1
|
Garnås E. Saturated fat in an evolutionary context. Lipids Health Dis 2025; 24:28. [PMID: 39875911 PMCID: PMC11773866 DOI: 10.1186/s12944-024-02399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption. In the present paper, the intake of saturated fat in ancestral and contemporary dietary settings is discussed. It is shown that while saturated fatty acids have been consumed by human ancestors across time and space, they do not feature dominantly in the diets of hunter-gatherers or projected nutritional inputs of genetic accommodation. A higher intake of high-fat dairy and meat products produces a divergent fatty acid profile that can increase the risk of cardiovascular and inflammatory disease and decrease the overall satiating-, antioxidant-, and nutrient capacity of the diet. By prioritizing fiber-rich and micronutrient-dense foods, as well as items with a higher proportion of unsaturated fatty acids, and in particular the long-chain polyunsaturated omega-3 fatty acids, a nutritional profile that is better aligned with that of wild and natural diets is achieved. This would help prevent the burdening diseases of civilization, including heart disease, cancer, and neurodegenerative conditions. Saturated fat is a natural part of a balanced diet; however, caution is warranted in a food environment that differs markedly from the one to which we are adapted.
Collapse
Affiliation(s)
- Eirik Garnås
- Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.
| |
Collapse
|
2
|
Nutrition, Food and Diet in Health and Longevity: We Eat What We Are. Nutrients 2022; 14:nu14245376. [PMID: 36558535 PMCID: PMC9785741 DOI: 10.3390/nu14245376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nutrition generally refers to the macro- and micro-nutrients essential for survival, but we do not simply eat nutrition. Instead, we eat animal- and plant-based foods without always being conscious of its nutritional value. Furthermore, various cultural factors influence and shape our taste, preferences, taboos and practices towards preparing and consuming food as a meal and diet. Biogerontological understanding of ageing has identified food as one of the three foundational pillars of health and survival. Here we address the issues of nutrition, food and diet by analyzing the biological importance of macro- and micro-nutrients including hormetins, discussing the health claims for various types of food, and by reviewing the general principles of healthy dietary patterns, including meal timing, caloric restriction, and intermittent fasting. We also present our views about the need for refining our approaches and strategies for future research on nutrition, food and diet by incorporating the molecular, physiological, cultural and personal aspects of this crucial pillar of health, healthy ageing and longevity.
Collapse
|
3
|
Paans O, Ehlen B. Action-Shapers and Their Neuro-Immunological Foundations. Front Psychol 2022; 13:917876. [PMID: 35910998 PMCID: PMC9336682 DOI: 10.3389/fpsyg.2022.917876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022] Open
Abstract
Not all our intentions translate into actions, as our capacity to act may be influenced by a variety of mental and biochemical factors. In this article, we present a comprehensive account of how neuro-immunological processes affect our intentional abilities and our capacity to act. We do so by extending the theory of thought-shapers (TTS) through the notion of action-shapers and combining this theory with the essential embodiment thesis (EE). This thesis about the mind-body relation says that human minds are necessarily and completely embodied. Action-shapers dynamically constitute the action-space of individuals, affecting their capacity to take action or to select one course of action over another. We highlight the effects and interactions of neuro-immunological effective processes in the body to demonstrate how they shape the action-space. In this article, we consider neuro-immunological effective processes that influence the gut-brain axis, chronic stress, high levels of sugar intake, the amygdala and the effects of prolonged stress. We investigate the effects of these processes on the perception and on the capacity to form intentions and act on them. We conclude the paper by providing a concise account of action-shapers, in which we attempt to summarize the line of argumentation and provide suggestions for further research.
Collapse
|
4
|
Filippi M, Krähenmann R, Fissler P. The Link Between Energy-Related Sensations and Metabolism: Implications for Treating Fatigue. Front Psychol 2022; 13:920556. [PMID: 35800955 PMCID: PMC9255916 DOI: 10.3389/fpsyg.2022.920556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Energy-related sensations include sensation of energy and fatigue as well as subjective energizability and fatigability. First, we introduce interdisciplinary useful definitions of all constructs and review findings regarding the question of whether sensations of fatigue and energy are two separate constructs or two ends of a single dimension. Second, we describe different components of the bodily energy metabolism system (e.g., mitochondria; autonomic nervous system). Third, we review the link between sensation of fatigue and different components of energy metabolism. Finally, we present an overview of different treatments shown to affect both energy-related sensations and metabolism before outlining future research perspectives.
Collapse
Affiliation(s)
- Marco Filippi
- Psychiatric Services Thurgau, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University, Salzburg, Austria
| | - Rainer Krähenmann
- Psychiatric Services Thurgau, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University, Salzburg, Austria
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland
- *Correspondence: Rainer Krähenmann,
| | - Patrick Fissler
- Psychiatric Services Thurgau, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Prvulovic MR, Milanovic DJ, Vujovic PZ, Jovic MS, Kanazir SD, Todorovic ST, Mladenovic AN. Late-Onset Calorie Restriction Worsens Cognitive Performances and Increases Frailty Level in Female Wistar Rats. J Gerontol A Biol Sci Med Sci 2021; 77:947-955. [PMID: 34957511 DOI: 10.1093/gerona/glab353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
The current study aims to determine the potential benefits of calorie restriction (CR), one of the most promising paradigms for life span and healthspan extension, on cognitive performances in female Wistar rats during aging. As a measure of a healthspan, we evaluated the effects of different onset and duration of CR on frailty level. Female Wistar rats were exposed to either ad libitum (AL) or CR (60% of AL daily intake) food intake during aging. Two different CR protocols were used, life-long CR with an early-onset that started at the adult stage (6 months) and 3-month-long CR, started at the middle (15 months) and late-middle (21 months) age, thus defined as a late-onset CR. The effects of CR were evaluated using open-field, Y-maze, and novel object recognition tests. We broadened 2 tools for frailty assessment currently in use for experimental animals, and in alignment with our previous study, we created a physical-cognitive frailty tool that combines both physical and cognitive performances. Our results clearly showed that CR effects are highly dependent on CR duration and onset. While a life-long restriction with an early-onset has been proven as protective and beneficial, short-term restriction introduced at late age significantly worsens an animal's behavior and frailty. These results complement our previous study conducted in males and contribute to the understanding of sex differences in a response to CR during aging.
