1
|
Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ, Zhang W, Yi Z. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater 2025; 20:032003. [PMID: 40199334 DOI: 10.1088/1748-605x/adca7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Collapse
Affiliation(s)
- Ming-Feng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Tao Yan
- Joint Orthopedics, Xiangyang Hospital Affiliated to Hubei University of Chinese Medicine, Xiangyang, Hubei 441000, People's Republic of China
| | - Ming-Cen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Cheng-Wei Han
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Zhuo-Qun Yan
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Yu-Zhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
2
|
Won C. A Novel Framework for Optimizing Peri-Implant Soft Tissue in Subcrestally Placed Implants in Single Molar Cases: Integrating Transitional and Subcrestal Zones for Biological Stability. J Clin Med 2025; 14:2435. [PMID: 40217885 PMCID: PMC11989639 DOI: 10.3390/jcm14072435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: The peri-implant soft tissue seal is crucial for the long-term success of subcrestally placed implants (SPIs). However, conventional biologic width-now referred to as supracrestal tissue attachment (STA)-models, originally developed for natural teeth, fail to account for the three-dimensional nature of peri-implant soft tissue adaptation. This study introduces a novel framework integrating the concepts of the transitional zone (TZ) and subcrestal zone (SZ) to systematically optimize peri-implant soft tissue architecture. Methods: A mathematical model was developed to determine the optimal implant placement depth by incorporating the emergence angle (EA), soft tissue thickness (STT), and peripheral crestal offset (PCO). Additionally, a three-dimensional peri-implant soft tissue analysis (3DSTA) approach utilizing cone beam computed tomography (CBCT) imaging was implemented to evaluate peri-implant soft tissue adaptation and emergence profile design. Clinical parameters were analyzed to establish guidelines for optimizing SPI placement depth and peri-implant soft tissue stability. Results: This study introduces the concept of self-sustained soft tissue (SSST), a biologically functional structure composed of the TZ and SZ, which enhances peri-implant health and stability. The proposed framework provides clinical guidelines for optimizing SPI placement depth, emergence profile contouring, and peri-implant soft tissue thickness to mitigate the risk of peri-implant mucositis. By shifting from a traditional two-dimensional perspective to a multidimensional analysis, this approach offers an evidence-based foundation for achieving biologically stable and esthetically predictable outcomes. Conclusions: The proposed three-dimensional model advances the understanding of peri-implant soft tissue adaptation by integrating novel anatomical and biomechanical concepts. By redefining peri-implant biologic width through the introduction of TZ and SZ, this study provides a structured framework for optimizing SPI placement and soft tissue management. Future research should focus on validating this model through histological studies and long-term clinical trials to refine its application in clinical practice.
Collapse
Affiliation(s)
- Chiyun Won
- Private Clinic, Chiyun Won Dental Clinic 2F, 46-1 Changjeon-ro, Mapo-gu, Seoul 04087, Republic of Korea
| |
Collapse
|
3
|
Wang R, Wang T, Chen Z, Jiang J, Du Y, Yuan H, Pan Y, Wang Y. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1025-1041. [PMID: 39825206 DOI: 10.1007/s11427-024-2745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
- Department of Stomatology, Chongzhou People's Hospital, Chengdu, 611230, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Zaccheo F, Petroni G, Tallarico M, Gioga C, Carletti R, Di Gioia CRT, Petrozza V, Meloni SM, Melodia D, Pisano M, Cicconetti A. Histological Analysis of Biological Width and Collagen Fibers Orientation Around Screw-Less, Morse Taper, Hemispherical Base Abutments 8 and 16 Weeks After Implant Uncovering: An Observational Clinical Trial. Dent J (Basel) 2025; 13:154. [PMID: 40277484 DOI: 10.3390/dj13040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Objectives: This study aimed to histologically evaluate, in humans, the orientation of collagen fibers around screw-less, Morse taper, hemispherical base abutments. Methods: This study was designed as an observational, case-control, clinical trial to evaluate the histological orientation of collagen fibers around implants. Biopsies of the peri-implant tissue were performed 8 (group A, control) or 16 (group B, test) weeks of implant uncovering, and histologically analyzed under optical microscope using Hematoxylin and Eosin, Masson, and Picro Sirius histochemical staining and a scanning electron microscope. Results: Eight patients were enrolled in this study and 16 biopsies were performed. All the biopsies were correctly analyzed. The histological examination of cross-sectional portions of the tissue taken 8 weeks after implant uncovering showed the almost complete absence of epithelial lining, while the connective tissue bundles in the superficial portion showed a lower circular pattern. The histochemical cross-section examination of the tissue taken 16 weeks after implant uncovering showed the partial presence of non-keratinizing epithelial lining at the implant site and the collagen bundles showed a greater organization, with a circumferential course around the abutment. At 8 weeks, the final histological analysis showed an average height of 1.01 mm for the keratinized epithelium, 0.83 mm for the non-keratinized epithelium, and 1.39 mm for the connective tissue. While, at 16 weeks, the values were 1.20 mm, 0.48 mm, and 1.11 mm, respectively. No statistically significant differences were found between the groups (p > 0.05). Conclusions: Histologically, there were not any differences in the height and profile of the gingiva between 8 and 16 weeks of healing after prosthesis delivery. Greater organization of the collagen fibers with a circumferential course around the abutment was found in the test group (16 weeks) compared with the control group (8 weeks).
Collapse
Affiliation(s)
- Fabrizio Zaccheo
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Petroni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Tallarico
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Cherana Gioga
- Faculty of Dentistry, Titu Maiorescu University, 1085 Bucharest, Romania
| | - Raffaella Carletti
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnology, University of Rome Sapienza, 04100 Latina, Italy
| | - Silvio Mario Meloni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Dario Melodia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Milena Pisano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Andrea Cicconetti
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Casaponsa J, Vinothkumar TS, Narasimhan B, Dummer PMH, Nagendrababu V, Sans FA. Two Severely Compromised Teeth Restored Using Digital Planning Combined With Double Orthodontic Magnetic Extrusion: A Case Report. AUST ENDOD J 2025. [PMID: 39985235 DOI: 10.1111/aej.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Tooth tissue loss due to dental caries is frequently challenging to restore, and this loss is made worse by proximal tooth borders that extend below the gingival margin. This report describes a digitally designed case in which the ferrule and supracrestal tissue attachment were preserved by simultaneous double magnetic extrusion of two root filled teeth. A 67-year-old male presented with the chief concern of a fractured maxillary left canine. The maxillary left lateral incisor and canine underwent rapid magnetic extrusion to create ferrules (3 mm). Eighteen months after treatment, the restorative margins were sound and the teeth with associated periodontal tissues were healthy. The positive results demonstrate that the combination of digital planning and double magnetic extrusion has potential as a technique for restoring severely damaged teeth where insufficient supra-gingival tooth tissue remains. Adjacent root canal treated teeth with severe loss of coronal structure are suitable candidates for double magnetic extrusion.
