnPc did not exhibit any toxicity up to a concentration of 10 µM. Instead, it protected a neuronal cell line from Aβ1-42-induced toxicity. Thus, our results suggest that cZnPc can affect the aggregation process of Aβ1-42, rendering it non-toxic, which could be crucial for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Abdullah Md. Sheikh
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
| | - Shatera Tabassum
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
| | - Fatema Binte Abdullah
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (F.B.A.); (R.W.)
| | - Ruochen Wang
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (F.B.A.); (R.W.)
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan;
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.T.); (S.Y.); (A.N.)
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan; (F.B.A.); (R.W.)
| |
Collapse
|
7
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Grasso M, Fidilio A, L’Episcopo F, Recupero M, Barone C, Bacalini MG, Benatti C, Giambirtone MC, Caruso G, Greco D, Di Nuovo S, Romano C, Ferri R, Buono S, Cuello AC, Blom JMC, Tascedda F, Piazza PV, De La Torre R, Caraci F. Low TGF-β1 plasma levels are associated with cognitive decline in Down syndrome. Front Pharmacol 2024; 15:1379965. [PMID: 38576478 PMCID: PMC10991739 DOI: 10.3389/fphar.2024.1379965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Almost all individuals with Down's syndrome (DS) show the characteristic neuropathological features of Alzheimer's disease (AD) by the age of 40, yet not every individual with DS experiences symptoms of AD later in life. Similar to neurotypical developing subjects, AD in people with DS lasts for a long preclinical phase in which biomarkers follow a predictable order of changes. Hence, a prolonged asymptomatic period precedes the onset of dementia, underscoring the importance of identifying new biomarkers for the early detection and monitoring of cognitive decline in individuals with DS. Blood-based biomarkers may offer an alternative non-invasive strategy for the detection of peripheral biological alterations paralleling nervous system pathology in an early phase of the AD continuum. In the last few years, a strong neurobiological link has been demonstrated between the deficit of transforming growth factor-β1 (TGF-β1) levels, an anti-inflammatory cytokine endowed with neuroprotective activity, and early pro-inflammatory processes in the AD brain. In this clinical prospective observational study, we found significant lower plasma TGF-β1 concentrations at the first neuropsychological evaluation (baseline = T0) both in young adult DS individuals (19-35 years) and older DS subjects without AD (35-60 years) compared to age- and sex-matched healthy controls. Interestingly, we found that the lower TGF-β1 plasma concentrations at T0 were strongly correlated with the following cognitive decline at 12 months. In addition, in young individuals with DS, we found, for the first time, a negative correlation between low TGF-β1 concentrations and high TNF-α plasma concentrations, a pro-inflammatory cytokine that is known to be associated with cognitive impairment in DS individuals with AD. Finally, adopting an ex vivo approach, we found that TGF-β1 concentrations were reduced in parallel both in the plasma and in the peripheral blood mononuclear cells (PBMCs) of DS subjects, and interestingly, therapeutic concentrations of fluoxetine (FLX) applied to cultured PBMCs (1 µM for 24 h) were able to rescue TGF-β1 concentrations in the culture media from DS PBMCs, suggesting that FLX, a selective serotonin reuptake inhibitor (SSRI) endowed with neuroprotective activity, might rescue TGF-β1 concentrations in DS subjects at higher risk to develop cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuseppe Caruso
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Santo Di Nuovo
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Corrado Romano
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | | | - Johanna M. C. Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Rafael De La Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute /HMRI, Barcelona, Spain
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Harisinghani A, Dhand A, Steffensen EH, Skotko BG. Sustainability of personal social networks of people with Down syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32064. [PMID: 37740458 DOI: 10.1002/ajmg.c.32064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Research continues to demonstrate that the characteristics of one's social network could have an impact on the development of Alzheimer's disease. Given the predisposition of people with Down syndrome to develop Alzheimer's disease, analysis of their social networks has become an emerging focus. Previous pilot research demonstrated that the personal networks of people with DS could be quantitatively analyzed, with no difference between self-report and parent-proxy report. This manuscript focuses on a 12-month follow-up period with the same original participants (24 adults with Down syndrome). Their social networks demonstrated sustainability, but not improvement, as reported by people with DS (mean network size: 8.88; mean density: 0.73; mean constraint: 0.44; mean effective size: 3.58; mean max degree: 6.04; mean degree: 4.78) and their proxies (mean network size: 7.90; mean density: 0.82; mean constraint: 53.13; mean effective size: 2.87; mean max degree: 5.19; mean degree: 4.30). Intentional and continued efforts are likely needed in order to improve the social network measures of people with Down syndrome.
