1
|
Li K, Ji X, Tian S, Li J, Tian Y, Ma X, Li H, Zhang H, Chen CT, Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res 2025; 400:17-34. [PMID: 39918765 DOI: 10.1007/s00441-025-03953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.
Collapse
Affiliation(s)
- Kangxia Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiang Ji
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Shan Tian
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Jian Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Yizhu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoqing Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Huanping Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Cai-Tao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Xu J, Xiong J, Jiang X, Sun M, Chen M, Luo X. Association between body roundness index and weight-adjusted waist index with asthma prevalence among US adults: the NHANES cross-sectional study, 2005-2018. Sci Rep 2025; 15:9781. [PMID: 40118914 PMCID: PMC11928567 DOI: 10.1038/s41598-025-93604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
This study investigated the connection between asthma in US individuals and their body roundness index (BRI) and weight-adjusted waist index (WWI). According to data from the 2005-2018 National Health and Nutrition Examination Survey (NHANES), 3609 of the 25,578 persons in the survey who were 18 years of age or older reported having asthma. After adjusting for all confounders, the probability of asthma prevalence increased by 8% for every unit rise in BRI (OR = 1.08, 95% CI 1.06,1.11). The probability of asthma prevalence increased by 16% for every unit rise in WWI (OR = 1.16, 95% CI 1.08,1.25). The BRI and WWI indices were associated with prevalence and were nonlinearly correlated. The inflection points for threshold saturation effects were 4.36 and 10.69, respectively (log-likelihood ratio test, P < 0.05). Relationship subgroup analyses showed that the positive associations between BRI and WWI and asthma were generalized across populations and there was no significant interaction in most subgroups. In addition, sensitivity analyses verified the robustness of these results, further confirming the conclusion of BRI and WWI as independent risk factors for asthma. Finally, receiver operating characteristic (ROC) analysis showed that BRI outperformed WWI in predicting asthma, suggesting the potential of BRI in early asthma screening. Overall, BRI and WWI are independent risk factors for asthma with important clinical applications.
Collapse
Affiliation(s)
- Jie Xu
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | | | - Xiatian Jiang
- Affiliated Sport Hospital of Chengdu Sport University, Chengdu, China
| | - Min Sun
- Department of Knee Sports Injury, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Meng Chen
- Department of Emergency Medicine, Nanchong Hospital of Traditional Chinese Medicine, Nanchong, China
| | - Xiaobing Luo
- Department of Sports Medicine, Sichuan Provincial Orthopedics Hospital, Chengdu, China.
| |
Collapse
|
3
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Han H, Meister M, Peng G, Yuan Y, Qiao J, Yang JJ, Liu ZR, Ji X. Inhalation of nicotine-containing electronic cigarette vapor exacerbates the features of COPD by inducing ferroptosis in βENaC-overexpressing mice. Front Immunol 2024; 15:1429946. [PMID: 38947318 PMCID: PMC11211252 DOI: 10.3389/fimmu.2024.1429946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is currently listed as the 3rd leading cause of death in the United States. Accumulating data shows the association between COPD occurrence and the usage of electronic nicotine delivery systems (ENDS) in patients. However, the underlying pathogenesis mechanisms of COPD have not been fully understood. Methods In the current study, bENaC-overexpressing mice (bENaC mice) were subjected to whole-body ENDS exposure. COPD related features including emphysema, mucus accumulation, inflammation and fibrosis are examined by tissue staining, FACS analysis, cytokine measurement. Cell death and ferroptosis of alveolar epithelial cells were further evaluated by multiple assays including staining, FACS analysis and lipidomics. Results ENDS-exposed mice displayed enhanced emphysema and mucus accumulation, suggesting that ENDS exposure promotes COPD features. ENDS exposure also increased immune cell number infiltration in bronchoalveolar lavage and levels of multiple COPD-related cytokines in the lungs, including CCL2, IL-4, IL-13, IL-10, M-CSF, and TNF-α. Moreover, we observed increased fibrosis in ENDS-exposed mice, as evidenced by elevated collagen deposition and a-SMA+ myofibroblast accumulation. By investigating possible mechanisms for how ENDS promoted COPD, we demonstrated that ENDS exposure induced cell death of alveolar epithelial cells, evidenced by TUNEL staining and Annexin V/PI FACS analysis. Furthermore, we identified that ENDS exposure caused lipid dysregulations, including TAGs (9 species) and phospholipids (34 species). As most of these lipid species are highly associated with ferroptosis, we confirmed ENDS also enhanced ferroptosis marker CD71 in both type I and type II alveolar epithelial cells. Discussion Overall, our data revealed that ENDS exposure exacerbates features of COPD in bENaC mice including emphysema, mucus accumulation, abnormal lung inflammation, and fibrosis, which involves the effect of COPD development by inducing ferroptosis in the lung.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Maureen Meister
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Xiangming Ji
- Department of Nutrition, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
5
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Spector C, De Sanctis CM, Panettieri RA, Koziol-White CJ. Rhinovirus induces airway remodeling: what are the physiological consequences? Respir Res 2023; 24:238. [PMID: 37773065 PMCID: PMC10540383 DOI: 10.1186/s12931-023-02529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment. MAIN BODY While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators. CONCLUSIONS Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Collapse
Affiliation(s)
- Cassandra Spector
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | - Camden M De Sanctis
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | | | | |
Collapse
|
7
|
Gordon JM, Santangelo RG, González-Morales MA, Menechella M, Schal C, DeVries ZC. Spatial distribution of histamine in bed bug-infested homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163180. [PMID: 37001661 PMCID: PMC10219852 DOI: 10.1016/j.scitotenv.2023.163180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023]
Abstract
Histamine is a component of the bed bug aggregation pheromone. It was recently identified as an environmental contaminant in homes with active bed bug infestations, posing a potential health risk to humans via skin contact or inhalation. It remains unclear how histamine is distributed in homes and if histamine can become airborne. In the present study, histamine levels in household dust were quantified from multiple locations within bed bug infested and uninfested apartments. Bed bug population levels were quantified using both traps and visual counts. The amount of histamine detected varied significantly with respect to sampling location, with the highest concentration of histamine quantified from bedding material. Infestation severity did not have a significant effect on histamine quantified at any location. Our results indicate that the bedroom should be the primary focus of histamine mitigation efforts, although histamine can be found throughout the home. Histamine quantified from homes without active bed bug infestations suggests that histamine from previous infestations can persist following pest eradication. These findings highlight the importance of histamine as a potential insect allergen and will be important for the development of targeted mitigation strategies of bed bug histamine.
Collapse
Affiliation(s)
- Johnalyn M Gordon
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Maria A González-Morales
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA; Defense Centers for Public Health-Aberdeen, Entomology Science Division, Pesticide Use and Resistance Monitoring Branch, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Menechella
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Zachary C DeVries
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Yang Q, Miao Q, Chen H, Li D, Luo Y, Chiu J, Wang HJ, Chuvanjyan M, Parmacek MS, Shi W. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. J Pathol 2023; 259:331-341. [PMID: 36484734 PMCID: PMC10107741 DOI: 10.1002/path.6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Duo Li
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Jun Wang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Chuvanjyan
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Farooq S, Khatri S. Life Course of Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:43-76. [PMID: 37464116 DOI: 10.1007/978-3-031-32259-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is a heterogeneous chronic airway disease that can vary over a lifetime. Although broad categories of asthma by severity and type have been constructed, there remains a tremendous opportunity to discover an approach to managing asthma with additional factors in mind. Many in the field have suggested and are pursuing a novel paradigm shift in how asthma might be better managed, considering the life course of exposures, management priorities, and predicted trajectory of lung function growth. This approach will require a more holistic view of prenatal, postnatal, adolescence, hormonal and gender aspects, and the aging process. In addition, the environment, externally and internally, including in one's genetic code and epigenetic changes, are factors that affect how asthma progresses or becomes more stable in individuals. This chapter focuses on the various influences that may, to differing degrees, affect people with asthma, which can develop at any time in their lives. Shifting the paradigm of thought and strategies for care and advocating for public policies and health delivery that focus on this philosophy is paramount to advance asthma care for all.