Collapse
Affiliation(s)
- Jaume Casaponsa
- Department of Integrated Clinics for Adults, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Thilla Sekar Vinothkumar
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Department of Conservative Dentistry and Enddontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Bharadwaj Narasimhan
- Department of Conservative Dentistry and Enddontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Access Dental Institute, Chennai, India
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Francesc Abella Sans
- Department of Endodontics, School of Dentistry, Universitat International de Catalunya, Barcelona, Spain
| |
Collapse
|
6
|
Mousa MA, Alshubrmi H, Issrani R, Alzarea BK. Evaluating the microgap and sealing capability in four implant systems with different interlockings under different tightening torques: an in-vitro study. J Adv Prosthodont 2024; 16:336-347. [PMID: 39803384 PMCID: PMC11711449 DOI: 10.4047/jap.2024.16.6.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE This study assessed the microgap width and adhesion of three bacterial species in four dental implants with different interlocks under four screwing torques. MATERIALS AND METHODS Ten samples of four implant systems with various interlockings, including full-hexagonal (FHI), cylindrical-conical trilobe-index (TLI), Morse-taper with octagon terminal index (OI), and hexagonal interlock (slip-fit) (HI-SF), were used. The abutments were screwed to the fixtures under torques of 10, 20, 30, and 40 Ncm. The microgap between the abutment and the platform was assessed using a Scanning Electron Microscope (SEM). The leakage of 3 bacteria, including Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, was evaluated under 30 Ncm torque. RESULTS The TLI system showed the widest gap under all torques compared to others. There was no significance among all systems under different screwing torques. Regarding the leakage, there was no adherence to E. coli and S. aureus and 36.4% of Ps. aeruginosa to the HI-SF, followed by the OI system. The FHI and TLI systems showed the highest bacterial adherence. CONCLUSION Even with low torque, the studied systems showed gap widths narrower than acceptable width. Implant systems with FHI and OI demonstrated misfits of less than 2 µm upon 10 Ncm and less than 1 µm when the torque increases, giving them priority to be used in areas with poor bone quality. The HI-SF demonstrated a high ability to resist the adherence to E. coli and S. aureus, followed by OI. However, Ps. aeruginosa demonstrated a high ability to adhere to all systems.
Collapse
Affiliation(s)
- Mohammed Assayed Mousa
- Department Prosthetic Dental Sciences, College of Dentistry, Jouf University, Jouf, Saudia Arabia
| | - Hasna Alshubrmi
- Department of Prosthodontics, Hail Dental Center, Ministry of Health, Hail, Saudia Arabia
| | - Rakhi Issrani
- Department of Preventive Dental Sciences, College of Dentistry, Jouf University, Jouf, Saudia Arabia
| | - Bader Kureyem Alzarea
- Department Prosthetic Dental Sciences, College of Dentistry, Jouf University, Jouf, Saudia Arabia
| |
Collapse
|
7
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
8
|
Huang M, Wang C, Li P, Lu H, Li A, Xu S. Role of immune dysregulation in peri-implantitis. Front Immunol 2024; 15:1466417. [PMID: 39555067 PMCID: PMC11563827 DOI: 10.3389/fimmu.2024.1466417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Peri-implantitis, a complex condition that can lead to dental implant failure, is characterized by inflammatory destruction resulting from immune dysregulation. Oral microbial dysbiosis and foreign body stimulation are the main factors contributing to such dysregulation, impairing immune cell function and triggering an inflammatory response. Immune dysregulation plays a critical role in the pathophysiology of peri-implantitis, impacting the balance of T cell subsets, the production of inflammatory factors, and immune-related molecular signaling pathways. Understanding the relationship between immune dysregulation and peri-implantitis is crucial for developing targeted strategies for clinical diagnosis and individualized treatment planning. This review explores the similarities and differences in the immune microenvironment of oral bacterial infections and foreign body rejection, analyzes the relevant molecular signaling pathways, and identifies new key targets for developing innovative immunotherapeutic drugs and effective and personalized treatment modalities for peri-implantitis. Additionally, it addresses the challenges and potential directions for translating immunotherapy into clinical practice for peri-implantitis, offering insights that bridge the gaps in current literature and pave the way for future research.
Collapse
Affiliation(s)
- Mingshu Huang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chao Wang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Hao Y, Shi C, Zhang Y, Zou R, Dong S, Yang C, Niu L. The research status and future direction of polyetheretherketone in dental implant -A comprehensive review. Dent Mater J 2024; 43:609-620. [PMID: 39085142 DOI: 10.4012/dmj.2024-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.
Collapse
Affiliation(s)
- Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Changquan Shi
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | | | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
10
|
Yan Y, Yan Q, Cai K, Wang Z, Li Q, Zhao K, Jian Y, Jia X. Silk fibroin microgrooved zirconia surfaces improve connective tissue sealing through mediating glycolysis of fibroblasts. Mater Today Bio 2024; 27:101158. [PMID: 39081464 PMCID: PMC11287005 DOI: 10.1016/j.mtbio.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The use of zirconia has significantly enhanced the aesthetic outcomes of implant restorations. However, peri-implantitis remains a challenge to long-term functionality of implants. Unlike the perpendicularly arranged collagen fibers in periodontal tissue, those in peri-implant tissue lie parallel to the abutment surface and contain fewer fibroblasts, making them more prone to inflammation. Studies have shown that microgroove structures on implant abutments could improve surrounding soft tissue structure. However, creating precise microgrooves on zirconia without compromising its mechanical integrity is technically challenging. In this study, we applied inkjet printing, an additive manufacturing technique, to create stable silk fibroin microgroove (SFMG) coatings of various dimensions on zirconia substrates. SFMG significantly improved the hydrophilicity of zirconia and showed good physical and chemical stability. The SFMG with 90 μm interval and 10 μm depth was optimal in promoting the proliferation, alignment, and extracellular matrix production of human gingival fibroblasts (HGFs). Moreover, the in vitro results revealed that SFMG stimulated key glycolytic enzyme gene expression in HGFs via the PI3K-AKT-mTOR pathway. Additionally, the in vivo results of histological staining of peri-abutments soft tissue showed that SFMG promoted the vertical alignment of collagen fibers relative to the abutment surface, improving connective tissue sealing around the zirconia abutment. Our results indicated that SFMG on zirconia can enhance HGF proliferation, migration and collagen synthesis by regulating glycolysis though PI3K-AKT-mTor pathway, thereby improving connective tissue sealing.
Collapse
Affiliation(s)
- Yinuo Yan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiqian Yan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kexin Cai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhihan Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiulan Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ke Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yutao Jian
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoshi Jia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
11
|
Elkabany AH, Hakim AAA, Mahmoud SA, Gaweesh YY. Clinical and biochemical assessment of the soft tissue response to titanium stock versus custom composite resin healing abutments. J Prosthet Dent 2024:S0022-3913(24)00458-X. [PMID: 39060157 DOI: 10.1016/j.prosdent.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
STATEMENT OF PROBLEM Custom healing abutments made of flowable composite resin have gained popularity, although the soft tissue response to composite resin has not been adequately studied. PURPOSE The purpose of this randomized controlled clinical trial was to evaluate the soft tissue response to titanium stock healing abutments and custom composite resin healing abutments by assessing clinical indices and the level of matrix metalloproteinase-8 (MMP-8) in the peri-implant crevicular fluid (PICF). MATERIAL AND METHODS A randomized controlled clinical trial was performed on 42 osseointegrated implants. The implants were divided into 2 groups: a test group comprising 21 custom composite resin healing abutments that were attached to the implants at second stage surgery and a control group comprising 21 stock titanium healing abutments. Plaque index (PL), bleeding on probing (BOP), modified gingival index (MGI), and level of MMP8 were measured at the second and fourth week after second stage surgery. Peri-implant crevicular fluid was collected by paper points at each follow-up, and the level of MMP8 was measured by an enzyme-linked immunosorbent assay kit. For statistical analysis, group comparisons used the Mann-Whitney U test, and comparisons within each group at 2 and 4 weeks used the Wilcoxon Sign Rank test. Group differences were analyzed with the Fisher exact test, and the McNemar test was used to compare percentages at 2 and 4 weeks. All tests were two-tailed (α=.05). RESULTS For the PI, no statistically significant differences were found within groups or between groups (P>.05). Bleeding on probing was positive in 14.3% of titanium abutments versus 20% of composite resin abutments at 4 weeks, with no significant difference between groups (P>.05). Similarly, the mean MGI was 0.38 ±0.5 in the control group while it was 0.4 ±0.5 in the test group, with no significant differences between groups (P>.05). The MMP8 level at 2 weeks was 11.1 ±8.65 and 13.11 ±9.29 for the control and test groups, respectively while it was 16.35 ±8.31 and 19.80 ±8.44 at 4 weeks, showing a statistically significant increase within groups (P<.05). No significant difference between groups was detected at either follow-up time point regarding MMP8 level (P>.05). CONCLUSIONS The clinical and biochemical soft tissue response to composite resin healing abutments and titanium stock healing abutments were comparable, suggesting the clinical safety of custom composite resin healing abutments.