Collapse
Affiliation(s)
- Ayesha Harisinghani
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amar Dhand
- Department of Neurology, Division of Hospital Medicine, Division of Stroke and Cerebrovascular Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen Hollands Steffensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian G Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
11
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Gorijala P, Aslam MM, Dang LT, Xicota L, Fernandez MV, Sung YJ, Fan K, Feingold E, Surace EI, Chhatwal JP, Hom CL, Dominantly Inherited Alzheimer Network (DIAN), the Alzheimer's Disease Neuroimaging Initiative (ADNI), the NIA‐LOAD family study, for the Alzheimer's Biomarkers Consortium–Down Syndrome (ABC‐DS) Investigators, Hartley SL, Hassenstab J, Perrin RJ, Mapstone M, Zaman SH, Ances BM, Kamboh MI, Lee JH, Cruchaga C. Alzheimer's polygenic risk scores are associated with cognitive phenotypes in Down syndrome. Alzheimers Dement 2024; 20:1038-1049. [PMID: 37855447 PMCID: PMC10916941 DOI: 10.1002/alz.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION This study aimed to investigate the influence of the overall Alzheimer's disease (AD) genetic architecture on Down syndrome (DS) status, cognitive measures, and cerebrospinal fluid (CSF) biomarkers. METHODS AD polygenic risk scores (PRS) were tested for association with DS-related traits. RESULTS The AD risk PRS was associated with disease status in several cohorts of sporadic late- and early-onset and familial late-onset AD, but not in familial early-onset AD or DS. On the other hand, lower DS Mental Status Examination memory scores were associated with higher PRS, independent of intellectual disability and APOE (PRS including APOE, PRSAPOE , p = 2.84 × 10-4 ; PRS excluding APOE, PRSnonAPOE , p = 1.60 × 10-2 ). PRSAPOE exhibited significant associations with Aβ42, tTau, pTau, and Aβ42/40 ratio in DS. DISCUSSION These data indicate that the AD genetic architecture influences cognitive and CSF phenotypes in DS adults, supporting common pathways that influence memory decline in both traits. HIGHLIGHTS Examination of the polygenic risk of AD in DS presented here is the first of its kind. AD PRS influences memory aspects in DS individuals, independently of APOE genotype. These results point to an overlap between the genes and pathways that leads to AD and those that influence dementia and memory decline in the DS population. APOE ε4 is linked to DS cognitive decline, expanding cognitive insights in adults.
Collapse
Affiliation(s)
- Priyanka Gorijala
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - M. Muaaz Aslam
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Lam‐Ha T. Dang
- Department of EpidemiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - L. Xicota
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Maria V. Fernandez
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Kang‐Hsien Fan
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Eleanor Feingold
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Ezequiel I. Surace
- Laboratory of Neurodegenerative Diseases ‐ Institute of Neurosciences (INEU‐Fleni‐ CONICET)Buenos AiresArgentina
| | - Jasmeer P Chhatwal
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christy L. Hom
- Dept. of Psychiatry and Human BehaviorUniversity of CaliforniaIrvine School of MedicineCaliforniaUSA
| | | | | | - Sigan L. Hartley
- Waisman Center and School of Human EcologyUniversity of Wisconsin‐ MadisonMadisonWisconsinUSA
| | - Jason Hassenstab
- Department of Neurology and Psychological & Brain SciencesWashington UniversitySt. LouisMissouriUSA
| | - Richard J. Perrin
- Hope Center for Neurologic DiseasesWashington UniversitySt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Shahid H Zaman
- Cambridge Intellectual and Developmental Disabilities Research GroupDepartment of PsychiatryUniversity of CambridgeDouglas HouseCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustElizabeth HouseFulbourn HospitalFulbournCambridgeUK
| | - Beau M Ances
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - M. Ilyas Kamboh
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Joseph H Lee
- Department of EpidemiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurologic DiseasesWashington UniversitySt. LouisMissouriUSA
| |
Collapse
|
13
|
