1
|
Gostomczyk K, Drozd M, Marsool Marsool MD, Pandey A, Tugas K, Chacon J, Tayyab H, Ullah A, Borowczak J, Szylberg Ł. Biomarkers for the detection of circulating tumor cells. Exp Cell Res 2025; 448:114555. [PMID: 40228709 DOI: 10.1016/j.yexcr.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a key biomarker in cancer detection and prognosis, and their molecular profiling is gaining importance in precision oncology. Liquid biopsies, which allow the extraction of CTCs, circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), have measurable advantages over traditional tissue biopsies, especially when molecular material is difficult to obtain. However, this method is not without limitations. Difficulties in differentiating between primary and metastatic lesions, uncertain predictive values and the complexity of the biomarkers used can prove challenging. Recently, high cell heterogeneity has been identified as the main obstacle to achieving high diagnostic accuracy. Because not all cells undergo epithelial-mesenchymal transition (EMT) at the same time, there is a large population of hybrid CTCs that express both epithelial and mesenchymal markers. Since traditional diagnostic tools primarily detect epithelial markers, they are often unable to detect cells with a hybrid phenotype; therefore, additional markers may be required to avoid false negatives. In this review, we summarize recent reports on emerging CTCs markers, with particular emphasis on their use in cancer diagnosis. Most of them, including vimentin, TWIST1, SNAI1, ZEB1, cadherins, CD44, TGM2, PD-L1 and GATA, hold promise for the detection of CTCs, but are also implicated in cancer progression, metastasis, and therapeutic resistance. Therefore, understanding the nature and drivers of epithelial-mesenchymal plasticity (EMP) is critical to advancing our knowledge in this field.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland.
| | - Magdalena Drozd
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| | | | - Anju Pandey
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jose Chacon
- American University of Integrative Sciences, Saint Martin, Cole Bay, Barbados
| | | | - Ashraf Ullah
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| |
Collapse
|
2
|
Zhai X, Shen N, Guo T, Wang J, Xie C, Cao Y, Liu L, Yan Y, Meng S, Du S. SPTLC2 drives an EGFR-FAK-HBEGF signaling axis to promote ovarian cancer progression. Oncogene 2025; 44:679-693. [PMID: 39645550 DOI: 10.1038/s41388-024-03249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with ovarian cancer (OC) progression. However, inhibition of EGFR signaling in OC patients achieved limited therapeutic effects, highlighting the need to define the mechanism of EGFR deregulation in OC development. Herein we showed that serine palmitoyltransferase long chain base subunit 2 (SPTLC2) acts as a positive regulator in the EGFR signaling pathway in OC. Phenotypically, depletion of SPTLC2 suppressed clonogenic growth and migration of OC cells in vitro and in ovo, as well as metastasis in OC xenograft models, whereas overexpression of SPTLC2 yielded opposite effects. Mechanistically, SPTLC2 drives an EGFR-FAK-HBEGF signaling axis via binding with EGFR. Notably, the serine palmitoyltransferase activity of SPTLC2 is critical for regulation of the EGFR-FAK-HBEGF signaling axis and activity in OC progression. Clinically, high SPTLC2 expression is associated with high-grade serous ovarian cancer and metastasis. Collectively, our findings establish an oncogenic role of SPTLC2 in OC growth and progression though upregulation of EGFR signaling and suggest that SPTLC2 represents a potential therapeutic target in EGFR-driven ovarian cancer patients.
Collapse
Affiliation(s)
- Xingyue Zhai
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ning Shen
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Jianxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Yukai Cao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Ling Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Li J, Bian X, Zhang C, Chen Y, Huang S, Zhao S, Li Y. Identifying prognostic biomarkers and immune interactions in ovarian cancer associated with perfluorooctanoic acid exposure: Insights from comparative toxicogenomics and molecular docking studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117831. [PMID: 39955862 DOI: 10.1016/j.ecoenv.2025.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) exposure has been implicated in various health issues. This study aims to identify common genes associated with PFOA exposure and ovarian cancer, elucidate their biological functions, and explore their prognostic significance. METHODS We identified common genes linked to PFOA exposure and ovarian cancer using the Comparative Toxicogenomics Database. Protein-protein interaction and functional enrichment analyses were performed via Metascape. A PFOA-related risk model was developed using TCGA data and LASSO regression. Survival and expression analyses were conducted, and a prognostic nomogram was created. Tumor immune microenvironment interactions were investigated using ESTIMATE and ssGSEA methods. Molecular docking studies assessed the binding affinities between PFOA and target proteins. RESULTS Utilizing the Comparative Toxicogenomics Database, we identified 229 common genes linked to both PFOA exposure and ovarian cancer. A comprehensive protein-protein interaction (PPI) network analysis revealed distinct functional modules. Enrichment analysis indicated significant involvement of these genes in pathways like the PI3K-Akt signaling pathway and focal adhesion. Lasso regression identified seven key prognostic genes (ERBB2, CCNH, PDE2A, CXCL11, TIAM1, SLC9A1, and EPHA2), with survival analysis demonstrating that PFOA-related high risk group exhibited significantly worse overall survival. Expression analysis showed the dysregulation of key prognostic genes in tumor tissues, while immune correlation analysis indicated significant associations with the tumor microenvironment. Molecular docking and molecular dynamics simulations revealed strong binding affinities between PFOA and the PDE2A. CONCLUSION Overall, this research contributes to a deeper understanding of the health risks associated with PFOA exposure and highlights the importance of continued monitoring and regulation of environmental pollutants to safeguard public health.