Collapse
Affiliation(s)
- Ahmed Hesham Elkabany
- Postgraduate student, Clinical Master of Oral Implantology, Alexandria University, Alexandria, Egypt
| | | | | | - Yasmine Youssri Gaweesh
- Associate Professor, Department of Periodontology, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
Docampo-Vázquez C, Gragera-Alia T, Fernández-Domínguez M, Zubizarreta-Macho Á, Aragoneses-Lamas JM. Novel digital technique for measuring the volumetric healing process of free gingival grafts surrounding dental implants. FRONTIERS IN DENTAL MEDICINE 2024; 5:1372312. [PMID: 39917676 PMCID: PMC11797868 DOI: 10.3389/fdmed.2024.1372312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/17/2024] [Indexed: 02/09/2025] Open
Abstract
The objective of the present study was to analyze and describe a new digital technique for analyzing the volumetric healing process of free gingival grafts in both donor and recipient locations surrounding a dental implant, as well as to compare the reliability of conventional and digital techniques for measuring the width of the free gingival graft in the recipient location throughout the healing process. Materials and methods Ten patients presenting with mucositis linked to a dental implant were included. A preoperative soft tissue width <2 mm, with probing pocket depth <5 mm, edema and inflammation and bleeding on probing was determined A digital impression was taken of both donor and recipient locations using an intraoral scan, generating a Standard Tessellation Language digital file both preoperatively (STL1) and after 1 week (STL2), 1 month (STL3), 3 months (STL4), and 6 months (STL5) of follow-up. Afterwards, the digital files (STL1-STL5) were aligned using a reverse engineering morphometric software, and Student's t-test was used to analyze changes in volume at the donor and recipient locations. Additionally, widths were measured both clinically and digitally so as to compare the reliability of these measurement techniques. The repeatability and reproducibility of both these measurement techniques were also analyzed using Gage R&R statistical analysis. Results Gage R&R found that the total variability of the digital technique was 0.6% (among the measures of each operator) and 7.6% (among operators); as variability was under 10%, the results were repeatable and reproducible. In addition, there were statistically significant differences between donor and recipient locations in healing process volume (mm3) after one week (p = 0.0110), one month (p = 0.0007), three months (p < 0.0001) and six months (p = 0.0004) of follow-up. Conclusion The digital measurement technique provided accurate, repeatable, and reproducible results when analyzing the volumetric and linear measures of the healing process in both the donor and recipient locations of a free gingival graft surrounding a dental implant, with significantly higher tissue volume in the recipient location.
Collapse
Affiliation(s)
| | | | | | - Álvaro Zubizarreta-Macho
- Faculty of Dentistry, Alfonso X El Sabio University, Madrid, Spain
- Department of Surgery, Faculty of Medicine and Dentistry, University of Salamanca, Salamanca, Spain
| | - Juan Manuel Aragoneses-Lamas
- Faculty of Dentistry, Alfonso X El Sabio University, Madrid, Spain
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| |
Collapse
|
13
|
Burgoa S, Jony de Moura E Costa A, Ventura D, Pinhata-Baptista OH, Cortes ARG. Digital workflow for definitive immediately loaded complete arch CAD-CAM implant-supported prosthesis in 3 appointments without using intraoral scanning. J Prosthet Dent 2024; 132:31-36. [PMID: 35810041 DOI: 10.1016/j.prosdent.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 10/17/2022]
Abstract
This article presents a rapid technique for the accurate transfer of implant positions immediately after image-guided surgery to enable the immediate installation of a definitive complete arch implant-supported prosthesis with an implant biological width of 3 mm within 3 appointments. A sleeveless copy of the implant surgical guide is magnetically connected to a reference guide to ensure the accurate capture of cylindrical titanium transfer abutments. In the laboratory, the sleeveless guide with the splinted transfer abutments attached is used to generate a definitive cast to be scanned with a desktop scanner. The resulting digital definitive cast is then combined with the original meshes of the prosthetically driven virtual treatment plan to enable a definitive computer-aided design and computer-aided manufactured prosthesis to be fabricated and installed with passive fit.
Collapse
Affiliation(s)
- Shaban Burgoa
- Private Dental Surgeon, Department of Implant Dentistry GoBeyond Institution (BDS), Curitiba, Brazil
| | | | - Dionir Ventura
- Certified Dental Technician, Ventura Lab, Curitiba, Brazil
| | - Otavio Henrique Pinhata-Baptista
- PhD student, Department of Oral Radiology, School of Dentistry, University of São Paulo (USP), São Paulo, São Paulo, Brazil; Head of Dental Implant Clinic of the Military Hospital of São Paulo Area (HMASP), Brazilian Army, São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
14
|
Casaponsa J, Vinothkumar TS, Dummer PMH, Nagendrababu V, Abella Sans F. Restoration of Teeth with Severely Compromised Tooth Structure using Digital Planning Combined with Orthodontic Magnetic Extrusion-A Report of 2 Cases. J Endod 2024; 50:852-858. [PMID: 38428807 DOI: 10.1016/j.joen.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
This report outlines 2 digitally planned cases in which the teeth underwent magnetic extrusion to preserve the supracrestal tissue attachment and regain the ferrule, followed by their restoration. Case 1: A 42-year-old man with the chief concern of a fractured right maxillary second premolar. Following the completion of root canal treatment, the remaining tooth structure was insufficient to create a ferrule for tooth restoration. For this scenario, a rapid magnetic extrusion technique was performed on tooth #4 to obtain an approximate 3-mm ferrule. The condition of both the dentition and the restorative margin was acceptable 18 months following treatment. Case 2: A 62-year-old man with the chief complaint of mobility on both sides of the maxillary arch in relation to a tooth-supported fixed partial denture (FPD). Following removal of the FPD, multiple extractions were carried out and tooth #6 was subjected to magnetic extrusion in 3 stages to a maximum of 4 mm to obtain a ferrule. At the 18-month and 3-year follow-up appointments, the tooth had no symptoms and the gingiva around the restorations had optimal architecture and margins. The 3-dimensional digital planning was helpful in precisely positioning the magnets within the tooth and the provisional restorations to facilitate axial extrusion. The extruded teeth were restored with zirconia crowns in both cases. The beneficial outcomes observed from these cases provides evidence that the integration of digital planning and magnetic extrusion holds promise as a method for reconstructing teeth with crowns that are significantly compromised.