Collapse
Affiliation(s)
- Milica R Prvulovic
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Desanka J Milanovic
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Predrag Z Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milena S Jovic
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Selma D Kanazir
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Smilja T Todorovic
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Mladenovic
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Hoong CWS, Chua MWJ. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 2021; 162:6226811. [PMID: 33857309 DOI: 10.1210/endocr/bqab079] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors induce glycosuria, reduce insulin levels, and promote fatty acid oxidation and ketogenesis. By promoting a nutrient deprivation state, SGLT2 inhibitors upregulate the energy deprivation sensors AMPK and SIRT1, inhibit the nutrient sensors mTOR and insulin/IGF1, and modulate the closely linked hypoxia-inducible factor (HIF)-2α/HIF-1α pathways. Phosphorylation of AMPK and upregulation of adiponectin and PPAR-α favor a reversal of the metabolic syndrome which have been linked to suppression of chronic inflammation. Downregulation of insulin/IGF1 pathways and mTOR signaling from a reduction in glucose and circulating amino acids promote cellular repair mechanisms, including autophagy and proteostasis which confer cellular stress resistance and attenuate cellular senescence. SIRT1, another energy sensor activated by NAD+ in nutrient-deficient states, is reciprocally activated by AMPK, and can deacetylate and activate transcription factors, such as PCG-1α, mitochondrial transcription factor A (TFAM), and nuclear factor E2-related factor (NRF)-2, that regulate mitochondrial biogenesis. FOXO3 transcription factor which target genes in stress resistance, is also activated by AMPK and SIRT1. Modulation of these pathways by SGLT2 inhibitors have been shown to alleviate metabolic diseases, attenuate vascular inflammation and arterial stiffness, improve mitochondrial function and reduce oxidative stress-induced tissue damage. Compared with other calorie restriction mimetics such as metformin, rapamycin, resveratrol, and NAD+ precursors, SGLT2 inhibitors appear to be the most promising in the treatment of aging-related diseases, due to their regulation of multiple longevity pathways that closely resembles that achieved by calorie restriction and their established efficacy in reducing cardiovascular events and all-cause mortality. Evidence is compelling for the role of SGLT2 inhibitors as a calorie restriction mimetic in anti-aging therapeutics.
Collapse
Affiliation(s)
- Caroline W S Hoong
- Division of Endocrinology, Department of General Medicine, Woodlands Health Campus, National Healthcare Group Singapore, Woodlands Health Campus Singapore, 768024, Singapore
| | - Marvin W J Chua
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, SingHealth Group Singapore, Sengkang General Hospital Singapore, 544886, Singapore
| |
Collapse
|
7
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Repeated exposure to challenging environmental conditions influences telomere dynamics across adult life as predicted by changes in mortality risk. FASEB J 2021; 35:e21743. [PMID: 34192361 DOI: 10.1096/fj.202100556r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
The effects of stress exposure are likely to vary depending on life-stage and stressor. While it has been postulated that mild stress exposure may have beneficial effects, the duration of such effects and the underlying mechanisms are unclear. While the long-term effects of early-life stress are relatively well studied, we know much less about the effects of exposure in adulthood since the early- and adult-life environments are often similar. We previously reported that repeated experimental exposure to a relatively mild stressor in female zebra finches, first experienced in young adulthood, initially had no effect on mortality risk, reduced mortality in middle age, but the apparently beneficial effects disappeared in old age. We show here that this is underpinned by differences between the control and stress-exposed group in the pattern of telomere change, with stress-exposed birds showing reduced telomere loss in middle adulthood. We thereby provide novel experimental evidence that telomere dynamics play a key role linking stress resilience and aging.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Calabrese EJ, Agathokleous E. Hormesis: Transforming disciplines that rely on the dose response. IUBMB Life 2021; 74:8-23. [PMID: 34297887 DOI: 10.1002/iub.2529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
This article tells the story of hormesis from its conceptual and experimental origins, its dismissal by the scientific and medical communities in the first half of the 20th century, and its rediscovery over the past several decades to be a fundamental evolutionary adaptive strategy. The upregulation of hormetic adaptive mechanisms has the capacity to decelerate the onset and reduce the severity of a broad spectrum of common age-related health, behavioral, and performance decrements and debilitating diseases, thereby significantly enhancing the human health span. Incorporation of hormetic-based lifestyle options within the human population would have profoundly positive impacts on the public health, significantly reducing health care costs.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, Massachusetts, USA
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, China
| |
Collapse
|
9
|
Berry A, Collacchi B, Masella R, Varì R, Cirulli F. Curcuma Longa, the "Golden Spice" to Counteract Neuroinflammaging and Cognitive Decline-What Have We Learned and What Needs to Be Done. Nutrients 2021; 13:1519. [PMID: 33946356 PMCID: PMC8145550 DOI: 10.3390/nu13051519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the global increase in lifespan, the proportion of people showing cognitive impairment is expected to grow exponentially. As target-specific drugs capable of tackling dementia are lagging behind, the focus of preclinical and clinical research has recently shifted towards natural products. Curcumin, one of the best investigated botanical constituents in the biomedical literature, has been receiving increased interest due to its unique molecular structure, which targets inflammatory and antioxidant pathways. These pathways have been shown to be critical for neurodegenerative disorders such as Alzheimer's disease and more in general for cognitive decline. Despite the substantial preclinical literature on the potential biomedical effects of curcumin, its relatively low bioavailability, poor water solubility and rapid metabolism/excretion have hampered clinical trials, resulting in mixed and inconclusive findings. In this review, we highlight current knowledge on the potential effects of this natural compound on cognition. Furthermore, we focus on new strategies to overcome current limitations in its use and improve its efficacy, with attention also on gender-driven differences.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Masella
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Rosaria Varì
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.M.); (R.V.)
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
10
|
Sholl J. Can aging research generate a theory of health? HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:45. [PMID: 33768353 DOI: 10.1007/s40656-021-00402-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/12/2021] [Indexed: 05/21/2023]
Abstract
While aging research and policy aim to promote 'health' at all ages, there remains no convincing explanation of what this 'health' is. In this paper, I investigate whether we can find, implicit within the sciences of aging, a way to know what health is and how to measure it, i.e. a theory of health. To answer this, I start from scientific descriptions of aging and its modulators and then try to develop some generalizations about 'health' implicit within this research. After discussing some of the core aspects of aging and the ways in which certain models describe spatial and temporal features specific to both aging and healthy phenotypes, I then extract, explicate, and evaluate one potential construct of health in these models. This suggests a theory of health based on the landscape of optimized phenotypic trajectories. I conclude by considering why it matters for more candidate theories to be proposed and evaluated by philosophers and scientists alike.
