1
|
Aikawa S, Matsuo M, Akaeda S, Sugimoto Y, Arita M, Isobe Y, Sugiura Y, Taira S, Maeda R, Shimizu-Hirota R, Takeda N, Hiratsuka D, He X, Ishizawa C, Iida R, Fukui Y, Hiraoka T, Harada M, Wada-Hiraike O, Osuga Y, Hirota Y. Spatiotemporally distinct roles of cyclooxygenase-1 and cyclooxygenase-2 at fetomaternal interface in mice. JCI Insight 2024; 9:e181865. [PMID: 39377223 PMCID: PMC11466189 DOI: 10.1172/jci.insight.181865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
Embryo implantation is crucial for ensuring a successful pregnancy outcome and subsequent child health. The intrauterine environment during the peri-implantation period shows drastic changes in gene expression and cellular metabolism in response to hormonal stimuli and reciprocal communication with embryos. Here, we performed spatial transcriptomic analysis to elucidate the mechanisms underlying embryo implantation. Transcriptome data revealed that lipid metabolism pathways, especially arachidonic acid-related (AA-related) ones, were enriched in the embryo-receptive luminal epithelia. Cyclooxygenases (COXs), rate-limiting enzymes involved in prostaglandin production by AA, were spatiotemporally regulated in the vicinity of embryos during implantation, but the role of each COX isozyme in the uterus for successful pregnancy was unclear. We established uterine-specific COX2-knockout (uKO) and COX1/uterine COX2-double-KO (COX1/COX2-DKO) mice. COX2 uKO caused deferred implantation with failed trophoblast invasion, resulting in subfertility with reduced pregnancy rates and litter sizes. COX1/COX2 DKO induced complete infertility, owing to abrogated embryo attachment. These results demonstrate that both isozymes have distinct roles during embryo implantation. Spatial transcriptome and lipidome analyses revealed unique profiles of prostaglandin synthesis by each COX isozyme and spatiotemporal expression patterns of downstream receptors throughout the endometrium. Our findings reveal previously unappreciated roles of COXs at the fetomaternal interface to establish early pregnancy.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Yosuke Isobe
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Yuki Sugiura
- Division of Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Rae Maeda
- Division of Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiki Hiratsuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xueting He
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Ishizawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Iida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ochiai T, Honsawa T, Yamaguchi K, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Prostacyclin synthase deficiency exacerbates systemic inflammatory responses in lipopolysaccharide-induced septic shock in mice. Inflamm Res 2024; 73:1349-1358. [PMID: 38832966 DOI: 10.1007/s00011-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES Sepsis is a systemic inflammatory disorder characterized by life-threateningorgan dysfunction resulting from a dysregulated host response to infection. Prostacyclin (PGI2) is a bioactive lipid produced by PGI synthase (PGIS) and is known to play important roles in inflammatory reactions as well as cardiovascular regulation. However, little is known about the roles of PGIS and PGI2 in systemic inflammatory responses such as septic shock. METHODOLOGY Systemic inflammation was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS) in wild type (WT) or PGIS knockout (KO) mice. Selexipag, a selective PGI2 receptor (IP) agonist, was administered 2 h before LPS injection and again given every 12 h for 3 days. RESULTS Intraperitoneal injection of LPS induced diarrhea, shivering and hypothermia. These symptoms were more severe in PGIS KO mice than in WT micqe. The expression of Tnf and Il6 genes was notably increased in PGIS KO mice. In contrast, over 95% of WT mice survived 72 h after the administration of LPS, whereas all of the PGIS KO mice had succumbed by that time. The mortality rate of LPS-administrated PGIS KO mice was improved by selexipag administration. CONCLUSION Our study suggests that PGIS-derived PGI2 negatively regulates LPS-induced symptoms via the IP receptor. PGIS-derived PGI2-IP signaling axis may be a new drug target for systemic inflammation in septic shock.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Keishi Yamaguchi
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | | | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
3
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
4
|