Collapse
Affiliation(s)
- Jaume Casaponsa
- Department of Integrated Clinics for Adults, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Thilla Sekar Vinothkumar
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Francesc Abella Sans
- Department of Endodontics, School of Dentistry, Universitat International de Catalunya, Barcelona, Spain.
| |
Collapse
|
15
|
Guo F, Li J, Chen Z, Wang T, Wang R, Wang T, Bian Y, Du Y, Yuan H, Pan Y, Jin J, Jiang H, Han F, Jiang J, Wu F, Wang Y. An Injectable Black Phosphorus Hydrogel for Rapid Tooth Extraction Socket Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25799-25812. [PMID: 38727024 DOI: 10.1021/acsami.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.
Collapse
Affiliation(s)
- Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianfeng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
16
|
Onică N, Budală DG, Baciu ER, Onică CA, Gelețu GL, Murariu A, Balan M, Pertea M, Stelea C. Long-Term Clinical Outcomes of 3D-Printed Subperiosteal Titanium Implants: A 6-Year Follow-Up. J Pers Med 2024; 14:541. [PMID: 38793123 PMCID: PMC11122366 DOI: 10.3390/jpm14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
As an alternative to regenerative therapies, numerous authors have recently proposed bringing back subperiosteal implants. The aim of the study was to present our clinical experience with a subperiosteal jaw implant that needs minimal bone preparation and enables the rapid implantation of prosthetic teeth in edentulous, atrophic alveolar bone. The research included 36 complete or partial edentulous patients (61 subperiostal implants) over a period of 6 years. To create the patient-specific subperiostal implants design, DentalCAD 3.0 Galway software (exocad GmbH, Darmstadt, Germany) was used and fabricated with a Mysint 100 (Sisma S.p.A., Piovene Rocchette, Italy) by titanium alloy powder. The results showed that only 9 of the 36 cases were successful at 6-year follow-up, while 27 cases had complications, including exposure of the metal frame (early or delayed), mobility of the device prior to the first 4-6 months, and late mobility due to recurrent infections and progressive structure exposure; 1 case failed for reasons unrelated to the device. This study indicated that the prudent application of fully customized subperiosteal jaw implants is a dependable alternative for the dental rehabilitation of atrophic edentulous cases that necessitate bone grafts for traditional fixed dental implant solutions.
Collapse
Affiliation(s)
- Neculai Onică
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (N.O.); (G.L.G.); (A.M.); (M.B.); (C.S.)
| | - Dana Gabriela Budală
- Department of Implantology, Removable Dentures, Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Elena-Raluca Baciu
- Department of Implantology, Removable Dentures, Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Cezara Andreea Onică
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (N.O.); (G.L.G.); (A.M.); (M.B.); (C.S.)
| | - Gabriela Luminița Gelețu
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (N.O.); (G.L.G.); (A.M.); (M.B.); (C.S.)
| | - Alice Murariu
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (N.O.); (G.L.G.); (A.M.); (M.B.); (C.S.)
| | - Mihail Balan
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (N.O.); (G.L.G.); (A.M.); (M.B.); (C.S.)
| | - Mihaela Pertea
- Department of Plastic Surgery, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Carmen Stelea
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (N.O.); (G.L.G.); (A.M.); (M.B.); (C.S.)
| |
Collapse
|
17
|
Zhang L, Zhou C, Jiang J, Chen X, Wang Y, Xu A, He F. Clinical outcomes and risk factor analysis of dental implants inserted with lateral maxillary sinus floor augmentation: A 3- to 8-year retrospective study. J Clin Periodontol 2024; 51:652-664. [PMID: 38246602 DOI: 10.1111/jcpe.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
AIM To evaluate the 3- to 8-year outcomes of dental implants placed with lateral sinus floor augmentation (LSFA) and to identify factors affecting implant survival. MATERIALS AND METHODS This retrospective study was performed by screening all implants placed with LSFA procedures, which were conducted between January 2012 and December 2016. Subantral bone gain (SABG) and apical bone height (ABH) were assessed using panoramic radiographs. The cumulative survival rate of implants was analysed using life-table analysis and Kaplan-Meier survival curves. The influential risk factors affecting survival were assessed using univariate log-rank tests and multivariable mixture cure rate model. Implant complications were recorded. RESULTS Based on the established criteria, a total of 449 patients (760 implants) were included in this study. In the 3- to 8-year follow-up (mean ± SD, 5.81 ± 1.33 years), 15 implants in 14 patients failed, with a CRS of 96.81% on an implant basis and 95.07% on a patient basis. A history of periodontitis and poor compliance with supportive periodontal treatment was associated with a significantly higher risk of implant failure at both implant and patient levels. Significant decreases in ABH occurred during each yearly interval except for 3 years. A similar trend has been observed for SABG at 1, 2, 6 and 8 years. The total complication rate was 31.84% on implant basis, with peri-implant mucositis (21.58%) being the most frequent biologic complication and porcelain cracking (5.00%) being the most common technical complication. CONCLUSIONS Implant with LSFA is a reliable treatment option in atrophic maxilla. A history of periodontitis without regular supportive periodontal treatment was identified as a predictor for implant failure. Slight but significant shrinkage of vertically augmented bone can be observed after implant placement.
Collapse
Affiliation(s)
- Liefen Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Chuan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jimin Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yaoqiong Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
19
|
Posessor AD, Badalyan VA, Vasilyev AV. [The results of increasing the thickness of soft tissues after using collagen matrices and connective tissue grafts]. STOMATOLOGIIA 2024; 103:29-32. [PMID: 39831671 DOI: 10.17116/stomat202410306229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
THE STUDY AIMS To evaluate and compare the growth of gingiva around dental implants following the use of collagen matrices and connective tissue grafts (CTG). MATERIALS AND METHODS The study included 80 study participants, who were divided into four groups based on the type of material used to enhance gingival thickness. Two groups utilized collagen matrices, Fibro-Gide and FibroMatrix as materials, while the other two groups utilized CTG obtained from the hard palate or tubercle area of the maxilla as controls. Measurements of gum tissue thickness were obtained before surgery and three- and six-months following surgery using three different methods: mucosa piercing with a spreader and ruler, digital impression, and comparison of cone-beam computed tomography (CBCT) scans and digital impressions. RESULTS At six-months examination after the use of grafts from the palate and tubercle, there was a significantly greater increase in gum tissue thickness compared to the use of collagen matrices. The increase was 1.6±0.3 mm and 1.7±0.6 mm for palatal and tubercle grafts, correspondingly, compared to 1.3±0.4 mm for Fibro-Gide and 0.9±0.5 mm for FibroMatrix. CONCLUSION To increase the thickness of soft tissue it is recommended to use CTG from the tubercle or palate. If there is a lack of available donor areas, collagen matrices may be used as a substitute.