Collapse
Affiliation(s)
- Jianing Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Bian
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China
| | - Caixia Zhang
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yirong Chen
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shijia Huang
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuli Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yanchuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Jordan E, Arriaga MA, Obregon H, Villalobos V, Duarte MA, Garcia K, Levy A, Chew SA. Dual delivery of metformin and Y15 from a PLGA scaffold for the treatment of platinum-resistant ovarian cancer. Future Med Chem 2025; 17:301-312. [PMID: 39887289 PMCID: PMC11792864 DOI: 10.1080/17568919.2025.2458457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
AIMS Drug-loaded poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated using a mold-less technique to investigate whether the combined delivery of both Y15 (FAK inhibitor) and metformin would result in enhanced effects on cell viability compared to the release of each drug alone for the treatment of platinum-resistant ovarian cancer (PROC). MATERIALS & METHODS Scaffolds were fabricated using an easy and economical mold-less technique that combined PLGA and the drugs (i.e. metformin and/or Y15) in tetraglycol and injected in PBS, to form a globular morphology. RESULTS The exposure of cells to metformin and Y15 resulted in a significantly enhanced cytotoxic efficacy compared to single-drug treatment with either metformin or Y15. When the drugs were delivered using the PLGA scaffolds, the combination of the two drugs was significantly more cytotoxic compared to scaffolds containing metformin only and Y15 only. CONCLUSIONS The combination of metformin and Y15 can result in an increase in antitumor activity in PROC cells through apoptosis. The delivery of both drugs from the PLGA biomaterial scaffold allowed for a more enhanced combinational effect compared to the utilization of free drugs (without a scaffold) and should be further explored as a promising treatment of PROC.
Collapse
Affiliation(s)
- Emily Jordan
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hannah Obregon
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Viviana Villalobos
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Manuel A. Duarte
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Kristal Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
5
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
6
|
Battistini C, Kenny HA, Zambuto M, Nieddu V, Melocchi V, Decio A, Lo Riso P, Villa CE, Gatto A, Ghioni M, Porta FM, Testa G, Giavazzi R, Colombo N, Bianchi F, Lengyel E, Cavallaro U. Tumor microenvironment-induced FOXM1 regulates ovarian cancer stemness. Cell Death Dis 2024; 15:370. [PMID: 38806454 PMCID: PMC11133450 DOI: 10.1038/s41419-024-06767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
In ovarian tumors, the omental microenvironment profoundly influences the behavior of cancer cells and sustains the acquisition of stem-like traits, with major impacts on tumor aggressiveness and relapse. Here, we leverage a patient-derived platform of organotypic cultures to study the crosstalk between the tumor microenvironment and ovarian cancer stem cells. We discovered that the pro-tumorigenic transcription factor FOXM1 is specifically induced by the microenvironment in ovarian cancer stem cells, through activation of FAK/YAP signaling. The microenvironment-induced FOXM1 sustains stemness, and its inactivation reduces cancer stem cells survival in the omental niche and enhances their response to the PARP inhibitor Olaparib. By unveiling the novel role of FOXM1 in ovarian cancer stemness, our findings highlight patient-derived organotypic co-cultures as a powerful tool to capture clinically relevant mechanisms of the microenvironment/cancer stem cells crosstalk, contributing to the identification of tumor vulnerabilities.
Collapse
Affiliation(s)
- Chiara Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Hilary A Kenny
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Melissa Zambuto
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Valentina Nieddu
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Valentina Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, 20156, Milan, Italy
| | - Pietro Lo Riso
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy
| | | | - Alessia Gatto
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Mariacristina Ghioni
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Francesca M Porta
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- School of Pathology, University of Milan, 20122, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCSS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Mario Negri Institute for Pharmacological Research - IRCCS, 20156, Milan, Italy
| | - Nicoletta Colombo
- Division of Gynecologic Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- University of Milan-Bicocca, 20126, Milan, Italy
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, FG, Italy
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, 20139, Milan, Italy.