Collapse
Affiliation(s)
- Jonathan Sholl
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000, Bordeaux, France.
| |
Collapse
|
11
|
Calabrese EJ. Hormesis Mediates Acquired Resilience: Using Plant-Derived Chemicals to Enhance Health. Annu Rev Food Sci Technol 2021; 12:355-381. [DOI: 10.1146/annurev-food-062420-124437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, Ginkgo biloba, resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.
Collapse
Affiliation(s)
- Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
12
|
Abstract
Abstract
Neuropsychiatric disorders, including depression contribute significantly to global disability and possess high social and health burden. Management is dominated by pharmacotherapy and psychotherapy; nevertheless, such treatments prevent or treat less than half of the patients, suggesting that alternative approaches are required. Emerging data suggest that diet may be an adjustable risk factor for psychiatric disorders. Caloric restriction (CR) possesses protective effects in almost all organs including the brain. However, the precise molecular pathways of these effects remain uncertain. In this review, we will discuss the putative neurobiological mechanisms of CR on the brain. The article will address also the molecular basis of the antidepressant effects of CR, primarily including ghrelin signaling, CREB neurotropic effects and ketone bodies production. Then we will highlight the probable effect of CR on the neuroinflammation, which emerges as a key pathogenetic factor for the majority of neuropsychiatric disorders. Finally, we discuss the so called caloric restriction mimetics, compounds that reproduce properties of CR. Further research will be required to verify the safety and efficacy of CR before a general approval can be proposed to introduce it and its mimetics in clinical practice for the treatment of neuropsychiatric disorders.
Collapse
|
13
|
Zehra A, Hashmi MZ, Khan AM, Malik T, Abbas Z. Biphasic Dose-Response Induced by PCB150 and PCB180 in HeLa Cells and Potential Molecular Mechanisms. Dose Response 2020; 18:1559325820910040. [PMID: 32206047 PMCID: PMC7076582 DOI: 10.1177/1559325820910040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
The polychlorinated biphenyls (PCBs) are persistent and their dose-dependent toxicities studies are not well-established. In this study, cytotoxic and genotoxic effects of PCB150 and PCB180 in HeLa cells were studied. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that the cell proliferation was stimulated at low doses (10−3 and 10−2 µg/mL for 12, 24, 48, and 72 hours) and inhibited at high doses (10 and 15 µg/mL for 24, 48, and 72 hours) for both PCBs. Increase in reactive oxygen species formation was observed in the HeLa cells in a time- and dose-dependent manner. Malondialdehyde and superoxide dismutase showed increased levels at high concentrations of PCBs over the time. Glutathione peroxidase expression was downregulated after PCBs exposure, suggested that both PCB congeners may attributable to cytotoxicity. Comet assay elicited a significant increase in genotoxicity at high concentrations of PCBs as compared to low concentrations indicating genotoxic effects. PCB150 and PCB180 showed decrease in the activity of extracellular signal–regulated kinase 1/2 and c-Jun N-terminal kinase at high concentrations after 12 and 48 hours. These findings may contribute to understanding the mechanism of PCBs-induced toxicity, thereby improving the risk assessment of toxic compounds in humans.
Collapse
Affiliation(s)
- Ainy Zehra
- Department of Zoology, University of Punjab, Lahore, Pakistan
| | | | | | - Tariq Malik
- Department of Pharmacy, Islamia University Bahawalpur, Pakistan
| | | |
Collapse
|
14
|
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 2020; 324:113117. [DOI: 10.1016/j.expneurol.2019.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
15
|
Sahagun E, Ward LM, Kinzig KP. Attenuation of stress-induced weight loss with a ketogenic diet. Physiol Behav 2019; 212:112654. [DOI: 10.1016/j.physbeh.2019.112654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
|
16
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics (Basel) 2019; 9:diagnostics9030091. [PMID: 31394725 PMCID: PMC6787585 DOI: 10.3390/diagnostics9030091] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology that is recognized by the World Health Organization (WHO) and the United States Center for Disease Control and Prevention (US CDC) as a disorder of the brain. The disease predominantly affects adults, with a peak age of onset of between 20 and 45 years with a female to male ratio of 3:1. Although the clinical features of the disease have been well established within diagnostic criteria, the diagnosis of ME/CFS is still of exclusion, meaning that other medical conditions must be ruled out. The pathophysiological mechanisms are unclear but the neuro-immuno-endocrinological pattern of CFS patients gleaned from various studies indicates that these three pillars may be the key point to understand the complexity of the disease. At the moment, there are no specific pharmacological therapies to treat the disease, but several studies' aims and therapeutic approaches have been described in order to benefit patients' prognosis, symptomatology relief, and the recovery of pre-existing function. This review presents a pathophysiological approach to understanding the essential concepts of ME/CFS, with an emphasis on the population, clinical, and genetic concepts associated with ME/CFS.
Collapse
|
17
|
Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. MEDCHEMCOMM 2019; 10:867-879. [PMID: 31303984 PMCID: PMC6596131 DOI: 10.1039/c9md00099b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 7599
| | - Lukasz Ciesla
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 1828
| |
Collapse
|
18
|
Hoizumi M, Sato T, Shimizu T, Kato S, Tsukiyama K, Narita T, Fujita H, Morii T, Sassa MH, Seino Y, Yamada Y. Inhibition of GIP signaling extends lifespan without caloric restriction. Biochem Biophys Res Commun 2019; 513:974-982. [PMID: 31003779 DOI: 10.1016/j.bbrc.2019.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/02/2023]
Abstract
AIMS/INTRODUCTION Caloric restriction (CR) promotes longevity and exerts anti-aging effects by increasing Sirtuin production and activation. Gastric inhibitory polypeptide (GIP), a gastrointestinal peptide hormone, exerts various effects on pancreatic β-cells and extra-pancreatic tissues. GIP promotes glucose-dependent augmentation of insulin secretion and uptake of nutrients into the adipose tissue. MATERIALS AND METHODS Gipr-/- and Gipr+/+ mice were used for lifespan analysis, behavior experiments and gene expression of adipose tissue and muscles. 3T3-L1 differentiated adipocytes were used for Sirt1 and Nampt expression followed by treatment with GIP and α-lipoic acid. RESULTS We observed that GIP receptor-knockout (Gipr-/-) mice fed normal diet showed an extended lifespan, increased exploratory and decreased anxiety-based behaviors, which are characteristic behavioral changes under CR. Moreover, Gipr-/- mice showed increased Sirt1 and Nampt expression in the adipose tissue. GIP suppressed α-lipoic acid-induced Sirt1 expression and activity in differentiated adipocytes. CONCLUSIONS Although maintenance of CR is difficult, food intake and muscle endurance of Gipr-/- mice were similar to those of wild-type mice. Inhibition of GIP signaling may be a novel strategy to extend the lifespan of diabetic patients.