Collapse
Affiliation(s)
- A D Posessor
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - V A Badalyan
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A V Vasilyev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Bochkov Medical and Genetic Research Center, Moscow, Russia
| |
Collapse
|
20
|
Zandinejad A, Khurana S, Liang Y, Liu X. Comparative evaluation of gingival fibroblast growth on 3D-printed and milled zirconia: An in vitro study. J Prosthodont 2024; 33:54-60. [PMID: 36693242 DOI: 10.1111/jopr.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The purpose of this study was to analyze the fibroblast growth and proliferation on 3D-printed zirconia in presence and absence of porosities. MATERIAL AND METHODS A total of 40 bars (8 × 4 × 3) were included in this study. Thirty 3D-printed and 10 milled zirconia samples were prepared. The 3D-printed samples had different porosities, 0% (PZ0), 20% (PZ20), and 40% (PZ40) with 10 specimens in each group. Milled zirconia samples were used as the control (MZ). Rat gingival fibroblasts were cultured for 48 h, and the proliferation of fibroblasts on each sample in each group (n = 10) was determined by MTT assays. The differences among the four groups were compared by one-way ANOVA. To test the significance of the observed differences between two groups, an unpaired Student's t-test was applied. The significance level was set at p < 0.05. Qualitative analysis for the cell culture was performed using scanning electron microscopy. RESULTS One-way ANOVA showed that the numbers of the fibroblasts among the four groups had a statistical difference. Post hoc Bonferroni test revealed that there was no significant difference between PZ0 and MZ; however, all other groups and among groups were significantly different. CONCLUSIONS Fibroblasts had a better affinity toward the MZ and PZ0 in a short period of cell culture time.
Collapse
Affiliation(s)
- Amirali Zandinejad
- Implant Dentistry Associations of Arlington, Arlington, Texas, USA
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Saumya Khurana
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Yongxi Liang
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| |
Collapse
|
21
|
Sakar D, Guncu MB, Arikan H, Muhtarogullari M, Aktas G, Reiss N, Turkyilmaz I. Effect of different implant locations and abutment types on stress and strain distribution under non-axial loading: A 3-dimensional finite element analysis. J Dent Sci 2024; 19:607-613. [PMID: 38303808 PMCID: PMC10829709 DOI: 10.1016/j.jds.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Dental implants have been a popular treatment for replacing missing teeth. The purpose of this study was to investigate the impact of engaging (hexagonal) and non-engaging (non-hexagonal) abutments in various six-unit fixed prosthesis on the stress distribution and loading located in the implant neck, implant abutment, and surrounding bone. Materials and methods Three implants were digitally designed and inserted parallel to each other in edentulous sites of the maxillary right canine, maxillary right central incisor, and maxillary left canine. Titanium base engaging abutments, non-engaging abutments and connecting screws were designed. Five distinct models of 6-unit fixed dental prosthesis were created, each featuring different combinations of various abutments. Forces (45-degree angle) were applied to the prosthesis, allowing for the analysis of the stress distribution on the implant neck and abutments, and the maximum and minimum principal stress values on the cortical and trabecular bone. Results Von Mises stress values and stress distributions located in the implant neck region due to the applied loading forces were analyzed. The overall stress values were highest while employing the hexagonal abutments. The maxillary left canine with a hexagonal abutment (model 5) reported the highest von mises value (64.71 MPa) while the maxillary right canine with a non-hexagonal abutment (model 4) presented lowest von mises value (56.69 MPa). Conclusion The results suggest that both the various abutment combinations (engaging and non-engaging) on five different models have a similar influence on the distribution of stress within the implant system.
Collapse
Affiliation(s)
- Didem Sakar
- Department of Prosthodontics, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Mustafa Baris Guncu
- Department of Prosthodontics, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Hale Arikan
- Department of Prosthodontics, Faculty of Dentistry, Baskent University, Ankara, Turkey
| | - Mehmet Muhtarogullari
- Department of Prosthodontics, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Guliz Aktas
- Department of Prosthodontics, School of Dentistry, Hacettepe University, Ankara, Turkey
| | - Natalia Reiss
- New York University College of Dentistry, New York, NY, USA
| | - Ilser Turkyilmaz
- Department of Prosthodontics, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
22
|
Liu Z, Du Y, Xu S, Li M, Lu X, Tian G, Ye J, Zhao B, Wei P, Wang Y. Histatin 1-modified SIS hydrogels enhance the sealing of peri-implant mucosa to prevent peri-implantitis. iScience 2023; 26:108212. [PMID: 37965149 PMCID: PMC10641262 DOI: 10.1016/j.isci.2023.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Dental implants make it possible to replace teeth in more sophisticated ways. Nevertheless, peri-implantitis is one of the leading causes of implant failure, which can be avoided with proper soft tissue sealing. The aim of this study was to achieve the promotion of the synthesis of peri-implant epithelial hemidesmosome through Histatin 1 and porcine small intestinal submucosa (SIS) hydrogel to form a good peri-implant seal. The results show that hydrogel can improve the biological barrier function around implants by combining antibacterial, promoting soft tissue healing and promoting epithelial bonding. This means that the morphology and anti-infection ability of soft tissue are enhanced, which ensures the long-term stability of the implant.SIS-Hst1 hydrogel has certain clinical application in the prevention and early treatment of peri-implantitis. In conclusion, Hst1-SIS hydrogel, as a local administration system, provides experimental evidence for the prevention of peri-implant disease.
Collapse
Affiliation(s)
- Zihao Liu
- Zhongnuo Dental Hospital, Tianjin Nankai District, Tianjin 300101, China
| | - Yaqi Du
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Shendan Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Xuemei Lu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Guangjie Tian
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Jing Ye
- Department of Stomatology, Tianjin Hospital, Tianjin 300211, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| |
Collapse
|
23
|
Jiao P, Li Z, Li B, Jiao X. The Role of Caspase-11 and Pyroptosis in the Regulation of Inflammation in Peri-Implantitis. J Inflamm Res 2023; 16:4471-4479. [PMID: 37842190 PMCID: PMC10576458 DOI: 10.2147/jir.s427523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Peri-implantitis is an important cause of oral implant failure. In the past, TLR4 and TLR2 in the Toll-like family were generally considered as the key immune recognition receptors regulating peri-implantitis. However, under the guidance of this theory, there are still some unexplainable peri-implantitis symptoms. With the discovery of novel intracellular LPS receptor Caspase-11, a new understanding of inflammatory signaling and immune regulation in the development of peri-implantitis has been gained. However, the regulatory role of Caspase-11 in peri-implantitis and its crosstalk with the TLR4 pathway remain unclear. The therapeutic effect of drugs targeting Caspase-11 on peri-implantitis is still in its early stages. In view of this situation, this paper reviews the possible role of Caspase-11 in peri-implant inflammation, elaborated the entry process of LPS and the activation mechanism of Caspase-11, and analyzes the differences in Caspase-11 between commonly studied animals, mice and humans. The current research hotspots and challenges are also analyzed to provide new insights and ideas for researchers.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zuntai Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Birong Li
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, People’s Republic of China
| | - Xingyuan Jiao
- Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
24
|
Sun Y, Yang J, Chen K, Li Z, Chen Z, Huang B. Clinical and radiographic results of crestal vs. subcrestal placement of implants in posterior areas: A split-mouth randomized controlled clinical trial. Clin Implant Dent Relat Res 2023; 25:948-959. [PMID: 37259774 DOI: 10.1111/cid.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate the peri-implant soft tissue and marginal bone loss (MBL) around implants with platform-switching and internal conical connection placed at crestal and subcrestal levels in posterior areas. MATERIALS AND METHODS Nineteen partially edentulous patients with at least two adjacent missing teeth in posterior areas unilaterally or bilaterally were included. Forty-two implants were placed randomly at the crestal or subcrestal (1 mm) level in a split-mouth design. Implant-supported fixed dental prostheses with screw retention were delivered after 4 months of healing. Clinical and radiological measurements were performed at implant placement (T0), restoration delivery (T1), and 1-year follow-up after loading (T2). MBL was calculated as the change in distance from the implant-abutment interface to the first radiographically visible bone-implant contact. A repeated-measures mixed ANOVA followed by a paired Student's t-test with the Bonferroni correction was used for statistical analysis. p < 0.05 was considered statistically significant. RESULTS Eighteen patients with thirty-eight implants completed the study at T2. The MBL was lower in the subcrestal group than in the crestal group (0.04 ± 0.08 vs. 0.17 ± 0.17 mm, p = 0.004). The peri-implant probing depth (PD) was 2.31 ± 0.48 mm in the subcrestal group and 1.92 ± 0.43 mm in the crestal group; this difference was statistically significant (p = 0.002). Intragroup comparison showed no significant differences in MBL, or PD around the crestal group and subcrestal group from T1 to T2. CONCLUSION After 1 year of functional loading, subcrestal placement of implants with platform-switching and internal conical connection showed lower MBL and was associated with greater PD and peri-implant soft tissue height than implants placed at the crestal level.