Bae IA, Ha JW, Boo YC. Chlorogenic Acid, a Component of Oenanthe javanica (Blume) DC., Attenuates Oxidative Damage and Prostaglandin E2 Production Due to Particulate Matter 10 in HaCaT Keratinocytes. COSMETICS 2023. [DOI: 10.3390/cosmetics10020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Oenanthe javanica (OJ) is a perennial herb that grows wildly or is cultivated in Asia, and it is used as food or in traditional medicine. The antioxidant and anti-inflammatory effects of OJ-derived materials have been extensively explored previously, but their effects on the cytotoxicity of air pollution are currently unknown. Therefore, the present study aimed to evaluate the effect of the hot water extract of OJ on atmospheric particulate matter 10 (PM10)-induced cytotoxicity and oxidative damage in human HaCaT keratinocytes, and to identify its active ingredient and mechanism of action. When the hot water extract of OJ was divided into methylene chloride, ethyl acetate (EA), n-butanol (BA), and water fractions, caffeic acid was enriched in the EA fraction and chlorogenic acid was enriched in the BA fraction. PM10 increased reactive oxygen species (ROS) production, lipid peroxidation, protein carbonylation, and inflammatory prostaglandin (PG) E2 production in cells. The BA fraction reduced the PM10-induced ROS production in cells more effectively than the total extract and other solvent fractions. Chlorogenic acid was more effective in reducing ROS levels than caffeic acid and N-acetyl cysteine (NAC). Chlorogenic acid attenuated the increase in lipid peroxidation and the PG E2 production of cells due to PM10 exposure. Of the genes involved in PG E2 production, phospholipase A2 group IVA (PLA2G4A), Prostaglandin-endoperoxide synthase 1 (PTGS1), and 2 (PTGS2) were transcriptionally up-regulated by PM10, whereas phospholipase A2 group IIA (PLA2G2A) was down-regulated and prostaglandin E synthetase 1 (PTGES1) and 2 (PTGES2) were a little altered. The PM10-induced increase in PLA2G4A mRNA was alleviated by chlorogenic acid and NAC. Accordingly, PM10 increased the expression levels of cytosolic phospholipase A2 (cPLA2) protein and its phosphorylated form, which were attenuated by chlorogenic acid and NAC. Thus, chlorogenic acid may attenuate the PM10-induced PG E2 production through the suppression of PLA2G4A mRNA and cPLA2 protein expressions. This study suggests that chlorogenic acid contained in OJ extract may help alleviate the oxidative damage to and inflammatory responses of the skin cells due to exposure to air pollutants.
Collapse
Affiliation(s)
- In Ah Bae
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Ochiai T, Honsawa T, Sasaki Y, Hara S. Prostacyclin Synthase as an Ambivalent Regulator of Inflammatory Reactions. Biol Pharm Bull 2022; 45:979-984. [DOI: 10.1248/bpb.b22-00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| |
Collapse
|
6
|
Zhang YY, Yao YD, Chen F, Guo X, Kang JL, Huang YF, He F, Dong Y, Xie Y, Wu P, Zhou H. (9S,13R)-12-oxo-phytodienoic acid attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via NF-κB and Nrf2/HO-1 pathways. Pharmacol Res 2022; 182:106310. [PMID: 35714824 DOI: 10.1016/j.phrs.2022.106310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) relieve inflammation by suppressing prostaglandin E2/cyclooxygenase 2 (PGE2/COX-2) with cardiovascular and gastrointestinal bleeding risk. Theoretically, suppressing PGE2 through inhibiting the terminal synthase microsomal prostaglandin E2 synthase-1 (mPGES-1) instead of upstream COX-2 is ideal for inflammation. Here, (9S,13R)-12-oxo-phytodienoic acid (AA-24) extracted from Artemisia anomala was first screened as an anti-inflammatory candidate and decreased inducible nitric oxide synthase (iNOS), nitric oxide (NO), mPGES-1, and PGE2 without affecting COX-1/2, thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). Besides, AA-24 suppressed the differentiation of M0 macrophages to M1 phenotype but enhanced it to M2 phenotype, blocked the activation of NF-κB pathway, and increased the activation of Nrf2 and heme oxygenase-1 (HO-1). Moreover, AA-24 selectively inhibited mPGES-1 and reduced inflamed paw edema in carrageenan-induced mice. In conclusion, AA-24 attenuates inflammation by inhibiting mPGES-1 and modulating macrophage polarization via the NF-κB and Nrf2/HO-1 pathways and could be a promising candidate for developing anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Fang Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Fan He
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| | - Ying Xie
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510006, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China.