| |
Collapse
|
7
|
Vorderbruggen M, Velázquez-Martínez CA, Natarajan A, Karpf AR. PROTACs in Ovarian Cancer: Current Advancements and Future Perspectives. Int J Mol Sci 2024; 25:5067. [PMID: 38791105 PMCID: PMC11121112 DOI: 10.3390/ijms25105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy. The majority of patients diagnosed with advanced ovarian cancer will relapse, at which point additional therapies can be administered but, for the most part, these are not curative. As such, a need exists for the development of novel therapeutic options for ovarian cancer patients. Research in the field of targeted protein degradation (TPD) through the use of proteolysis-targeting chimeras (PROTACs) has significantly increased in recent years. The ability of PROTACs to target proteins of interest (POI) for degradation, overcoming limitations such as the incomplete inhibition of POI function and the development of resistance seen with other inhibitors, is of particular interest in cancer research, including ovarian cancer research. This review provides a synopsis of PROTACs tested in ovarian cancer models and highlights PROTACs characterized in other types of cancers with potential high utility in ovarian cancer. Finally, we discuss methods that will help to enable the selective delivery of PROTACs to ovarian cancer and improve the pharmacodynamic properties of these agents.
Collapse
Affiliation(s)
- Makenzie Vorderbruggen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Adam R. Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| |
Collapse
|
8
|
El Bairi K, Madariaga A, Trapani D, Al Jarroudi O, Afqir S. New horizons for platinum-resistant ovarian cancer: insights from the 2023 American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO) Annual Meetings. Int J Gynecol Cancer 2024; 34:760-772. [PMID: 38101815 DOI: 10.1136/ijgc-2023-004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Platinum-resistant ovarian cancer is difficult to treat and has a poor prognosis. Patients with platinum-resistant ovarian cancer have limited treatment options and often have a limited benefit from existing chemotherapeutic agents. There is a lack of contemporary effective anticancer drugs and reliable predictive biomarkers for this aggressive cancer. Recent cutting-edge research presented at the 2023 American Society of Clinical Oncology (ASCO) and the European Society for Medical Oncology (ESMO) Annual Meetings has provided insights into several potential therapeutic targets, such as DNA damage repair proteins, cell-cycle regulators, and immune-modulating agents. In addition, antibody-drug conjugates have provided new practice-changing results in platinum-resistant ovarian cancer. Here, we review the results of research presented at this annual event, with a focus on clinical trials investigating novel treatment approaches for platinum-resistant ovarian cancer, in addition to predictive and prognostic biomarkers for optimal patient selection, and other topics, such as real-world evidence.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medical Sciences, University Mohammed 6 Polytechnic, Ben Guerir, Morocco
| | - Ainhoa Madariaga
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Dario Trapani
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
9
|
Uno K, Koya Y, Yoshihara M, Iyoshi S, Kitami K, Sugiyama M, Miyamoto E, Mogi K, Fujimoto H, Yamakita Y, Wang X, Nawa A, Kajiyama H. Chondroitin Sulfate Proteoglycan 4 Provides New Treatment Approach to Preventing Peritoneal Dissemination in Ovarian Cancer. Int J Mol Sci 2024; 25:1626. [PMID: 38338902 PMCID: PMC10855983 DOI: 10.3390/ijms25031626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Most epithelial ovarian cancer (EOC) patients are diagnosed with peritoneal dissemination. Cellular interactions are an important aspect of EOC cells when they detach from the primary site of the ovary. However, the mechanism remains underexplored. Our study aimed to reveal the role of chondroitin sulfate proteoglycan 4 (CSPG4) in EOC with a major focus on cell-cell interactions. We examined the expression of CSPG4 in clinical samples and cell lines of EOC. The proliferation, migration, and invasion abilities of the CSPG4 knockdown cells were assessed. We also assessed the role of CSPG4 in spheroid formation and peritoneal metastasis in an in vivo model using sh-CSPG4 EOC cell lines. Of the clinical samples, 23 (44.2%) samples expressed CSPG4. CSPG4 was associated with a worse prognosis in patients with advanced EOC. Among the EOC cell lines, aggressive cell lines, including ES2, expressed CSPG4. When CSPG4 was knocked down using siRNA or shRNA, the cell proliferation, migration, and invasion abilities were significantly decreased compared to the control cells. Proteomic analyses showed changes in the expression of proteins related to the cell movement pathways. Spheroid formation was significantly inhibited when CSPG4 was inhibited. The number of nodules and the tumor burden of the omentum were significantly decreased in the sh-CSPG4 mouse models. In the peritoneal wash fluid from mice injected with sh-CSPG4 EOC cells, significantly fewer spheroids were present. Reduced CSPG4 expression was observed in lymphoid enhancer-binding factor 1-inhibited cells. CSPG4 is associated with aggressive features of EOC and poor prognosis. CSPG4 could be a new treatment target for blocking peritoneal metastasis by inhibiting spheroid formation.
Collapse
Affiliation(s)
- Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University Graduate School of Medicine, 22184 Lund Postcode City, Sweden
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan; (M.S.); (A.N.)
- Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Nagoya 466-8550, Aichi, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Sagamihara 252-0375, Kanagawa, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan; (M.S.); (A.N.)
- Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Nagoya 466-8550, Aichi, Japan
| | - Emiri Miyamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia
| | - Yoshihiko Yamakita
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan; (M.S.); (A.N.)
- Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Nagoya 466-8550, Aichi, Japan
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan; (M.S.); (A.N.)
- Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Nagoya 466-8550, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (K.U.); (S.I.); (K.K.); (E.M.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| |
Collapse
|
10
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Role of Cancer-Associated fibroblast in the pathogenesis of ovarian Cancer: Focus on the latest therapeutic approaches. Int Immunopharmacol 2022; 110:109052. [DOI: 10.1016/j.intimp.2022.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
|
11
|
Integration of Transcriptome and Epigenome to Identify and Develop Prognostic Markers for Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3744466. [PMID: 36081667 PMCID: PMC9448543 DOI: 10.1155/2022/3744466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
Abstract
DNA methylation is a widely researched epigenetic modification. It is associated with the occurrence and development of cancer and has helped evaluate patients' prognoses. However, most existing DNA methylation prognosis models have not simultaneously considered the changes of the downstream transcriptome. Methods. The RNA-Sequencing data and DNA methylation omics data of ovarian cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Consensus Cluster Plus algorithm was used to construct the methylated molecular subtypes of the ovary. Lasso regression was employed to build a multi-gene signature. An independent data set was applied to verify the prognostic value of the signature. The Gene Set Variation Analysis (GSVA) was used to carry out the enrichment analysis of the pathways linked to the gene signature. The IMvigor 210 cohort was used to explore the predictive efficacy of the gene signature for immunotherapy response. Results. We distinguished ovarian cancer samples into two subtypes with different prognosis, based on the omics data of DNA methylation. Differentially expressed genes and enrichment analysis among subtypes indicated that DNA methylation was related to fatty acid metabolism and the extracellular matrix (ECM)-receptor. Furthermore, we constructed an 8-gene signature, which proved to be efficient and stable in predicting prognostics in ovarian cancer patients with different data sets and distinctive pathological characteristics. Finally, the 8-gene signature could predict patients' responses to immunotherapy. The polymerase chain reaction experiment was further used to verify the expression of 8 genes. Conclusion. We analyzed the prognostic value of the related genes of methylation in ovarian cancer. The 8-gene signature predicted the prognosis and immunotherapy response of ovarian cancer patients well and is expected to be valuable in clinical application.
Collapse
|
12
|
Anti-Tumoral Effect of Chemerin on Ovarian Cancer Cell Lines Mediated by Activation of Interferon Alpha Response. Cancers (Basel) 2022; 14:cancers14174108. [PMID: 36077645 PMCID: PMC9454566 DOI: 10.3390/cancers14174108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Chemerin is a multifunctional protein with an important role in the immune system. Recent evidence showed that chemerin also regulates the development of cancer. Ovarian cancer is a common type of tumor in women. In this study, we observed that chemerin decreases the growth of ovarian cancer cell lines in vitro when cultivated in standard cell culture or in globular multicellular aggregates. When we examined the mechanisms involved in this process, we found that treatment of ovarian cancer cells with chemerin led to the activation of genes that are known to mediate the effects of interferon alpha (IFNα). The main effect of IFNα is to defend body cells against viral infections, but it is also able to defeat cancer cells. We observed that this activation of IFNα response by chemerin resulted from the increased production of IFNα protein in ovarian cancer cells, which then reduced cancer cells numbers. However, it remains to be investigated how exactly chemerin might be able to activate interferon alpha and its anti-tumoral actions. Abstract The pleiotropic adipokine chemerin affects tumor growth primarily as anti-tumoral chemoattractant inducing immunocyte recruitment. However, little is known about its effect on ovarian adenocarcinoma. In this study, we examined chemerin actions on ovarian cancer cell lines in vitro and intended to elucidate involved cell signaling mechanisms. Employing three ovarian cancer cell lines, we observed differentially pronounced effects of this adipokine. Treatment with chemerin (huChem-157) significantly reduced OVCAR-3 cell numbers (by 40.8% on day 6) and decreased the colony and spheroid growth of these cells by half. The spheroid size of SK-OV-3 ovarian cancer cells was also significantly reduced upon treatment. Transcriptome analyses of chemerin-treated cells revealed the most notably induced genes to be interferon alpha (IFNα)-response genes like IFI27, OAS1 and IFIT1 and their upstream regulator IRF9 in all cell lines tested. Finally, we found this adipokine to elevate IFNα levels about fourfold in culture medium of the employed cell lines. In conclusion, our data for the first time demonstrate IFNα as a mediator of chemerin action in vitro. The observed anti-tumoral effect of chemerin on ovarian cancer cells in vitro was mediated by the notable activation of IFNα response genes, resulting from the chemerin-triggered increase of secreted levels of this cytokine.