Collapse
Affiliation(s)
- Yue Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jieting Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kaidi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baoxin Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Gaggi G, Di Credico A, D'Addazio G, Ghinassi B, Argentieri G, Caputi S, Di Baldassarre A, Sinjari B. Impact on peri-implant connective tissue of laser treated versus traditional healing abutments: a human clinical trials. BMC Oral Health 2023; 23:425. [PMID: 37370064 DOI: 10.1186/s12903-023-03148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Dental implant is the principal treatment for edentulism and the healthiness of the peri-implant tissue has a pivotal role for its longterm success. In addition, it has been shown that also the topography of the healing abutment can influence the outcome of the restoration. The objective of this human clinical trial was to assess the impact of a novel laser-treated healing abutment on peri-implant connective tissue and extracellular matrix proteins compared to the conventional machined surface, which served as the control group. METHODS During second surgical stage a customized healing abutment were inserted on 30 single dental implants. Healing abutments were realized with two alternated different surface (two side laser-treated surfaces and two side machined surfaces) in order to be considered both as test and control on the same implant and reduce positioning bias. Following the soft tissue healing period (30 ± 7 days) a 5 mm circular biopsy was retrieved. Immuno-histochemical and quantitative real-time PCR (qPCR) analyses were performed on Collagen, Tenascin C, Fibrillin I, Metalloproteinases (MMPs) and their inhibitor (TIMPs). 15 were processed for qPCR, while the other 15 were processed for immunohistochemical analysis. Paired t-test between the two groups were performed. A value of p < 0.05 was considered statistically significant. RESULTS Results revealed that the connective tissue facing the laser-treated surface expressed statistically significant lower amount of MMPs (p < 0.05) and higher level of TIMPs 3 (p < 0.05), compared to the tissue surrounding the machined implant, which, in turn expressed also altered level of extracellular matrix protein (Tenascin C, Fibrillin I (p < 0.05)) and Collagen V, that are known to be altered also in peri-implantitis. CONCLUSIONS In conclusion, the laser-treated surface holds promise in positively influencing wound healing of peri-implant connective tissue. Results demonstrated that topographic nature of the healing abutments can positively influence mucosal wound healing and molecular expression. Previous studies have been demonstrated how laser treatment can rightly influence integrity and functionality of the gingiva epithelium and cell adhesion. Regarding connective tissue different molecular expression demonstrated a different inflammatory pattern between laser treated or machined surfaces where laser treated showed better response. Targeted interventions and preventive measures on peri- implant topography could effectively minimize the risk of peri-implant diseases contributing to the long-term success and durability of restoration. However, new studies are mandatory to better understand this phenomenon and the role of this surface in the peri-implantitis process. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov Identifier: (Registration Number: NCT05754970 ). Registered 06/03/2023, retrospectively registered.
Collapse
Affiliation(s)
- Giulia Gaggi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University "G.d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University "G.d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Gianmaria D'Addazio
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
- Electron Microscopy Laboratory, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Barbara Ghinassi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University "G.d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Giulio Argentieri
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
- Electron Microscopy Laboratory, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Sergio Caputi
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
- Electron Microscopy Laboratory, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Angela Di Baldassarre
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University "G.d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Bruna Sinjari
- Unit of Prosthodontics, Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
- Electron Microscopy Laboratory, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
26
|
Gehrke SA, Scarano A, Cortellari GC, Fernandes GVO, Mesquita AMM, Bianchini MA. Marginal Bone Level and Biomechanical Behavior of Titanium-Indexed Abutment Base of Conical Connection Used for Single Ceramic Crowns on Morse-Taper Implant: A Clinical Retrospective Study. J Funct Biomater 2023; 14:jfb14030128. [PMID: 36976052 PMCID: PMC10057670 DOI: 10.3390/jfb14030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The goal of this retrospective clinical study was to evaluate the behavior of Morse-taper indexed abutments by analyzing the marginal bone level (MBL) after at least 12 months of function. Patients rehabilitated with single ceramic crowns between May 2015 and December 2020 received single Morse-taper connection implants (DuoCone implant) with two-piece straight abutment baseT used for at least 12 months, presenting periapical radiograph immediately after crown installation were enrolled. The position of the rehabilitated tooth and arch (maxilla or mandible), crown installation period, implant dimensions, abutment transmucosal height, installation site (immediate implant placement or healed area), associated with bone regeneration, immediate provisionalization, and complications after installation of the final crown were analyzed. The initial and final MBL was evaluated by comparing the initial and final X-rays. The level of significance was α = 0.05. Seventy-five patients (49 women and 26 men) enrolled had a mean period of evaluation of 22.7 ± 6.2 months. Thirty-one implant-abutment (IA) sets had between 12–18 months, 34 between 19–24 months, and 44 between 25–33 months. Only one patient failed due to an abutment fracture after 25 months of function. Fifty-eight implants were placed in the maxilla (53.2%) and 51 in the mandible (46.8%). Seventy-four implants were installed in healed sites (67.9%), and 35 were in fresh socket sites (32.1%). Thirty-two out of these 35 implants placed in fresh sockets had the gap filled with bone graft particles. Twenty-six implants received immediate provisionalization. The average MBL was −0.67 ± 0.65 mm in mesial and −0.70 ± 0.63 mm in distal (p = 0.5072). The most important finding was the statistically significant difference comparing the values obtained for MBL between the abutments with different transmucosal height portions, which were better for abutments with heights greater than 2.5 mm. Regarding the abutments’ diameter, 58 had 3.5 mm (53.2%) and 51 had 4.5 mm (46.8%). There was no statistical difference between them, with the following means and standard deviation, respectively, −0.57 ± 0.53 mm (mesial) and −0.66 ± 0.50 mm (distal), and −0.78 ± 0.75 mm (mesial) and −0.746 ± 0.76 mm (distal). Regarding the implant dimensions, 24 implants were 3.5 mm (22%), and 85 implants (78%) had 4.0 mm. In length, 51 implants had 9 mm (46.8%), 25 had 11 mm (22.9%), and 33 implants were 13 mm (30.3%). There was no statistical difference between the abutment diameters (p > 0.05). Within the limitations of this study, it was possible to conclude that better behavior and lesser marginal bone loss were observed when using abutment heights greater than 2.5 mm of transmucosal portion and when placed implants with 13 mm length. Furthermore, this type of abutment showed a little incidence of failures within the period analyzed in our study.