Collapse
Affiliation(s)
- Manabu Hoizumi
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Takehiro Sato
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Tatsunori Shimizu
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Shunsuke Kato
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Katsushi Tsukiyama
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Takuma Narita
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Hiroki Fujita
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Tsukasa Morii
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | - Mariko Harada Sassa
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Japan
| | - Yutaka Seino
- Kansai Electric Power Medical Research Institute, Osaka, Japan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan.
| |
Collapse
|
19
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Viallon M, Leporq B, Drinda S, Wilhelmi de Toledo F, Galusca B, Ratiney H, Croisille P. Chemical-Shift-Encoded Magnetic Resonance Imaging and Spectroscopy to Reveal Immediate and Long-Term Multi-Organs Composition Changes of a 14-Days Periodic Fasting Intervention: A Technological and Case Report. Front Nutr 2019; 6:5. [PMID: 30881957 PMCID: PMC6407435 DOI: 10.3389/fnut.2019.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: The aim of this study was to investigate the feasibility of measuring the effects of a 14-day Periodic Fasting (PF) intervention (<200 cal) on multi-organs of primary interest (liver, visceral/subcutaneous/bone marrow fat, muscle) using non-invasive advanced magnetic resonance spectroscopic (MRS) and imaging (MRI) methods. Methods: One subject participated in a 14-day PF under daily supervision of nurses and specialized physicians, ingesting a highly reduced intake: 200 Kcal/day coupled with active walking and drinking at least 3 L of liquids/day. The fasting was preceded by a 7-day pre-fasting vegetarian period and followed by 14 days of stepwise reintroduction of food. The longitudinal study collected imaging and biological data before the fast, at peak fasting, and 7 days, 1 month, and 4 months after re-feeding. Body fat mass in the trunk, abdomen, and thigh, liver and muscle mass, were respectively computed using advanced MRI and MRS signal modeling. Fat fraction, MRI relativity index T2* and susceptibility (Chi), as well as Fatty acid composition, were calculated at all-time points. Results: A decrease in body weight (BW: −9.5%), quadriceps muscle volume (−3.2%), Subcutaneous and Visceral Adipose Tissue (SAT −34.4%; VAT −20.8%), liver fat fraction (PDFF = 1.4 vs. 2.6 % at baseline) but increase in Spine Bone Marrow adipose tissue (BMAT) associated with a 10% increase in global adiposity fraction (PDFF: 54.4 vs. 50.9%) was observed. Femoral BMAT showed minimal changes compared to spinal level, with a slight decrease (−3.1%). Interestingly, fatty acid (FA) pattern changes differed depending on the AT locations. In muscle, all lipids increased after fasting, with a greater increase of intramyocellular lipid (IMCL: from 2.7 to 6.3 mmol/kg) after fasting compared to extramyocellular lipid (EMCL: from 6.2 to 9.5 mmol/kg) as well as Carnosine (6.9 to 8.1 mmol/kg). Heterogenous and reverse changes were also observed after re-feeding depending on the organ. Conclusion: These results suggest that investigating the effects of a 14-day PF intervention using advanced MRI and MRS is feasible. Quantitative MR indexes are a crucial adjunct to further understanding the effective changes in multiple crucial organs especially liver, spin, and muscle, differences between adipose tissue composition and the interplay that occurs during periodic fasting.
Collapse
Affiliation(s)
- Magalie Viallon
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Benjamin Leporq
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Stephan Drinda
- Klinik St. Katharinental, Diessenhofen, Switzerland.,Buchinger Wilhelmi Clinic, Uberlingen, Germany
| | | | - Bogdan Galusca
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA, Saint-Étienne, France
| | - Helene Ratiney
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Pierre Croisille
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| |
Collapse
|
21
|
Panossian A, Seo EJ, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:257-284. [PMID: 30466987 DOI: 10.1016/j.phymed.2018.09.204] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. AIM OF THE STUDY The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola rosea, Eleutherococcus senticosus, Withania somnifera, Rhaponticum carthamoides, and Bryonia alba. MATERIALS AND METHODS To investigate the underlying molecular mechanisms of adaptogens, we conducted RNA sequencing to profile gene expression alterations in T98G neuroglia cells upon treatment of adaptogens and analyzed the relevance of deregulated genes to adaptive stress-response signaling pathways using in silico pathway analysis software. RESULTS AND DISCUSSION At least 88 of the 3516 genes regulated by adaptogens were closely associated with adaptive stress response and adaptive stress-response signaling pathways (ASRSPs), including neuronal signaling related to corticotropin-releasing hormone, cAMP-mediated, protein kinase A, and CREB; pathways related to signaling involving CXCR4, melatonin, nitric oxide synthase, GP6, Gαs, MAPK, neuroinflammation, neuropathic pain, opioids, renin-angiotensin, AMPK, calcium, and synapses; and pathways associated with dendritic cell maturation and G-coupled protein receptor-mediated nutrient sensing in enteroendocrine cells. All samples tested showed significant effects on the expression of genes encoding neurohormones CRH, GNRH, UCN, G-protein-coupled and other transmembrane receptors TLR9, PRLR, CHRNE, GP1BA, PLXNA4, a ligand-dependent nuclear receptor RORA, transmembrane channels, transcription regulators FOS, FOXO6, SCX, STAT5A, ZFPM2, ZNF396, ZNF467, protein kinases MAPK10, MAPK13, MERTK, FLT1, PRKCH, ROS1, TTN), phosphatases PTPRD, PTPRR, peptidases, metabolic enzymes, a chaperone (HSPA6), and other proteins, all of which modulate numerous life processes, playing key roles in several canonical pathways involved in defense response and regulation of homeostasis in organisms. It is for the first time we report that the molecular mechanism of actions of melatonin and plant adaptogens are alike, all adaptogens tested activated the melatonin signaling pathway by acting through two G-protein-coupled membrane receptors MT1 and MT2 and upregulation of the ligand-specific nuclear receptor RORA, which plays a role in intellectual disability, neurological disorders, retinopathy, hypertension, dyslipidemia, and cancer, which are common in aging. Furthermore, melatonin activated adaptive signaling pathways and upregulated expression of UCN, GNRH1, TLR9, GP1BA, PLXNA4, CHRM4, GPR19, VIPR2, RORA, STAT5A, ZFPM2, ZNF396, FLT1, MAPK10, MERTK, PRKCH, and TTN, which were commonly regulated by all adaptogens tested. We conclude that melatonin is an adaptation hormone playing an important role in regulation of homeostasis. Adaptogens presumably worked as eustressors ("stress-vaccines") to activate the cellular adaptive system by inducing the expression of ASRSPs, which then reciprocally protected cells from damage caused by distress. Functional investigation by interactive pathways analysis demonstrated that adaptogens activated ASRSPs associated with stress-induced and aging-related disorders such as chronic inflammation, cardiovascular health, neurodegenerative cognitive impairment, metabolic disorders, and cancer. CONCLUSION This study has elucidated the genome-wide effects of several adaptogenic herbal extracts in brain cells culture. These data highlight the consistent activation of ASRSPs by adaptogens in T98G neuroglia cells. The extracts affected many genes playing key roles in modulation of adaptive homeostasis, indicating their ability to modify gene expression to prevent stress-induced and aging-related disorders. Overall, this study provides a comprehensive look at the molecular mechanisms by which adaptogens exerts stress-protective effects.