Collapse
Affiliation(s)
- Sobia Farooq
- National Heart, Lung, and Blood Institute, CMO Division of Lung Diseases, Bethesda, MD, USA
| | - Sumita Khatri
- National Heart, Lung, and Blood Institute, CMO Division of Lung Diseases, Bethesda, MD, USA.
| |
Collapse
|
10
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
11
|
Bai F, Chen Z, Xu S, Han L, Zeng X, Huang S, Zhu Z, Zhou L. Wogonin attenuates neutrophilic inflammation and airway smooth muscle proliferation through inducing caspase-dependent apoptosis and inhibiting MAPK/Akt signaling in allergic airways. Int Immunopharmacol 2022; 113:109410. [DOI: 10.1016/j.intimp.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
|
12
|
Hassoun D, Rose L, Blanc FX, Magnan A, Loirand G, Sauzeau V. Bronchial smooth muscle cell in asthma: where does it fit? BMJ Open Respir Res 2022; 9:9/1/e001351. [PMID: 36109087 PMCID: PMC9478857 DOI: 10.1136/bmjresp-2022-001351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-β, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.
Collapse
Affiliation(s)
- Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lindsay Rose
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - François-Xavier Blanc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Magnan
- INRAe, UMR 0892, Hôpital Foch, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines Paris-Saclay, Versailles, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| |
Collapse
|
13
|
Annexin-A1-Derived Peptide Ac2-26 Suppresses Allergic Airway Inflammation and Remodelling in Mice. Cells 2022; 11:cells11050759. [PMID: 35269381 PMCID: PMC8909467 DOI: 10.3390/cells11050759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Annexin-A1 (AnxA1) and its N-terminal derived peptide Ac2-26 regulate the inflammatory response in several experimental models of disorders. This study evaluated the effect of endogenous AnxA1 and its N-terminal peptide Acetyl 2-26 (Ac2-26) on allergic asthma triggered by house dust mite (HDM) extract in mice. ANXA1−/− and wildtype (WT) mice were exposed to intranasal instillation of HDM every other day for 3 weeks, with analyses performed 24 h following the last exposure. Intranasal administration of peptide Ac2-26 was performed 1 h before HDM, beginning 1 week after the initial antigen application. ANXA1−/− mice stimulated with HDM showed marked exacerbations of airway hyperreactivity (AHR), eosinophil accumulation, subepithelial fibrosis, and mucus hypersecretion, all parameters correlating with overexpression of cytokines (IL-4, IL-13, TNF-α, and TGF-β) and chemokines (CCL11/eotaxin-1 and CCL2/MCP-1). Intranasal treatment with peptide Ac2-26 decreased eosinophil infiltration, peribronchiolar fibrosis, and mucus exacerbation caused by the allergen challenge. Ac2-26 also inhibited AHR and mediator production. Collectively, our findings show that the AnxA1-derived peptide Ac2-26 protects against several pathological changes associated with HDM allergic reaction, suggesting that this peptide or related AnxA1-mimetic Ac2-26 may represent promising therapeutic candidates for the treatment of allergic asthma.
Collapse
|
14
|
Jendzjowsky N, Laing A, Malig M, Matyas J, de Heuvel E, Dumonceaux C, Dumoulin E, Tremblay A, Leigh R, Chee A, Kelly MM. Long-term modulation of airway remodelling in severe asthma following bronchial thermoplasty. Eur Respir J 2022; 59:2100622. [PMID: 34049950 DOI: 10.1183/13993003.00622-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/16/2021] [Indexed: 11/05/2022]
Abstract
RationaleBronchial thermoplasty is a mechanical therapeutic intervention that has been advocated as an effective treatment option for severe asthma. The mechanism is promoted as being related to the attenuation of airway smooth muscle which has been shown to occur in the short-term. However, long-term studies of the effects of bronchial thermoplasty on airway remodelling are few, with only limited assessment of airway remodelling indices.ObjectivesTo evaluate the effect of bronchial thermoplasty on 1) airway epithelial and smooth muscle cells in culture and 2) airway remodelling in patients with severe asthma who have been prescribed bronchial thermoplasty up to 12 months post-treatment.MethodsThe distribution of heat within the airway by bronchial thermoplasty was assessed in a porcine model. Culture of human airway smooth muscle cells and bronchial epithelial cells evaluated the impact of thermal injury. Histological evaluation and morphometric assessment were performed on bronchial biopsies obtained from severe asthma patients at baseline, 6 weeks and 12 months following bronchial thermoplasty.ResultsBronchial thermoplasty resulted in heterogeneous heating of the airway wall. Airway smooth muscle cell cultures sustained thermal injury, whilst bronchial epithelial cells were relatively resistant to heat. Airway smooth muscle and neural bundles were significantly reduced at 6 weeks and 12 months post-treatment. At 6 weeks post-treatment, submucosal collagen was reduced and vessel density increased, with both indices returning to baseline at 12 months. Goblet cell numbers, submucosal gland area and sub-basement membrane thickness were not significantly altered at any time point examined.ConclusionsBronchial thermoplasty primarily affects airway smooth muscle and nerves with the effects still present at 12 months post-treatment.
Collapse
Affiliation(s)
- Nicholas Jendzjowsky
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Authors contributed equally
| | - Austin Laing
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| | - Michelle Malig
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John Matyas
- Dept of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elaine de Heuvel
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Curtis Dumonceaux
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elaine Dumoulin
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alain Tremblay
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Richard Leigh
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alex Chee
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| | - Margaret M Kelly
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| |
Collapse
|
15
|
Fang P, Deng WJ, Fan N, Shi J, Shi HY, Ou L, Pan JL, Yang SY. AMOTL2 restrains transforming growth factor-β1-induced proliferation and extracellular matrix deposition of airway smooth muscle cells via the down-regulation of YAP1 activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:2225-2235. [PMID: 34323359 DOI: 10.1002/tox.23336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Angiomotin-like 2 (AMOTL2) is a key modulator of signaling transduction and participates in the regulation of various cellular progresses under diverse physiological and pathological conditions. However, whether AMOTL2 participates in asthma pathogenesis has not been fully studied. In the present work, we studied the possible role and mechanism of AMOTL2 in regulating transforming growth factor-β1 (TGF-β1)-induced proliferation and extracellular matrix (ECM) deposition of airway smooth muscle (ASM) cells. Our results showed marked reductions in the abundance of AMOTL2 in TGF-β1-stimulated ASM cells. Cellular functional investigations confirmed that the up-regulation of AMOTL2 dramatically decreased the proliferation and ECM deposition induced by TGF-β1 in ASM cells. In contrast, the depletion of AMOTL2 exacerbated TGF-β1-induced ASM cell proliferation and ECM deposition. Further research revealed that the overexpression of AMOTL2 restrained the activation of Yes-associated protein 1 (YAP1) in TGF-β1-stimulated ASM cells. Moreover, the reactivation of YAP1 markedly reversed AMOTL2-mediated suppression of TGF-β1-induced ASM cell proliferation and ECM deposition. Together, these findings suggest that AMOTL2 restrains TGF-β1-induced proliferation and ECM deposition of ASM cells by down-regulating YAP1 activation.