Collapse
Affiliation(s)
- Sergio Alexandre Gehrke
- Department of Research, Bioface/PgO/UCAM, Calle Cuareim 1483, Montevideo 11100, Uruguay
- Instituto de Bioingenieria, Universidad Miguel Hernández, Avda. Ferrocarril s/n., 03202 Elche, Spain
- Department of Biotechnology, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
- Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, Brazil
- Correspondence: (S.A.G.); (G.V.O.F.); Tel./Fax: +598-29015634 (S.A.G.)
| | - Antonio Scarano
- Department of Research, Bioface/PgO/UCAM, Calle Cuareim 1483, Montevideo 11100, Uruguay
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Gustavo Vicentis Oliveira Fernandes
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Correspondence: (S.A.G.); (G.V.O.F.); Tel./Fax: +598-29015634 (S.A.G.)
| | | | - Marco Aurélio Bianchini
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil
| |
Collapse
|
27
|
Tang P, Meng Z, Song X, Huang J, Su C, Li L. Influence of different mucosal phenotype on early and long-term marginal bone loss around implants: a systematic review and meta-analysis. Clin Oral Investig 2023; 27:1391-1407. [PMID: 36800027 DOI: 10.1007/s00784-023-04902-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVES To investigate the influence of different mucosal phenotypes on peri-implant marginal bone loss. MATERIALS AND METHODS The search was conducted in five databases including PubMed, Embase, Cochrane, Scopus, and Web of Science (until 1st Sept. 2022) to identify relevant clinical studies. Potentially relevant journals were also manually searched. Two reviewers independently screened studies, extracted data, and evaluated the quality of the studies. Prospective clinical trials and observational studies investigating peri-implant marginal bone loss in thick-mucosa and thin-mucosa groups were included. RESULTS A total of 14 studies were included in this systematic review. Results of the meta-analysis revealed a weighted mean difference of 0.38 mm for marginal bone loss between thick- and thin-mucosa groups (95% confidence interval = 0.02-0.74, P = 0.002). Statistical significance existed in short-term (follow-up ≤ 1 year) data (WMD = 0.41 mm, 95%CI = 0.11-0.70, P = 0.007), but not in long term (follow-up ≥ 3 y) data (WMD = 0.17 mm, 95%CI = - 0.02-0.36, P = 0.07). Survival rate revealed no difference between thick and thin mucosa groups. In subgroup analyses, a positive association between thick mucosa and less marginal bone loss was found in the non-submerged group, cement-retained group, and bone-level group. CONCLUSIONS A significantly less marginal bone loss occurred in implants with thick mucosa than with thin mucosa in the short term, whereas no significant difference was observed in the long term. Due to the substantial heterogeneity and limited long-term data, further high-quality evidence is warranted to confirm the results. CLINICAL RELEVANCE Clinicians are advised to use caution in treating patients with thin mucosa and adhere closely to indications and protocols to minimize marginal bone loss.
Collapse
Affiliation(s)
- Pengzhou Tang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ziyan Meng
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Xiao Song
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Jiaxin Huang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Lu Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| |
Collapse
|
28
|
Potential Impact of Prosthetic Biomaterials on the Periodontium: A Comprehensive Review. Molecules 2023; 28:molecules28031075. [PMID: 36770741 PMCID: PMC9921997 DOI: 10.3390/molecules28031075] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The success of a prosthetic treatment is closely related to the periodontal health of the individual. The aim of this article was to review and present the importance of prosthetic restorative materials on the condition of the periodontium, the changes that occur in the composition of the subgingival microbiota and the levels of inflammatory markers in gingival crevicular fluid. Articles on the influence of different prosthetic restorative materials on subgingival microbiota and proinflammatory cytokines were searched for using the keywords "prosthetic biomaterials", "fixed prosthesis", "periodontal health", "subgingival microbiota", "periodontal biomarkers" and "gingival crevicular fluid" in PubMed/Medline, Science Direct, Scopus and Google Scholar. The type of material used for prosthesis fabrication together with poor marginal and internal fit can result in changes in the composition of the subgingival microbiota, as well as increased accumulation and retention of dentobacterial plaque, thus favoring the development of periodontal disease and prosthetic treatment failure. Biological markers have helped to understand the inflammatory response of different prosthetic materials on periodontal tissues with the main purpose of improving their clinical application in patients who need them. Metal-free ceramic prostheses induce a lower inflammatory response regardless of the fabrication method; however, the use of CAD/CAM systems is recommended for their fabrication. In addition, it is presumed that metal-ceramic prostheses cause changes in the composition of the subgingival microbiota producing a more dysbiotic biofilm with a higher prevalence of periodontopathogenic bacteria, which may further favor periodontal deterioration.
Collapse
|
29
|
Hadzik J, Kubasiewicz-Ross P, Gębarowski T, Waloszczyk N, Maciej A, Stolarczyk A, Gedrange T, Dominiak M, Szajna E, Simka W. An Experimental Anodized Titanium Surface for Transgingival Dental Implant Elements-Preliminary Report. J Funct Biomater 2023; 14:jfb14010034. [PMID: 36662081 PMCID: PMC9861871 DOI: 10.3390/jfb14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
The characteristics such as microtopography, physical and chemical properties influence the behavior of an implant in a soft tissue. Anodization-as a potent method of titanium alloy surface modification-of the transgingival abutment or healing screw, has achieved some improvement. One of the possible surface treatment method is low-pressure radiofrequency oxygen plasma treatment. The aim of the study was to evaluate the chemical properties and cytocompatibility of the experimental surface. Titanium discs made of grade-23 titanium alloy (Ti-6Al-4V) anodized (A sample) with different voltage parameters (28, 67, 78, and 98 V) were included in the study. Half of the samples regarded as the "S" group were additionally treated with low-pressure radiofrequency oxygen plasma treatment. The surfaces were characterized using scanning electron microscopy, X-ray spectroscopy and Raman spectroscopy, and electrochemically investigated via a corrosion test. Furthermore, two cell lines were used, including the CHO-compatible reference line and a primary human fibroblast line for the MTT assay; direct (contact) cytotoxicity of the materials was tested with the cells, and the growth of fibroblasts on the surfaces of the different materials was tested. The morphology of the "S"-treated samples did not differ from the morphology of only-anodized samples. However, the oxygen concentration on the surface in that group slightly increased by about 1% as a result of post-trial treatment. The highest corrosion resistance was observed for both A-78 V and S-78 V samples. The cytotoxicity assay revealed no changes in cell morphology or vitality. The MTT test proved comparable culture viability among all groups; however, the "S" samples showed statistically significantly higher fibroblast proliferation and adhesion scores compared to the "A" samples. Through the in vitro study, the low-pressure radiofrequency oxygen plasma treatment of the anodized Ti-6Al-4V alloy presented itself as an auspicious option in the field of transgingival element surface modification of implants.
Collapse
Affiliation(s)
- Jakub Hadzik
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Paweł Kubasiewicz-Ross
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
- Correspondence: (P.K.-R.); (W.S.)