Collapse
|
13
|
Roles of Focal Adhesion Kinase PTK2 and Integrin αIIbβ3 Signaling in Collagen- and GPVI-Dependent Thrombus Formation under Shear. Int J Mol Sci 2022; 23:ijms23158688. [PMID: 35955827 PMCID: PMC9369275 DOI: 10.3390/ijms23158688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoprotein (GP)VI and integrin αIIbβ3 are key signaling receptors in collagen-dependent platelet aggregation and in arterial thrombus formation under shear. The multiple downstream signaling pathways are still poorly understood. Here, we focused on disclosing the integrin-dependent roles of focal adhesion kinase (protein tyrosine kinase 2, PTK2), the shear-dependent collagen receptor GPR56 (ADGRG1 gene), and calcium and integrin-binding protein 1 (CIB1). We designed and synthetized peptides that interfered with integrin αIIb binding (pCIB and pCIBm) or mimicked the activation of GPR56 (pGRP). The results show that the combination of pGRP with PTK2 inhibition or of pGRP with pCIB > pCIBm in additive ways suppressed collagen- and GPVI-dependent platelet activation, thrombus buildup, and contraction. Microscopic thrombus formation was assessed by eight parameters (with script descriptions enclosed). The suppressive rather than activating effects of pGRP were confined to blood flow at a high shear rate. Blockage of PTK2 or interference of CIB1 no more than slightly affected thrombus formation at a low shear rate. Peptides did not influence GPVI-induced aggregation and Ca2+ signaling in the absence of shear. Together, these data reveal a shear-dependent signaling axis of PTK2, integrin αIIbβ3, and CIB1 in collagen- and GPVI-dependent thrombus formation, which is modulated by GPR56 and exclusively at high shear. This work thereby supports the role of PTK2 in integrin αIIbβ3 activation and signaling.
Collapse
|
14
|
Yang F, Xu K, Zhang S, Zhang J, Qiu Y, Luo J, Tan G, Zou Z, Wang W, Kang F. Discovery of novel chloropyramine-cinnamic acid hybrids as potential FAK inhibitors for intervention of metastatic triple-negative breast cancer. Bioorg Med Chem 2022; 66:116809. [PMID: 35569251 DOI: 10.1016/j.bmc.2022.116809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
To search for novel focal adhesion kinase (FAK) inhibitors for intervention of metastatic triple-negative breast cancer (TNBC), a series of hybrids 7a-s from chloropyramine and cinnamic acid analogs were designed, synthesized and biologically evaluated. The most active compound 7d could potently inhibit the proliferation, invasion and migration of TNBC cells in vitro. The docking analysis of 7d was performed to elucidate its possible binding modes to focal adhesion targeting (FAT) domain of FAK scaffold. Further mechanism studies indicated the ability of 7d in disrupting Y925 autophosphorylation of FAK, reducing formation of focal adhesions (FAs) and stress fibers (SFs) as well as inducing apoptosis of TNBC cells. Together, 7d is a novel FAK inhibitor to inhibit the essential nonkinase scaffolding function of FAK via binding FAT domain and may be worth studying further for intervention of TNBC.
Collapse
Affiliation(s)
- Fei Yang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Kangping Xu
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Sha Zhang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Jinlin Zhang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Yaoren Qiu
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Jin Luo
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Guishan Tan
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Zhenxing Zou
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Wenxuan Wang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Fenghua Kang
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
15
|
Fang DD, Tao R, Wang G, Li Y, Zhang K, Xu C, Zhai G, Wang Q, Wang J, Tang C, Min P, Xiong D, Chen J, Wang S, Yang D, Zhai Y. Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer 2022; 22:752. [PMID: 35820889 PMCID: PMC9277925 DOI: 10.1186/s12885-022-09799-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are mainstays of cancer treatment. However, their clinical benefits are often constrained by acquired resistance. To overcome such outcomes, we have rationally engineered APG-2449 as a novel multikinase inhibitor that is highly potent against oncogenic alterations of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and focal adhesion kinase (FAK). Here we present the preclinical evaluation of APG-2449, which exhibits antiproliferative activity in cells carrying ALK fusion or secondary mutations. METHODS KINOMEscan® and LANCE TR-FRET were used to characterize targets and selectivity of APG-2449. Water-soluble tetrazolium salt (WST-8) viability assay and xenograft tumorigenicity were employed to evaluate therapeutic efficacy of monotherapy or drug combination in preclinical models of solid tumors. Western blot, pharmacokinetic, and flow cytometry analyses, as well as RNA sequencing were used to explore pharmacokinetic-pharmacodynamic correlations and the mechanism of actions driving drug combination synergy. RESULTS In mice bearing wild-type or ALK/ROS1-mutant non-small-cell lung cancer (NSCLC), APG-2449 demonstrates potent antitumor activity, with correlations between pharmacokinetics and pharmacodynamics in vivo. Through FAK inhibition, APG-2449 sensitizes ovarian xenograft tumors to paclitaxel by reducing CD44+ and aldehyde dehydrogenase 1-positive (ALDH1+) cancer stem cell populations, including ovarian tumors insensitive to carboplatin. In epidermal growth factor receptor (EGFR)-mutated NSCLC xenograft models, APG-2449 enhances EGFR TKI-induced tumor growth inhibition, while the ternary combination of APG-2449 with EGFR (osimertinib) and mitogen-activated extracellular signal-regulated kinase (MEK; trametinib) inhibitors overcomes osimertinib resistance. Mechanistically, phosphorylation of ALK, ROS1, and FAK, as well as their downstream components, is effectively inhibited by APG-2449. CONCLUSIONS Taken together, our studies demonstrate that APG-2449 exerts potent and durable antitumor activity in human NSCLC and ovarian tumor models when administered alone or in combination with other therapies. A phase 1 clinical trial has been initiated to evaluate the safety and preliminary efficacy of APG-2449 in patients with advanced solid tumors, including ALK+ NSCLC refractory to earlier-generation ALK inhibitors. TRIAL REGISTRATION Clinicaltrial.gov registration: NCT03917043 (date of first registration, 16/04/2019) and Chinese clinical trial registration: CTR20190468 (date of first registration, 09/04/2019).