Collapse
Affiliation(s)
- Ping Fang
- Division of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Wen-Jing Deng
- Division of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Na Fan
- Division of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Jie Shi
- Division of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Hong-Yang Shi
- Division of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Ling Ou
- Special Hospital Ward, Xi'an Children's Hospital, Xi'an, China
| | - Jian-Li Pan
- Respiratory Department, Xi'an Children's Hospital, Xi'an, China
| | - Shuan-Ying Yang
- Division of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| |
Collapse
|
16
|
D'Annunzio G, Gobbo F, Avallone G, Bacci B, Sabattini S, Sarli G. Airway Remodeling in Feline Lungs. Top Companion Anim Med 2021; 46:100587. [PMID: 34624551 DOI: 10.1016/j.tcam.2021.100587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
Airway remodeling encompass structural changes that occur as the result of chronic injury and lead to persistently altered airway structure and function. Although this process is known in several human respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD), airway remodeling is poorly characterized in the feline counterpart. In this study, we describe the spontaneous pulmonary changes in 3 cats paralleling the airway remodeling reported in humans. We observed airway smooth muscle cells (ASMCs) hyperplasia (peribronchial and interstitial), airway subepithelial and interstitial fibrosis, and vascular remodeling by increased number of vessels in the bronchial submucosa. The hyperplastic ASMCs co-expressed α-SMA, vimentin and desmin suggesting that vimentin, which is not normally expressed by ASMCs, may play a role in airway thickening, and remodeling. ASMCs had strong cytoplasmic expression of TGFβ-1, which is known to contribute to tissue remodeling in asthma and in various bronchial and interstitial lung diseases, suggesting its involvement in the pathogenesis of ASMCs hyperplasia. Our findings provide histologic evidence of airway remodeling in cats. Further studies on larger caseloads are needed to support our conclusions on the value of this feline condition as an animal model for nonspecific airway remodeling in humans.
Collapse
Affiliation(s)
- Giulia D'Annunzio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy.
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| |
Collapse
|
17
|
Zhou H, Long C, Liu P, Chen Y, Luo L, Xiao Z. Long non-coding RNA TUG1 accelerates abnormal growth of airway smooth muscle cells in asthma by targeting the miR-138-5p/E2F3 axis. Exp Ther Med 2021; 22:1229. [PMID: 34539825 DOI: 10.3892/etm.2021.10663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease. The present study aimed to explore the effect of the long non-coding RNA taurine-upregulated gene 1 (TUG1) on the viability and migration of airway smooth muscle cells (ASMCs) in asthma. Rat asthma models were constructed with ovalbumin sensitization and challenge and the level of serum immunoglobulin E (IgE) and the rates of inspiratory and expiratory resistance were measured. Reverse transcription-quantitative PCR was also performed to determine the expression levels of TUG1. Platelet-derived growth factor-BB (PDGF-BB)-treated ASMCs were then used as a cell model of asthma. The viability and migratory abilities of ASMCs were analysed with the MTT and Transwell assays. Additionally, a dual-luciferase reporter assay was used to confirm the relationship between TUG1 and microRNA (miR)-138-5p and between transcription factor E2F3 and miR-138-5p. The expression of TUG1, level of serum IgE, inspiratory resistance and expiratory resistance were clearly increased in the rat asthma model in comparison with controls. Knockdown of TUG1 the viability and migration of PDGF-BB-induced ASMCs and reduced the inspiratory and expiratory resistances. In addition, TUG1 functioned as a bait of miR-138-5p, and miR-138-5p modulated E2F3 expression. Knockdown of E2F3 hindered the abnormal growth of ASMCs. Moreover, miR-138-5p inhibition or E2F3 overexpression reversed the inhibitory effects of TUG1 knockdown on viability and migration of PDGF-BB-induced ASMCs. The TUG1/miR-138-5p/E2F3 regulatory axis appeared to play a critical role in accelerating the viability and migration of ASMCs and may therefore have a role in asthma.
Collapse
Affiliation(s)
- Haiyin Zhou
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Caixia Long
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Pingping Liu
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Yanying Chen
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Lan Luo
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| | - Zhenghui Xiao
- Intensive Care Unit, Hunan Children's Hospital, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
18
|
Zhao XO, Lampinen M, Rollman O, Sommerhoff CP, Paivandy A, Pejler G. Mast cell chymase affects the functional properties of primary human airway fibroblasts: implications for asthma. J Allergy Clin Immunol 2021; 149:718-727. [PMID: 34331992 DOI: 10.1016/j.jaci.2021.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mast cells have a profound impact on allergic asthma. Under such conditions, mast cells undergo degranulation, resulting in the release of exceptionally large amounts of mast cell-restricted proteases. However, the role of these proteases in asthma is only partially understood. OBJECTIVES Here we hypothesized that the mast cell proteases can influence the functionality of human lung fibroblasts. METHODS Primary human lung fibroblasts (HLFs) were treated with mast cell chymase or tryptase, followed by assessment of parameters related to fibroblast function. RESULTS HLFs underwent major morphological changes in response to chymase, showing signs of cellular contraction, but were refractory to tryptase. However, no effects of chymase on HLF viability or proliferation were seen. Chymase, but not tryptase, had a major impact on the output of extracellular matrix-associated compounds from the HLFs, including degradation of fibronectin and collagen-1, and activation of pro-matrix metalloprotease-2. Further, chymase induced the release of various chemotactic factors from HLFs. In line with this, conditioned medium from chymase-treated HLFs showed chemotactic activity on neutrophils. Transcriptome analysis revealed that chymase induced a pro-inflammatory gene transcription profile in HLFs, whereas tryptase had minimal effects. CONCLUSION Our findings reveal that chymase, but not tryptase, has a major impact on the phenotype of primary airway fibroblasts, by modifying their output of extracellular matrix components and by inducing a pro-inflammatory phenotype. CLINICAL IMPLICATION This study shows that mast cell chymase has a major impact on airway fibroblasts, thereby providing insight into how mast cells can influence the manifestations of asthma.
Collapse
Affiliation(s)
- Xinran O Zhao
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Maria Lampinen
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden; Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| | - Ola Rollman
- Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| | | | - Aida Paivandy
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden.
| | - Gunnar Pejler
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden.
| |
Collapse
|
19
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
20
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Anti-Asthmatic Effects of Saffron Extract and Salbutamol in an Ovalbumin-Induced Airway Model of Allergic Asthma. SINUSITIS 2021. [DOI: 10.3390/sinusitis5010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Asthma is a chronic inflammatory disorder of the airways often characterized by airway remodeling and influx of inflammatory cells into the airways. Saffron (C. sativus) has been reported to possess anti-inflammatory, anti-allergic and immunomodulatory properties. Salbutamol is known to relax airway smooth muscles. Objective: To investigate the combined anti-asthmatic effect of C. sativus extract (CSE) and salbutamol in an ovalbumin (OVA)-induced asthma in rats. Materials and methods: Airway hyperresponsiveness (AHR) was induced in male Sprague-Dawley rats by OVA challenge and treated with CSE (30 mg/kg and 60 mg/kg i.p.) and salbutamol (0.5 mg/kg p.o) for 28 days. After the induction period, various hematological, biochemical, molecular (ELISA) and histological analyses were performed. Results: OVA-induced alterations observed in hematological parameters (total and differential cell counts observed in Bronchoalveolar Lavage Fluid (BALF) were significantly attenuated (p < 0.01) by CSE (30 mg/kg and 60 mg/kg) and salbutamol (0.5 mg/kg). The treatment combination also significantly decreased (p < 0.01) the levels of total protein and albumin in serum, BALF and lung tissues. Treatment with CSE and salbutamol significantly attenuated (p < 0.01) increase in OVA induced Th2 cytokine levels (TNF-α, IL-1β, IL-4, IL-13). Histopathological analysis of lung tissue showed that combined effect of CSE and salbutamol treatment ameliorated OVA-induced inflammatory influx and ultrastructural aberrations. Conclusion: The results obtained from this study show that the combined effect of CSE and salbutamol exhibited anti-asthmatic properties via its anti-inflammatory effect and by alleviating Th2 mediated immune response. Thus, this treatment combination could be considered as a new therapeutic strategy for management of asthma.