Collapse
Affiliation(s)
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
22
|
Shankar K, Pivik RT, Johnson SL, van Ommen B, Demmer E, Murray R. Environmental Forces that Shape Early Development: What We Know and Still Need to Know. Curr Dev Nutr 2018; 2:nzx002. [PMID: 30167570 PMCID: PMC6111237 DOI: 10.3945/cdn.117.001826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
Understanding health requires more than knowledge of the genome. Environmental factors regulate gene function through epigenetics. Collectively, environmental exposures have been called the "exposome." Caregivers are instrumental in shaping exposures in a child's initial years. Maternal dietary patterns, physical activity, degree of weight gain, and body composition while pregnant will influence not only fetal growth, but also the infant's metabolic response to nutrients and energy. Maternal over- or underweight, excess caloric intake, nutrient imbalances, glucose dysregulation, and presence of chronic inflammatory states have been shown to establish risk for many later chronic diseases. During the period from birth to age 3 y, when the infant's metabolic rate is high and synaptogenesis and myelination of the brain are occurring extremely rapidly, the infant is especially prone to damaging effects from nutrient imbalances. During this period, the infant changes from a purely milk-based diet to one including a wide variety of foods. The process, timing, quality, and ultimate dietary pattern acquired are a direct outcome of the caregiver-infant feeding relationship, with potentially lifelong consequences. More research on how meal time interactions shape food acceptance is needed to avoid eating patterns that augment existing disease risk. Traditional clinical trials in nutrition, meant to isolate single factors for study, are inadequate to study the highly interconnected realm of environment-gene interactions in early life. Novel technologies are being used to gather broad exposure data on disparate populations, employing pioneering statistical approaches and correlations applied specifically to the individual, based on their genetic make-up and unique environmental experiences.
Collapse
Affiliation(s)
- Kartik Shankar
- Arkansas Children's Nutrition Research Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - R T Pivik
- Arkansas Children's Nutrition Research Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan L Johnson
- Department of Pediatrics, Section of Nutrition, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Ben van Ommen
- Netherlands Organization of Applied Scientifc Research (TNO), Zeist, Netherlands
| | | | - Robert Murray
- Department of Human Nutrition, Ohio State University, Columbus, OH
| |
Collapse
|
23
|
Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME. Enhancing and Extending Biological Performance and Resilience. Dose Response 2018; 16:1559325818784501. [PMID: 30140178 PMCID: PMC6096685 DOI: 10.1177/1559325818784501] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Edward J. Calabrese
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffrey M. Gidday
- Departments of Ophthalmology, Neuroscience, and Physiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Thomas E. Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - C. Keith Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Wetzker
- Institute for Molecular Cell Biology, University of Jena, Jena, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Regina G. Belz
- Hans-Ruthenberg-Institute, Agroecology Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans E. Bøtker
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Roger P. Simon
- Departments of Medicine and Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
24
|
Santos HO, Macedo RC. Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss. Clin Nutr ESPEN 2018; 24:14-21. [DOI: 10.1016/j.clnesp.2018.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
|
25
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
26
|
Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal 2018; 28:741-759. [PMID: 29212347 DOI: 10.1089/ars.2017.7257] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. CRITICAL ISSUES Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. FUTURE DIRECTIONS Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.
Collapse
Affiliation(s)
- Saeid Golbidi
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| | - Huige Li
- 2 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Ismail Laher
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| |
Collapse
|
27
|
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee S, Mainous AG, Leeuwenburgh C, Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring) 2018; 26:254-268. [PMID: 29086496 PMCID: PMC5783752 DOI: 10.1002/oby.22065] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. This review is focused on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch: the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). RESULTS AND CONCLUSIONS Emerging findings suggest that the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty acid-derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and of the magnitude of negative energy balance during the fasting period.
Collapse
Affiliation(s)
- Stephen D. Anton
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William T. Donahoo
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Stephanie Lee
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Arch G. Mainous
- Department of Health Services Research, Management and Policy; Department of Community Health and Family Medicine, University of Florida, Gainesville, FL 32610
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
28
|
Kim B, Mitrofanis J, Stone J, Johnstone DM. Remote tissue conditioning is neuroprotective against MPTP insult in mice. IBRO Rep 2018; 4:14-17. [PMID: 30135947 PMCID: PMC6084900 DOI: 10.1016/j.ibror.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 01/27/2023] Open
Abstract
Remote tissue conditioning is an emerging neuroprotective strategy. Remote ischemic conditioning and remote photobiomodulation were tested in MPTP mice. Both interventions protected the midbrain against MPTP insult. Combining the interventions yielded no added benefit.
Current treatments for Parkinson’s disease (PD) are primarily symptomatic, leaving a need for treatments that mitigate disease progression. One emerging neuroprotective strategy is remote tissue conditioning, in which mild stress in a peripheral tissue (e.g. a limb) induces protection of life-critical organs such as the brain. We evaluated the potential of two remote tissue conditioning interventions – mild ischemia and photobiomodulation – in protecting the brain against the parkinsonian neurotoxin MPTP. Further, we sought to determine whether combining these two interventions provided any added benefit. Male C57BL/6 mice (n = 10/group) were pre-conditioned with either ischemia of the leg (4 × 5 min cycles of ischemia/reperfusion), or irradiation of the dorsum with 670 nm light (50 mW/cm2, 3 min), or both interventions, immediately prior to receiving two MPTP injections 24 hours apart (50 mg/kg total). Mice were sacrificed 6 days later and brains processed for tyrosine hydroxylase immunohistochemistry. Stereological counts of functional dopaminergic neurons in the substantia nigra pars compacta revealed that both remote ischemia and remote photobiomodulation rescued around half of the neurons that were compromised by MPTP (p < 0.001). Combining the two interventions provided no added benefit, rescuing only 40% of vulnerable neurons (p < 0.01). The present results suggest that remote tissue conditioning, whether ischemia of a limb or photobiomodulation of the torso, induces protection of brain centers critical in PD. The lack of additional benefit when combining these two interventions suggests they may share common mechanistic pathways. Further research is needed to identify these pathways and determine the conditioning doses that yield optimal neuroprotection.