Collapse
Affiliation(s)
- Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Ran Tao
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Yuanbao Li
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Kaixiang Zhang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Chunhua Xu
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Guoqin Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Qixin Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Jingwen Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Chunyang Tang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Dengkun Xiong
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Jianyong Chen
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, Michigan Center for Therapeutic Innovation, University of Michigan, 1600 Huron Parkway NCRC/Building 520 Room 1245, Ann Arbor, MI, 48109, USA.
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China. .,Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510275, China.
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China.
| |
Collapse
|
16
|
Boscaro C, Baggio C, Carotti M, Sandonà D, Trevisi L, Cignarella A, Bolego C. Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J 2022; 36:e22140. [PMID: 35107852 DOI: 10.1096/fj.202101222r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Identification of Novel CircRNA-miRNA-mRNA Regulatory Network and Its Prognostic Prediction in Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2916398. [PMID: 34745276 PMCID: PMC8570857 DOI: 10.1155/2021/2916398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
Aim This study aimed to investigate the expression profiles of circRNAs and candidate circRNA-miRNA-mRNA network in BC. Methods Differentially expressed circRNAs, miRNAs, and mRNAs (DEcircRNAs, DEmiRNAs, and DEmRNAs) between BC and normal breast tissue samples were screened by analyzing raw data of the RNA sequencing profile. The expression levels of hub genes in 48 pairs of cancerous and tumor-free breast tissues surgically resected from BC patients were determined by RT-qPCR analysis. Results A total of 145 DEcircRNAs, 140 DEmiRNAs, and 2451 DEmRNAs between BC and normal breast tissue samples were screened out. There were 5 pairs of upcircRNA-downmiRNA-upmRNA network and 20 pairs of downcircRNA-upmiRNA-downmRNA network. EIF4EBP1, DUSP1, EGR2, EZH1, and CBX7 were found to be correlated with overall survival of the patients with BC. The expression level of EIF4EBP1 was increased and the expression levels of DUSP1, EGR2, EZH1, and CBX7 were decreased in cancerous breast tissues compared to tumor-free breast tissues (p < 0.0001). The RT-qPCR results from 48 BC patients were consistent with the bioinformatics results. Conclusion This study provides a novel perspective to study circRNA-miRNA-mRNA network in BC and assists in the identification of new potential biomarkers to be used for diagnostic and prognostic purposes.
