1
|
Xialu S, Faqiang M. Mechanisms of action of intestinal microorganisms and advances in head and neck tumors. Discov Oncol 2025; 16:303. [PMID: 40072772 PMCID: PMC11903988 DOI: 10.1007/s12672-025-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
In the last decade, it has been discovered that intestinal flora can affect various organ-specific cancers by altering the body's energy balance, synthesizing genetic toxins and small signaling molecules, and initiating and modulating immune responses. In this review, we will focus on elucidating the role of intestinal flora based on its molecular mechanisms and its possible impact on head and neck cancers in the near future, and explore how it may be a novel approach to treating head and neck cancers in the future.
Collapse
Affiliation(s)
- Su Xialu
- Graduate School of Guizhou Medical University, Guiyang, 550000, China
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Ma Faqiang
- Graduate School of Guizhou Medical University, Guiyang, 550000, China.
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| |
Collapse
|
2
|
Headley SA, Chapman DJ, Germain MJ, Evans EE, Madsen KL, Miele EM, Kirton K, Loseke J, Cornelius A, Martin B, Nindl B, Park H, Vaziri ND, Ikizler TA. Effects of High Amylose-Resistant Starch on Gut Microbiota and Uremic Toxin Levels in Patients With Stage-G3a-G4 Chronic Kidney Disease: A Randomized Trial. J Ren Nutr 2025; 35:248-258. [PMID: 39362281 DOI: 10.1053/j.jrn.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE This study was designed to determine the effect of 16 weeks of supplementation with Hi-maize 260 resistant starch (RS) on the gut microbiota, uremic toxins (indoxyl sulfate and p-cresyl sulfate [PCS]), markers of inflammation, and oxidative stress along with vascular function in patients with stage G3a-G4 chronic kidney disease (CKD). DESIGN AND METHODS This was a double-blind, placebo-controlled, parallel-arm, randomized controlled trial. Sixty-eight patients with stage-G3a-G4 CKD were randomized to either RS with usual care or placebo and usual care. Patients attended four testing sessions as follows: two baseline (BL) visits and follow-up visits at 8 and 16 weeks. Fasting blood samples, resting brachial and central blood pressures, along with arterial stiffness, were collected at visits (1 or 2) and weeks 8 and 16. A stool sample was collected for analysis of microbial composition at BL and week 16. Patients were randomized after the BL visits. RESULTS Patients receiving the RS had a reduction in PCS at week 16. This reduction was associated with a decrease in microbial α-diversity between BL and week 16 (Chao1 P = .014, Shannon P = .017, phylogenetic diversity P = .046, and Simpson P = .017) as well as increases in Subdoligranulum (P = .03) and Oscillospiraceae Unclassified Clostridiales Group 002 (P = .02) and decreases in Bacteroides (P = .009).There were no changes in microbial beta diversity and other biomarkers or markers of vascular function following the 16-week period. CONCLUSION Sixteen weeks of supplementation of RS in patients with stage-G3a-G4 CKD led to changes in microbial composition that were associated with a significant reduction in PCS.
Collapse
Affiliation(s)
- Samuel A Headley
- Department of Exercise Science, Springfield College, Springfield, Massachusetts.
| | - Donna J Chapman
- Department of Exercise Science, Springfield College, Springfield, Massachusetts
| | - Michael J Germain
- Renal and Transplant Associates of New England, Springfield, Massachusetts
| | - Elizabeth E Evans
- Department of Exercise Science, Springfield College, Springfield, Massachusetts
| | - Karen L Madsen
- Department of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Emily M Miele
- Department of Exercise Science, Springfield College, Springfield, Massachusetts
| | - Kristyn Kirton
- Department of Exercise Science, Springfield College, Springfield, Massachusetts
| | - Joshua Loseke
- Department of Exercise Science, Springfield College, Springfield, Massachusetts
| | - Allen Cornelius
- School of Psychology, Fielding Graduate University, Colorado Springs, Colorado
| | - Brian Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Microbiome & Pathogen Genomics Core Columbia University Medical Center, New York, New York
| | - Nosratola D Vaziri
- Emeritus Professor of Medicine, Physiology and Biophysics School of Medicine, University of California Irvine, Irvine, California
| | - Talat Alp Ikizler
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Malaweera A, Huang L, McMahon L. Benefits and Pitfalls of Uraemic Toxin Measurement in Peritoneal Dialysis. J Clin Med 2025; 14:1395. [PMID: 40004925 PMCID: PMC11857055 DOI: 10.3390/jcm14041395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease is a global health burden with a rising incidence and prevalence in developed and developing nations. Once established, it results in a progressive accumulation of a myriad of uraemic toxins. Peritoneal dialysis (PD) uses the body's peritoneal membrane to remove these toxins across a semipermeable membrane to restore and maintain homeostasis. Traditionally, dialysis adequacy has been measured through clearance of urea and creatinine. However, numerous studies have shown marginal links comparing the clearance of urea and creatinine with clinical outcomes reflected in the recent changes to the ISPD guidelines on dialysis adequacy. Instead, attention has focused on protein-bound uraemic toxins (PBTs). Produced by gut bacteria, these molecules are highly protein-bound and poorly removed by either dialysis or absorptive agents. Elevated concentrations of molecules such as p-cresyl sulfate and indoxyl sulfate have been associated with abnormal cellular function and poor patient outcomes. However, widespread use of these measures to determine dialysis adequacy has been limited by the need for specialized techniques required for measurement. Altering the gut microbiome to reduce generation of PBTs through increased dietary fiber might be an alternate approach to better patient outcomes, with some initial positive reports. This report explores advantages and limitations of measuring uraemic toxins in PD, now and in the foreseeable future.
Collapse
Affiliation(s)
- Aruni Malaweera
- Department of Renal Medicine, Eastern Health, 5, Arnold Street, Box Hill, Melbourne, VIC 3128, Australia; (L.H.); (L.M.)
| | | | | |
Collapse
|
4
|
Kaimori JY, Sakaguchi Y, Oka T, Isaka Y. Plant-Dominant Low-Protein Diets: A Promising Dietary Strategy for Mitigating Disease Progression in People with Chronic Kidney Disease-A Comprehensive Review. Nutrients 2025; 17:643. [PMID: 40004970 PMCID: PMC11857991 DOI: 10.3390/nu17040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is a global health crisis affecting over 10% of the population, with mortality rates increasing significantly. Current management strategies, including expensive medications and renal replacement therapies, highlight the need for cost-effective, conservative approaches. This review examines the evidence for plant-dominant low-protein diets (PLADO) in managing non-dialysis-dependent CKD. Existing guidelines for protein restriction in CKD vary considerably, with inconsistencies and a lack of personalization noted in the KDOQI and KDIGO recommendations. While traditional low-protein diet trials show limited success due to poor adherence and marginal benefits, PLADO offers a potentially more sustainable alternative. PLADO's advantages include improved nutrient density, reduced dietary acid load, anti-inflammatory effects, and beneficial modulation of the gut microbiome, potentially reducing uremic toxins and improving cardiovascular health. However, challenges remain, including adherence issues, potential nutrient deficiencies, and potassium management. Although observational studies show promise, further large-scale randomized controlled trials are necessary to validate PLADO's efficacy and establish optimal dietary composition. A personalized, multidisciplinary approach is essential for successful implementation and monitoring to maximize PLADO's benefits in improving outcomes for individuals with NDD-CKD.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Health and Nutrition, Otemae University, 2-1-88 Otemae, Chuo-ku, Osaka 540-0008, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (Y.S.); (T.O.); (Y.I.)
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (Y.S.); (T.O.); (Y.I.)
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (Y.S.); (T.O.); (Y.I.)
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (Y.S.); (T.O.); (Y.I.)
| |
Collapse
|
5
|
Czaja-Stolc S, Potrykus M, Ruszkowski J, Styburski D, Dębska-Ślizień A, Małgorzewicz S. The associations between nutrition and circulating gut microbiota-derived uremic toxins in patients undergoing kidney replacement therapy: An observational, cross-sectional study. Clin Nutr ESPEN 2025; 65:105-114. [PMID: 39577692 DOI: 10.1016/j.clnesp.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Gut microbiota generates a series of bioactive metabolites that can be converted into uremic toxins such as trimethylamine-N-oxide (TMAO), p-cresyl sulfate (pCS), and indoxyl sulfate (IS). The aim of the study was to examine the association between diet and the concentrations of the mentioned gut microbiota-derived uremic toxins. METHODS An observational cross-sectional study was conducted involving 210 participants: 84 hemodialysis (HD) patients, 44 peritoneal dialysis (PD) patients, 52 kidney transplant recipients (KTR), and 30 healthy controls. Dietary intake was assessed using a 3-day food diary and a food frequency questionnaire with 6 answers (FFQ-6). The alternate Mediterranean diet (aMED) score was calculated based on data obtained from the 3-day food diary and FFQ-6. Blood samples were analyzed for TMAO, pCS, and IS concentrations using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS Significant differences in TMAO, pCS, and IS concentrations were observed among the study groups. HD and PD patients exhibited higher levels of these metabolites compared to KTR and healthy controls. The median aMED score was 4 (3-5) points in the HD group, 4.5 (4-6) points in the PD group, 5 (4-6) points in the KTRs, and 6 (5-7) points in the control group. Higher adherence to the Mediterranean diet (aMED score) was associated with lower pCS levels in dialysis patients. Vegetable intake several times a day was found to mitigate the effects of phenylalanine and tyrosine intake on pCS concentration among dialysis patients. CONCLUSIONS The diet of patients undergoing kidney replacement therapy (KRT) significantly affects the concentrations of gut microbiota-derived uremic toxins. These findings highlight the importance of dietary management in mitigating the adverse effects of these toxins in patients with chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Sylwia Czaja-Stolc
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdańsk, Poland
| | - Marta Potrykus
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdańsk, Poland; Department of Oncological, Transplant, and General Surgery, Medical University of Gdansk, Gdańsk, Poland.
| | - Jakub Ruszkowski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Gdańsk, Poland
| | | | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
6
|
Wathanavasin W, Cheungpasitporn W, Thongprayoon C, Fülöp T. Effects of Dietary Fiber Supplementation on Modulating Uremic Toxins and Inflammation in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Toxins (Basel) 2025; 17:57. [PMID: 39998074 PMCID: PMC11860371 DOI: 10.3390/toxins17020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Emerging evidence supports the beneficial effects of dietary fiber supplementation in alleviating gut dysbiosis, which leads to a reduction in uremic toxins and inflammatory markers in chronic kidney disease (CKD) patients. However, current evidence-based renal nutrition guidelines do not provide recommendations regarding dietary fiber intake. We performed a systematic review and meta-analysis to investigate and highlight the effects of dietary fiber supplementation on modulating uremic toxins and inflammatory markers in individuals with CKD, with or without dialysis. The eligible randomized controlled trials (RCTs) were identified from PubMed, Scopus, and Cochrane Central Register of Controlled trials until 27 November 2024. The results were synthesized using a random-effects model and presented as standardized mean differences (SMDs) with a 95% confidence interval (CI). A total of 21 studies with 700 patients were included. When compared with the control group, dietary fiber supplementation ranging from 6 to 50 g/day, for typically more than 4 weeks, could significantly reduce the levels of serum uremic toxins, including p-cresyl sulfate, indoxyl sulfate, and blood urea nitrogen (SMD -0.22, -0.34, -0.25, respectively, with p-values < 0.05), as well as biomarkers of inflammation, including interleukin-6 and tumor necrosis factor alpha (SMD -0.44, -0.34, respectively, with p-values < 0.05). These beneficial effects were consistent across different types of fibers and CKD status (with or without dialysis). However, no significant reduction in serum trimethylamine N-oxide, uric acid, and high-sensitivity C-reactive protein levels was observed with dietary fiber intervention. This study would pave the way for prioritizing dietary quality, particularly a fiber-rich diet, beyond the traditional focus on the quantities of protein, energy, and electrolyte restrictions among individuals with CKD.