| |
Collapse
|
7
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
8
|
Ochiai T, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Absence of prostacyclin greatly relieves cyclophosphamide-induced cystitis and bladder pain in mice. FASEB J 2021; 35:e21952. [PMID: 34555210 DOI: 10.1096/fj.202101025r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023]
Abstract
Cyclophosphamide (CP) has been widely used in the treatment of various malignancies and autoimmune diseases, but acrolein, a byproduct of CP, causes severe hemorrhagic cystitis as the major side effect of CP. On the other hand, a large amount of prostacyclin (PGI2 ) is produced in bladder tissues, and PGI2 has been shown to play a critical role in bladder homeostasis. PGI2 is biosynthesized from prostaglandin (PG) H2 , the common precursor of PGs, by PGI2 synthase (PTGIS) and is known to also be involved in inflammatory responses. However, little is known about the roles of PTGIS-derived PGI2 in bladder inflammation including CP-induced hemorrhagic cystitis. Using both genetic and pharmacological approaches, we here revealed that PTGIS-derived PGI2 -IP (PGI2 receptor) signaling exacerbated CP-induced bladder inflammatory reactions. Ptgis deficiency attenuated CP-induced vascular permeability and chemokine-mediated neutrophil migration into bladder tissues and then suppressed hemorrhagic cystitis. Treatment with RO1138452, an IP selective antagonist, also suppressed CP-induced cystitis. We further found that cystitis-related nociceptive behavior was also relieved in both Ptgis-/- mice and RO1138452-treated mice. Our findings may provide new drug targets for bladder inflammation and inflammatory pain in CP-induced hemorrhagic cystitis.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Chieko Yokoyama
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
9
|
McDougal CE, Morrow ZT, Christopher T, Kim S, Carter D, Stevenson DM, Amador-Noguez D, Miller MJ, Sauer JD. Phagocytes produce prostaglandin E2 in response to cytosolic Listeria monocytogenes. PLoS Pathog 2021; 17:e1009493. [PMID: 34555127 PMCID: PMC8491950 DOI: 10.1371/journal.ppat.1009493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is an intracellular bacterium that elicits robust CD8+ T-cell responses. Despite the ongoing development of L. monocytogenes-based platforms as cancer vaccines, our understanding of how L. monocytogenes drives robust CD8+ T-cell responses remains incomplete. One overarching hypothesis is that activation of cytosolic innate pathways is critical for immunity, as strains of L. monocytogenes that are unable to access the cytosol fail to elicit robust CD8+ T-cell responses and in fact inhibit optimal T-cell priming. Counterintuitively, however, activation of known cytosolic pathways, such as the inflammasome and type I IFN, lead to impaired immunity. Conversely, production of prostaglandin E2 (PGE2) downstream of cyclooxygenase-2 (COX-2) is essential for optimal L. monocytogenes T-cell priming. Here, we demonstrate that vacuole-constrained L. monocytogenes elicit reduced PGE2 production compared to wild-type strains in macrophages and dendritic cells ex vivo. In vivo, infection with wild-type L. monocytogenes leads to 10-fold increases in PGE2 production early during infection whereas vacuole-constrained strains fail to induce PGE2 over mock-immunized controls. Mice deficient in COX-2 specifically in Lyz2+ or CD11c+ cells produce less PGE2, suggesting these cell subsets contribute to PGE2 levels in vivo, while depletion of phagocytes with clodronate abolishes PGE2 production completely. Taken together, this work demonstrates that optimal PGE2 production by phagocytes depends on L. monocytogenes access to the cytosol, suggesting that one reason cytosolic access is required to prime CD8+ T-cell responses may be to facilitate production of PGE2.