Collapse
Key Words
- CPu, caudate-putamen complex
- LED, light emitting diode
- MPTP
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mouse model
- Neuroprotection
- PBM, photobiomodulation
- PD, Parkinson’s disease
- Parkinson’s disease
- Photobiomodulation
- RIC, remote ischemic conditioning
- Remote ischemic conditioning
- SNc, substantia nigra pars compacta
- TH, tyrosine hydroxylase
Collapse
Affiliation(s)
- Boaz Kim
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia.,Melbourne Medical School, University of Melbourne, VIC 3010, Australia
| | - John Mitrofanis
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Anatomy & Histology, University of Sydney, NSW 2006, Australia
| | - Jonathan Stone
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia
| | - Daniel M Johnstone
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes. RECENT FINDINGS Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition. There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.
Collapse
Affiliation(s)
- Saeid Golbidi
- Faculty of Medicine, Department of Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Andreas Daiber
- Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - M Faadiel Essop
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Faculty of Medicine, Department of Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
30
|
How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis 2017; 3:13. [PMID: 28944077 PMCID: PMC5601424 DOI: 10.1038/s41514-017-0013-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/13/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Hormesis refers to adaptive responses of biological systems to moderate environmental or self-imposed challenges through which the system improves its functionality and/or tolerance to more severe challenges. The past two decades have witnessed an expanding recognition of the concept of hormesis, elucidation of its evolutionary foundations, and underlying cellular and molecular mechanisms, and practical applications to improve quality of life. To better inform future basic and applied research, we organized and re-evaluated recent hormesis-related findings with the intent of incorporating new knowledge of biological mechanisms, and providing fundamental insights into the biological, biomedical and risk assessment implications of hormesis. As the literature on hormesis is expanding rapidly into new areas of basic and applied research, it is important to provide refined conceptualization of hormesis to aid in designing and interpreting future studies. Here, we establish a working compartmentalization of hormesis into ten categories that provide an integrated understanding of the biological meaning and applications of hormesis.
Collapse
|
31
|
Remote tissue conditioning - An emerging approach for inducing body-wide protection against diseases of ageing. Ageing Res Rev 2017; 37:69-78. [PMID: 28552720 DOI: 10.1016/j.arr.2017.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
We have long accepted that exercise is 'good for us'; that - put more rigorously - moderate exercise is associated with not just aerobic fitness but also reduced morbidity and reduced mortality from cardiovascular disease and even malignancies. Caloric restriction (moderate hunger) and our exposure to dietary phytochemicals are also emerging as stresses which are 'good for us' in the same sense. This review focuses on an important extension of this concept: that stress localized within the body (e.g. in a limb) can induce resilience in tissues throughout the body. We describe evidence for the efficacy of two 'remote' protective interventions - remote ischemic conditioning and remote photobiomodulation - and discuss the mechanisms underlying their protective actions. While the biological phenomenon of remote tissue conditioning is only partially understood, it holds promise for protecting critical-to-life tissues while mitigating risks and practical barriers to direct conditioning of these tissues.
Collapse
|
32
|
Abstract
The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.
Collapse
Affiliation(s)
- Ruth E Patterson
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; .,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92093
| | - Dorothy D Sears
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; .,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92093.,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
33
|
Rudyk CA, McNeill J, Prowse N, Dwyer Z, Farmer K, Litteljohn D, Caldwell W, Hayley S. Age and Chronicity of Administration Dramatically Influenced the Impact of Low Dose Paraquat Exposure on Behavior and Hypothalamic-Pituitary-Adrenal Activity. Front Aging Neurosci 2017; 9:222. [PMID: 28769783 PMCID: PMC5509760 DOI: 10.3389/fnagi.2017.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023] Open
Abstract
Little is known of the age-dependent and long-term consequences of low exposure levels of the herbicide and dopaminergic toxicant, paraquat. Thus, we assessed the dose-dependent effects of paraquat using a typical short-term (3 week) exposure procedure, followed by an assessment of the effects of chronic (16 weeks) exposure to a very low dose (1/10th of what previously induced dopaminergic neuronal damage). Short term paraquat treatment dose-dependently induced deficits in locomotion, sucrose preference and Y-maze performance. Chronic low dose paraquat treatment had a very different pattern of effects that were also dependent upon the age of the animal: in direct contrast to the short-term effects, chronic low dose paraquat increased sucrose consumption and reduced forced swim test (FST) immobility. Yet these effects were age-dependent, only emerging in mice older than 13 months. Likewise, Y-maze spontaneous alternations and home cage activity were dramatically altered as a function of age and paraquat chronicity. In both the short and long-term exposure studies, increased corticosterone and altered hippocampal glucocorticoid receptor (GR) levels were induced by paraquat, but surprisingly these effects were blunted in the older mice. Thus, paraquat clearly acts as a systemic stressor in terms of corticoid signaling and behavioral outcomes, but that paradoxical effects may occur with: (a) repeated exposure at; (b) very low doses; and (c) older age. Collectively, these data raise the possibility that repeated “hits” with low doses of paraquat in combination with aging processes might have promoted compensatory outcomes.
Collapse
Affiliation(s)
- Chris A Rudyk
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Jessica McNeill
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Natalie Prowse
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Zach Dwyer
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Kyle Farmer
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Darcy Litteljohn
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Warren Caldwell
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| | - Shawn Hayley
- Hayley Laboratory, Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| |
Collapse
|
34
|
Rusli F, Lute C, Boekschoten MV, van Dijk M, van Norren K, Menke AL, Müller M, Steegenga WT. Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice. Mol Nutr Food Res 2017; 61:1600677. [PMID: 27995741 PMCID: PMC6120141 DOI: 10.1002/mnfr.201600677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
SCOPE Calorie restriction (CR) has been shown to extend life- and health-span in model species. For most humans, a life-long CR diet is too arduous to adhere to. The aim of this study was to explore whether weekly intermittent CR can (1) provide long-term beneficial effects and (2) counteract diet-induced obesity in male aging mice. METHODS AND RESULTS In this study, we have exposed C57Bl/6J mice for 24 months to an intermittent (INT) diet, alternating weekly between CR of a control diet and ad libitum moderate-fat (MF) feeding. This weekly intermittent CR significantly counteracted the adverse effects of the MF diet on mortality, body weight, and liver health markers in 24-month-old male mice. Hepatic gene expression profiles of INT-exposed animals appeared much more comparable to CR- than to MF-exposed mice. At 12 months of age, a subgroup of MF-exposed mice was transferred to the INT diet. Gene expression profiles in the liver of the 24-month-old diet switch mice were highly similar to the INT-exposed mice. However, a small subset of genes was consistently changed by the MF diet during the first phase of life. CONCLUSION Weekly intermittent CR largely, but not completely, reversed adverse effects caused by a MF diet.