Collapse
Affiliation(s)
- Wannasit Wathanavasin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
- Nephrology Unit, Department of Medicine, Charoenkrung Pracharak Hospital, Bangkok Metropolitan Administration, Bangkok 10120, Thailand
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
| | - Tibor Fülöp
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Desloovere A, Polderman N, Renken-Terhaerdt J, Shaw V, Anderson C, Greenbaum LA, Nelms CL, Qizalbash L, Stabouli S, Tuokkola J, Warady BA, Vande Walle J, Paglialonga F, Shroff R, Snauwaert E. The Management of Dietary Fiber Intake in Children With Chronic Kidney Disease - Clinical Practice Recommendations From the Pediatric Renal Nutrition Taskforce. J Ren Nutr 2025; 35:207-220. [PMID: 38866350 DOI: 10.1053/j.jrn.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The benefits of dietary fiber are widely accepted. Nevertheless, a substantial proportion of children fail to meet the recommended intake of dietary fiber. Achieving adequate fiber intake is especially challenging in children with chronic kidney disease (CKD). An international team of pediatric renal dietitians and pediatric nephrologists from the Pediatric Renal Nutrition Taskforce (PRNT) has developed clinical practice recommendations (CPRs) for the dietary intake of fiber in children and adolescents with CKD. In this CPR paper, we propose a definition of fiber, provide advice on the requirements and assessment of fiber intake, and offer practical guidance on optimizing dietary fiber intake in children with CKD. In addition, given the paucity of available evidence and to achieve consensus from international experts, a Delphi survey was performed in which all the clinical practice recommendations were reviewed.
Collapse
Affiliation(s)
- An Desloovere
- Department of Pediatric Nephrology, Ghent University Hospital, Member of the European Reference Network for Rare Kidney Disease (ERKNet), Ghent, Belgium
| | - Nonnie Polderman
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - José Renken-Terhaerdt
- Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vanessa Shaw
- Department of Pediatric Nephrology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Anderson
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Larry A Greenbaum
- Department of Pediatric Nephrology, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Christina L Nelms
- Department of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
| | - Leila Qizalbash
- Department of Pediatric Nephrology, Great Northern Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Stella Stabouli
- Pediatric Nephrology Unit, 1st Pediatric Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jetta Tuokkola
- Children's Hospital and Clinical Nutrition Unit, Internal Medicine and Rehabilitation, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Bradley A Warady
- Department of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, Member of the European Reference Network for Rare Kidney Disease (ERKNet), Ghent, Belgium
| | - Fabio Paglialonga
- Department of Pediatric Nephrology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- Department of Pediatric Nephrology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evelien Snauwaert
- Department of Pediatric Nephrology, Ghent University Hospital, Member of the European Reference Network for Rare Kidney Disease (ERKNet), Ghent, Belgium.
| |
Collapse
|
8
|
Zhang Y, Hu XY, Yang SY, Hu YC, Duan K. Effects of resistant starch supplementation on renal function and inflammatory markers in patients with chronic kidney disease: a meta-analysis of randomized controlled trials. Ren Fail 2024; 46:2416609. [PMID: 39444299 PMCID: PMC11504232 DOI: 10.1080/0886022x.2024.2416609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Recent studies have shown that consumption of resistant starch (RS) has beneficial effects on the gut microbiota and immune function in patients with chronic kidney disease (CKD). The objective of this study was to evaluate the effects of RS on inflammation, uremic toxins, and renal function in patients with CKD through a systematic review and meta-analysis. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-2020. We included randomized controlled trials comparing RS supplementation to placebo. The National Library of Medicine (PubMed), Excerpta Medica Database (Embase), Cochrane Library, Web of Science, China National Knowledge Internet (CNKI) databases, and two gray literature sources - Baidu and Research Gate, were used for search, up to 28 August 2024. There was no limitation on publication date, but only manuscripts published in English and Chinese were included. RESULTS A total of 645 articles were retrieved. Ten articles met the inclusion criteria, and a total of 355 subjects were included. The analysis revealed that RS dietary intervention can significantly reduce indoxyl sulfate (IS) levels (SMD: -0.37, 95% confidence interval (CI): -0.70 to -0.04, p = .03) and blood urea nitrogen (BUN) levels (SMD: -0.30, 95% CI: -0.57 to -0.02, p = .03). There were no significant differences in the levels of interleukin-6 (IL-6), p-cresyl sulfate (p-CS), albumin, phosphorus, or tumor necrosis factor-α. CONCLUSIONS The RS diet has potential beneficial effects on uremic toxin levels and renal function indices in patients with CKD. RS supplementation can reduce uremic toxin levels and improve renal function but does not reduce the inflammatory response in patients with CKD. Nevertheless, results should be cautiously interpreted, because of the limited sample size and different treatment dosages. Further research is necessary to corroborate the beneficial effects of RS2 supplementation in this population.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Nephrology, Jianli People’s Hospital, Jianli, China
| | - Xiang-Yang Hu
- Department of Emergency, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Shi-Yun Yang
- Department of Nephrology, Jiangling People’s Hospital, Jingzhou, China
| | - Ying-Chun Hu
- Department of Nephrology, Songzi Hospital of Traditional Chinese Medicine, Jingzhou, China
| | - Kai Duan
- Department of Nephrology, Jingshan Union Hospital of Hua Zhong University of Science and Technology, Jingshan, China
| |
Collapse
|
9
|
Nagasawa H, Suzuki S, Kobayashi T, Otsuka T, Okuma T, Matsushita S, Amano A, Shimizu Y, Suzuki Y, Ueda S. Effect of fruits granola (Frugra®) consumption on blood pressure reduction and intestinal microbiome in patients undergoing hemodialysis. Hypertens Res 2024; 47:3214-3224. [PMID: 39300301 PMCID: PMC11534689 DOI: 10.1038/s41440-024-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases (CVDs) are a major cause of death in patients undergoing hemodialysis (HD). Blood pressure (BP) and uremic toxins are well-known risk factors for CVDs, which are influenced by diet. Dietary fiber supplementation in patients undergoing HD may reduce the risk of CVDs by improving lipid profiles and inflammatory status and lowering the levels of the uremic toxin indoxyl sulfate (IS). In this study, we investigated the relationship between the intestinal microbiota and risk factors for CVDs, such as BP and serum IS, in patients undergoing HD who consumed fruits granola (FGR). The study participants were selected from patients undergoing HD at the Izu Nagaoka Daiichi Clinic and consumed FGR for 2 months. Body composition and blood samples were tested at months 0, 1, 2 and fecal samples were collected at months 0 and 2 for intestinal microbiota analysis. FGR consumption decreased systolic and diastolic BP, estimated salt intake, and serum IS levels and improved the stool characteristics according to the Bristol Stool Form Scale (N = 24). Gut microbiota analysis showed an increase in the alpha diversity and abundance of Blautia and Neglecta. The abundance of lactic acid- and ethanol-producing bacteria also significantly increased, whereas the abundance of indole-producing bacteria significantly decreased. FGR consumption could be a useful tool for salt reduction, fiber supplementation, and improvement of the intestinal environment, thus contributing to improvement of BP and the reduction of other risk factors for CVDs in patients undergoing HD.
Collapse
Affiliation(s)
- Hajime Nagasawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Internal Medicine, Juntendo University Shizuoka Hospital, Shizuoka, Japan
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, the Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Shogo Suzuki
- Department of Radiological Technology, Juntendo University Faculty of Health Science, Tokyo, Japan
| | - Takashi Kobayashi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomoyuki Otsuka
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Teruyuki Okuma
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, the Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Satoshi Matsushita
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Atsushi Amano
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshio Shimizu
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Internal Medicine, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.
- Department of Granola Health Care and Preventive Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.
- Division of Kidney Health and Aging, the Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan.
| |
Collapse
|
10
|
Du J, Zhao X, Ding X, Han Q, Duan Y, Ren Q, Wang H, Song C, Wang X, Zhang D, Zhu H. The Role of the Gut Microbiota in Complications among Hemodialysis Patients. Microorganisms 2024; 12:1878. [PMID: 39338552 PMCID: PMC11434415 DOI: 10.3390/microorganisms12091878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of the gut microbiota varies among end-stage renal disease (ESRD) patients on the basis of their mode of renal replacement therapy (RRT), with notably more pronounced dysbiosis occurring in those undergoing hemodialysis (HD). Interventions such as dialysis catheters, unstable hemodynamics, strict dietary restrictions, and pharmacotherapy significantly alter the intestinal microenvironment, thus disrupting the gut microbiota composition in HD patients. The gut microbiota may influence HD-related complications, including cardiovascular disease (CVD), infections, anemia, and malnutrition, through mechanisms such as bacterial translocation, immune regulation, and the production of gut microbial metabolites, thereby affecting both the quality of life and the prognosis of patients. This review focuses on alterations in the gut microbiota and its metabolites in HD patients. Additionally, understanding the impact of the gut microbiota on the complications of HD could provide insights into the development of novel treatment strategies to prevent or alleviate complications in HD patients.
Collapse
Affiliation(s)
- Junxia Du
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaolin Zhao
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingjie Duan
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Qinqin Ren
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chenwen Song
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Dong Zhang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
11
|
Narasaki Y, Siu MK, Nguyen M, Kalantar-Zadeh K, Rhee CM. Personalized nutritional management in the transition from non-dialysis dependent chronic kidney disease to dialysis. Kidney Res Clin Pract 2024; 43:575-585. [PMID: 38738275 PMCID: PMC11467355 DOI: 10.23876/j.krcp.23.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 11/10/2023] [Indexed: 05/14/2024] Open
Abstract
Dialysis has been the dominant treatment regimen in end-stage kidney disease as a means to remove uremic waste products and to maintain electrolyte, acid base, and fluid balance. However, given that dialysis may not always provide a survival benefit nor improved quality of life in certain subpopulations, there is growing recognition of the need for conservative and preservative management as an alternative treatment strategy for advanced chronic kidney disease (CKD). Personalized nutritional management tailored to patient's sociodemographics, social needs, psychological status, health literacy level, and preferences is a key component of conservative and preservative care, as well as in the management of patients transitioning from non-dialysis dependent CKD to dialysis. In this review, we discuss the nutritional and metabolic alterations that ensue in CKD; the rationale for low-protein diets in the conservative and preservative management of advanced CKD; the role of plant-based diets in kidney health; emerging data on dietary potassium and sodium intake on CKD outcomes; and the practical implementation of dietary interventions in advanced kidney disease.