Collapse
Affiliation(s)
- Courtney E. McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Zachary T. Morrow
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tighe Christopher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Drake Carter
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Schmid T, Brüne B. Prostanoids and Resolution of Inflammation - Beyond the Lipid-Mediator Class Switch. Front Immunol 2021; 12:714042. [PMID: 34322137 PMCID: PMC8312722 DOI: 10.3389/fimmu.2021.714042] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bioactive lipid mediators play a major role in regulating inflammatory processes. Herein, early pro-inflammatory phases are characterized and regulated by prostanoids and leukotrienes, whereas specialized pro-resolving mediators (SPM), including lipoxins, resolvins, protectins, and maresins, dominate during the resolution phase. While pro-inflammatory properties of prostanoids have been studied extensively, their impact on later phases of the inflammatory process has been attributed mainly to their ability to initiate the lipid-mediator class switch towards SPM. Yet, there is accumulating evidence that prostanoids directly contribute to the resolution of inflammation and return to homeostasis. In this mini review, we summarize the current knowledge of the resolution-regulatory properties of prostanoids and discuss potential implications for anti-inflammatory, prostanoid-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
11
|
Budik S, Walter I, Leitner MC, Ertl R, Aurich C. Expression of Enzymes Associated with Prostaglandin Synthesis in Equine Conceptuses. Animals (Basel) 2021; 11:ani11041180. [PMID: 33924239 PMCID: PMC8074782 DOI: 10.3390/ani11041180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The mobile preimplantative phase of equine gestation, taking place between day 9 and 16 after ovulation, is characterized by peristaltic contractions of the uterus caused by secretion of prostaglandins by the spheric equine conceptus. This mobility is necessary for maternal recognition of pregnancy in equids, taking place around day 14 after ovulation. The presented study investigated the spatial and temporal abundance of prostaglandin synthesis enzymes of the equine conceptus, elucidating a basal and an inducible system for prostaglandin E2. Prostaglandin F2α synthesis is restricted to the “periembryonic”pole area and relies on enzymatic conversion of prostaglandin E2. This scenario led to a model able to explain the embryonic forward motion driven by the peristaltic contractions of the uterus. In vitro incubation of primary trophoblast cell cultures with oxytocin showed no influence of this hormone on prostaglandin synthesis. Abstract In the horse, mobility of the conceptus is required for maternal recognition of pregnancy depending on secretion of prostaglandins by the conceptus. The aim of this study was to determine the expression and localization of key enzymes of the different pathways leading to synthesis of prostaglandin E2 and F2α in the equine conceptus during the mobility phase. Enzyme expression was analyzed via quantitative RT-PCR in total RNA samples of equine conceptuses collected on days 10 (n = 5), 12 (n = 12), 14 (n = 5) and 16 (n = 7) from healthy mares. Relative abundance of cyclooxygenase (COX)-2 mRNA was higher (p < 0.05) than of COX-1 irrespective of conceptus age and for phospholipase A2 on day 16 in comparison to all other days (p < 0.01). Abundance of mRNA of cytosolic and microsomal prostaglandin E synthase (PGES) and of carbonyl reductase (CBR) 1 was not influenced by conceptus age. Immunohistochemically, COX-1, COX-2, as well as cytosolic and microsomal PGES were present in both the ectodermal and endodermal layer of the yolk sac wall. CBR-1 was restricted to periembryonic disc area. The localisation of the key enzymes explains the mechanism of embryo mobility. In vitro incubation of primary trophoblast cell cultures with oxytocin had no effect on key enzyme synthesis.
Collapse
Affiliation(s)
- Sven Budik
- Platform for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.-C.L.); (C.A.)