Collapse
Affiliation(s)
- Fenni Rusli
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Carolien Lute
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Mark V. Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Miriam van Dijk
- Nutrition and Pharmacology Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
- Nutricia ResearchUtrechtThe Netherlands
| | | | - Michael Müller
- Nutrigenomics and Systems Nutrition Group, Norwich Medical SchoolUniversity of East AngliaNorwich NR4 7UQUK
| | - Wilma T. Steegenga
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
35
|
Landgrave-Gómez J, Vargas-Romero F, Mercado-Gómez OF, Guevara-Guzmán R. The Emerging Role of Epigenetics on Dietary Treatment for Epilepsy. Curr Nutr Rep 2017. [DOI: 10.1007/s13668-017-0189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Zanchi D, Viallon M, Le Goff C, Millet GP, Giardini G, Croisille P, Haller S. Extreme Mountain Ultra-Marathon Leads to Acute but Transient Increase in Cerebral Water Diffusivity and Plasma Biomarkers Levels Changes. Front Physiol 2017; 7:664. [PMID: 28105018 PMCID: PMC5214892 DOI: 10.3389/fphys.2016.00664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background: Pioneer studies demonstrate the impact of extreme sport load on the human brain, leading to threatening conditions for athlete's health such as cerebral edema. The investigation of brain water diffusivity, allowing the measurement of the intercellular water and the assessment of cerebral edema, can give a great contribution to the investigation of the effects of extreme sports on the brain. We therefore assessed the effect of supra-physiological effort (extreme distance and elevation changes) in mountain ultra-marathons (MUMs) athletes combining for the first time brain magnetic resonance imaging (MRI) and blood parameters. Methods:This longitudinal study included 19 volunteers (44.2 ± 9.5 years) finishing a MUM (330 km, elevation + 24000 m). Quantitative measurements of brain diffusion-weighted images (DWI) were performed at 3 time-points: Before the race, upon arrival and after 48 h. Multiple blood biomarkers were simultaneously investigated. Data analyses included brain apparent diffusion coefficient (ADC) and physiological data comparisons between three time-points. Results:The whole brain ADC significantly increased from baseline to arrival (p = 0.005) and then significantly decreased at recovery (p = 0.005) to lower values than at baseline (p = 0.005). While sodium, potassium, calcium, and chloride as well as hematocrit (HCT) changed over time, the serum osmolality remained constant. Significant correlations were found between whole brain ADC changes and osmolality (p = 0.01), cholesterol (p = 0.009), c-reactive protein (p = 0.04), sodium (p = 0.01), and chloride (p = 0.002) plasma level variations. Conclusions:These results suggest the relative increase of the inter-cellular volume upon arrival, and subsequently its reduction to lower values than at baseline, indicating that even after 48 h the brain has not fully recovered to its equilibrium state. Even though serum electrolytes may only indirectly indicate modifications at the brain level due to the blood brain barrier, the results concerning osmolality suggest that body water might directly influence the change in cerebral ADC. These findings establish therefore a direct link between general brain inter-cellular water content and physiological biomarkers modifications produced by extreme sport.
Collapse
Affiliation(s)
- Davide Zanchi
- Department of Psychiatry, University Hospital of Basel Basel, Switzerland
| | - Magalie Viallon
- CREATIS, Centre National de la Recherche Scientifique UMR 5220, INSERM U1206, Université de Lyon, INSA Lyon, Université Jean Monnet Saint-EtienneSaint Etienne, France; Radiology Department, CHU de Saint EtienneSaint Etienne, France
| | - Caroline Le Goff
- Department of Clinical Chemistry, University of Liège Liège, Belgium
| | - Grégoire P Millet
- Institute of Sports Sciences, University of Lausanne Lausanne, Switzerland
| | - Guido Giardini
- Department of Neurology and Stroke Unit, Mountain Medicine and Neurology Center Valle d'Aosta Regional Hospital Aosta, Italy
| | - Pierre Croisille
- CREATIS, Centre National de la Recherche Scientifique UMR 5220, INSERM U1206, Université de Lyon, INSA Lyon, Université Jean Monnet Saint-EtienneSaint Etienne, France; Radiology Department, CHU de Saint EtienneSaint Etienne, France
| | - Sven Haller
- Affidea Centre de Diagnostic Radiologique de Carouge CDRCGeneva, Switzerland; Faculty of Medicine, University of GenevaGeneva, Switzerland; Department of Surgical Sciences, Radiology, Uppsala UniversityUppsala, Sweden; Department of Neuroradiology, University Hospital FreiburgGermany
| |
Collapse
|
37
|
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 2017; 102:203-216. [PMID: 27908782 PMCID: PMC5209274 DOI: 10.1016/j.freeradbiomed.2016.11.045] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023]
Abstract
An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.