Collapse
Affiliation(s)
- Yoko Narasaki
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| | - Man Kit Siu
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| | - Matthew Nguyen
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Connie M. Rhee
- Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, University of California Irvine, Orange, CA, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
| |
Collapse
|
12
|
Lee S, Pham NM, Montez-Rath ME, Bolanos CG, Bonde SS, Meyer TW, Sirich TL. Twice Weekly versus Thrice Weekly Hemodialysis-A Pilot Cross-Over Equivalence Trial. Clin J Am Soc Nephrol 2024; 19:1159-1168. [PMID: 38922689 PMCID: PMC11390027 DOI: 10.2215/cjn.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Key Points The 2015 Kidney Disease Outcomes Quality Initiative Guideline Update increased the contribution of residual kidney function, shortening the time required for twice weekly hemodialysis. No study had yet assessed the feasibility of prescribing twice weekly hemodialysis according to the updated guideline. Twice weekly hemodialysis prescribed using the updated guideline maintained quality of life and controlled fluid gain, potassium, and uremic solutes. Background The 2015 Update of the Kidney Disease Outcomes Quality Initiative (KDOQI) Guideline for Hemodialysis Adequacy increased the contribution of residual kidney function in calculating standard Kt/Vurea (stdKt/Vurea). However, no study has assessed the effect of prescribing twice weekly hemodialysis according to this guideline on patients' quality of life or uremic solute levels. Methods Twenty six hemodialysis patients with average residual urea clearance (Kru) 4.7±1.8 ml/min and hemodialysis vintage of 12±15 months (range 2 months to 4.9 years) underwent a cross-over trial comparing four weeks of twice weekly hemodialysis and four weeks of thrice weekly hemodialysis. Twice weekly hemodialysis was prescribed to achieve stdKt/Vurea 2.2 incorporating Kru using the 2015 KDOQI Guideline. Thrice weekly hemodialysis was prescribed to achieve spKt/Vurea 1.3 regardless of Kru. Quality of life and plasma levels of secreted uremic solutes and β 2 microglobulin were assessed at the end of each period. Results Equivalence testing between twice and thrice weekly hemodialysis based on the Kidney Disease Quality of Life instrument (primary analysis) was inconclusive. Symptoms as assessed by the secondary outcomes Dialysis Symptom Index and Post-Dialysis Recovery Time were not worse with twice weekly hemodialysis. StdKt/Vurea was adequate during twice weekly hemodialysis (2.7±0.5), and ultrafiltration rate and plasma potassium were controlled with minimally longer treatment times (twice weekly: 195±20 versus thrice weekly: 191±17 minutes). Plasma levels of the secreted solutes and β 2 microglobulin were not higher with twice weekly than thrice weekly hemodialysis. Conclusions Twice weekly hemodialysis can be prescribed using the higher contribution assigned to Kru by the 2015 KDOQI Guideline. With twice weekly hemodialysis, quality of life was unchanged, and the continuous function of the residual kidneys controlled fluid gain and plasma levels of potassium and uremic solutes without substantially longer treatment times. Clinical Trial registration number: NCT03874117 .
Collapse
Affiliation(s)
- Seolhyun Lee
- The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, California
| | - Nhat M. Pham
- The Department of Medicine, Santa Clara Valley Medical Center, San Jose, California
| | - Maria E. Montez-Rath
- The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, California
| | - Christian G. Bolanos
- The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, California
| | - Saniya S. Bonde
- The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, California
| | - Timothy W. Meyer
- The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, California
| | - Tammy L. Sirich
- The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, California
| |
Collapse
|
13
|
Heo S, Han M, Ryu H, Kang E, Kim M, Ahn C, Yang SJ, Oh KH. Compliance with a Healthful Plant-Based Diet Is Associated with Kidney Function in Patients with Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:2749. [PMID: 39203885 PMCID: PMC11356780 DOI: 10.3390/nu16162749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic kidney disorder with multiple cyst formation that progresses to chronic kidney disease (CKD) and end-stage kidney disease. Plant-based diets have attracted considerable attention because they may prevent CKD development. This study investigated whether adherence to a plant-based diet is associated with kidney function in patients with ADPKD. The overall plant-based diet index (PDI), healthful PDI (hPDI), and unhealthful PDI (uPDI) were calculated using dietary intake data. Among 106 ADPKD patients, 37 (34.91%) were classified as having advanced CKD (eGFR < 60 mL/min/1.73 m2). The overall PDI and hPDI were lower, but the uPDI was higher in patients with advanced CKD than in those with early CKD. The hPDI was negatively correlated with the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio. Moreover, the hPDI was inversely associated with advanced CKD [odds ratio (OR): 0.117 (95% confidence interval (CI): 0.039-0.351), p < 0.001], and the uPDI was positively associated with advanced CKD [OR: 8.450 (95% CI: 2.810-25.409), p < 0.001]. The findings of the current study demonstrate that greater adherence to a healthful plant-based diet is associated with improved kidney function in ADPKD patients.
Collapse
Affiliation(s)
- Sumin Heo
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Miyeun Han
- Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Minsang Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Curie Ahn
- Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Soo Jin Yang
- Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
14
|
Sinha AK, Laursen MF, Brinck JE, Rybtke ML, Hjørne AP, Procházková N, Pedersen M, Roager HM, Licht TR. Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota. Nat Microbiol 2024; 9:1964-1978. [PMID: 38918470 PMCID: PMC11306097 DOI: 10.1038/s41564-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.
Collapse
Affiliation(s)
- Anurag K Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julius E Brinck
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L Rybtke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Mansouri F, Shateri Z, Jahromi SE, Mahmudi-Zadeh M, Nouri M, Babajafari S. Association between pro-vegetarian dietary pattern and the risk of protein-energy wasting and sarcopenia in patients with chronic kidney disease. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:110. [PMID: 39085942 PMCID: PMC11293009 DOI: 10.1186/s41043-024-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is characterized by structural abnormalities in nephrons, loss of functional nephrons, and impaired renal excretory function. A pro-vegetarian dietary pattern (PDP) is a gradual and progressive approach to vegetarianism. The current study aimed to assess the association between PDP and the odds of protein-energy wasting (PEW) and sarcopenia in patients with CKD. METHODS The present cross-sectional study was conducted on kidney disease patients (n = 109) referred to two clinics in Shiraz, Iran. The diagnosis of sarcopenia and PEW was made according to the guidelines of the Asian Working Group for Sarcopenia (AWGS) and the International Society of Renal Nutrition and Metabolism (ISRNM) criteria, respectively. The participants' dietary intake was evaluated using a 168-item semi-quantitative food frequency questionnaire (FFQ). For PDP index calculation, plant and animal food sources were categorized into 12 subgroups. The association between sarcopenia and PEW with PDP was evaluated using logistic regression. RESULTS The PDP was significantly associated with a lower risk of PEW in the second tertile compared to the first in the crude model (odds ratio (OR) = 0.225; confidence interval (CI): 0.055-0.915; p-value = 0.037). After adjusting for potential confounders, lower significant odds of PEW were observed in the second and last tertiles of PDP compared to the first (T2: OR = 0.194; CI: 0.039-0.962; p-value = 0.045, and T3: OR = 0.168; CI: 0.030-0.950; p-value = 0.044). In contrast, no significant relationship was observed between PDP and the odds of sarcopenia (p-value ˃ 0.05). CONCLUSIONS Overall, the findings indicated that greater adherence to PDP was negatively associated with the odds of PEW. Additionally, the results showed no association between PDP and the odds of sarcopenia. Further studies are needed to support these findings.
Collapse
Affiliation(s)
- Fatemeh Mansouri
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrokh Ezzatzadegan Jahromi
- Department of Medicine, School of Medicine, Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Mahmudi-Zadeh
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Siavash Babajafari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nutrition research center, Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Kim YT, Mills DA. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Sci Biotechnol 2024; 33:2065-2080. [PMID: 39130661 PMCID: PMC11315840 DOI: 10.1007/s10068-024-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
The human gut microbiome accompanies us from birth, and it is developed and matured by diet, lifestyle, and environmental factors. During aging, the bacterial composition evolves in reciprocal communication with the host's physiological properties. Many diseases are closely related to the gut microbiome, which means the modulation of the gut microbiome can promote the disease targeting remote organs. This review explores the intricate interaction between the gut microbiome and other organs, and their improvement from disease by prebiotics, probiotics, synbiotics, and postbiotics. Each section of the review is supported by clinical trials that substantiate the benefits of modulation the gut microbiome through dietary intervention for improving primary health outcomes across various axes with the gut. In conclusion, the review underscores the significant potential of targeting the gut microbiome for therapeutic and preventative interventions in a wide range of diseases, calling for further research to fully unlock the microbiome's capabilities in enhancing human health.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| | - David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| |
Collapse
|
17
|
Sussman-Dabach EJ, Joshi S, Dupuis L, White JA, Siavoshi M, Slukhinsky S, Singh B, Kalantar-Zadeh K. Preventing potential pitfalls of a liberalized potassium diet in the hemodialysis population. Semin Dial 2024; 37:317-325. [PMID: 34378234 DOI: 10.1111/sdi.13006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022]
Abstract
Emerging research suggests that a more liberalized diet, specifically a more plant-based diet resulting in liberalization of potassium intake, for people receiving hemodialysis is necessary and the benefits outweigh previously thought risks. If the prescribed hemodialysis diet is to be liberalized, the need to illuminate and prevent potential pitfalls of a liberalized potassium diet is warranted. This paper explores such topics as partial to full adherence to a liberalized diet and its consequences if any, the advantages of a high-fiber intake, the theoretical risk of anemia when consuming a more plant-dominant diet, the potential benefits against renal acid load and effect on metabolic acidosis with increased fruit and vegetable intake, the putative change in serum potassium levels, carbohydrate quality, and the healthfulness of meat substitutes. The benefits of a more plant-based diet for the hemodialysis population are multifold; however, the possible pitfalls of this type of diet must be reviewed and addressed upon meal planning in order to be avoided.
Collapse
Affiliation(s)
- Elizabeth J Sussman-Dabach
- Department of Family and Consumer Sciences, California State University, Northridge, Northridge, California, USA
| | - Shivam Joshi
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, NYC Health + Hospitals/Bellevue, New York, New York, USA
| | - Léonie Dupuis
- College of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Jennifer A White
- Department of Family and Consumer Sciences, California State University, Northridge, Northridge, California, USA
| | - Mehrnaz Siavoshi
- Department of Family and Consumer Sciences, California State University, Northridge, Northridge, California, USA
| | | | - Bhupinder Singh
- University of California, Irvine, School of Medicine, Irvine, California, USA
| | | |
Collapse
|
18
|
Mao ZH, Gao ZX, Pan SK, Liu DW, Liu ZS, Wu P. Ferroptosis: a potential bridge linking gut microbiota and chronic kidney disease. Cell Death Discov 2024; 10:234. [PMID: 38750055 PMCID: PMC11096411 DOI: 10.1038/s41420-024-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
19
|
Sánchez-Ospina D, Mas-Fontao S, Gracia-Iguacel C, Avello A, González de Rivera M, Mujika-Marticorena M, Gonzalez-Parra E. Displacing the Burden: A Review of Protein-Bound Uremic Toxin Clearance Strategies in Chronic Kidney Disease. J Clin Med 2024; 13:1428. [PMID: 38592263 PMCID: PMC10934686 DOI: 10.3390/jcm13051428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Uremic toxins (UTs), particularly protein-bound uremic toxins (PBUTs), accumulate in chronic kidney disease (CKD) patients, causing significant health complications like uremic syndrome, cardiovascular disease, and immune dysfunction. The binding of PBUTs to plasma proteins such as albumin presents a formidable challenge for clearance, as conventional dialysis is often insufficient. With advancements in the classification and understanding of UTs, spearheaded by the European Uremic Toxins (EUTox) working group, over 120 molecules have been identified, prompting the development of alternative therapeutic strategies. Innovations such as online hemodiafiltration aim to enhance the removal process, while novel adsorptive therapies offer a means to address the high affinity of PBUTs to plasma proteins. Furthermore, the exploration of molecular displacers, designed to increase the free fraction of PBUTs, represents a cutting-edge approach to facilitate their dialytic clearance. Despite these advancements, the clinical application of displacers requires more research to confirm their efficacy and safety. The pursuit of such innovative treatments is crucial for improving the management of uremic toxicity and the overall prognosis of CKD patients, emphasizing the need for ongoing research and clinical trials.