Collapse
|
22
|
Dos Santos TM, Righetti RF, Rezende BG, Campos EC, Camargo LDN, Saraiva-Romanholo BM, Fukuzaki S, Prado CM, Leick EA, Martins MA, Tibério IFLC. Effect of anti-IL17 and/or Rho-kinase inhibitor treatments on vascular remodeling induced by chronic allergic pulmonary inflammation. Ther Adv Respir Dis 2020; 14:1753466620962665. [PMID: 33357114 PMCID: PMC7768836 DOI: 10.1177/1753466620962665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Expansion and morphological dysregulation of the bronchial vascular network occurs in asthmatic airways. Interleukin (IL) -17 and Rho-kinase (ROCK) are known to act in inflammation control and remodeling. Modulation of Rho-kinase proteins and IL-17 may be a promising approach for the treatment of asthma through the control of angiogenesis. Our objective was to analyze the effects of treatment with anti-IL17 and/or Rho-kinase inhibitor on vascular changes in mice with chronic allergic pulmonary inflammation. Methods: Sixty-four BALB/c mice, with pulmonary inflammation induced by ovalbumin were treated with anti-IL17A (7.5/µg per dose, intraperitoneal) and/or Rho-kinase inhibitor (Y-27632-10 mg/kg, intranasal), 1 h before each ovalbumin challenge (22, 24, 26, and 28/days). Control animals were made to inhale saline. At the end of the protocol, lungs were removed, and morphometric analysis was performed to quantify vascular inflammatory, remodeling, and oxidative stress responses. Results: Anti-IL17 or Rho-kinase inhibitor reduced the number of CD4+, CD8+, dendritic cells, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, Rho-kinase 1 and 2, transforming growth factor (TGF-β), vascular endothelial growth factor (VEGF), nuclear factor (NF)-KappaB, iNOS, metalloproteinase (MMP)-9, MMP-12, metalloproteinase inhibitor-1 (TIMP-1), FOXP-3, signal transducer and activator of transcription 1 (STAT1) and phospho-STAT1-positive cells, and actin, endothelin-1, isoprostane, biglycan, decorin, fibronectin and the collagen fibers volume fraction compared with the ovalbumin group (p < 0.05). The combination treatment, when compared with anti-IL17, resulted in potentiation of decrease in the number of IL1β- and dendritic cells-positive cells. When we compared the OVA-RHO inhibitor-anti-IL17 with OVA-RHO inhibitor we found a reduction in the number of CD8+ and IL-17, TGF-β, and phospho-STAT1-positive cells and endothelin-1 in the vessels (p < 0.05). There was an attenuation in the number of ROCK 2-positive cells in the group with the combined treatment when compared with anti-IL17 or Rho-kinase inhibitor-treated groups (p < 0.05). Conclusion: We observed no difference in angiogenesis after treatment with Rho-kinase inhibitor and anti-IL17. Although the treatments did not show differences in angiogenesis, they showed differences in the markers involved in the angiogenesis process contributing to inflammation control and vascular remodeling. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Tabata M Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Renato F Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Bianca G Rezende
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Elaine C Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Leandro do N Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR. Hospital Sirio-Libanes, São Paulo, Brazil
| | - Beatriz M Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Medicine, University City of São Paulo (UNICID), São Paulo, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla M Prado
- Department of Biosciences, Federal University os Sao Paulo, Santos, SP, Brazil
| | - Edna A Leick
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milton A Martins
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Iolanda F L C Tibério
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455- Sala 1210, São Paulo, SP 01246-903, Brazil
| |
Collapse
|
23
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 PMCID: PMC7434707 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
24
|
Yeung BHY, Huang J, An SS, Solway J, Mitzner W, Tang WY. Role of Isocitrate Dehydrogenase 2 on DNA Hydroxymethylation in Human Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2020; 63:36-45. [PMID: 32150688 PMCID: PMC7328249 DOI: 10.1165/rcmb.2019-0323oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Global DNA hydroxymethylation mediated by the TET (ten-eleven translocation) enzyme was induced in allergen-induced airway hyperresponsiveness in mouse lung tissues and specifically in isolated airway smooth muscle (ASM) cells. TET is an α-ketoglutarate (α-KG)-dependent enzyme, and the production of α-KG is catalyzed by IDH (isocitrate dehydrogenase). However, the role of IDH in the regulation of DNA hydroxymethylation in ASM cells is unknown. In comparison with nonasthmatic cells, asthmatic ASM cells exhibited higher TET activity and IDH2 (but not IDH-1 or IDH-3) gene expression levels. We modified the expression of IDH2 in ASM cells from humans with asthma by siRNA and examined the α-KG levels, TET activity, global DNA hydroxymethylation, cell proliferation, and expression of ASM phenotypic genes. Inhibition of IDH2 in asthmatic ASM cells decreased the α-KG levels, TET activity, and global DNA hydroxymethylation, and reversed the aberrant ASM phenotypes (including decreased cell proliferation and ASM phenotypic gene expression). Specifically, asthmatic cells transfected with siRNA against IDH2 showed decreased 5hmC (5-hydroxymethylcytosine) levels at the TGFB2 (transforming growth factor-β2) promoter determined by oxidative bisulfite sequencing. Taken together, our findings reveal that IDH2 plays an important role in the epigenetic regulation of ASM phenotypic changes in asthmatic ASM cells, suggesting that IDH2 is a potential therapeutic target for reversing the abnormal phenotypes seen in asthma.
Collapse
Affiliation(s)
- Bonnie H. Y. Yeung
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessie Huang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven S. An
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Wan-yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol Res 2020; 159:104995. [PMID: 32534100 DOI: 10.1016/j.phrs.2020.104995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The principle of mechanopharmacology of airway smooth muscle (ASM) is based on the premise that physical agitation, such as pressure oscillation applied to an airway, is able to induce bronchodilation by reducing contractility and softening the cytoskeleton of ASM. Although the underlying mechanism is not entirely clear, there is evidence to suggest that large-amplitude stretches are able to disrupt the actomyosin interaction in the crossbridge cycle and weaken the cytoskeleton in ASM cells. Rho-kinase is known to enhance force generation and strengthen structural integrity of the cytoskeleton during smooth muscle activation and plays a key role in the maintenance of force during prolonged muscle contractions. Synergy in relaxation has been observed when the muscle is subject to oscillatory length change while Rho-kinase is pharmacologically inhibited. In this review, inhibition of Rho-kinase coupled to therapeutic pressure oscillation applied to the airways is explored as a combination treatment for asthma.
Collapse
Affiliation(s)
- Lu Wang
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada.
| | - Pasquale Chitano
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| | - Chun Y Seow
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| |
Collapse
|
27
|
Elevated eosinophils, IL5 and IL8 in induced sputum in asthma patients with accelerated FEV1 decline. Respir Med 2020; 162:105875. [PMID: 32056673 DOI: 10.1016/j.rmed.2020.105875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Some patients with asthma present with accelerated lung function decline. This phenomenon is mostly associated with severe exacerbations and with poor asthma control. OBJECTIVE Our aim was to detect the extent of FEV1 decline in patients with mild asthma and to discriminate clinical, functional and inflammatory factors associated with accelerated FEV1 decline. METHODS We recruited 50 patients with mild asthma for pulmonary function testing and induced sputum sampling 12-15 years after the initial diagnosis. In 33 patients, from whom sputum of a good quality was obtained, inflammatory cells were counted and concentrations of cytokines IL-2, IL-4, IL-5, IL-8, IL-10, IFN-γ, angiogenin and VEGF in the sputum were measured by cytometric bead array. RESULTS Eighteen of 33 patients presented with accelerated FEV1 decline of more than 30 ml/year, with a mean (SEM) of 43.2 (3.9) ml/year, compared to 15 control patients with a FEV1 decline of 14.4 (2.1) ml/year. In the accelerated FEV1 decline group, we found elevated sputum levels of IL5 with a median (IQR) of 1.8 (0.4-3.2) pg/ml vs. 0.2 (0.1-1.2) pg/ml, p = 0.04; IL8 with a mean (SEM) of 1503 (194) pg/ml vs. 938 (177) pg/ml, p = 0.04; and eosinophils with a median (IQR) of 223 (41-1020) cells/μl vs. 39 (1-190) cells/μl, p = 0.03. No significant differences in other measured parameters were detected between the two groups. CONCLUSION Elevated sputum eosinophils, IL5 and IL8, which have a potential to stimulate airway remodelling, might be a useful non-invasive biomarkers and therapeutic targets of accelerated FEV1 decline in asthma patients.