Oriá RB, Smith CJ, Ashford JW, Vitek MP, Guerrant RL. Pros and Cons of APOE4 Homozygosity and Effects on Neuroplasticity, Malnutrition, and Infections in Early Life Adversity, Alzheimer's Disease, and Alzheimer's Prevention. J Alzheimers Dis 2024; 100:S179-S185. [PMID: 39093076 DOI: 10.3233/jad-240888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fortea et al.'s. (2024) recent data analysis elegantly calls attention to familial late-onset Alzheimer's disease (AD) with APOE4 homozygosity. The article by Grant (2024) reviews the factors associated with AD, particularly the APOE genotype and lifestyle, and the broad implications for prevention, both for individuals with the lifestyles associated with living in resource-rich countries and for those enduring environmental adversity in poverty settings, including high exposure to enteric pathogens and precarious access to healthcare. Grant discusses the issue of APOE genotype and its implications for the benefits of lifestyle modifications. This review highlights that bearing APOE4 could constitute an evolutionary benefit in coping with heavy enteric infections and malnutrition early in life in the critical formative first two years of brain development. However, the critical issue may be that this genotype could be a health concern under shifts in lifestyle and unhealthy diets during aging, leading to severe cognitive impairments and increased risk of AD. This commentary supports the discussions of Grant and the benefits of improving lifestyle for decreasing the risks for AD while providing further understanding and modelling of the early life benefits of APOE4 amidst adversity. This attention to the pathophysiology of AD should help further elucidate these critical, newly appreciated pathogenic pathways for developing approaches to the prevention and management in the context of the APOE genetic variations associated with AD.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Department of Morphology, Laboratory of Tissue Healing, Ontogeny, and Nutrition, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Carr J Smith
- Society for Brain Mapping and Therapeutics, Pacific Palisades, CA, USA
| | - J Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael P Vitek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Richard L Guerrant
- Department of Medicine, Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Zhang T, Wang X, Jester HM, Zhou X, Ma T. Characterization of Apathy-Like Behaviors in Mouse Models of Down Syndrome. J Alzheimers Dis 2024; 101:1217-1226. [PMID: 39302375 PMCID: PMC11583345 DOI: 10.3233/jad-240675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Apathy is a state of decreased interest, lack of initiative, reduced goal-directed activity and blunted emotional responses. Apathy is one of the most common neuropsychiatric symptoms (NPS) in patients with Alzheimer's disease (AD) and is also relatively omnipresent in individuals with Down syndrome (DS). Little is known about the apathy-like behaviors in rodent models of AD and DS. Objective This study aimed to characterize apathy-like behaviors with aging in two established DS mouse models: Ts65Dn and Dp16. Methods A battery of behavioral tests including nestlet shredding, marble burying, nest building, and burrowing were performed to examine apathy-like behaviors. Individual z-scores for each mouse for each test, and a composite z-score of apathy-like behavior were analyzed for all mice from these behavioral tests. Results Analysis of individual test results and composite z-score revealed significant apathy-like behaviors in Ts65Dn mice compared to WT controls. In contrast, Dp16 mice did not exhibit significant apathy-like behaviors. Conclusions Our study is the first to characterize apathy-like behaviors in mouse models of DS with aging and highlights the difference between Ts65Dn and Dp16 DS model mice regarding apathy-like manifestations with aging.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xin Wang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hannah M Jester
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
16
|
Wilkins HM. Interactions between amyloid, amyloid precursor protein, and mitochondria. Biochem Soc Trans 2023; 51:173-182. [PMID: 36688439 PMCID: PMC9987971 DOI: 10.1042/bst20220518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). Decades of research describe a relationship between mitochondrial function and Aβ production. Amyloid precursor protein (APP), of which Aβ is generated from, is found within mitochondria. Studies suggest Aβ can be generated in mitochondria and imported into mitochondria. APP and Aβ alter mitochondrial function, while mitochondrial function alters Aβ production from APP. The role these interactions contribute to AD pathology and progression are unknown. Here, we discuss prior research, the rigor of those studies, and the critical knowledge gaps of relationships between APP, Aβ, and mitochondria.