Collapse
Affiliation(s)
- Didier Sánchez-Ospina
- Servicio Análisis Clínicos, Hospital Universitario de Burgos, 09006 Burgos, Spain; (D.S.-O.); (M.M.-M.)
| | - Sebastián Mas-Fontao
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), 28037 Madrid, Spain
| | - Carolina Gracia-Iguacel
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Alejandro Avello
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Marina González de Rivera
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | | | - Emilio Gonzalez-Parra
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| |
Collapse
|
20
|
Moldovan D, Rusu C, Potra A, Tirinescu D, Ticala M, Kacso I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024; 16:617. [PMID: 38474744 DOI: 10.3390/nu16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.
Collapse
Affiliation(s)
- Diana Moldovan
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Crina Rusu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Coutinho-Wolino KS, Melo MFS, Mota JC, Mafra D, Guimarães JT, Stockler-Pinto MB. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr Rev 2024; 82:248-261. [PMID: 37164634 DOI: 10.1093/nutrit/nuad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is associated with uremic toxin production, inflammation, oxidative stress, and cardiovascular disease development. Therefore, healthy dietary patterns are essential modulators of gut microbiota. In this context, studies suggest that consuming berry fruits, rich in polyphenols and nutrients, may positively affect the gut microbiota, promoting the selective growth of beneficial bacteria and improving clinical status. However, studies on the effects of berry fruits on gut microbiota in CKD are scarce, and a better understanding of the possible mechanisms of action of berry fruits on gut microbiota is needed to guide future clinical studies and clinical practice in CKD. The objective was to discuss how berry fruits (blueberry, cranberry, raspberry, and strawberry) could be a therapeutic strategy to modulate the gut microbiota and possibly reverse the dysbiosis in CKD. Overall, available evidence shows that berry fruits can promote an increase in diversity by affecting the abundance of mucus-producing bacteria and short-chain fatty acids. Moreover, these fruits can increase the expression of mRNA involved in tight junctions in the gut such as occludin, tight junction protein 1 (TJP1), and mucin. Studies on the exact amount of berries leading to these effects show heterogeneous findings. However, it is known that, with 5 mg/day, it is already possible to observe some effects in animal models. Wild berries could possibly improve the uremic condition by reducing the levels of uremic toxins via modulation of the gut microbiota. In the long term, this could be an excellent strategy for patients with CKD. Therefore, clinical studies are encouraged to evaluate better these effects on CKD as well as the safe amount of these fruits in order to promote a better quality of life or even the survival of these patients.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Manuela F S Melo
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Jessica C Mota
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Denise Mafra
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
23
|
Gai W, Lin L, Wang Y, Bian J, Tao Y. Relationship between dietary fiber and all-cause mortality, cardiovascular mortality, and cardiovascular disease in patients with chronic kidney disease: a systematic review and meta-analysis. J Nephrol 2024; 37:77-93. [PMID: 38165561 PMCID: PMC10920433 DOI: 10.1007/s40620-023-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/14/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND The potential protective effects of dietary fiber against all-cause mortality, cardiovascular mortality, and cardiovascular disease in patients with chronic kidney disease have not been definitively established. To verify this relationship, a systematic review and a meta-analysis were undertaken. METHODS PubMed, The Cochrane Library, Web of Science, Embase, ProQuest, and CINAHL were used to systematically search for prospective cohort studies that investigate the association between dietary fiber and all-cause mortality, cardiovascular mortality, and cardiovascular disease in individuals with chronic kidney disease (CKD). This search was conducted up to and including March 2023. RESULTS The analysis included 10 cohort studies, with a total of 19,843 patients who were followed up for 1.5-10.1 y. The results indicated a significant negative correlation between dietary fiber and all-cause mortality among patients with CKD (HR 0.80, 95% CI 0.58-0.97, P < 0.001). Subgroup analysis further revealed that the study population and exposure factors were significantly associated with all-cause mortality (P < 0.001). Increased dietary fiber intake was associated with a reduced risk of cardiovascular mortality (HR 0.78; 95% CI 0.67-0.90) and a reduced incidence of cardiovascular disease (HR 0.87; 95% CI 0.80-0.95) among patients with CKD. CONCLUSIONS The pooled results of our meta-analysis indicated an inverse association between dietary fiber intake and all-cause mortality, cardiovascular mortality, and cardiovascular disease.
Collapse
Affiliation(s)
- Wei Gai
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 510006, Guangdong Province, China
| | - Lihua Lin
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 510006, Guangdong Province, China
| | - Yuxuan Wang
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 510006, Guangdong Province, China
| | - Jia Bian
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 510006, Guangdong Province, China
| | - Yanling Tao
- Department of Nursing, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong Province, China.
| |
Collapse
|
24
|
Narasaki Y, Kalantar-Zadeh K, Rhee CM, Brunori G, Zarantonello D. Vegetarian Nutrition in Chronic Kidney Disease. Nutrients 2023; 16:66. [PMID: 38201898 PMCID: PMC10780746 DOI: 10.3390/nu16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
There is rising interest globally with respect to the health implications of vegetarian or plant-based diets. A growing body of evidence has demonstrated that higher consumption of plant-based foods and the nutrients found in vegetarian and plant-based diets are associated with numerous health benefits, including improved blood pressure, glycemic control, lipid levels, body mass index, and acid-base parameters. Furthermore, there has been increasing recognition that vegetarian and plant-based diets may have potential salutary benefits in preventing the development and progression of chronic kidney disease (CKD). While increasing evidence shows that vegetarian and plant-based diets have nephroprotective effects, there remains some degree of uncertainty about their nutritional adequacy and safety in CKD (with respect to protein-energy wasting, hyperkalemia, etc.). In this review, we focus on the potential roles of and existing data on the efficacy/effectiveness and safety of various vegetarian and plant-based diets in CKD, as well as their practical application in CKD management.
Collapse
Affiliation(s)
- Yoko Narasaki
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Kamyar Kalantar-Zadeh
- Tibor Rubin Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Division of Nephrology, Hypertension, and Kidney Transplantation, University of California Irvine, Orange, CA 92868, USA
| | - Connie M. Rhee
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
- Division of Nephrology, Hypertension, and Kidney Transplantation, University of California Irvine, Orange, CA 92868, USA
- Nephrology Section, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Giuliano Brunori
- Department of Nephrology, Santa Chiara Hospital, APSS, 31822 Trento, Italy
- CISMed, University of Trento, 38122 Trento, Italy
| | - Diana Zarantonello
- Department of Nephrology, Santa Chiara Hospital, APSS, 31822 Trento, Italy
| |
Collapse
|
25
|
Sun Z, Jiao J, Lu G, Liu R, Li Z, Sun Y, Chen Z. Overview of research progress on the association of dietary potassium intake with serum potassium and survival in hemodialysis patients, does dietary potassium restriction really benefit hemodialysis patients? Front Endocrinol (Lausanne) 2023; 14:1285929. [PMID: 38093955 PMCID: PMC10716210 DOI: 10.3389/fendo.2023.1285929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
For the general population, increasing potassium intake can reduce the incidence of cardiovascular and cerebrovascular diseases. However, since hyperkalemia is a common and life-threatening complication in maintenance hemodialysis patients, which can increase the risk of malignant arrhythmia and sudden death, the current mainstream of management for hemodialysis patients is dietary potassium restriction in order to prevent hyperkalemia. Hemodialysis patients are usually advised to reduce dietary potassium intake and limit potassium-rich fruits and vegetables, but there is limited evidence to support this approach can reduce mortality and improve quality of life. There is still no consistent conclusion on the association between dietary potassium intake and serum potassium and survival in hemodialysis patients. According to the current small observational studies, there was little or even no association between dietary potassium intake and serum potassium in hemodialysis patients when assurance of adequate dialysis and specific dietary patterns (such as the plant-based diet mentioned in the article) are being followed, and excessive dietary potassium restriction may not benefit the survival of hemodialysis patients. Additionally, when assessing the effect of diet on serum potassium, researchers should not only focus on the potassium content of foods, but also consider the type of food and the content of other nutrients. However, more large-scale, multi-center clinical trials are required to provide high-quality evidence support. Besides, further research is also needed to determine the optimal daily potassium intake and beneficial dietary patterns for hemodialysis patients.
Collapse
Affiliation(s)
- Zuoya Sun
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian Jiao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Gang Lu
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ruihong Liu
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhuo Li
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yi Sun
- Department of Nephrology, Beijing Huairou Hospital of University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Chen
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
26
|
André C, Bodeau S, Kamel S, Bennis Y, Caillard P. The AKI-to-CKD Transition: The Role of Uremic Toxins. Int J Mol Sci 2023; 24:16152. [PMID: 38003343 PMCID: PMC10671582 DOI: 10.3390/ijms242216152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.
Collapse
Affiliation(s)
- Camille André
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- GRAP Laboratory, INSERM UMR 1247, University of Picardy Jules Verne, 80000 Amiens, France
| | - Sandra Bodeau
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Saïd Kamel
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Clinical Biochemistry, Amiens Medical Center, 80000 Amiens, France
| | - Youssef Bennis
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Pauline Caillard
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, 80000 Amiens, France
| |
Collapse
|
27
|
Nhan J, Sgambat K, Moudgil A. Plant-based diets: a fad or the future of medical nutrition therapy for children with chronic kidney disease? Pediatr Nephrol 2023; 38:3597-3609. [PMID: 36786858 DOI: 10.1007/s00467-023-05875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 02/15/2023]
Abstract
Plant-based diets are growing in popularity worldwide due to the importance of reducing the population's ecological footprint as well as an emerging role in the prevention and treatment of chronic human diseases. In adults, plant-based diets have been shown to be beneficial for preventing and controlling conditions that are common in patients with chronic kidney disease (CKD), such as obesity, hypertension, type 2 diabetes, dyslipidemia, and metabolic acidosis. Emerging evidence suggests that the higher fiber content of plant-based diets may help to modulate production of uremic toxins through beneficial shifts in the gut microbiome. The effects of the plant-based diet on progression of CKD remain controversial, and there are no data to support this in children. However, knowledge that the bioavailability of potassium and phosphorus from plant-based foods is reduced has led to recent changes in international kidney-friendly diet recommendations for children with CKD. The new guidelines advise that high potassium fruits and vegetables should no longer be automatically excluded from the kidney-friendly diet. In fact, a plant-based diet can be safely implemented in children with CKD through building the diet around whole, high fiber foods, avoiding processed foods and using recommended cooking methods to control potassium. The health benefits of the plant-based diet compared to omnivorous diets in children with CKD need investigation.
Collapse
Affiliation(s)
- Jennifer Nhan
- Department of Nephrology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| | - Kristen Sgambat
- Department of Nephrology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, 20010, USA.
| | - Asha Moudgil
- Department of Nephrology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| |
Collapse
|
28
|
Hui Y, Zhao J, Yu Z, Wang Y, Qin Y, Zhang Y, Xing Y, Han M, Wang A, Guo S, Yuan J, Zhao Y, Ning X, Sun S. The Role of Tryptophan Metabolism in the Occurrence and Progression of Acute and Chronic Kidney Diseases. Mol Nutr Food Res 2023; 67:e2300218. [PMID: 37691068 DOI: 10.1002/mnfr.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.