Collapse
|
28
|
Wu CW, Yau T, Fulgar CC, Mack SM, Revilla AM, Kenyon NJ, Pinkerton KE. Long-Term Sequelae of Smoking and Cessation in Spontaneously Hypertensive Rats. Toxicol Pathol 2019; 48:422-436. [PMID: 31870229 DOI: 10.1177/0192623319893312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smoking is a major risk factor for heart attack, stroke, and lung cancer. Tobacco smoke (TS) causes bronchitis, emphysema, persistent cough, and dyspnea. Smoking cessation minimizes risks of TS-related disease. To determine whether smoking cessation could reverse TS-induced pulmonary changes, 10-week-old male spontaneously hypertensive rats were exposed to TS or filtered air (FA) for 39 weeks and allowed to live out their normal lifespan. Significantly (P ≤ .05) decreased survival was noted by 21 months in TS versus FA rats. In TS rats, persistent peribronchiolar, perivascular, alveolar, and subpleural inflammation were observed with pervasive infiltration of pigmented foamy macrophages and plausible intra-alveolar fibrosis and osseous metaplasia. Alveolar airspace was significantly (P ≤ .05) increased in TS versus FA rats as was the volume of stored epithelial mucosubstances in the left central axial airway. Increased mucin contributes to airflow obstruction and increased lung infection risks. Findings suggest TS-induced changes do not attenuate with smoking cessation but result in irreversible damage similar to chronic obstructive pulmonary disease. The observed persistent pulmonary changes mirror common TS effects such as chest congestion, sputum production, and shortness of breath long after smoking cessation and represent important targets for treatment of former smokers.
Collapse
Affiliation(s)
- Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, CA, USA.,Forensic Science Graduate Group, University of California, Davis, CA, USA
| | - Tammy Yau
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ciara C Fulgar
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Savannah M Mack
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Alina M Revilla
- Center for Health and the Environment, University of California, Davis, CA, USA.,Forensic Science Graduate Group, University of California, Davis, CA, USA
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, CA, USA.,VA Northern California Healthcare System, Mather, CA, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA.,Forensic Science Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Sevoflurane Prevents Airway Remodeling via Downregulation of VEGF and TGF-β1 in Mice with OVA-Induced Chronic Airway Inflammation. Inflammation 2019; 42:1015-1022. [PMID: 30680697 DOI: 10.1007/s10753-019-00963-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Asthma is characterized by chronic airway inflammation, which is the underlying cause of airway remodeling featured by goblet cell hyperplasia, subepithelial fibrosis, and proliferation of smooth muscle. Sevoflurane has been used to treat life-threatening asthma and our previous study shows that sevoflurane inhibits acute lung inflammation in ovalbumin (OVA)-induced allergic mice. However, the effect of sevoflurane on airway remodeling in the context of chronic airway inflammation and the underlying mechanism are still unknown. Here, female C57BL/6 mice were used to establish chronic airway inflammation model. Hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Sirius red (SR) staining were used to evaluate airway remodeling. Protein levels of α-SMA, VEGF, and TGF-β1 in lung tissues were detected by western blotting analyses and immunohistochemistry staining. Results showed that inhalation of sevoflurane inhibited chronic airway inflammation including inflammatory cell infiltration and pro-inflammatory cytokine production in BALF of the OVA-challenged mice. Meanwhile, sevoflurane suppressed airway thickening, goblet cell hyperplasia, smooth muscle hyperplasia, collagen deposition, and fiber hyperplasia in the lung tissues of the mice with airway remodeling. Most notably, sevoflurane inhibited the OVA-induced expressions of VEGF and TGF-β1. These results suggested that sevoflurane effectively inhibits airway remodeling in mouse model of chronic airway inflammation, which may be due to the downregulation of VEGF and TGF-β1in lung tissues. Therefore, our results indicate a potential role of sevoflurane in inhibiting airway remodeling besides its known suppression effect on airway inflammation, and support the use of sevoflurane in treating severe asthma in ICU.
Collapse
|
30
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
31
|
Influence of exhaled breath condensates from children with asthma on endothelial cells cultured in vitro. Do we really know everything about our breath condensate? Postepy Dermatol Alergol 2019; 37:368-374. [PMID: 33603596 PMCID: PMC7874863 DOI: 10.5114/ada.2019.86181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Asthma-associated remodelling involves subepithelial fibrosis and increased vascularization of the bronchial wall. The latter may be associated with excessive production of several angiogenesis regulators which may be found in exhaled breath condensates (EBCs) collected from children with asthma. Aim To assess the influence of EBC samples of asthmatic children and healthy controls on in vitro cultures of normal human lung microvascular endothelial cells (HLMVEC) and murine endothelial cell line (C-166). Moreover, the proteomic profile of cytokines in EBC samples was analysed. Material and methods Breath condensates collected from children with mild asthma (n = 10) and from healthy controls (n = 10) were used for experiments. Colorimetric tetrazolium salt reduction assay was used to evaluate the effect of EBCs on HLMVEC and C-166 cell lines. Furthermore, influence of EBCs on C-166 cell line was assessed using Annexin V-binding assay. The cytokine screening of EBC samples was performed using a proteome microarray system. Results The EBCs from patients with asthma revealed a weak inhibitory influence on human and murine endothelial cells. Surprisingly, EBCs from healthy children led to cell death, mainly by the induction of apoptosis. There were no statistically significant differences in the cytokine profile between EBC samples from children with asthma and healthy controls. Conclusions Our preliminary report shows for the first time that the incubation of EBCs from healthy controls induced apoptosis in endothelial cells. The detailed mechanism responsible for this action remains unknown and requires further research.
Collapse
|
32
|
Elieh Ali Komi D, Bjermer L. Mast Cell-Mediated Orchestration of the Immune Responses in Human Allergic Asthma: Current Insights. Clin Rev Allergy Immunol 2019; 56:234-247. [PMID: 30506113 DOI: 10.1007/s12016-018-8720-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Improving the lung function after experimental allergen challenge by blocking of mast cell (MC) mediators and the capability of MC mediators (including histamine, prostaglandin (PG) D2, and leukotriene (LT) C4) in induction of mucosal edema, bronchoconstriction, and mucus secretion provide evidence that MCs play a key role in pathophysiology of asthma. In asthma, the number of MCs increases in the airways and infiltration of MCs in a variety of anatomical sites including the epithelium, the submucosal glands, and the smooth muscle bundles occurs. MC localization within the ASM is accompanied with the hypertrophy and hyperplasia of the layer, and smooth muscle dysfunction that is mainly observed in forms of bronchial hyperresponsiveness, and variable airflow obstruction. Owing to the expression of a wide range of surface receptors and releasing various cytoplasmic mediators, MCs orchestrate the pathologic events of the disease. MC-released preformed mediators including chymase, tryptase, and histamine and de novo synthesized mediators such as PGD2, LTC4, and LTE4 in addition of cytokines mainly TGFβ1, TSLP, IL-33, IL-4, and IL-13 participate in pathogenesis of asthma. The release of MC mediators and MC/airway cell interactions during remodeling phase of asthma results in persistent cellular and structural changes in the airway wall mainly epithelial cell shedding, goblet cell hyperplasia, hypertrophy of ASM bundles, fibrosis in subepithelial region, abnormal deposition of extracellular matrix (ECM), increased tissue vascularity, and basement membrane thickening. We will review the current knowledge regarding the participation of MCs in each stage of asthma pathophysiology including the releasing mediators and their mechanism of action, expression of receptors by which they respond to stimuli, and finally the pharmaceutical products designed based on the strategy of blocking MC activation and mediator release.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leif Bjermer
- Department of Respiratory Medicine & Allergology, Inst for Clinical Science, Lund University, Lund, Sweden.
- Lung and Allergy Research, Skane University Hospital, Lasarettsgatan 7, 22185, Lund, Sweden.
| |
Collapse
|
33
|
Prevention and relaxation effects of Liriope platyphylla on bronchial asthma in vitro model by suppressing the activities of MAPK/NF-κB pathway. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019; 8:E342. [PMID: 30979017 PMCID: PMC6523091 DOI: 10.3390/cells8040342] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Collapse
Affiliation(s)
- Juliana T Ito
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Juliana D Lourenço
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Renato F Righetti
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
- Rehabilitation service, Sírio-Libanês Hospital, Sao Paulo 01308-050, Brazil.
| | - Iolanda F L C Tibério
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Carla M Prado
- Department of Bioscience, Laboratory of Studies in Pulmonary Inflammation, Federal University of Sao Paulo, Santos 11015-020, Brazil.