- Correspondence: ; Tel.: +43-125-077-6403
| | - Ingrid Walter
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
- VetCore Facility for Research, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Marie-Christine Leitner
- Platform for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.-C.L.); (C.A.)
| | - Reinhard Ertl
- VetCore Facility for Research, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Christine Aurich
- Platform for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.-C.L.); (C.A.)
| |
Collapse
|
12
|
Sasaki Y, Kuwata H, Akatsu M, Yamakawa Y, Ochiai T, Yoda E, Nakatani Y, Yokoyama C, Hara S. Involvement of prostacyclin synthase in high-fat-diet-induced obesity. Prostaglandins Other Lipid Mediat 2021; 153:106523. [PMID: 33383181 DOI: 10.1016/j.prostaglandins.2020.106523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Prostacyclin (PGI2) synthase (PGIS) functions downstream of inducible cyclooxygenase COX-2 in the PGI2 biosynthetic pathway. Although COX-2 and PGI2 receptor (IP) are known to be involved in adipogenesis and obesity, the involvement of PGIS has not been fully elucidated. In this study, we examined the role of PGIS in adiposity by using PGIS-deficient mice. Although PGIS deficiency did not affect in vitro adipocyte differentiation, when fed a high-fat diet (HFD), PGIS knockout (KO) mice showed reductions in both body weight gain and epididymal fat mass relative to wild-type (WT) mice. PGIS deficiency might reduce HFD-induced obesity by suppressing PGI2 production. We further found that additional gene deletion of microsomal prostaglandin (PG) E synthase-1 (mPGES-1), one of the other PG terminal synthases that also functions downstream of COX-2, emphasized the metabolic phenotypes of PGIS-deficient mice. More marked reduction in obesity and improved insulin resistance were observed in PGIS/mPGES-1 double KO (DKO) mice. Since an additive increase in PGF2α level in epididymal fat was observed in DKO mice, mPGES-1 deficiency might affect adiposity by enhancing the production of PGF2α. Our immunohistochemical analysis further revealed that in adipose tissues, PGIS was expressed in vascular and stromal cells but not in adipocytes. These results suggested that PGI2 produced from PGIS-expressed stromal tissues might enhance HFD-induced obesity by acting on IP expressed in adipocytes. The balance of expressions of PG terminal synthases and the subsequent production of prostanoids might be critical for adiposity.
Collapse
Affiliation(s)
- Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Moe Akatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yuri Yamakawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Chieko Yokoyama
- Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
13
|
Ochiai T, Sasaki Y, Kuwata H, Nakatani Y, Yokoyama C, Hara S. Coordinated action of microsomal prostaglandin E synthase-1 and prostacyclin synthase on contact hypersensitivity. Biochem Biophys Res Commun 2021; 546:124-129. [PMID: 33582554 DOI: 10.1016/j.bbrc.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and prostacyclin (PGI2) synthase (PGIS) are PG terminal synthases that work downstream of cyclooxygenase and synthesize PGE2 and PGI2, respectively. Although the involvement of PG receptors in acquired cutaneous immune responses was recently shown, the roles of these PG terminal synthases remain unclear. To identify the pathophysiological roles of mPGES-1 and PGIS in cutaneous immune systems, we applied contact hypersensitivity (CHS) to mPGES-1 and PGIS knockout (KO) mice as a model of acquired immune responses. Mice were treated with 1-fluoro-2,4-dinitrobenzene (DNFB) and evaluated for ear thickness and histopathological features. The results showed that the severity of ear swelling in both gene-deficient mice was much lower than that in wild-type (WT) mice. Histological examination of DNFB-treated ears showed that inflammatory cell infiltration and edema in the dermis were also less apparent in both genotypic mice. LC-MS analysis further showed that the increment in PGE2 levels in DNFB-treated ear tissue was reduced in mPGES-1 KO mice, and that 6-keto PGF1α (a stable metabolite of PGI2) was not detected in PGIS KO mice. Furthermore, we made bone marrow (BM) chimera and found that transplantation of WT mouse-derived BM cells restored the impaired CHS response in mPGES-1 KO mice but did not restore the response in PGIS KO mice. These results indicated that mPGES-1 in BM-derived cells and PGIS in non-BM-derived cells might play critical roles in DNFB-induced CHS. mPGES-1-derived PGE2 and PGIS-derived PGI2 might coordinately promote acquired cutaneous immune responses.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | | | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan.