Collapse
Affiliation(s)
- Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
17
|
Strope TA, Wilkins HM. Amyloid precursor protein and mitochondria. Curr Opin Neurobiol 2023; 78:102651. [PMID: 36462447 PMCID: PMC9845182 DOI: 10.1016/j.conb.2022.102651] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
Amyloid Precursor Protein (APP) processing to amyloid beta (Aβ) is a major hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis postulates that Aβ accumulation and aggregation causes AD, however many therapeutics targeting Aβ have failed recently. Decades of research describe metabolic deficits in AD. Mitochondrial dysfunction is observed in AD subjects within the brain and systemically. APP and γ-secretase are localized to mitochondria. APP can be processed within mitochondria and its localization to mitochondria affects function. Here we discuss the evidence showing APP and γ-secretase localize to mitochondria. We also discuss the implications for the function of APP and its cleavage products in regulating mitochondrial function.
Collapse
Affiliation(s)
- Taylor A Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA. https://twitter.com/OneDayDrTay
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
18
|
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the Recent Advances in Alzheimer's Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics (Basel) 2022; 12:diagnostics12122975. [PMID: 36552984 PMCID: PMC9777434 DOI: 10.3390/diagnostics12122975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a polygenic multifactorial neurodegenerative disease that, after decades of research and development, is still without a cure. There are some symptomatic treatments to manage the psychological symptoms but none of these drugs can halt disease progression. Additionally, over the last few years, many anti-AD drugs failed in late stages of clinical trials and many hypotheses surfaced to explain these failures, including the lack of clear understanding of disease pathways and processes. Recently, different epigenetic factors have been implicated in AD pathogenesis; thus, they could serve as promising AD diagnostic biomarkers. Additionally, network biology approaches have been suggested as effective tools to study AD on the systems level and discover multi-target-directed ligands as novel treatments for AD. Herein, we provide a comprehensive review on Alzheimer's disease pathophysiology to provide a better understanding of disease pathogenesis hypotheses and decipher the role of genetic and epigenetic factors in disease development and progression. We also provide an overview of disease biomarkers and drug targets and suggest network biology approaches as new tools for identifying novel biomarkers and drugs. We also posit that the application of machine learning and artificial intelligence to mining Alzheimer's disease multi-omics data will facilitate drug and biomarker discovery efforts and lead to effective individualized anti-Alzheimer treatments.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
- Correspondence:
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| |
Collapse
|
19
|
Kanagasingam S, von Ruhland C, Welbury R, Singhrao SK. Antimicrobial, Polarizing Light, and Paired Helical Filament Properties of Fragmented Tau Peptides of Selected Putative Gingipains. J Alzheimers Dis 2022; 89:1279-1291. [PMID: 36031895 DOI: 10.3233/jad-220486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tau is an established substrate for gingipains secreted by Porphyromonas gingivalis. Hyperphosphorylation of tau and neurofibrillary tangle (NFT) formation is a defining lesion of Alzheimer's disease (AD) where NFT distribution is related to Braak stage and disease severity. OBJECTIVE To assess gingipains'-fragmented tau peptides for their antimicrobial properties and for the likelihood of paired helical/straight filament (PHF/SF) formation with implications for the NFT lesion. METHODS Seven non-phosphorylated (A-G) and three phosphorylated (A-C) tau peptides, were tested for antimicrobial properties against P. gingivalis. Polarizing light properties were determined using Congo Red staining. Secondary and tertiary structures of peptides B-F were determined using transmission electron microscopy (TEM) and circular dichroism (CD) was undertaken for the soluble peptides A in phosphorylated and non-phosphorylated states. RESULTS Phosphorylated tau peptide A displayed a significant effect against planktonic P. gingivalis. The CD results demonstrated that both peptides A, in phosphorylated and non-phosphorylated states, in aqueous solution, adopted mainly β-type structures. Non-phosphorylated peptides B-F and phosphorylated peptides B-C were insoluble and fibrillar under the TEM. The secondary and tertiary structures of the non-phosphorylated peptide B demonstrated fewer helical twists, whereas peptide C displayed significantly more helical twists along the whole fiber(s) length following its phosphorylation. CONCLUSION Phosphorylated peptide A reduced P. gingivalis viability. CD spectroscopy demonstrated the phosphorylated and the non-phosphorylated peptide A predominantly formed from β-sheet structures in aqueous solution with potential antimicrobial activity. Phosphorylation of tau peptides physically changed their tertiary structure into PHFs with potential for self-aggregation and binding to the NFT lesion.