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
35
|
Ichikawa T, Panariti A, Audusseau S, Mogas AK, Olivenstein R, Chakir J, Laviolette M, Allakhverdi Z, Al Heialy S, Martin JG, Hamid Q. Effect of bronchial thermoplasty on structural changes and inflammatory mediators in the airways of subjects with severe asthma. Respir Med 2019; 150:165-172. [PMID: 30961946 DOI: 10.1016/j.rmed.2019.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bronchial thermoplasty (BT) is a novel technique used in the treatment of subjects with severe refractory asthma. Radiofrequency is provided to airway walls during bronchoscopy in order to reduce airway remodeling. Several clinical studies have reported an improvement in subjects' symptoms following BT. However, how BT affects the airway architectures and inflammatory mediators in the airways has not been yet fully elucidated. METHODS Fourteen subjects with severe asthma were recruited in this study according to the criteria of ATS severe asthma definition. The study subjects undertook bronchial biopsy during the bronchoscopy procedure at baseline and 6 weeks after the initial BT treatment. The obtained samples were stained with antibodies for α-smooth muscle actin (α-SMA); protein gene product (PGP) 9.5, a specific nerve marker; von Willebrand factor (vWF), a marker for blood vessels; interleukin-17A (IL-17A) and transforming growth factor-β1 (TGF-β1). RESULTS The expression of α-SMA and PGP9.5 were significantly reduced post-BT. There was no significant difference in the number of blood vessels between baseline and post-BT. In addition, BT did not affect the production of IL-17A and TGF-β1 in the airways. The changes in the expression of α-SMA and PGP9.5 had no significant correlation with the improvement of pulmonary function. CONCLUSION and Clinical Relevance: This study suggests that BT reduces airway smooth muscle mass and the airway innervation without affecting vasculature and the production of inflammatory mediators in the airways of subjects with severe asthma.
Collapse
Affiliation(s)
- Tomohiro Ichikawa
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada; Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alice Panariti
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Severine Audusseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrea Karen Mogas
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Ronald Olivenstein
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Jamila Chakir
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
| | - Michel Laviolette
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
| | - Zoulfia Allakhverdi
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Pan S, Conaway S, Deshpande DA. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch Biochem Biophys 2019; 663:109-119. [PMID: 30629957 DOI: 10.1016/j.abb.2019.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria are important for airway smooth muscle physiology due to their diverse yet interconnected roles in calcium handling, redox regulation, and cellular bioenergetics. Increasing evidence indicates that mitochondria dysfunction is intimately associated with airway diseases such as asthma, IPF and COPD. In these pathological conditions, increased mitochondrial ROS, altered bioenergetics profiles, and calcium mishandling contribute collectively to changes in cellular signaling, gene expression, and ultimately changes in airway smooth muscle contractile/proliferative properties. Therefore, understanding the basic features of airway smooth muscle mitochondria and their functional contribution to airway biology and pathology are key to developing novel therapeutics for airway diseases. This review summarizes the recent findings of airway smooth muscle mitochondria focusing on calcium homeostasis and redox regulation, two key determinants of physiological and pathological functions of airway smooth muscle.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
37
|
Jia M, Zhang Y, Zhang H, Qin Q, Xu CB. Cigarette Smoke Particles-Induced Airway Hyperreactivity in Vivo and in Vitro. Biol Pharm Bull 2019; 42:703-711. [PMID: 31061312 DOI: 10.1248/bpb.b18-00736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cigarette smoke is a well-known strong risk factor for inducing airway hyperreactivity (AHR), but the underlying molecular mechanisms are not fully understood. In the present study, mouse in-vivo and in-vitro models were used to study effects of dimethyl sulfoxide (DMSO)-extracted cigarette smoke particles (DSP) on the airway, and to explore the underlying molecular mechanisms that are involved in DSP-induced AHR. In mouse in-vivo model, DSP (0.75, 1.5 or 3 µL/mL) was administered intranasally daily for 7 d. At the end of this period, lung functions were measured with flexiVent™. The results showed that the mice exhibited AHR in a dose-dependent manner following methacholine inhalation in vivo. In mouse in-vitro organ culture model, exposure of mouse tracheal segments to DSP (0.1 µL/mL) with or without the following pharmacological inhibitors: specific c-Jun-N-terminal kinase (JNK) inhibitor SP600125 (10 µM) or the anti-inflammatory drug dexamethasone (1 µM). DSP-induced bradykinin receptor-mediated airway contraction with increased mRNA and protein expressions for bradykinin B1 and B2 receptors could be significantly reduced by SP600125 or dexamethasone. In conclusion, the present study demonstrates that DSP could induce AHR in vivo and in vitro. In addition to this, the upregulation of bradykinin receptors in airway is most likely one of the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Min Jia
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
- Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University
| | - Yaping Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
| | - Han Zhang
- College of Pharmacy, Xi'an Medical University
| | - Qiaohong Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University
| |
Collapse
|
38
|
Long non-coding RNA TCF7 contributes to the growth and migration of airway smooth muscle cells in asthma through targeting TIMMDC1/Akt axis. Biochem Biophys Res Commun 2018; 508:749-755. [PMID: 30528236 DOI: 10.1016/j.bbrc.2018.11.187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been revealed to participate in cellular biological processes in multiple diseases, including asthma. Nevertheless, the role of lncRNA TCF7 (lncTCF7) in airway smooth muscle cells (ASMCs) is still covered. METHODS The expression of lncTCF7 and TIMMDC1 in ASMCs from 12 asthma patients and 12 healthy controls were detected using qRT-PCR. Then MTT assay, EdU assay and transwell assay were conducted respectively to assess the impact of lncTCF7 on ASMCs viability, proliferation and migration. Besides, western blotting was performed to determine the protein levels of TIMMDC1 and AKT/p-AKT. RESULTS We discovered that lncTCF7 and TIMMDC1 were upregulated in asthma groups and lncTCF7 improved ASMCs viability/proliferation and migration. In addition, lncTCF7 regulated TIMMDC1 expression indeed and PDGF-BB treated ASMCs exhibited elevated levels of lncTCF7 and TIMMDC1. Moreover, lncTCF7 suppression diminished both the mRNA and protein levels of TIMMDC1 and markedly reduced p-AKT level which could be enhanced under TIMMDC1 overexpression. Finally, both TIMMDC1 overexpression and AKT activator could restored the inhibitory impacts of lncTCF7 silence on PDGF-BB treated ASMCs. CONCLUSION Our study uncovered that lncTCF7 facilitated human ASMCs growth and migration via targeting TIMMDC1 thus activating AKT signaling, providing a novel possible target for asthma therapy.
Collapse
|
39
|
Lin J, Yang D, Huang M, Zhang Y, Chen P, Cai S, Liu C, Wu C, Yin K, Wang C, Zhou X, Su N. Chinese expert consensus on diagnosis and management of severe asthma. J Thorac Dis 2018; 10:7020-7044. [PMID: 30746249 PMCID: PMC6344700 DOI: 10.21037/jtd.2018.11.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Jiangtao Lin
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong Yang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mao Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongming Zhang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Chen
- Department of Respiratory Medicine, General Hospital of Shenyang Military Region, Shenyang 110015, China
| | - Shaoxi Cai
- Department of Respiratory Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Chuntao Liu
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Changgui Wu
- Department of Respiratory Medicine, Xijing Hospital of Fourth Military Medical University, Xi’an 710032, China
| | - Kaisheng Yin
- Department of Respiratory Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Changzheng Wang
- Department of Respiratory Medicine, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, China
| | - Xin Zhou
- Department of Respiratory Medicine, First People’s Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Nan Su
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
40
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
41
|
Eguíluz-Gracia I, Malmstrom K, Dheyauldeen SA, Lohi J, Sajantila A, Aaløkken R, Sundaram AYM, Gilfillan GD, Makela M, Baekkevold ES, Jahnsen FL. Monocytes accumulate in the airways of children with fatal asthma. Clin Exp Allergy 2018; 48:1631-1639. [PMID: 30184280 DOI: 10.1111/cea.13265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. OBJECTIVE To investigate whether monocytes are recruited to the lungs in paediatric asthma. METHODS Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. RESULTS Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. CONCLUSIONS AND CLINICAL RELEVANCE Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.