Collapse
Affiliation(s)
- Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
29
|
Liu X, Wang X, Zhang P, Fang Y, Liu Y, Ding Y, Zhang W. Intestinal homeostasis in the gut-lung-kidney axis: a prospective therapeutic target in immune-related chronic kidney diseases. Front Immunol 2023; 14:1266792. [PMID: 38022571 PMCID: PMC10646503 DOI: 10.3389/fimmu.2023.1266792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In recent years, the role of intestinal homeostasis in health has received increasing interest, significantly improving our understanding of the complex pathophysiological interactions of the gut with other organs. Microbiota dysbiosis, impaired intestinal barrier, and aberrant intestinal immunity appear to contribute to the pathogenesis of immune-related chronic kidney diseases (CKD). Meanwhile, the relationship between the pathological changes in the respiratory tract (e.g., infection, fibrosis, granuloma) and immune-related CKD cannot be ignored. The present review aimed to elucidate the new underlying mechanism of immune-related CKD. The lungs may affect kidney function through intestinal mediation. Communication is believed to exist between the gut and lung microbiota across long physiological distances. Following the inhalation of various pathogenic factors (e.g., particulate matter 2.5 mum or less in diameter, pathogen) in the air through the mouth and nose, considering the anatomical connection between the nasopharynx and lungs, gut microbiome regulates oxidative stress and inflammatory states in the lungs and kidneys. Meanwhile, the intestine participates in the differentiation of T cells and promotes the migration of various immune cells to specific organs. This better explain the occurrence and progression of CKD caused by upper respiratory tract precursor infection and suggests the relationship between the lungs and kidney complications in some autoimmune diseases (e.g., anti-neutrophil cytoplasm antibodies -associated vasculitis, systemic lupus erythematosus). CKD can also affect the progression of lung diseases (e.g., acute respiratory distress syndrome and chronic obstructive pulmonary disease). We conclude that damage to the gut barrier appears to contribute to the development of immune-related CKD through gut-lung-kidney interplay, leading us to establish the gut-lung-kidney axis hypothesis. Further, we discuss possible therapeutic interventions and targets. For example, using prebiotics, probiotics, and laxatives (e.g., Rhubarb officinale) to regulate the gut ecology to alleviate oxidative stress, as well as improve the local immune system of the intestine and immune communication with the lungs and kidneys.
Collapse
Affiliation(s)
- Xinyin Liu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Traditional Chinese Medicine, Jiande First People’s Hospital, Jiande, Hangzhou, China
| | - Xiaoran Wang
- Department of Nephrology, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Peipei Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yiwen Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Liu
- Department of Geriatric, Zhejiang Aged Care Hospital, Hangzhou, China
| | - Yueyue Ding
- Department of Geriatric, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wen Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
30
|
Tsai WC, Hsu SP, Chiu YL, Wu HY, Luan CC, Yang JY, Pai MF, Lin CJ, Lin WY, Sun WH, Peng YS. Short-Term Effects of a Therapeutic Diet on Biochemical Parameters in Hemodialysis Patients: A Randomized Crossover Trial. J Ren Nutr 2023; 33:731-739. [PMID: 37120127 DOI: 10.1053/j.jrn.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023] Open
Abstract
OBJECTIVE Although unhealthy diets exacerbate nutritional and metabolic derangements in patients with end-stage kidney disease (ESKD), how therapeutic diets that possess a variety of different dietary strategies acutely modify diverse biochemical parameters related to cardiovascular disease remains underexplored. METHODS Thirty-three adults with end-stage kidney disease undergoing thrice-weekly hemodialysis participated in a randomized crossover trial comparing a therapeutic diet with their usual diets for 7 days, separated by a 4-week washout period. The therapeutic diet was characterized by adequate calorie and protein amounts, natural food ingredients with a low phosphorus-to-protein ratio, higher portions of plant-based food, and high fiber content. The primary outcome measure was the mean difference in the change-from-baseline intact fibroblast growth factor 23 (FGF23) level between the 2 diets. The other outcomes of interest included changes in mineral parameters, uremic toxins, and high-sensitivity C-reactive protein (hs-CRP) levels. RESULTS Compared with the usual diet, the therapeutic diet lowered intact FGF23 levels (P = .001), decreased serum phosphate levels (P < .001), reduced intact parathyroid hormone (PTH) levels (P = .003), lowered C-terminal FGF23 levels (P = .03), increased serum calcium levels (P = .01), and tended to lower total indoxyl sulfate levels (P = .07) but had no significant effect on hs-CRP levels. Among these changes, reduction in serum phosphate level achieved in 2 days, modifications of intact PTH and calcium levels in 5 days, and reductions in intact and C-terminal FGF23 levels in 7 days of therapeutic diet intervention. CONCLUSION Within the 1-week intervention period, the dialysis-specific therapeutic diet rapidly reversed mineral abnormalities and tended to decrease total indoxyl sulfate levels in patients undergoing hemodialysis but had no effect on inflammation. Future studies to assess the long-term effects of such therapeutic diets are recommended.
Collapse
Affiliation(s)
- Wan-Chuan Tsai
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Center for General Education, Lee-Ming Institute of Technology, New Taipei City, Taiwan
| | - Shih-Ping Hsu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan City, Taiwan
| | - Hon-Yen Wu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Chia-Chin Luan
- Dietary Department, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ju-Yeh Yang
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Center for General Education, Lee-Ming Institute of Technology, New Taipei City, Taiwan
| | - Mei-Fen Pai
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Jui Lin
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City, Taiwan; Department of Medicine, Mackay Medical College, Taipei City, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Wen-Huei Sun
- Dietary Department, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan.
| |
Collapse
|
31
|
Rhee CM, Wang AYM, Biruete A, Kistler B, Kovesdy CP, Zarantonello D, Ko GJ, Piccoli GB, Garibotto G, Brunori G, Sumida K, Lambert K, Moore LW, Han SH, Narasaki Y, Kalantar-Zadeh K. Nutritional and Dietary Management of Chronic Kidney Disease Under Conservative and Preservative Kidney Care Without Dialysis. J Ren Nutr 2023; 33:S56-S66. [PMID: 37394104 PMCID: PMC10756934 DOI: 10.1053/j.jrn.2023.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
While dialysis has been the prevailing treatment paradigm for patients with advanced chronic kidney disease (CKD), emphasis on conservative and preservative management in which dietary interventions are a major cornerstone have emerged. Based on high-quality evidence, international guidelines support the utilization of low-protein diets as an intervention to reduce CKD progression and mortality risk, although the precise thresholds (if any) for dietary protein intake vary across recommendations. There is also increasing evidence demonstrating that plant-dominant low-protein diets reduce the risk of developing incident CKD, CKD progression, and its related complications including cardiometabolic disease, metabolic acidosis, mineral and bone disorders, and uremic toxin generation. In this review, we discuss the premise for conservative and preservative dietary interventions, specific dietary approaches used in conservative and preservative care, potential benefits of a plant-dominant low-protein diet, and practical implementation of these nutritional strategies without dialysis.
Collapse
Affiliation(s)
- Connie M Rhee
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, California.
| | - Angela Yee-Moon Wang
- University Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Annabel Biruete
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon Kistler
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee; Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - Diana Zarantonello
- Nephrology and Dialysis Unit, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Gang Jee Ko
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | | | | | - Giuliano Brunori
- Nephrology and Dialysis Unit, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Keiichi Sumida
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kelly Lambert
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Linda W Moore
- Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoko Narasaki
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, California
| | - Kamyar Kalantar-Zadeh
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
32
|
Cooper TE, Khalid R, Chan S, Craig JC, Hawley CM, Howell M, Johnson DW, Jaure A, Teixeira-Pinto A, Wong G. Synbiotics, prebiotics and probiotics for people with chronic kidney disease. Cochrane Database Syst Rev 2023; 10:CD013631. [PMID: 37870148 PMCID: PMC10591284 DOI: 10.1002/14651858.cd013631.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major public health problem affecting 13% of the global population. Prior research has indicated that CKD is associated with gut dysbiosis. Gut dysbiosis may lead to the development and/or progression of CKD, which in turn may in turn lead to gut dysbiosis as a result of uraemic toxins, intestinal wall oedema, metabolic acidosis, prolonged intestinal transit times, polypharmacy (frequent antibiotic exposures) and dietary restrictions used to treat CKD. Interventions such as synbiotics, prebiotics, and probiotics may improve the balance of the gut flora by altering intestinal pH, improving gut microbiota balance and enhancing gut barrier function (i.e. reducing gut permeability). OBJECTIVES This review aimed to evaluate the benefits and harms of synbiotics, prebiotics, and probiotics for people with CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 9 October 2023 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) measuring and reporting the effects of synbiotics, prebiotics, or probiotics in any combination and any formulation given to people with CKD (CKD stages 1 to 5, including dialysis and kidney transplant). Two authors independently assessed the retrieved titles and abstracts and, where necessary, the full text to determine which satisfied the inclusion criteria. DATA COLLECTION AND ANALYSIS Data extraction was independently carried out by two authors using a standard data extraction form. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Data entry was carried out by one author and cross-checked by another. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Forty-five studies (2266 randomised participants) were included in this review. Study participants were adults (two studies in children) with CKD ranging from stages 1 to 5, with patients receiving and not receiving dialysis, of whom half also had diabetes and hypertension. No studies investigated the same synbiotic, prebiotic or probiotic of similar strains, doses, or frequencies. Most studies were judged to be low risk for selection bias, performance bias and reporting bias, unclear risk for detection bias and for control of confounding factors, and high risk for attrition and other biases. Compared to prebiotics, it is uncertain whether synbiotics improve estimated glomerular filtration rate (eGFR) at four weeks (1 study, 34 participants: MD -3.80 mL/min/1.73 m², 95% CI -17.98 to 10.38), indoxyl sulfate at four weeks (1 study, 42 participants: MD 128.30 ng/mL, 95% CI -242.77 to 499.37), change in gastrointestinal (GI) upset (borborymgi) at four weeks (1 study, 34 participants: RR 15.26, 95% CI 0.99 to 236.23), or change in GI upset (Gastrointestinal Symptom Rating Scale) at 12 months (1 study, 56 participants: MD 0.00, 95% CI -0.27 to 0.27), because the certainty of the evidence was very low. Compared to certain strains of prebiotics, it is uncertain whether a different strain of prebiotics improves eGFR at 12 weeks (1 study, 50 participants: MD 0.00 mL/min, 95% CI -1.73 to 1.73), indoxyl sulfate at six weeks (2 studies, 64 participants: MD -0.20 μg/mL, 95% CI -1.01 to 0.61; I² = 0%) or change in any GI upset, intolerance or microbiota composition, because the certainty of the evidence was very low. Compared to certain strains of probiotics, it is uncertain whether a different strain of probiotic improves eGFR at eight weeks (1 study, 30 participants: MD -0.64 mL/min, 95% CI -9.51 to 8.23; very low certainty evidence). Compared to placebo or no treatment, it is uncertain whether synbiotics improve eGFR at six or 12 weeks (2 studies, 98 participants: MD 1.42 mL/min, 95% CI 0.65 to 2.2) or change in any GI upset or intolerance at 12 weeks because the certainty of the evidence was very low. Compared to placebo or no treatment, it is uncertain whether prebiotics improves indoxyl sulfate at eight weeks (2 studies, 75 participants: SMD -0.14 mg/L, 95% CI -0.60 to 0.31; very low certainty evidence) or microbiota composition because the certainty of the evidence is very low. Compared to placebo or no treatment, it is uncertain whether probiotics improve eGFR at eight, 12 or 15 weeks (3 studies, 128 participants: MD 2.73 mL/min, 95% CI -2.28 to 7.75; I² = 78%), proteinuria at 12 or 24 weeks (1 study, 60 participants: MD -15.60 mg/dL, 95% CI -34.30 to 3.10), indoxyl sulfate at 12 or 24 weeks (2 studies, 83 participants: MD -4.42 mg/dL, 95% CI -9.83 to 1.35; I² = 0%), or any change in GI upset or intolerance because the certainty of the evidence was very low. Probiotics may have little or no effect on albuminuria at 12 or 24 weeks compared to placebo or no treatment (4 studies, 193 participants: MD 0.02 g/dL, 95% CI -0.08 to 0.13; I² = 0%; low certainty evidence). For all comparisons, adverse events were poorly reported and were minimal (flatulence, nausea, diarrhoea, abdominal pain) and non-serious, and withdrawals were not related to the study treatment. AUTHORS' CONCLUSIONS We found very few studies that adequately test biotic supplementation as alternative treatments for improving kidney function, GI symptoms, dialysis outcomes, allograft function, patient-reported outcomes, CVD, cancer, reducing uraemic toxins, and adverse effects. We are not certain whether synbiotics, prebiotics, or probiotics are more or less effective compared to one another, antibiotics, or standard care for improving patient outcomes in people with CKD. Adverse events were uncommon and mild.