Collapse
Affiliation(s)
- Shalini Kanagasingam
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Christopher von Ruhland
- Electron and Light Microscopy Facility, College of Biomedical and Life Sciences, Cardiff University, Wales, UK
| | - Richard Welbury
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
20
|
Cabrera MJ, Haugen K, Krell K, Torres A, Santoro SL. Pre-visit Concerns: What caregivers hope to address at a specialty clinic for Down syndrome. Eur J Med Genet 2022; 65:104550. [PMID: 35750159 DOI: 10.1016/j.ejmg.2022.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Individuals with Down syndrome have an increased prevalence of various medical conditions across the lifespan; multidisciplinary Down syndrome specialty clinics can address these needs. However, the caregiver-perceived purpose of bringing their loved one to a Down syndrome specialty clinic has not been investigated. METHODS Retrospective review of electronic intake forms, completed prior to visits at MGH's Down Syndrome Program, was completed. Caregiver concerns were coded and analyzed by visit type (new patient vs follow-up), age, gender, and race. RESULTS Information from 722 unique patients (53.6% male) across 1,526 visits from 2014 to 2021 were reviewed resulting in 3,762 concerns. Caregivers of children with Down syndrome ages 0-4, and 13-39 reported a top concern of health maintenance which includes establishing patient care and preventative measures. Behavior was the top concern for caregivers of children with Down syndrome ages 5-12. For adults with Down syndrome, ages 40 years or older, neurologic considerations, including regression and dementia, was the top caregiver concern. Across the entire sample, the top three concerns did not vary by gender. CONCLUSION The top concerns of caregivers of individuals with Down syndrome fluctuate across the lifespan. Growing multidisciplinary specialty clinics for Down syndrome may use these findings to ensure that caregivers' concerns are addressed and improve patient experience.
Collapse
Affiliation(s)
- Maria J Cabrera
- Northeastern University, USA; Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| | - Kelsey Haugen
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Kavita Krell
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Amy Torres
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie L Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, USA.
| |
Collapse
|
21
|
Hamadelseed O, Elkhidir IH, Skutella T. Psychosocial Risk Factors for Alzheimer's Disease in Patients with Down Syndrome and Their Association with Brain Changes: A Narrative Review. Neurol Ther 2022; 11:931-953. [PMID: 35596914 PMCID: PMC9338203 DOI: 10.1007/s40120-022-00361-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Several recent epidemiological studies attempted to identify risk factors for Alzheimer’s disease. Age, family history, genetic factors (APOE genotype, trisomy 21), physical activity, and a low level of schooling are significant risk factors. In this review, we summarize the known psychosocial risk factors for the development of Alzheimer’s disease in patients with Down syndrome and their association with neuroanatomical changes in the brains of people with Down syndrome. We completed a comprehensive review of the literature on PubMed, Google Scholar, and Web of Science about psychosocial risk factors for Alzheimer’s disease, for Alzheimer’s disease in Down syndrome, and Alzheimer’s disease in Down syndrome and their association with neuroanatomical changes in the brains of people with Down syndrome. Alzheimer’s disease causes early pathological changes in individuals with Down syndrome, especially in the hippocampus and corpus callosum. People with Down syndrome living with dementia showed reduced volumes of brain areas affected by Alzheimer’s disease as the hippocampus and corpus callosum in association with cognitive decline. These changes occur with increasing age, and the presence or absence of psychosocial risk factors impacts the degree of cognitive function. Correlating Alzheimer’s disease biomarkers in Down syndrome and cognitive function scores while considering the effect of psychosocial risk factors helps us identify the mechanisms leading to Alzheimer’s disease at an early age. Also, this approach enables us to create more sensitive and relevant clinical, memory, and reasoning assessments for people with Down syndrome.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Ibrahim H Elkhidir
- Faculty of Medicine, University of Khartoum, Alqasr St., Khartoum, Sudan