Collapse
Affiliation(s)
- Ibon Eguíluz-Gracia
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Kristiina Malmstrom
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Sinan Ahmed Dheyauldeen
- Department of Otorhinolaryngology, Head and Neck Surgery, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Jouko Lohi
- Department of Pathology, Helsinki University Central Hospital, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Ragnhild Aaløkken
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mika Makela
- Department of Allergy, Helsinki University Central Hospital, Helsinki, Finland
| | - Espen S Baekkevold
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci 2018; 212:93-101. [PMID: 30189218 DOI: 10.1016/j.lfs.2018.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/25/2022]
Abstract
AIMS To explore the role of long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in the cell proliferation of airway smooth muscle cells (ASMCs) in asthma. MATERIALS AND METHODS An asthma rat model was established by ovalbumin sensitization and challenge. The expression of GAS5, miR-10a and BDNF mRNA and protein was determined with qRT-PCR and western blot, separately. The targeting relationship between GAS5 and miR-10a was examined with RNA immunoprecipitation and RNA pull-down assay; the interaction between miR-10a and BDNF was evaluated by luciferase reporter assay. Cell Proliferation Assay (MTS) was used for ASMC proliferation detection. Knock-down of GAS5 was performed in asthmatic rats to determine the effects of GAS5 in vivo. KEY FINDINGS Compared with control group, the inspiratory resistance and expiratory resistance were increased in asthma group; and the expression of GAS5, miR-10a and BDNF was higher, lower and higher, respectively. The expression of GAS5 and miR-10a was elevated and repressed, respectively, by platelet-derived growth factor-BB (PDGF-BB). GAS5 functioned as a bait of miR-10a. GAS5 regulates BDNF expression through miR-10a. PDGF-BB promotes the cell proliferation of ASMCs through miR-10a/BDNF. Knock-down of GAS5 significantly decreased airway hyperresponsiveness in asthmatic rats. SIGNIFICANCE The lncRNA GAS5/miR-10a/BDNF regulatory axis played an important role in promoting ASMCs proliferation, thus contributing to asthma.
Collapse
|
43
|
Lee A, Leon Hsu HH, Mathilda Chiu YH, Bose S, Rosa MJ, Kloog I, Wilson A, Schwartz J, Cohen S, Coull BA, Wright RO, Wright RJ. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J Allergy Clin Immunol 2018; 141:1880-1886. [PMID: 28801196 PMCID: PMC5803480 DOI: 10.1016/j.jaci.2017.07.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. OBJECTIVE We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM2.5) and maternal stress and childhood asthma (n = 736). METHODS Daily PM2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE < 3). We used Bayesian distributed lag interaction models to identify sensitive windows for prenatal PM2.5 exposure on children's asthma by age 6 years, and determine effect modification by maternal stress and child sex. RESULTS Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m3] increase in prenatal PM2.5 level) during which children concomitantly exposed to prenatal PM2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM2.5). CONCLUSIONS Prenatal PM2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress.
Collapse
Affiliation(s)
- Alison Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonali Bose
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Itai Kloog
- Faculty of Humanities and Social Sciences, Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, Colo
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pa
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
44
|
Ma H, Li Y, Tang L, Peng X, Jiang L, Wan J, Suo F, Zhang G, Luo Z. Impact of childhood wheezing on lung function in adulthood: A meta-analysis. PLoS One 2018; 13:e0192390. [PMID: 29394280 PMCID: PMC5796725 DOI: 10.1371/journal.pone.0192390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A growing body of evidence shows that childhood wheezing may lead to recurrent or persistent symptoms in adulthood, such that persistent wheezing associated with lung function deficits often have their roots in the first few years of life. OBJECTIVES We summarized information from several prospective cohort studies following children with or without wheezing into adulthood, to estimate the effect of childhood wheezing on adulthood lung function. METHODS Medical literatures were searched in the Medline, PubMed, ScienceDirect, Web of Science and Embase databases up to October 31, 2016. The adulthood lung function was selected as primary outcome, and chronic obstructive pulmonary disease (COPD) prevalence was selected as secondary outcome. The meta-analysis was performed with the Stata Version 14.0. A random-effects model was applied to estimate standardized mean difference (SMD) of lung function, and relative risk (RR) of COPD. RESULTS Six articles enrolling 1141 and 1005 children with and without wheezing, respectively. Meta-analysis showed that childhood wheezing decreased adulthood lung function as compared with no-wheezing subjects (SMD = -0.365, 95% confidence interval (CI): -0.569~-0.161, P = 0.000). Subgroup analyses indicated that childhood atopic wheezing reduced adulthood FEV1/FVC and FEV1%pred when compared with no-wheezing subjects. In addition, childhood atopic wheezing was significantly associated with COPD prevalence (RR = 5.307, 95% CI:1.033~27.271, P = 0.046). CONCLUSIONS Our meta-analysis suggests that childhood wheezing may induce ongoing declined lung function that extends into adult life, as well as an increased risk of COPD prevalence when accompanied with atopy.
Collapse
Affiliation(s)
- Huan Ma
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lin Tang
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xin Peng
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lili Jiang
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jiao Wan
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fengtao Suo
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Guangli Zhang
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Zhengxiu Luo
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| |
Collapse
|
45
|
A shift in the IL-6/STAT3 signalling pathway imbalance towards the SHP2 pathway in severe asthma results in reduced proliferation process. Cell Signal 2017; 43:47-54. [PMID: 29242170 DOI: 10.1016/j.cellsig.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 12/07/2022]
Abstract
BACKGROUND Bronchial fibroblasts are the main structural cells responsible for extracellular matrix production and turnover in lung tissue. They play a key role in airway remodelling in asthma through different cytokines including interleukin (IL-6). OBJECTIVE To decipher IL-6 signalling in bronchial fibroblasts obtained from severe eosinophilic asthmatics compared to mild asthmatics and healthy controls. METHODS Human bronchial fibroblasts were isolated from bronchial biopsies of mild and severe eosinophilic asthmatics and non-atopic healthy controls. IL-6 was assessed by qRT-PCR and ELISA. Phosphorylated STAT3, SHP2 and p38/MAPK were evaluated by Western blot. Chemical inhibitors for SHP2 and p38 were used. Fibroblast proliferation was evaluated by BrdU incorporation test. RESULTS IL-6 release was significantly increased in fibroblasts from mild and severe asthmatics compared to healthy controls. Fibroblasts from severe asthmatics showed a reduced STAT3 activation compared to mild asthmatics and healthy controls. Constitutive activation of phosphatase SHP2 was found to negatively regulate IL-6 induced STAT3 phosphorylation in fibroblasts from severe asthmatics. This effect was accompanied by a decrease in fibroblast proliferation rate due to the activated p38/mitogen-activated protein kinase. SHP2 and p38/MAPK specific inhibitors (PHPS1 and SB212190) significantly induce a restoration of STAT3 phosphorylation, IL-6 target gene expression and cell proliferation. CONCLUSION These data show dysregulated IL-6 signalling in bronchial fibroblasts derived from severe eosinophilic asthmatic subjects involving the protein tyrosine phosphatase SHP2 and p38MAPK. Collectively, our data provides new insights into the mechanisms by which bronchial fibroblasts regulate airway remodelling in severe asthma.