Collapse
Affiliation(s)
- Tess E Cooper
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Rabia Khalid
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Martin Howell
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Allison Jaure
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Germaine Wong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
33
|
Snauwaert E, Paglialonga F, Vande Walle J, Wan M, Desloovere A, Polderman N, Renken-Terhaerdt J, Shaw V, Shroff R. The benefits of dietary fiber: the gastrointestinal tract and beyond. Pediatr Nephrol 2023; 38:2929-2938. [PMID: 36471146 DOI: 10.1007/s00467-022-05837-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Dietary fiber is considered an essential constituent of a healthy child's diet. Diets of healthy children with adequate dietary fiber intake are characterized by a higher diet quality, a higher nutrient density, and a higher intake of vitamins and minerals in comparison to the diets of children with poor dietary fiber intake. Nevertheless, a substantial proportion of children do not meet the recommended dietary fiber intake. This is especially true in those children with kidney diseases, as traditional dietary recommendations in kidney diseases have predominantly focused on the quantities of energy and protein, and often restricting potassium and phosphate, while overlooking the quality and diversity of the diet. Emerging evidence suggests that dietary fiber and, by extension, a plant-based diet with its typically higher dietary fiber content are just as important for children with kidney diseases as for healthy children. Dietary fiber confers several health benefits such as prevention of constipation and fewer gastrointestinal symptoms, reduced inflammatory state, and decreased production of gut-derived uremic toxins. Recent studies have challenged the notion that a high dietary fiber intake confers an increased risk of hyperkalemia or nutritional deficits in children with kidney diseases. There is an urgent need of new studies and revised guidelines that address the dietary fiber intake in children with kidney diseases.
Collapse
Affiliation(s)
| | - Fabio Paglialonga
- Policlinico of Milan: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mandy Wan
- Evelina London Children's Hospital Paediatrics, London, UK
| | | | | | - José Renken-Terhaerdt
- Wilhelmina Children's Hospital University Medical Centre: Universitair Medisch Centrum Utrecht - Locatie Wilhelmina Kinderziekenhuis, Utrecht, Netherlands
| | - Vanessa Shaw
- Great Ormond Street Hospital NHS Trust: Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Rukshana Shroff
- Great Ormond Street Hospital NHS Trust: Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Chang L, Tian R, Guo Z, He L, Li Y, Xu Y, Zhang H. Low-protein diet supplemented with inulin lowers protein-bound toxin levels in patients with stage 3b-5 chronic kidney disease: a randomized controlled study. NUTR HOSP 2023; 40:819-828. [PMID: 37409723 DOI: 10.20960/nh.04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Introduction Objective: this study aimed to evaluate whether low-salt low-protein diet (LPD) supplemented with 10 g of inulin could lower serum toxin levels in patients with chronic kidney disease (CKD), thereby providing evidence for adjusting dietary prescriptions of inhospital patients and outpatient nutrition consultants. Methods: we randomized 54 patients with CKD into two groups. Dietary protein intake compliance was evaluated using a 3-day dietary diary and 24-h urine nitrogen levels. The primary outcomes were indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and secondary outcomes included inflammation marker levels, nutritional status, and renal function. We assessed 89 patients for eligibility, and a total of 45 patients completed the study, including 23 and 22 in the inulin-added and control groups, respectively. Results: PCS values decreased in both groups after intervention: inulin-added group, ∆PCS -1.33 (-4.88, -0.63) μg/mL vs. LPD group, -4.7 (-3.78, 3.69) μg/mL (p = 0.058). PCS values reduced from 7.52 to 4.02 μg/mL (p < 0.001) in the inulin-added group (p < 0.001). Moreover, IS decreased from 3.42 (2.53, 6.01) μg/mL to 2.83 (1.67, 4.74) μg/mL after adding inulin; ∆IS was -0.64 (-1.48, 0.00) μg/mL, and a significant difference was observed compared with the control group (p = 0.004). The inflammation index decreased after intervention. Conclusion: dietary fiber supplementation may reduce serum IS and PCS levels and modulate their inflammatory status in predialysis CKD patients.
Collapse
Affiliation(s)
- Liyang Chang
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Rongrong Tian
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Zili Guo
- College of Pharmaceutical Sciences. Zhejiang University of Technology
| | - Luchen He
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Yanjuan Li
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Yao Xu
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| | - Hongmei Zhang
- Department of Renal Centre. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University
| |
Collapse
|
35
|
Sanekommu H, Taj S, Mah Noor R, Umair Akmal M, Akhtar R, Hossain M, Asif A. Probiotics and Fecal Transplant: An Intervention in Delaying Chronic Kidney Disease Progression? Clin Pract 2023; 13:881-888. [PMID: 37623261 PMCID: PMC10453439 DOI: 10.3390/clinpract13040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 08/26/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health challenge affecting nearly 700 million people worldwide. In the United States alone, the Medicare costs for CKD management has reached nearly USD 80 billion per year. While reversing CKD may be possible in the future, current strategies aim to slow its progression. For the most part, current management strategies have focused on employing Renin Angiotensin Aldosterone (RAS) inhibitors and optimizing blood pressure and diabetes mellitus control. Emerging data are showing that a disruption of the gut-kidney axis has a significant impact on delaying CKD progression. Recent investigations have documented promising results in using microbiota-based interventions to better manage CKD. This review will summarize the current evidence and explore future possibilities on the use of probiotics, prebiotics, synbiotics, and fecal microbial transplant to reduce CKD progression.
Collapse
Affiliation(s)
- Harshavardhan Sanekommu
- Department of Medicine, Jersey Shore University Medical Center, 1945 NJ-33, Neptune City, NJ 07753, USA; (S.T.)
| | - Sobaan Taj
- Department of Medicine, Jersey Shore University Medical Center, 1945 NJ-33, Neptune City, NJ 07753, USA; (S.T.)
| | - Rida Mah Noor
- School of Medicine, Eastern Campus, International University of Kyrgyzstan-International, Bishkek 720007, Kyrgyzstan;
| | | | - Reza Akhtar
- Department of Gastroenterology, Jersey Shore University Medical Center, 1945 NJ-33, Neptune City, NJ 07753, USA
| | - Mohammad Hossain
- Department of Medicine, Jersey Shore University Medical Center, 1945 NJ-33, Neptune City, NJ 07753, USA; (S.T.)
| | - Arif Asif
- Department of Medicine, Jersey Shore University Medical Center, 1945 NJ-33, Neptune City, NJ 07753, USA; (S.T.)
| |
Collapse
|
36
|
Procházková N, Venlet N, Hansen ML, Lieberoth CB, Dragsted LO, Bahl MI, Licht TR, Kleerebezem M, Lauritzen L, Roager HM. Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome: a randomised controlled cross-over trial. Front Nutr 2023; 10:1187165. [PMID: 37324737 PMCID: PMC10267323 DOI: 10.3389/fnut.2023.1187165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Background Diets rich in whole grains are associated with health benefits. Yet, it remains unclear whether the benefits are mediated by changes in gut function and fermentation. Objective We explored the effects of whole-grain vs. refined-grain diets on markers of colonic fermentation and bowel function, as well as their associations with the gut microbiome. Methods Fifty overweight individuals with increased metabolic risk and a high habitual intake of whole grains (~69 g/day) completed a randomised cross-over trial with two 8-week dietary intervention periods comprising a whole-grain diet (≥75 g/day) and a refined-grain diet (<10 g/day), separated by a washout period of ≥6 weeks. A range of markers of colonic fermentation and bowel function were assessed before and after each intervention. Results The whole-grain diet increased the levels of faecal butyrate (p = 0.015) and caproate (p = 0.013) compared to the refined-grain diet. No changes in other faecal SCFA, BCFA or urinary levels of microbial-derived proteolytic markers between the two interventions were observed. Similarly, faecal pH remained unchanged. Faecal pH did however increase (p = 0.030) after the refined-grain diet compared to the baseline. Stool frequency was lower at the end of the refined-grain period compared to the end of the whole-grain diet (p = 0.001). No difference in faecal water content was observed between the intervention periods, however, faecal water content increased following the whole-grain period compared to the baseline (p = 0.007). Dry stool energy density was unaffected by the dietary interventions. Nevertheless, it explained 4.7% of the gut microbiome variation at the end of the refined-grain diet, while faecal pH and colonic transit time explained 4.3 and 5%, respectively. Several butyrate-producers (e.g., Faecalibacterium, Roseburia, Butyriciococcus) were inversely associated with colonic transit time and/or faecal pH, while the mucin-degraders Akkermansia and Ruminococcaceae showed the opposite association. Conclusion Compared with the refined-grain diet, the whole-grain diet increased faecal butyrate and caproate concentrations as well as stool frequency, emphasising that differences between whole and refined grains affect both colonic fermentation and bowel habits.
Collapse
Affiliation(s)
- Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Naomi Venlet
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Mathias L. Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Christian B. Lieberoth
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Martin I. Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michiel Kleerebezem
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
37
|
Mitrović M, Stanković-Popović V, Tolinački M, Golić N, Soković Bajić S, Veljović K, Nastasijević B, Soldatović I, Svorcan P, Dimković N. The Impact of Synbiotic Treatment on the Levels of Gut-Derived Uremic Toxins, Inflammation, and Gut Microbiome of Chronic Kidney Disease Patients-A Randomized Trial. J Ren Nutr 2023; 33:278-288. [PMID: 35995418 DOI: 10.1053/j.jrn.2022.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Altering dysbiotic gut flora through synbiotic supplementation has recently been recognized as a potential treatment strategy to reduce the levels of gut-derived uremic toxins and decrease inflammation. Assessing its efficacy and safety has been the main goal of our randomized, double-blind, placebo-controlled study. METHODS A total of 34 nondialyzed chronic kidney disease patients, aged ≥18 years, with an estimated glomerular filtration rate between 15 and 45 mL/minute, were randomized either to an intervention group (n = 17), receiving synbiotic (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium lactis, 32 billion colony forming units per day plus 3.2 g of inulin), or control group (n = 17), receiving placebo during 12 weeks. The impact of treatment on the dynamic of serum levels of gut-derived uremic toxins, total serum indoxyl sulfate, p-cresyl sulfate, and trimethylamine N-oxide, was defined as the primary outcome of the study. Secondary outcomes included changes in the stool microbiome, serum interleukin-6 levels, high-sensitivity C-reactive protein, estimated glomerular filtration rate, albuminuria, diet, gastrointestinal symptom dynamics, and safety. Serum levels of uremic toxins were determined using ultraperformance liquid chromatography. The stool microbiome analysis was performed using the 16S ribosomal ribonucleic acid gene sequencing approach. RESULTS Synbiotic treatment significantly modified gut microbiome with Bifidobacteria, Lactobacillus, and Subdoligranulum genera enrichment and consequently reduced serum level of indoxyl sulfate (ΔIS -21.5% vs. 5.3%, P < .001), improved estimated glomerular filtration rate (ΔeGFR 12% vs. 8%, P = .029), and decreased level of high-sensitivity C-reactive protein (-39.5 vs. -8.5%, P < .001) in treated patients. Two patients of the intervention arm complained of increased flatulence. No other safety issues were noted. CONCLUSION Synbiotics could be available, safe, and an effective therapeutic strategy we could use in daily practice in order to decrease levels of uremic toxins and microinflammation in chronic kidney disease patients.