| |
Collapse
|
14
|
Mahesh G, Anil Kumar K, Reddanna P. Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE 2? J Inflamm Res 2021; 14:253-263. [PMID: 33568930 PMCID: PMC7868279 DOI: 10.2147/jir.s278514] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8Uufep6ipBQ
Collapse
Affiliation(s)
- Gopa Mahesh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kotha Anil Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
15
|
Rappl P, Rösser S, Maul P, Bauer R, Huard A, Schreiber Y, Thomas D, Geisslinger G, Jakobsson PJ, Weigert A, Brüne B, Schmid T. Inhibition of mPGES-1 attenuates efficient resolution of acute inflammation by enhancing CX3CL1 expression. Cell Death Dis 2021; 12:135. [PMID: 33542207 PMCID: PMC7862376 DOI: 10.1038/s41419-021-03423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Despite the progress to understand inflammatory reactions, mechanisms causing their resolution remain poorly understood. Prostanoids, especially prostaglandin E2 (PGE2), are well-characterized mediators of inflammation. PGE2 is produced in an inducible manner in macrophages (Mϕ) by microsomal PGE2-synthase-1 (mPGES-1), with the notion that it also conveys pro-resolving properties. We aimed to characterize the role of mPGES-1 during resolution of acute, zymosan-induced peritonitis. Experimentally, we applied the mPGES-1 inhibitor compound III (CIII) once the inflammatory response was established and confirmed its potent PGE2-blocking efficacy. mPGES-1 inhibition resulted in an incomplete removal of neutrophils and a concomitant increase in monocytes and Mϕ during the resolution process. The mRNA-seq analysis identified enhanced C-X3-C motif receptor 1 (CX3CR1) expression in resident and infiltrating Mϕ upon mPGES-1 inhibition. Besides elevated Cx3cr1 expression, its ligand CX3CL1 was enriched in the peritoneal lavage of the mice, produced by epithelial cells upon mPGES-1 inhibition. CX3CL1 not only increased adhesion and survival of Mϕ but its neutralization also completely reversed elevated inflammatory cell numbers, thereby normalizing the cellular, peritoneal composition during resolution. Our data suggest that mPGES-1-derived PGE2 contributes to the resolution of inflammation by preventing CX3CL1-mediated retention of activated myeloid cells at sites of injury.
Collapse
Affiliation(s)
- Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Patrick Maul
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Per-Johan Jakobsson
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
16
|
Krughoff K, Anderson FL, Palisoul S, Young AL, R Pettus J, L Moodie K, Ogomo C, S Tau S, A Moses R, Havrda MC, R Chavez D. The effect of botulinum toxin on ureteral inflammation. World J Urol 2020; 39:2197-2204. [PMID: 32696129 DOI: 10.1007/s00345-020-03365-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The impact of onabotulinum toxin type A (BoNT-A) on bladder afferent nerve pathways and chemosensory functions is an active area of investigation. There may be a role for BoNT-A in disorders of the ureter; however, no histologic studies have assessed the effects of BoNT-A on ureteral tissue. Our objective was to develop an animal model of ureteral inflammation and determine the impact of ureteral BoNT-A instillation on known mechanisms of inflammation. METHODS The safety and feasibility of a novel animal model of ureteral inflammation was assessed. Through open cystotomy, the effect of ureteral BoNT-A instillation on inflammation was determined through H&E, masson's trichrome, Ki-67 stain, and prostaglandin E (PGE) synthase expression, a known marker of pain and inflammation in ureteral tissue. Urothelial microstructure was assessed using electron microscopy and standard histologic techniques. RESULTS All experiments were carried to completion, and no systemic signs of botulinum toxicity were seen. BoNT-A exposure was associated with a decrease in PGE synthase expression in a dose-dependent fashion. BoNT-A exposure was not found to impact collagen deposition or cell proliferation. Disruption of tight junctions between urothelial cells was observed under conditions of inflammation. CONCLUSION We describe the feasibility of a novel in vivo model of ureteral inflammation and report the first histologic study of the effects of BoNT-A on the ureter. Preliminary findings show that BoNT-A attenuates ureteral PGE synthase expression under conditions of inflammation. The application of BoNT-A may provide anti-inflammatory and analgesic effects in the context of ureteral disorders.