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Ashford JW, Schmitt FA, Bergeron MF, Bayley PJ, Clifford JO, Xu Q, Liu X, Zhou X, Kumar V, Buschke H, Dean M, Finkel SI, Hyer L, Perry G. Now is the Time to Improve Cognitive Screening and Assessment for Clinical and Research Advancement. J Alzheimers Dis 2022; 87:305-315. [DOI: 10.3233/jad-220211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease (AD) is the only cause of death ranked in the top ten globally without precise early diagnosis or effective means of prevention or treatment. Further, AD was identified as a pandemic [1] well before COVID-19 was dubbed a 21st century pandemic [2]. And now, with the realization of the prominent secondary impacts of pandemics, there is a growing, widespread recognition of the tremendous magnitude of the impending burden from AD in an aging world population in the coming decades [3]. This appreciation has amplified the growing and pressing need for a new, efficacious, and practical platform to detect and track cognitive decline, beginning in the preliminary (prodromal) phases of the disease, sensitively, accurately, effectively, reliably, efficiently, and remotely [4–7]. Moreover, the parallel necessity of clarifying and understanding risk factors, developing successful prevention strategies [8–17], and discovering and monitoring viable and effective treatments could all benefit from accurate and efficient screening and assessment platforms. Modern recognition of AD [18] as a common affliction of the elderly began in 1968 with a paper by Blessed, Tomlinson, & Roth [19] in which two tests, one a brief assessment of cognitive function and the other a measure of daily function, demonstrated impairment which was associated with the postmortem counts of neurofibrillary tangles, composed mainly of microtubule-associated protein-tau (tau), in the brain, though not to senile plaques, composed mainly of amyloid-β (Aβ). Even in more recent analyses, the tangles correspond with the severity of dementia more than the plaques [20, 21]. Since 1960, a plethora of cognitive tests, paper and pencil [22, 23], simple screening models [24], and computerized [25–27], have been developed to assess the dysfunction associated with AD. However, there has been limited application of Modern Test Theory, which includes Item Characteristic Curve Analysis, used in the technological development of such tools [28–31], along with widespread failure to understand the underlying AD pathological process to guide test development [32, 33]. The lack of such development has likely been a major contributor to the failure of the field to develop timely screening approaches for AD [34, 35], inaccurate assessment of the progression of AD [36], and even now, failure to find an effective approach to stopping AD.
Collapse
Affiliation(s)
- J. Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto HCS, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
| | - Frederick A. Schmitt
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
- Departments of Neurology, Psychiatry, Neurosurgery, Psychology, Behavioral Science; Sanders-Brown Center on Aging, Spinal Cord & Brain Injury Research Center, University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | - Peter J. Bayley
- War Related Illness and Injury Study Center, VA Palo Alto HCS, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
| | | | - Qun Xu
- Health Management Center, Department of Neurology, Renji Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Diseases, Yunnan, China
| | - Xianbo Zhou
- Center for Alzheimer’s Research, Washington Institute of Clinical Research, Vienna, VA, USA
- Zhongze Therapeutics, Shanghai, China
| | | | - Herman Buschke
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
- The Saul R. Korey Department of Neurology and Dominick P. Purpura Department of Neuroscience, Lena and Joseph Gluck Distinguished Scholar in Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Dean
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
- Geriatric Division, Internal Medicine, Texas Tech Health Sciences Center, Amarillo, TX, USA
| | - Sanford I. Finkel
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
- University of Chicago Medical School, Chicago, IL, USA
| | - Lee Hyer
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
- Gateway Behavioral Health, Mercer University, School of Medicine, Savannah, GA, USA
| | - George Perry
- Medical, Scientific, Memory Screening Advisory Board, Alzheimer’s Foundation of American (AFA), New York, USA
- Brain Health Consortium, Department Biology and Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
23
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
24
|
Mufson EJ, Ginsberg SD, Ma T, Ledreux A, Perez SE. Editorial: Down Syndrome, Neurodegeneration and Dementia. Front Aging Neurosci 2021; 13:791044. [PMID: 34975462 PMCID: PMC8715919 DOI: 10.3389/fnagi.2021.791044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Elliott J. Mufson