Collapse
Affiliation(s)
- Miloš Mitrović
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia.
| | - Verica Stanković-Popović
- Nephrology Clinic, Clinical Center Serbia, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Soković Bajić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Veljović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branislav Nastasijević
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences University of Belgrade, -National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Petar Svorcan
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Dimković
- Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Sakaguchi Y, Kaimori JY, Isaka Y. Plant-Dominant Low Protein Diet: A Potential Alternative Dietary Practice for Patients with Chronic Kidney Disease. Nutrients 2023; 15:1002. [PMID: 36839360 PMCID: PMC9964049 DOI: 10.3390/nu15041002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Dietary protein restriction has long been a cornerstone of nutritional therapy for patients with chronic kidney diseases (CKD). However, the recommended amount of dietary protein intake is different across guidelines. This is partly because previous randomized controlled trials have reported conflicting results regarding the efficacy of protein restriction in terms of kidney outcomes. Interestingly, a vegetarian, very low protein diet has been shown to reduce the risk of kidney failure among patients with advanced CKD, without increasing the incidence of hyperkalemia. This finding suggests that the source of protein may also influence the kidney outcomes. Furthermore, a plant-dominant low-protein diet (PLADO) has recently been proposed as an alternative dietary therapy for patients with CKD. There are several potential mechanisms by which plant-based diets would benefit patients with CKD. For example, plant-based diets may reduce the production of gut-derived uremic toxins by increasing the intake of fiber, and are useful for correcting metabolic acidosis and hyperphosphatemia. Plant proteins are less likely to induce glomerular hyperfiltration than animal proteins. Furthermore, plant-based diets increase magnesium intake, which may prevent vascular calcification. More evidence is needed to establish the efficacy, safety, and feasibility of PLADO as a new adjunct therapy in real-world patients with CKD.
Collapse
Affiliation(s)
- Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan
| | | | | |
Collapse
|
39
|
Lauriola M, Farré R, Evenepoel P, Overbeek SA, Meijers B. Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins (Basel) 2023; 15:116. [PMID: 36828430 PMCID: PMC9960799 DOI: 10.3390/toxins15020116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a higher cardiovascular risk compared to the average population, and this is partially due to the plasma accumulation of solutes known as uremic toxins. The binding of some solutes to plasma proteins complicates their removal via conventional therapies, e.g., hemodialysis. Protein-bound uremic toxins originate either from endogenous production, diet, microbial metabolism, or the environment. Although the impact of diet on uremic toxicity in CKD is difficult to quantify, nutrient intake plays an important role. Indeed, most uremic toxins are gut-derived compounds. They include Maillard reaction products, hippurates, indoles, phenols, and polyamines, among others. In this review, we summarize the findings concerning foods and dietary components as sources of uremic toxins or their precursors. We then discuss their endogenous metabolism via human enzyme reactions or gut microbial fermentation. Lastly, we present potential dietary strategies found to be efficacious or promising in lowering uremic toxins plasma levels. Aligned with current nutritional guidelines for CKD, a low-protein diet with increased fiber consumption and limited processed foods seems to be an effective treatment against uremic toxins accumulation.
Collapse
Affiliation(s)
- Mara Lauriola
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Pieter Evenepoel
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Björn Meijers
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Chen C, Wang J, Li J, Zhang W, Ou S. Probiotics, Prebiotics, and Synbiotics for Patients on Dialysis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Ren Nutr 2023; 33:126-139. [PMID: 35452837 DOI: 10.1053/j.jrn.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 04/03/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The current systematic review and meta-analysis investigated the effects of probiotic, prebiotic, and synbiotic administration on inflammation, metabolic parameters, nutritional status, and uremic toxin in dialysis patients. METHODS Up to June 2021, publications were searched in Cochrane Library, PubMed, EMBASE, and Web of Science databases. The protocol was submitted to the International Prospective Register of Systematic Reviews and was approved. RESULTS This meta-analysis included 18 randomized controlled trials which were eligible. This meta-analysis discovered that probiotic, prebiotic, and synbiotic supplements could reduce C-reactive protein (standardized mean difference (SMD), -0.38; 95% confidence interval (CI), -0.68 to -0.08; P = .01), interleukin 6 (SMD, -0.48; 95% CI, -0.76 to -0.20; P = .00), and indoxyl sulfate (SMD, -0.24; 95% CI, -0.48 to -0.01; P = .045) and increase high-density lipoprotein cholesterol (SMD, 0.25; 95% CI, 0.03 to 0.46; P = .025) compared with the control group but had no significant influence on tumor necrosis factor α, albumin, hemoglobin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, calcium, phosphorus, uric acid, or p-cresyl sulfate in dialysis patients. CONCLUSIONS Probiotic, prebiotic, and synbiotic administration could reduce C-reactive protein, interleukin 6, and indoxyl sulfate and increase high-density lipoprotein cholesterol in dialysis patients. To better examine the impact, large-scale, long-term, controlled diets and well-designed randomized controlled trials are needed.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Clinical Nutrition, The First People's Hospital of Yibin, Yibin, Sichuan, China.
| | - Jun Wang
- Department of Gastroenterology, The First People's Hospital of Yibin, Yibin, Sichuan, China
| | - Jianchuan Li
- Department of Clinical Nutrition, The First People's Hospital of Yibin, Yibin, Sichuan, China
| | - Wanchao Zhang
- Department of Nephrology, The First People's Hospital of Yibin, Yibin, Sichuan, China
| | - Santao Ou
- Department of Nephrology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
41
|
Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J 2022; 74:87. [PMID: 36583819 PMCID: PMC9803803 DOI: 10.1186/s43044-022-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dealing with cardiac arrhythmia is a difficult challenge. Choosing between different anti-arrhythmic drugs (AADs) while being cautious about the pro-arrhythmic characteristics of some of these drugs and their diverse interaction with other drugs is a real obstacle. MAIN BODY Gut microbiota (GM), in our bodies, are now being considered as a hidden organ which can regulate our immune system, digest complex food, and secrete bioactive compounds. Yet, GM are encountered in the pathophysiology of arrhythmia and can affect the pharmacokinetics of AADs, as well as some anti-thrombotics, resulting in altering their bioavailability, therapeutic function and may predispose to some of their unpleasant adverse effects. CONCLUSIONS Knowledge of the exact role of GM in the pharmacokinetics of these drugs is now essential for better understanding of the art of arrhythmia management. Also, it will help deciding when to consider probiotics as an adjunctive therapy while treating arrhythmia. This should be discovered in the near future.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- grid.7776.10000 0004 0639 9286Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Wang P, Zhang X, Zheng X, Gao J, Shang M, Xu J, Liang H. Folic Acid Protects against Hyperuricemia in C57BL/6J Mice via Ameliorating Gut-Kidney Axis Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15787-15803. [PMID: 36473110 DOI: 10.1021/acs.jafc.2c06297] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging lines of research evidence point to a vital role of gut-kidney axis in the development of hyperuricemia (HUA), which has been identified as an increasing burden worldwide due to the high prevalence. The involved crosstalk which links the metabolic and immune-related pathways is mainly responsible for maintaining the axial homeostasis of uric acid (UA) metabolism. Nowadays, the urate-lowering drugs only aim to treat acute gouty arthritis as a result of their controversial clinical application in HUA. In this study, we established the HUA model of C57BL/6J mice to evaluate the effectiveness of folic acid on UA metabolism and further explored the underlying mechanisms. Folic acid attenuated the kidney tissue injury and excretion dysfunction, as well as the typical fibrosis in HUA mice. Molecular docking results also revealed the structure-activity relationship of the folic acid metabolic unit and the UA transporters GLUT9 and URAT1, implying the potential interaction. Also, folic acid alleviated HUA-induced Th17/Treg imbalance and intestinal tissue damage and inhibited the active state of the TLR4/NF-κB signaling pathway, which is closely associated with the circulating LPS level caused by the impaired intestinal permeability. Furthermore, the changes of intestinal microecology induced by HUA were restored by folic acid, including the alteration in the structure and species composition of the gut microbiome community, and metabolite short-chain fatty acids. Collectively, this study revealed that folic acid intervention exerted improving effects on HUA by ameliorating gut-kidney axis dysfunction.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xiaoqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jingru Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Mengfei Shang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jinghan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| |
Collapse
|
43
|
Assessment of ELISA-based method for the routine examination of serum indoxyl sulfate in patients with chronic kidney disease. Heliyon 2022; 8:e12220. [PMID: 36590542 PMCID: PMC9801083 DOI: 10.1016/j.heliyon.2022.e12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Indoxyl sulfate (IS), a protein-bound uremic toxin, is associated with kidney function and chronic kidney disease (CKD)-related complications. Currently, serum IS levels are primarily quantified using mass spectrometry-based methods, which are not feasible for routine clinical examinations. Methods The efficiencies of three commercial ELISA kits in determination of serum IS were validated by comparing with ultra-performance liquid chromatography (UPLC)-MS/MS-based method using Bland-Altman analysis. The associations between kidney parameters and serum IS levels determined by ELISA kit from Leadgene and UPLC-MS/MS were evaluated by Spearman correlation coefficient in a CKD validation cohort. Results ELISA kit from Leadgene showed clinical agreement with UPLC-MS/MS in the determination of serum IS levels (p = 0.084). In patients with CKD, Spearman's correlation analysis revealed a perfect correlation between the IS levels determined using the Leadgene ELISA kit and UPLC-MS/MS (r = 0.964, p < 0.0001). IS levels determined using the Leadgene ELISA kit were associated with the estimated glomerular filtration rate (r = -0.772, p < 0.0001) and serum creatinine concentration (r = 0.824, p < 0.0001) in patients with CKD, and on dialysis (r = 0.557, p = 0.006). Conclusions The Leadgene ELISA kit exhibits comparable efficacy to UPLC-MS/MS in quantifying serum IS levels, supporting that ELISA would be a personalized method for monitoring the dynamic changes in serum IS levels in dialysis patients to prevent the progression of CKD.