Collapse
Affiliation(s)
- Sophia M Raefsky
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
38
|
Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1285-1294. [PMID: 27765347 DOI: 10.1016/j.phymed.2016.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. PURPOSE We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. METHODS We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. RESULTS Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. CONCLUSIONS The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon rutin treatment is mostly driven by the non-amyloidogenic pathway leading to a putative reduction of βA production. Overall induction of endogenous antioxidant enzymes under quercetin or rutin treatments of APPswe cells might modulate its proteasome activity. We might conclude that quercetin and rutin might exert a neurohormetic cell response affecting various signaling pathways and molecular networks associated with modulation of proteasome function.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Karim Lizeth Jiménez-Aliaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
39
|
Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 2016; 95:1360-1372. [PMID: 27862176 DOI: 10.1002/jnr.23986] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro,", Catania, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
41
|
Harvie MN, Howell T. Could Intermittent Energy Restriction and Intermittent Fasting Reduce Rates of Cancer in Obese, Overweight, and Normal-Weight Subjects? A Summary of Evidence. Adv Nutr 2016; 7:690-705. [PMID: 27422504 PMCID: PMC4942870 DOI: 10.3945/an.115.011767] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Animal studies and human observational data link energy restriction (ER) to reduced rates of carcinogenesis. Most of these studies have involved continuous energy restriction (CER), but there is increasing public and scientific interest in the potential health and anticancer effects of intermittent energy restriction (IER) or intermittent fasting (IF), which comprise periods of marked ER or total fasting interspersed with periods of normal eating. This review summarizes animal studies that assessed tumor rates with IER and IF compared with CER or ad libitum feed consumption. The relevance of these animal data to human cancer is also considered by summarizing available human studies of the effects of IER or IF compared with CER on cancer biomarkers in obese, overweight, and normal-weight subjects. IER regimens that include periods of ER alternating with ad libitum feed consumption for 1, 2, or 3 wk have been reported to be superior to CER in reducing tumor rates in most spontaneous mice tumor models. Limited human data from short-term studies (≤6 mo) in overweight and obese subjects have shown that IER can lead to greater improvements in insulin sensitivity (homeostasis model assessment) than can CER, with comparable reductions in adipokines and inflammatory markers and minor changes in the insulin-like growth factor axis. There are currently no data comparing IER or IF with CER in normal-weight subjects. The benefits of IER in these short-term trials are of interest, but not sufficient evidence to recommend the use of IER above CER. Longer-term human studies of adherence to and efficacy and safety of IER are required in obese and overweight subjects, as well as normal-weight subjects.
Collapse
Affiliation(s)
- Michelle N Harvie
- Genesis Prevention Centre, University Hospital South Manchester National Health Service Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
42
|
Lippke S, Corbet JM, Lange D, Parschau L, Schwarzer R. Intervention Engagement Moderates the Dose-Response Relationships in a Dietary Intervention. Dose Response 2016; 14:1559325816637515. [PMID: 27069440 PMCID: PMC4811006 DOI: 10.1177/1559325816637515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Behavioral interventions could lead to changes in behavior through changes in a mediator. This dose–response relationship might only hold true for those participants who are actively engaged in interventions. This Internet study investigated the role of engagement in a planning intervention to promote fruit and vegetable consumption in addition to testing the intervention effect on planning and behavior. A sample of 701 adults (mean = 38.71 years, 81% women) were randomly assigned either to a planning intervention (experimental group) or to one of 2 control conditions (untreated waiting list control group or placebo active control group). Moderated mediation analyses were carried out. Significant changes over time and time × group effects revealed the effectiveness of the intervention. The effect of the intervention (time 1) on changes in behavior (time 3; 1 month after the personal deadline study participants set for themselves to start implementing their plans) was mediated by changes in planning (time 2; 1 week the personal deadline). Effects of planning on behavior were documented only at a moderate level of intervention engagement. This indicates an inverse U-shaped dose–response effect. Thus, examining participants’ intervention engagement allows for a more careful evaluation of why some interventions work and others do not.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Schwarzer
- Institute for Positive Psychology and Education, Australian Catholic University, Sydney, Australia; University of Social Sciences and Humanities, Wroclaw, Poland
| |
Collapse
|
43
|
Gradari S, Pallé A, McGreevy KR, Fontán-Lozano Á, Trejo JL. Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective. Front Neurosci 2016; 10:93. [PMID: 27013955 PMCID: PMC4789405 DOI: 10.3389/fnins.2016.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/23/2016] [Indexed: 11/15/2022] Open
Abstract
Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions.
Collapse
Affiliation(s)
- Simona Gradari
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Anna Pallé
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Kerry R McGreevy
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Ángela Fontán-Lozano
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Trejo
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
44
|
Hormetic use of stress in gerontological interventions requires a cautious approach. Biogerontology 2015; 17:417-20. [PMID: 26712317 DOI: 10.1007/s10522-015-9630-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/22/2015] [Indexed: 01/14/2023]
Abstract
Hormesis as a general principle is conceivable only for factors that are present in the natural environment. For such factors, existence of an optimal level can be assumed, which would correspond to the current environmental level or some average of historic levels. Theoretic basis of some hormetic mechanisms has been discussed within the scope of stress response pathways. Impacts of multiple stressing agents may produce combined effects larger than those expected from isolated impacts i.e. act synergistically. Adding the effect of a damaging stress to another damaging stress would possibly augment the damage; but if two mild stresses have positive hormetic effects, their combination can have additive positive effects. Potential adverse effects of excessive doses of hormetic agents should be pointed out particularly for senile age or a state close to decompensation when minor stimuli might be damaging. In conclusion, a hormetic use of stress in gerontological interventions requires a cautious approach.
Collapse
|
45
|
Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults. Sports Med 2015; 46:35-47. [DOI: 10.1007/s40279-015-0408-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Le Bourg É. [Factors modulating ageing and longevity: Linear or more complex relationships?]. Presse Med 2015; 44:1003-8. [PMID: 26358675 DOI: 10.1016/j.lpm.2015.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
It is often accepted that various factors modulate ageing and longevity in a linear way, a higher/lower level of the factor delaying ageing and/or increasing longevity. However, many examples (e.g. the effects of diet restriction or antioxidants and of telomere attrition) show that this view can be wrong. For instance, mild stress has often positive effects on ageing and longevity, and severe stress opposite effects. The dose-response relationship is thus not linear but has an inverted U-shape. Therefore, in many cases, the concept of factors modulating ageing and longevity in a linear way should be rejected, and this has consequences for physicians' guidance.
Collapse
Affiliation(s)
- Éric Le Bourg
- Université Paul-Sabatier, centre de recherche sur la cognition animale, UMR CNRS 5169, 118, route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
47
|
Mitoprotective dietary approaches for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Caloric restriction, fasting, and ketogenic diets. Med Hypotheses 2015; 85:690-3. [PMID: 26315446 DOI: 10.1016/j.mehy.2015.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 12/27/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome is an idiopathic illness characterized by debilitating fatigue and neuro-immune abnormalities. A growing body of evidence proposes mitochondrial dysfunction as a central perpetrator of the illness due to activation of immune-inflammatory pathways that burden the mitochondria. Under a model of mitochondrial dysfunction, this paper explores dietary strategies that are mitoprotective. Studied for decades, the cellular mechanisms of ketogenic diets, fasting, and caloric restriction now reveal mitochondria-specific mechanisms which could play a role in symptom reduction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Future research should examine the physiological effects of these dietary strategies in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
Collapse
|