- Department of Translational Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sylvia E. Perez
- Department of Translational Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
25
|
Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer's disease in Down Syndrome. F1000Res 2021; 9:1299. [PMID: 33633844 PMCID: PMC7871416 DOI: 10.12688/f1000research.27096.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background: People with Down Syndrome (DS) are born with an extra copy of Chromosome (Chr) 21 and many of these individuals develop Alzheimer’s Disease (AD) when they age. This is due at least in part to the extra copy of the APP gene located on Chr 21. By 40 years, most people with DS have amyloid plaques which disrupt brain cell function and increase their risk for AD. About half of the people with DS develop AD and the associated dementia around 50 to 60 years of age, which is about the age at which the hereditary form of AD, early onset AD, manifests. In the absence of Chr 21 trisomy, duplication of APP alone is a cause of early onset Alzheimer’s disease, making it likely that having three copies of APP is important in the development of AD and in DS. Methods: We investigate the relationship between AD and DS through integrative analysis of genesets derived from a MeSH query of AD and DS associated beta amyloid peptides, Chr 21, GWAS identified AD risk factor genes, and differentially expressed genes in individuals with DS. Results: Unique and shared aspects of each geneset were evaluated based on functional enrichment analysis, transcription factor profile and network interactions. Genes that may be important to both disorders in the context of direct association with APP processing, Tau post translational modification and network connectivity are ACSM1, APBA2, APLP1, BACE2, BCL2L, COL18A1, DYRK1A, IK, KLK6, METTL2B, MTOR, NFE2L2, NFKB1, PRSS1, QTRT1, RCAN1, RUNX1, SAP18 SOD1, SYNJ1, S100B. Conclusions: Our findings confirm that oxidative stress, apoptosis, inflammation and immune system processes likely contribute to the pathogenesis of AD and DS which is consistent with other published reports.
Collapse
Affiliation(s)
- Ayati Sharma
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | - Alisha Chunduri
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Asha Gopu
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | | | - Wim E Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, 33615, France
| | - Anna Delprato
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France
| |
Collapse
|
26
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
27
|
Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer's disease in Down Syndrome. F1000Res 2020; 9:1299. [PMID: 33633844 DOI: 10.12688/f1000research.27096.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background: People with Down Syndrome (DS) are born with an extra copy of Chromosome (Chr) 21 and many of these individuals develop Alzheimer's Disease (AD) when they age. This is due at least in part to the extra copy of the APP gene located on Chr 21. By 40 years, most people with DS have amyloid plaques which disrupt brain cell function and increase their risk for AD. About half of the people with DS develop AD and the associated dementia around 50 to 60 years of age, which is about the age at which the hereditary form of AD, early onset AD, manifests. In the absence of Chr 21 trisomy, duplication of APP alone is a cause of early onset Alzheimer's disease, making it likely that having three copies of APP is important in the development of AD and in DS. In individuals with both DS and AD, early behavior and cognition-related symptoms may include a reduction in social behavior, decreased enthusiasm, diminished ability to pay attention, sadness, fearfulness or anxiety, irritability, uncooperativeness or aggression, seizures that begin in adulthood, and changes in coordination and walking. Methods: We investigate the relationship between AD and DS through integrative analysis of genesets derived from a MeSH query of AD and DS associated beta amyloid peptides, Chr 21, GWAS identified AD risk factor genes, and differentially expressed genes in DS individuals. Results: Unique and shared aspects of each geneset were evaluated based on functional enrichment analysis, transcription factor profile and network analyses. Genes that may be important to both disorders: ACSM1, APBA2, APLP1, BACE2, BCL2L, COL18A1, DYRK1A, IK, KLK6, METTL2B, MTOR, NFE2L2, NFKB1, PRSS1, QTRT1, RCAN1, RUNX1, SAP18 SOD1, SYNJ1, S100B. Conclusions: Our findings indicate that oxidative stress, apoptosis, and inflammation/immune system processes likely underlie the pathogenesis of AD and DS.