Collapse
|
46
|
Farahnak S, McGovern TK, Kim R, O'Sullivan M, Chen B, Lee M, Yoshie H, Wang A, Jang J, Al Heialy S, Lauzon AM, Martin JG. Basic Fibroblast Growth Factor 2 Is a Determinant of CD4 T Cell-Airway Smooth Muscle Cell Communication through Membrane Conduits. THE JOURNAL OF IMMUNOLOGY 2017; 199:3086-3093. [PMID: 28924004 DOI: 10.4049/jimmunol.1700164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/24/2017] [Indexed: 01/23/2023]
Abstract
Activated CD4 T cells connect to airway smooth muscle cells (ASMCs) in vitro via lymphocyte-derived membrane conduits (LMCs) structurally similar to membrane nanotubes with unknown intercellular signals triggering their formation. We examined the structure and function of CD4 T cell-derived LMCs, and we established a role for ASMC-derived basic fibroblast growth factor 2 (FGF2b) and FGF receptor (FGFR)1 in LMC formation. Blocking FGF2b's synthesis and FGFR1 function reduced LMC formation. Mitochondrial flux from ASMCs to T cells was partially FGF2b and FGFR1 dependent. LMC formation by CD4 T cells and mitochondrial transfer from ASMCs was increased in the presence of asthmatic ASMCs that expressed more mRNA for FGF2b compared with normal ASMCs. These observations identify ASMC-derived FGF2b as a factor needed for LMC formation by CD4 T cells, affecting intercellular communication.
Collapse
Affiliation(s)
- Soroor Farahnak
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Toby K McGovern
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Rachael Kim
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Michael O'Sullivan
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Brian Chen
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Minhyoung Lee
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Haruka Yoshie
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Anna Wang
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Joyce Jang
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Saba Al Heialy
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and .,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
47
|
Langton D, Sha J, Ing A, Fielding D, Thien F, Plummer V. Bronchial thermoplasty: activations predict response. Respir Res 2017; 18:134. [PMID: 28676053 PMCID: PMC5496290 DOI: 10.1186/s12931-017-0617-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/29/2017] [Indexed: 11/15/2022] Open
Abstract
Background Bronchial thermoplasty (BT) is an emerging bronchoscopic intervention for the treatment of severe asthma. The predictive factors for clinical response to BT are unknown. We examined the relationship between the number of radiofrequency activations applied and the treatment response observed. Methods Data were collected from 24 consecutive cases treated at three Australian centres from June 2014 to March 2016. The baseline characteristics were collated along with the activations delivered. The primary response measure was change in the Asthma Control Questionnaire-5 (ACQ-5) score measured at 6 months post BT. The relationship between change in outcome parameters and the number of activations delivered was explored. Results All patients met the ERS/ATS definition for severe asthma. At 6 months post treatment, mean ACQ-5 improved from 3.3 ± 1.1 to 1.5 ± 1.1, p < 0.001. The minimal clinically significant improvement in ACQ-5 of ≥0.5 was observed in 21 out of 24 patients. The only significant variable that differed between the 21 responders and the three non-responders was the number of activations delivered, with 139 ± 11 activations in the non-responders, compared to 221 ± 45 activations in the responders (p < 0.01). A significant inverse correlation was found between change in ACQ-5 score and the number of activations, r = −0.43 (p < 0.05). Conclusions The number of activations delivered during BT has a role in determining clinical response to treatment.
Collapse
Affiliation(s)
- David Langton
- Department of Thoracic Medicine, Frankston Hospital, 2 Hastings Road, Frankston, VIC, 3199, Australia. .,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Joy Sha
- Department of Thoracic Medicine, Frankston Hospital, 2 Hastings Road, Frankston, VIC, 3199, Australia
| | - Alvin Ing
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - David Fielding
- Department of Thoracic Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Francis Thien
- Eastern Health Clinical School, Box Hill Hospital and Monash University, Melbourne, VIC, Australia
| | - Virginia Plummer
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Human eosinophils constitutively express a unique serine protease, PRSS33. Allergol Int 2017; 66:463-471. [PMID: 28216055 DOI: 10.1016/j.alit.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Eosinophils play important roles in asthma, especially airway remodeling, by producing various granule proteins, chemical mediators, cytokines, chemokines and proteases. However, protease production by eosinophils is not fully understood. In the present study, we investigated the production of eosinophil-specific proteases/proteinases by transcriptome analysis. METHODS Human eosinophils and other cells were purified from peripheral blood by density gradient sedimentation and negative/positive selections using immunomagnetic beads. Protease/proteinase expression in eosinophils and release into the supernatant were evaluated by microarray analysis, qPCR, ELISA, flow cytometry and immunofluorescence staining before and after stimulation with eosinophil-activating cytokines and secretagogues. mRNAs for extracellular matrix proteins in human normal fibroblasts were measured by qPCR after exposure to recombinant protease serine 33 (PRSS33) protein (rPRSS33), created with a baculovirus system. RESULTS Human eosinophils expressed relatively high levels of mRNA for metalloproteinase 25 (MMP25), a disintegrin and metalloprotease 8 (ADAM8), ADAM10, ADAM19 and PRSS33. Expression of PRSS33 was the highest and eosinophil-specific. PRSS33 mRNA expression was not affected by eosinophil-activating cytokines. Immunofluorescence staining showed that PRSS33 was co-localized with an eosinophil granule protein. PRSS33 was not detected in the culture supernatant of eosinophils even after stimulation with secretagogues, but its cell surface expression was increased. rPRSS33 stimulation of human fibroblasts increased expression of collagen and fibronectin mRNAs, at least in part via protease-activated receptor-2 activation. CONCLUSIONS Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s) in airway remodeling.
Collapse
|
49
|
Webley WC, Hahn DL. Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respir Res 2017; 18:98. [PMID: 28526018 PMCID: PMC5437656 DOI: 10.1186/s12931-017-0584-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Asthma is a chronic respiratory disease characterized by reversible airway obstruction and airway hyperresponsiveness to non-specific bronchoconstriction agonists as the primary underlying pathophysiology. The worldwide incidence of asthma has increased dramatically in the last 40 years. According to World Health Organization (WHO) estimates, over 300 million children and adults worldwide currently suffer from this incurable disease and 255,000 die from the disease each year. It is now well accepted that asthma is a heterogeneous syndrome and many clinical subtypes have been described. Viral infections such as respiratory syncytial virus (RSV) and human rhinovirus (hRV) have been implicated in asthma exacerbation in children because of their ability to cause severe airway inflammation and wheezing. Infections with atypical bacteria also appear to play a role in the induction and exacerbation of asthma in both children and adults. Recent studies confirm the existence of an infectious asthma etiology mediated by Chlamydia pneumoniae (CP) and possibly by other viral, bacterial and fungal microbes. It is also likely that early-life infections with microbes such as CP could lead to alterations in the lung microbiome that significantly affect asthma risk and treatment outcomes. These infectious microbes may exacerbate the symptoms of established chronic asthma and may even contribute to the initial development of the clinical onset of the disease. It is now becoming more widely accepted that patterns of airway inflammation differ based on the trigger responsible for asthma initiation and exacerbation. Therefore, a better understanding of asthma subtypes is now being explored more aggressively, not only to decipher pathophysiologic mechanisms but also to select treatment and guide prognoses. This review will explore infection-mediated asthma with special emphasis on the protean manifestations of CP lung infection, clinical characteristics of infection-mediated asthma, mechanisms involved and antibiotic treatment outcomes.
Collapse
Affiliation(s)
- Wilmore C. Webley
- University of Massachusetts Amherst, 240 Thatcher Rd. Life Science Laboratory Building N229, Amherst, MA 01003 USA
| | - David L. Hahn
- University of Wisconsin School of Medicine and Public Health, 1100 Delaplaine Court, Madison, WI 53715 USA
| |
Collapse
|
50
|
Lanza GM, Jenkins J, Schmieder AH, Moldobaeva A, Cui G, Zhang H, Yang X, Zhong Q, Keupp J, Sergin I, Paranandi KS, Eldridge L, Allen JS, Williams T, Scott MJ, Razani B, Wagner EM. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat. Am J Cancer Res 2017; 7:377-389. [PMID: 28042341 PMCID: PMC5197071 DOI: 10.7150/thno.16627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3+ CD45+ leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a clinically relevant rodent model.
Collapse
|