Collapse
Affiliation(s)
- Kevin Krughoff
- Department of Urology, Dartmouth-Hitchcock, 1 Medical Center Dr, Lebanon, NH, USA.
| | - Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine At Dartmouth and Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
| | - Scott Palisoul
- Department of Pathology, Dartmouth-Hitchcock, 1 Medical Center Dr, Lebanon, NH, USA
| | - Alison L Young
- Department of Molecular and Systems Biology, Geisel School of Medicine At Dartmouth and Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jason R Pettus
- Department of Pathology, Dartmouth-Hitchcock, 1 Medical Center Dr, Lebanon, NH, USA
| | - Karen L Moodie
- Center for Comparative Medicine and Research, Dartmouth College, Hanover, NH, USA
| | - Christopher Ogomo
- Electron Microscopy, Dartmouth College, 5 Allen St, Hanover, NH, USA
| | - Steven S Tau
- Department of Molecular and Systems Biology, Geisel School of Medicine At Dartmouth and Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
| | - Rachel A Moses
- Department of Urology, Dartmouth-Hitchcock, 1 Medical Center Dr, Lebanon, NH, USA
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine At Dartmouth and Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
| | - David R Chavez
- Department of Urology, Dartmouth-Hitchcock, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
17
|
|
18
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
19
|
Boo YC. Can Plant Phenolic Compounds Protect the Skin from Airborne Particulate Matter? Antioxidants (Basel) 2019; 8:antiox8090379. [PMID: 31500121 PMCID: PMC6769904 DOI: 10.3390/antiox8090379] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
The skin is directly exposed to the polluted atmospheric environment, and skin diseases, such as atopic dermatitis and acne vulgaris, can be induced or exacerbated by airborne particulate matter (PM). PM can also promote premature skin aging with its accompanying functional and morphological changes. PM-induced skin diseases and premature skin aging are largely mediated by reactive oxygen species (ROS), and the harmful effects of PM may be ameliorated by safe and effective natural antioxidants. Experimental studies have shown that the extracts and phenolic compounds derived from many plants, such as cocoa, green tea, grape, pomegranate, and some marine algae, have antioxidant and anti-inflammatory effects on PM-exposed cells. The phenolic compounds can decrease the levels of ROS in cells and/or enhance cellular antioxidant capacity and, thereby, can attenuate PM-induced oxidative damage to nucleic acids, proteins, and lipids. They also lower the levels of cytokines, chemokines, cell adhesion molecules, prostaglandins, and matrix metalloproteinases implicated in cellular inflammatory responses to PM. Although there is still much research to be done, current studies in this field suggest that plant-derived phenolic compounds may have a protective effect on skin exposed to high levels of air pollution.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea.
| |
Collapse
|
20
|
Marine Alga Ecklonia cava Extract and Dieckol Attenuate Prostaglandin E 2 Production in HaCaT Keratinocytes Exposed to Airborne Particulate Matter. Antioxidants (Basel) 2019; 8:antiox8060190. [PMID: 31234405 PMCID: PMC6617419 DOI: 10.3390/antiox8060190] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Atmospheric particulate matter (PM) is an important cause of skin damage, and an increasing number of studies have been conducted to discover safe, natural materials that can alleviate the oxidative stress and inflammation caused by PM. It has been previously shown that the extract of Ecklonia cava Kjellman, a perennial brown macroalga, can alleviate oxidative stress in epidermal keratinocytes exposed to PM less than 10 microns in diameter (PM10). The present study was undertaken to further examine the anti-inflammatory effects of E. cava extract and its major polyphenolic constituent, dieckol. HaCaT keratinocytes were exposed to PM10 in the presence or absence of E. cava extract or dieckol and analyzed for their viability, prostaglandin E2 (PGE2) release, and gene expression of cyclooxygenase (COX)-1, COX-2, microsomal prostaglandin E2 synthase (mPGES)-1, mPGES-2, and cytosolic prostaglandin E2 synthase (cPGES). PM10 treatment decreased cell viability and increased the production of PGE2, and these changes were partially abrogated by E. cava extract. E. cava extract also attenuated the expression of COX-1, COX-2, and mPGES-2 stimulated by PM10. Dieckol attenuated PGE2 production and the gene expression of COX-1, COX-2, and mPGES-1 stimulated by PM10. This study demonstrates that E. cava extract and dieckol alleviate airborne PM10-induced PGE2 production in keratinocytes through the inhibition of gene expression of COX-1, COX-2, mPGES-1, and/or mPGES-2. Thus, E. cava extract and dieckol are potentially useful natural cosmetic ingredients for counteracting the pro-inflammatory effects of airborne PM.