Collapse
|
18
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
19
|
Yan Y, Liang Q, Xu Z, Yi Q. Integrative bioinformatics and experimental analysis revealed down-regulated CDC42EP3 as a novel prognostic target for ovarian cancer and its roles in immune infiltration. PeerJ 2021; 9:e12171. [PMID: 34616622 PMCID: PMC8449529 DOI: 10.7717/peerj.12171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a significant clinical challenge as no effective treatments are available to enhance patient survival. Recently, N6-methyladenosine (m6A) RNA modification has been demonstrated to play a pivotal role in tumorigenesis and progression. However, the roles of m6A target genes in ovarian cancer haven't been clearly illustrated. In this study, we presented a comprehensive bioinformatics and in vitro analysis to evaluate the roles of m6A target genes. Cell division cycle 42 effector protein 3 (CDC42EP3), one probable m6A target gene, was identified to be down-regulated in ovarian cancer tissues and cells. Meanwhile, quantitative PCR (qPCR) and western blot were used to confirm the down-regulated CDC42EP3 in ovarian cancer cells A2780 and TOV112D. The biological function of CDC42EP3 in ovarian cancer was further validated with several algorithms, such as PrognoScan, K-M plotter, LinkedOmics and TISIDB. These findings indicated that lower expression of CDC42EP3 was correlated with poor prognosis in patients with ovarian cancer. In addition, CDC42EP3 expression was significantly associated with a diverse range of tumor-infiltrating immune cells, including natural killer cells (NK), T central memory cells (Tcm), T gamma delta cells (Tgd), etc. Taken together, this study uncovered the potential roles of m6A target gene CDC42EP3 in the regulation of immune microenvironment in the ovarian cancer, and identified CDC42EP3 as a novel prognostic target.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Xian H, Li J, Zhang Y, Li D, Zhu Y, Li S, Tan Z, Lin Z, Li X, Pan Y. Antimetastatic Effects of Ganoderma lucidum Polysaccharide Peptide on B16-F10-luc-G5 Melanoma Mice With Sleep Fragmentation. Front Pharmacol 2021; 12:650216. [PMID: 34305583 PMCID: PMC8296642 DOI: 10.3389/fphar.2021.650216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023] Open
Abstract
Ganoderma lucidum (Lingzhi) polysaccharide peptide (GL-pp) is a component of the globally acknowledged traditional Chinese medicine Ganoderma lucidum; Ganoderma lucidum is known for its sedative, hypnotic, immune regulatory, antitumor, and other pharmacological effects. In recent years, sleep disorders have been linked to many diseases and human body disorders, including cancer. Some experimental studies in mice found that sleep fragmentation could promote tumor development and progression. However, effects on GL-pp on tumor metastasis under circumstances of sleep disorders have rarely been studied. Thus, in this study, we used mice with sleep fragmentation (SF) bearing B16-F10-luc-G5 melanoma tumors to investigate the effect of SF on melanoma metastasis. Furthermore, we investigated the antitumor and antimetastatic effects of GL-pp (80 mg/kg) in mice suffering from SF and bearing B16-F10-luc-G5. Then, whole proteomics was used to analyze the differences in protein expression in the lung tissue between SF mice bearing B16-F10-luc-G5 with and without GL-pp administration. High-throughput pyrosequencing of 16S rRNA was also used to analyze the impact of GL-pp on the gut microbiota composition in SF mice bearing B16-F10-luc-G5. Last, the effects of GL-pp on macrophage polarization and TNF-α serum levels were detected. Collectively, we found that SF significantly facilitated the B16-F10-luc-G5 melanoma tumor metastasis in mice, while GL-pp significantly reduced B16-F10-luc-G5 melanoma tumor metastasis under the condition of SF, in which proteomics and gut microbiota had been changed greatly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
21
|
Liu C, Yu M, Li Y, Wang H, Xu C, Zhang X, Li M, Guo H, Ma D, Guo X. Lidocaine inhibits the metastatic potential of ovarian cancer by blocking Na V 1.5-mediated EMT and FAK/Paxillin signaling pathway. Cancer Med 2021; 10:337-349. [PMID: 33280262 PMCID: PMC7826465 DOI: 10.1002/cam4.3621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Lidocaine, one of the most commonly used local anesthetics during surgery, has been reported to suppress cancer cell growth via blocking voltage-gated sodium channels (VGSCs). VGSC 1.5 (NaV 1.5) is highly expressed in invasive cancers including ovarian cancer. This study aims to investigate whether lidocaine inhibits the malignancy of ovarian cancer through NaV 1.5 blockage. Human ovarian cancer, its metastatic cancer and normal ovarian tissues were probed with anti-NaV 1.5 antibody in situ. Human ovarian cancer A2780 and SKOV3 cells were cultured and their growth, epithelial-mesenchymal transition (EMT), migration, and invasion in the presence or absence of lidocaine together with underlying molecular mechanisms were assessed. Murine syngeneic ovarian cancer (ID8) model was also used to determine the chemotherapeutic efficiency of cisplatin in combination with lidocaine. The high level of NaV 1.5 expression was found in human ovarian cancer and even higher in its metastatic cancer but not in normal ovarian tissues. Lidocaine decreased the growth, EMT, migration, and invasion of human ovarian cancer A2780 and SKOV3 cells. Lidocaine enhanced the chemotherapeutic efficiency of cisplatin in both ovarian cancer cell cultures and a murine ovarian metastatic model. Furthermore, a downregulation of NaV 1.5 by siRNA transfection, or FAK inhibitor application, inhibited the malignant properties of SKOV3 cells through inactivating FAK/Paxillin signaling pathway. Our data may indicate that lidocaine suppresses the metastasis of ovarian cancer and sensitizes cisplatin through blocking NaV 1.5-mediated EMT and FAK/paxillin signaling pathway. The translational value of lidocaine local application as an ovarian cancer adjuvant treatment warrants further study.