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Artur Maciej
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | | | - Tomasz Gedrange
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
- Department of Orthodontics, TU Dresden, 01069 Dresden, Germany
| | - Marzena Dominiak
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Ernest Szajna
- WEA Techlab sp. z o.o., 41-301 Dąbrowa Górnicza, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (P.K.-R.); (W.S.)
| |
Collapse
|
30
|
Lee SJ, Kim EH, Lee DK, Song IS, Jun SH. The effect of loading time on marginal bone change of implants immediately placed after extraction: a retrospective study. Int J Implant Dent 2022; 8:44. [PMID: 36194298 PMCID: PMC9532494 DOI: 10.1186/s40729-022-00442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study is to compare and analyze the treatment outcomes between two groups which are both immediately placed implant cases, one is immediate loading, and the other is conventional loading group. METHODS Medical records of the patients who underwent implant treatment which were immediately placed after tooth extraction were analyzed. Demographic data were collected and by using periapical or panoramic radiographic image, marginal bone level and distant crestal bone level were measured. Marginal bone change over time was analyzed and compared between immediate loading group and conventional loading group. RESULTS A total of 71 patients, 112 immediately placed implants after tooth extraction were initially involved. Measuring was done with implants which had not failed (81). 10 implants were had failed and removed. The others were excluded because of follow-up loss, absence of radiographic image, etc. Demographic data were collected, and measured values were averaged at each follow-up and showed in linear graphs. CONCLUSIONS In case of immediate implantation of dental implant after extraction, loading time could affect marginal bone level or biological width of the implant. Immediate loading group showed 0.92 mm (mean value) more bone loss compared to conventional loading group at bone-implant contact points 24 months after implantation. At distant crestal points, there was no noticeable difference in bone change pattern between two groups.
Collapse
Affiliation(s)
- Sung-Jae Lee
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, Republic of Korea
| | - Euy-Hyun Kim
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, Republic of Korea
| | - Dong-Keon Lee
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, Republic of Korea
| | - In-Seok Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, Republic of Korea
| | - Sang-Ho Jun
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Di Fiore A, Montagner M, Sivolella S, Stellini E, Yilmaz B, Brunello G. Peri-Implant Bone Loss and Overload: A Systematic Review Focusing on Occlusal Analysis through Digital and Analogic Methods. J Clin Med 2022; 11:jcm11164812. [PMID: 36013048 PMCID: PMC9409652 DOI: 10.3390/jcm11164812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The present review aimed to assess the possible relationship between occlusal overload and peri-implant bone loss. In accordance with the PRISMA guidelines, the MEDLINE, Scopus, and Cochrane databases were searched from January 1985 up to and including December 2021. The search strategy applied was: (dental OR oral) AND implants AND (overload OR excessive load OR occlusal wear) AND (bone loss OR peri-implantitis OR failure). Clinical studies that reported quantitative analysis of occlusal loads through digital contacts and/or occlusal wear were included. The studies were screened for eligibility by two independent reviewers. The quality of the included studies was assessed using the Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool. In total, 492 studies were identified in the search during the initial screening. Of those, 84 were subjected to full-text evaluation, and 7 fulfilled the inclusion criteria (4 cohort studies, 2 cross-sectional, and 1 case-control). Only one study used a digital device to assess excessive occlusal forces. Four out of seven studies reported a positive correlation between the overload and the crestal bone loss. All of the included studies had moderate to serious overall risk of bias, according to the ROBINS-I tool. In conclusion, the reported data relating the occlusal analysis to the peri-implant bone level seem to reveal an association, which must be further investigated using new digital tools that can help to standardize the methodology.
Collapse
Affiliation(s)
- Adolfo Di Fiore
- Department of Neurosciences, School of Dentistry, University of Padova, 35128 Padova, Italy
- Correspondence:
| | | | - Stefano Sivolella
- Department of Neurosciences, School of Dentistry, University of Padova, 35128 Padova, Italy
| | - Edoardo Stellini
- Department of Neurosciences, School of Dentistry, University of Padova, 35128 Padova, Italy
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Giulia Brunello
- Department of Neurosciences, School of Dentistry, University of Padova, 35128 Padova, Italy
- Department of Oral Surgery, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Zheng Z, Ao X, Xie P, Zheng X, Lee K, Chen W. Nonthermal Plasma Brush Treatment on Titanium and Zirconia To Improve Periabutment Epithelium Formation. ACS Biomater Sci Eng 2021; 7:5039-5047. [PMID: 34637254 DOI: 10.1021/acsbiomaterials.1c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The peri-implant soft tissue with inferior adhesion takes a long healing period to form, which is undesirable for the reaction around the peri-implant soft tissues. The aim of this study is to improve the physicochemical properties of titanium (Ti) and zirconia (ZrO2) implant abutments and shorten the formation period of periabutment epithelium tissue. A nonthermal atmospheric plasma brush (NTAPB, N) was employed for Ti and ZrO2 activation. The surface topographies, roughness, crystallinity, wettability, and chemical elements of the abutment materials were examined. The epithelial cell behavior analysis and tissue remodeling of the periabutment epithelial tissue were performed in vitro and in vivo. N-Ti and N-ZrO2 had a similar good surface wettability, with a 65 and 70% increase in oxygen content and a 70 and 75% decrease in carbon content, respectively. Both N-Ti and N-ZrO2 showed excellent adhesion, spread, and proliferation of epithelial cells in vitro, with improved adhesion molecule expression levels compared to untreated samples. N-Ti and N-ZrO2 abutments were placed in the implantation sites of rats. From week 2 to week 6 after implantation, N-Ti and N-ZrO2 had similar periabutment epithelium tissue formation, and both had increased plectin-positive and laminin γ2-positive cell numbers compared to Ti and ZrO2. The NTAPB shows promising abutment modification abilities. It promotes the expression levels of adhesion molecules and the epithelial cell performance, which later leads to a quicker formation and remodeling of the important periabutment epithelial tissue.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kevin Lee
- Department of Stomatology, Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
34
|
Antibacterial Effects of Modified Implant Abutment Surfaces for the Prevention of Peri-Implantitis-A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10111350. [PMID: 34827288 PMCID: PMC8615005 DOI: 10.3390/antibiotics10111350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to systematically review studies investigating antibacterial implant abutment surfaces or coatings, which may suppress bacterial growth to prevent plaque-induced peri-implant inflammatory disease. Data were collected after identification of case, assay/laboratory procedure, predicate/reference standard and outcome (CAPO). Seven hundred and twenty (720) records were identified through data base searching. After screening nine publications fulfilled inclusion criteria and were included. The following surfaces/coatings showed antibacterial properties: Electrochemical surface modification of titanium by the anodic spark deposition technique; doxycycline coating by cathodic polarization; silver coating by DC plasma sputter; titanium nitride; zirconium nitride and microwave assistant nano silver coating. Since the current state of the literature is rather descriptive, a meta-analysis was not performed. While several abutment coatings showed to have antibacterial capacity, some of them also influenced the behavior of investigated human cells. None of the studies investigated the long-term effect of surface modifications. Since surface changes are the main contributing factor in the development of antibacterial effects, the biodegradation behavior must be characterized to understand its durability. To date there is no effective structure, material or strategy to avoid peri-implant inflammation used as clinical routine. Furthermore, clinical studies are scarce.
Collapse
|