Collapse
Affiliation(s)
- Ayati Sharma
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | - Alisha Chunduri
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Asha Gopu
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | | | - Wim E Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, 33615, France
| | - Anna Delprato
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France
| |
Collapse
|
28
|
Abstract
In this issue, an article by Tiepolt et al. shows that PET scanning using [11C]PiB can demonstrate both cerebral blood flow (CBF) changes and amyloid-β (Aβ) deposition in patients with mild cognitive dysfunction or mild dementia of Alzheimer’s disease (AD). The CBF changes can be determined because the early scan counts (1–9 minutes) reflect the flow of the radiotracer in the blood passing through the brain, while the Aβ levels are measured by later scan counts (40–70 minutes) after the radiotracer has been cleared from regions to which the radiotracer did not bind. Thus, two different diagnostic measures are obtained with a single injection. Unexpectedly, the mild patients with Aβ positivity had scan data with only a weak relationship to memory, while the relationships to executive function and language function were relatively strong. This divergence of findings from studies of severely impaired patients highlights the importance of determining how AD pathology affects the brain. A possibility suggested in this commentary is that Aβ deposits occur early in AD and specifically in critical areas of the neocortex affected only later by the neurofibrillary pathology indicating a different role of the amyloid-β protein precursor (AβPP) in the development of those neocortical regions, and a separate component of AD pathology may selectively impact functions of these neocortical regions. The effects of adverse AβPP metabolism in the medial temporal and brainstem regions occur later possibly because of different developmental issues, and the later, different pathology is clearly more cognitively and socially devastating.
Collapse
Affiliation(s)
- J Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System and Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, USA
| |
Collapse
|
29
|
Baumgardner DJ, Chicoine B. Challenges of Pediatric Disease in Adulthood. J Patient Cent Res Rev 2020; 7:142-146. [PMID: 32377547 PMCID: PMC7197890 DOI: 10.17294/2330-0698.1756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dennis J. Baumgardner
- Department of Family Medicine, Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI
| | - Brian Chicoine
- Adult Down Syndrome Center, Advocate Medical Group, Park Ridge, IL
- Family Medicine, Advocate Lutheran General Hospital, Park Ridge, IL
| |
Collapse
|
30
|
Triaca V, Fico E, Sposato V, Caioli S, Ciotti MT, Zona C, Mercanti D, La Mendola D, Satriano C, Rizzarelli E, Tirassa P, Calissano P. hNGF Peptides Elicit the NGF-TrkA Signalling Pathway in Cholinergic Neurons and Retain Full Neurotrophic Activity in the DRG Assay. Biomolecules 2020; 10:biom10020216. [PMID: 32024191 PMCID: PMC7072391 DOI: 10.3390/biom10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-06-90091357
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Valentina Sposato
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| | - Silvia Caioli
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Cristina Zona
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
- Department of Systems Medicine, University of Rome “TorVergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
- Institute of Crystallography, National Research Council (CNR-IC), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| |
Collapse
|
31
|
Kazemi M, Salehi M, Kheirollahi M. Down Syndrome: Current Status, Challenges and Future Perspectives. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2016. [PMID: 27942498 DOI: 10.22088/acadpub.bums.5.3.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Down syndrome (DS) is a birth defect with huge medical and social costs, caused by trisomy of whole or part of chromosome 21. It is the most prevalent genetic disease worldwide and the common genetic cause of intellectual disabilities appearing in about 1 in 400-1500 newborns. Although the syndrome had been described thousands of years before, it was named after John Langdon Down who described its clinical description in 1866. Scientists have identified candidate genes that are involved in the formation of specific DS features. These advances in turn may help to develop targeted therapy for persons with trisomy 21. Screening for DS is an important part of routine prenatal care. Until recently, noninvasive screening for aneuploidy depends on the measurement of maternal serum analytes and ultrasonography. More recent progress has resulted in the development of noninvasive prenatal screening (NIPS) test using cell-free fetal DNA sequences isolated from a maternal blood sample. A review on those achievements is discussed.
Collapse
Affiliation(s)
- Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.; Medical Genetic Center of Genome, Isfahan, Iran.; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.; Medical Genetic Center of Genome, Isfahan, Iran.; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|