Collapse
Affiliation(s)
- Chang Liu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ming Yu
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Yi Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hao Wang
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Chuanya Xu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Xiaoqing Zhang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Min Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hongyan Guo
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea and Westminster HospitalLondonUnited Kingdom
| | - Xiangyang Guo
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
22
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
23
|
Liu F, Liu J, Zhang J, Shi J, Gui L, Xu G. Expression of STAT1 is positively correlated with PD-L1 in human ovarian cancer. Cancer Biol Ther 2020; 21:963-971. [PMID: 33043814 PMCID: PMC7583508 DOI: 10.1080/15384047.2020.1824479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is related to the immune microenvironment of tumorigenesis. The programmed cell death 1 (PD-1) and its ligand (PD-L1) have been reported to be important in immunotherapy by mediating tumor immune evasion. Blocking the PD-1/PD-L1 pathway can restore the endogenous anti-tumor immune response. This study aimed to examine the expression of STAT1, PD-1, and PD-L1 and the correlation between selected markers in human epithelial ovarian cancer (EOC). The results showed that malignant tumors contained more STAT1, PD-1, and PD-L1 positive cells. The expression of STAT1 and PD-L1 was associated with age, whereas PD-1 and PD-L1 associated with histopathological type, in patients with ovarian tumors. Moreover, the expression of STAT1 was found to be associated with disease stages and the grade of serous carcinoma. STAT1 expression was higher in OC cells than normal ovarian surface epithelial cells and was positively correlated with PD-L1 expression. The knockdown of STAT1 decreased PD-L1 expression, whereas overexpression of STAT1 increased PD-L1 expression. Furthermore, the expression of STAT1, PD-1, and PD-L1 was lower in paclitaxel-resistant cells than sensitive cells. Finally, STAT1 affected the overall survival and progression-free survival of patients with EOC. These findings suggest that STAT1, PD-1, and PD-L1 are the tissue markers of EOC and imply the possibility that the high level of STAT1, PD-1, and PD-L1 may favor the checkpoint immunotherapy in patients with EOC, but may have a limit in paclitaxel-resistant patients because of the low expression of STAT1, PD-1, and PD-L1 in paclitaxel-resistant cells.
Collapse
Affiliation(s)
- Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lu Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Kargbo RB. Chemically Induced Degradation of FAK-ALK for Application in Cancer Therapeutics. ACS Med Chem Lett 2020; 11:1367-1368. [PMID: 32676140 DOI: 10.1021/acsmedchemlett.0c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
25
|
Kargbo RB. Bifunctional Pyrimidines as Modulators of Focal Adhesion Kinase. ACS Med Chem Lett 2020; 11:409-411. [PMID: 32292541 PMCID: PMC7153014 DOI: 10.1021/acsmedchemlett.0c00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
26
|
Liu Y, Zhang Z, Li T, Li X, Zhang S, Li Y, Zhao W, Gu Y, Guo Z, Qi L. A Qualitative Transcriptional Signature for Predicting Recurrence Risk for High-Grade Serous Ovarian Cancer Patients Treated With Platinum-Taxane Adjuvant Chemotherapy. Front Oncol 2019; 9:1094. [PMID: 31681618 PMCID: PMC6813654 DOI: 10.3389/fonc.2019.01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum and taxane adjuvant chemotherapy (ACT) is the main cause of the recurrence and poor prognosis of high-grade serous ovarian cancer (HGS-OvCa) patients receiving platinum-taxane ACT after surgery. However, currently reported quantitative transcriptional signatures, which are commonly based on risk scores summarized from gene expression, are unsuitable for clinical application because of their high sensitivity to experimental batch effects and quality uncertainties of clinical samples. Using 226 samples of HGS-OvCa patients receiving platinum-taxane ACT in TCGA, we developed a qualitative transcriptional signature, consisting of four gene pairs whose within-samples relative expression orderings could robustly predict patient recurrence-free survival (RFS). In two independent test datasets, the predicted non-responders had significantly shorter RFS than the predicted responders (log-rank p < 0.05). In a test dataset containing data for patient pathological response state, the signature reclassified 12 out of 22 pathological complete response patients as non-responders and two out of 16 pathological non-complete response patients as responders. Notably, the 12 predicted non-responders in the pathological complete response group had significantly shorter RFS than the predicted responders (log-rank p = 0.0122). This qualitative transcriptional signature, which is insensitive to experimental batch effects and quality uncertainties of clinical samples, can individually identify HGS-OvCa patients who are more likely to benefit from platinum-taxane adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yixin Liu
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Zheyang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tianhao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenyuan Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Medical Bioinformatics, Fuzhou, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Farra R, Maruna M, Perrone F, Grassi M, Benedetti F, Maddaloni M, El Boustani M, Parisi S, Rizzolio F, Forte G, Zanconati F, Cemazar M, Kamensek U, Dapas B, Grassi G. Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Matea Maruna
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34127 Trieste, Italy.
| | - Marianna Maddaloni
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34127 Trieste, Italy.
| | - Salvo Parisi
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34127 Trieste, Italy.
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, I-33081 Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30123 Venezia-Mestre, Italy.
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Urska Kamensek
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| |
Collapse
|