Collapse
|
21
|
Sensing of physiological regulators by innate lymphoid cells. Cell Mol Immunol 2019; 16:442-451. [PMID: 30842626 DOI: 10.1038/s41423-019-0217-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Maintenance of homeostasis and immune protection rely on the coordinated action of different physiological systems. Bidirectional communication between the immune system and physiological systems is required to sense and restore any disruption of equilibrium. Recent transcriptomic analyses of innate lymphoid cells (ILCs) from different tissues have revealed that ILCs express a large array of receptors involved in the recognition of neuropeptides, hormones and metabolic signals. ILCs rapidly secrete effector cytokines that are central in the development and activation of early immune responses, but they also constitutively secrete mediators that are important for tissue homeostasis. To achieve these functions effectively, ILCs integrate intrinsic and extrinsic signals that modulate their constitutive and induced activity. Disruption of the regulation of ILCs by physiological regulators leads to altered immune responses with harmful consequences for the organism. An understanding of these complex interactions between the immune system and physiological mediators is crucial to decipher the events leading to the protective versus pathological effects of these cells.
Collapse
|
22
|
Larsson K, Kock A, Kogner P, Jakobsson PJ. Targeting the COX/mPGES-1/PGE 2 Pathway in Neuroblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:89-100. [PMID: 31562624 DOI: 10.1007/978-3-030-21735-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The importance of prostaglandin E2 in cancer progression is well established, but research on its role in cancer has so far mostly been focused on epithelial cancer in adults while the knowledge about the contribution of prostaglandin E2 to childhood malignancies is limited. Neuroblastoma, an extracranial solid tumor of the sympathetic nervous system, mainly affects young children. Patients with tumors classified as high-risk have poor survival despite receiving intensive treatment, illustrating a need for new treatments complimenting existing ones. The basis of neuroblastoma treatment e.g. chemotherapy and radiation therapy, target the proliferating genetically unstable tumor cells leading to treatment resistance and relapses. The tumor microenvironment is an avenue, still to a great extent, unexplored and lacking effective targeted therapies. Cancer-associated fibroblasts is the main source of prostaglandin E2 in neuroblastoma contributing to angiogenesis, immunosuppression and tumor growth. Prostaglandin E2 is formed from its precursor arachidonic acid in a two-step enzymatic reaction. Arachidonic acid is first converted by cyclooxygenases into prostaglandin H2 and then further converted by microsomal prostaglandin E synthase-1 into prostaglandin E2. We believe targeting of microsomal prostaglandin E synthase-1 in cancer-associated fibroblasts will be an effective future therapeutic strategy in fighting neuroblastoma.
Collapse
Affiliation(s)
- Karin Larsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Anna Kock
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Ahn JH, Lee KT, Choi YS, Choi JH. Iloprost, a prostacyclin analog, inhibits the invasion of ovarian cancer cells by downregulating matrix metallopeptidase-2 (MMP-2) through the IP-dependent pathway. Prostaglandins Other Lipid Mediat 2018; 134:47-56. [DOI: 10.1016/j.prostaglandins.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
|