Collapse
|
44
|
Paul P, Kaul R, Chaari A. Renal Health Improvement in Diabetes through Microbiome Modulation of the Gut-Kidney Axis with Biotics: A Systematic and Narrative Review of Randomized Controlled Trials. Int J Mol Sci 2022; 23:14838. [PMID: 36499168 PMCID: PMC9740604 DOI: 10.3390/ijms232314838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetes mellitus is the most common endocrine disorder worldwide, with over 20% of patients ultimately developing diabetic kidney disease (DKD), a complex nephropathic complication that is a leading cause of end-stage renal disease. Various clinical trials have utilized probiotics, prebiotics, and synbiotics to attempt to positively modulate the gut microbiome via the gut-kidney axis, but consensus is limited. We conducted a multi-database systematic review to investigate the effect of probiotics, prebiotics, and synbiotics on various biomarkers of renal health in diabetes, based on studies published through 10 April 2022. Adhering to the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, relevant articles were systematically screened and extracted by independent reviewers; subsequently, results were systematically compiled, analyzed, and expanded through a narrative discussion. A total of 16 publications encompassing 903 diabetic individuals met the inclusion criteria. Our findings show that some studies report statistically significant changes in common renal markers, such as serum creatinine, estimated glomerular filtration rate, blood urea nitrogen/urea, microalbuminuria, and uric acid, but not on serum albumin, sodium, potassium, phosphorous, or total urine protein. Interestingly, these nutraceuticals seem to increase serum uric acid concentrations, an inflammatory marker usually associated with decreased renal health. We found that probiotics from the Lactobacillus and Bifidobacterium families were the most investigated, followed by Streptococcus thermophilus. Prebiotics including inulin, galacto-oligosaccharide, and resistant dextrin were also examined. The single-species probiotic soymilk formulation of Lactobacillus plantarum A7 possessed effects on multiple renal biomarkers in DKD patients without adverse events. We further investigated the optimum nutraceutical formulation, discussed findings from prior studies, described the gut-kidney axis in diabetes and DKD, and finally commented on some possible mechanisms of action of these nutraceuticals on renal health in diabetics. Although probiotics, prebiotics, and synbiotics have shown some potential in ameliorating renal health degradation in diabetes via gut-kidney axis crosstalk, larger and more convincing trials with focused objectives and next-generation nutraceutical formulations are required to investigate their possible role as adjunct therapy in such patients.
Collapse
Affiliation(s)
- Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| | - Ridhima Kaul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation—Education City, Doha P.O. Box 24144, Qatar
| |
Collapse
|
45
|
Zhi W, Yuan X, Song W, Jin G, Li Y. Fecal Microbiota Transplantation May Represent a Good Approach for Patients with Focal Segmental Glomerulosclerosis: A Brief Report. J Clin Med 2022; 11:jcm11226700. [PMID: 36431177 PMCID: PMC9697655 DOI: 10.3390/jcm11226700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This is the first report of fecal microbiota transplantation (FMT) in patients with chronic kidney disease. The patient was subjected to focal segmental glomerulosclerosis (FSGS), with onset in April 2021. The main manifestation featured abnormal renal function and no proteinuria at the level of nephrotic syndrome. In May 2021, she showed biopsy-proven FSGS and was treated with glucocorticoid. However, after glucocorticoid reduction, the patient's serum creatinine increased again, so she adjusted the dosage and continued use until now. In April 2022, the patient was prescribed the FMT capsules. After FMT, the renal function remained stable, urinary protein decreased, reaching the clinical standard of complete remission, and there was no recurrence after glucocorticoid reduction. Furthermore, the patient showed significantly decreased hyperlipidemia, triglyceride (TG) and cholesterol (CHO) after FMT. During FMT, the level of cytokines fluctuated slightly, but returned to the pre-transplantation level after three months. From this, we conclude that FMT is a potential adjuvant therapy for FSGS, and patients can benefit from improving renal function and dyslipidemia.
Collapse
Affiliation(s)
- Wenqiang Zhi
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Xiaoli Yuan
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, No.56 Xinjian South Road, Taiyuan 030001, China
| | - Guorong Jin
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan 030012, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
46
|
Kemp JA, Dos Santos HF, de Jesus HE, Esgalhado M, de Paiva BR, Azevedo R, Stenvinkel P, Bergman P, Lindholm B, Ribeiro-Alves M, Mafra D. Resistant Starch Type-2 Supplementation Does Not Decrease Trimethylamine N-Oxide (TMAO) Plasma Level in Hemodialysis Patients. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:788-795. [PMID: 35512757 DOI: 10.1080/07315724.2021.1967814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Dysbiosis is recognized as a new cardiovascular disease (CVD) risk factor in hemodialysis (HD) patients because it is linked to increased generation in the gut of uremic toxins such as trimethylamine N-Oxide (TMAO) from dietary precursors (choline, betaine, or L-carnitine). Nutritional strategies have been proposed to modulate the gut microbiota and reduce the production of these toxins. This study aimed to evaluate the effect of amylose-resistant starch (RS) supplementation on TMAO plasma levels in HD patients. We conducted a randomized, double-blind, placebo-controlled trial (NCT02706808) with patients undergoing HD enrolled in a previous pilot study. The participants were allocated to RS or placebo groups to receive 16 g/d of RS or placebo for 4 weeks. Plasma TMAO, choline, and betaine levels were measured with LC-MS/MS. Fecal microbiome composition was evaluated by 16S ribosomal RNA sequencing, followed by a search for TMA-associated taxa. Anthropometric, routine biochemical parameters, and food intake were evaluated. Twenty-five participants finished the study, 13 in the RS group, and 12 in the placebo group. RS supplementation did not reduce TMAO plasma levels. Moreover, no significant alterations were observed in choline, betaine, anthropometric, biochemical parameters, or food intake in both groups. Likewise, RS was not found to exert any influence on the proportion of potential TMA-producing bacterial taxa in fecal matter. RS supplementation did not influence plasma TMAO, choline, betaine, or fecal taxa potentially linked to TMAO. Thus, RS does not seem to modify the TMA-associated bacterial taxa, precursors of TMAO. Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2021.1967814 .
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Bruna Regis de Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Renata Azevedo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Peter Stenvinkel
- Renal Medicine and Baxter Novum, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Drake AM, Coughlan MT, Christophersen CT, Snelson M. Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease. Nutrients 2022; 14:4547. [PMID: 36364808 PMCID: PMC9656781 DOI: 10.3390/nu14214547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
Diabetes is the leading cause of kidney disease, and as the number of individuals with diabetes increases there is a concomitant increase in the prevalence of diabetic kidney disease (DKD). Diabetes contributes to the development of DKD through a number of pathways, including inflammation, oxidative stress, and the gut-kidney axis, which may be amenable to dietary therapy. Resistant starch (RS) is a dietary fibre that alters the gut microbial consortium, leading to an increase in the microbial production of short chain fatty acids. Evidence from animal and human studies indicate that short chain fatty acids are able to attenuate inflammatory and oxidative stress pathways, which may mitigate the progression of DKD. In this review, we evaluate and summarise the evidence from both preclinical models of DKD and clinical trials that have utilised RS as a dietary therapy to limit the progression of DKD.
Collapse
Affiliation(s)
- Anna M. Drake
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Melinda T. Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular Life Sciences, Curtin University, Bentley 6102, Australia
| | - Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
48
|
Li HB, Xu ML, Xu XD, Tang YY, Jiang HL, Li L, Xia WJ, Cui N, Bai J, Dai ZM, Han B, Li Y, Peng B, Dong YY, Aryal S, Manandhar I, Eladawi MA, Shukla R, Kang YM, Joe B, Yang T. Faecalibacterium prausnitzii Attenuates CKD via Butyrate-Renal GPR43 Axis. Circ Res 2022; 131:e120-e134. [PMID: 36164984 PMCID: PMC9588706 DOI: 10.1161/circresaha.122.320184] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Xu-Dong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu-Yan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hong-Li Jiang
- Department of Renal Dialysis, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
| | - Lu Li
- Department of Nephrology, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Nan Cui
- Department of Reproductive Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, China
| | - Juan Bai
- Department of Anesthesiology, Center for Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhi-Ming Dai
- Department of Anesthesiology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, 710061 Xi’an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Bo Peng
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Sachin Aryal
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Ishan Manandhar
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Mahmoud Ali Eladawi
- Department of Neuroscience, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Rammohan Shukla
- Department of Neuroscience, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Tao Yang
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| |
Collapse
|
49
|
Tian N, Li L, Ng JKC, Li PKT. The Potential Benefits and Controversies of Probiotics Use in Patients at Different Stages of Chronic Kidney Disease. Nutrients 2022; 14:4044. [PMID: 36235699 PMCID: PMC9571670 DOI: 10.3390/nu14194044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
The therapeutic modulation of the gut microbiome has been suggested to be one of the tools in the integrated management of chronic kidney disease (CKD) in recent years. Lactobacillus and Bifidobacterium genera are the two most commonly used probiotics strains. Most of the probiotics used in studies are mixed formulation. There is no consensus on the dose and duration of the probiotic administration for CKD patients Increasing evidence indicates that patients with early stage (1-2) CKD have an altered quantitative and qualitative microbiota profile. However, there was a dearth of prospective controlled studies on the use of probiotics in the early stage of the CKD population. The association between gut microbiota disturbance and advanced CKD was reported. Most randomized controlled trials on probiotic treatment used in CKD stage 3-5ND patients reported positive results. The metabolites of abnormal gut microbiota are directly involved in the pathogenetic mechanisms of cardiovascular disease and inflammation. We summarized 13 studies performed in the dialysis population, including 10 in hemodialysis (HD) patients and 3 in peritoneal dialysis (PD). Some controversial results were concluded on the decreasing plasma concentration of uremic toxin, symptoms, inflammation, and cardiovascular risk. Only three randomized controlled trials on PD were reported to show the potential beneficial effects of probiotics on inflammation, uremic toxins and gastrointestinal symptoms. There is still no standard in the dosage and duration of the use of probiotics in CKD patients. Overall, the probiotic administration may have potential benefit in improving symptoms and quality of life, reducing inflammation, and delaying the progression of kidney failure. Further research studies using a larger sample size with longer follow-up durations and a greater focus on clinical outcomes-including survival-are warranted to elucidate the significant clinical impact of the use of probiotics in CKD patients.
Collapse
Affiliation(s)
- Na Tian
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lu Li
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jack Kit-Chung Ng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing St., Shatin, Hong Kong, China
- Carol and Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Ngan Shing St., Shatin, Hong Kong, China
| | - Philip Kam-Tao Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing St., Shatin, Hong Kong, China
- Carol and Richard Yu Peritoneal Dialysis Research Centre, The Chinese University of Hong Kong, Ngan Shing St., Shatin, Hong Kong, China
| |
Collapse
|
50
|
Tan J, Zhou H, Deng J, Sun J, Zhou X, Tang Y, Qin W. Effectiveness of Microecological Preparations for Improving Renal Function and Metabolic Profiles in Patients With Chronic Kidney Disease. Front Nutr 2022; 9:850014. [PMID: 36172526 PMCID: PMC9510395 DOI: 10.3389/fnut.2022.850014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Determining whether microecological preparations, including probiotics, prebiotics, and synbiotics, are beneficial for patients with chronic kidney disease (CKD) has been debated. Moreover, determining which preparation has the best effect remains unclear. In this study, we performed a network meta-analysis of randomized clinical trials (RCTs) to address these questions. Methods MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials were searched. Eligible RCTs with patients with CKD who received intervention measures involving probiotics, prebiotics, and/or synbiotics were included. The outcome indicators included changes in renal function, lipid profiles, inflammatory factors, and oxidative stress factors. Results Twenty-eight RCTs with 1,373 patients were ultimately included. Probiotics showed greater effect in lowering serum creatinine [mean difference (MD) -0.21, 95% confidence interval (CI) -0.34, -0.09] and triglycerides (MD -9.98, 95% CI -19.47, -0.49) than the placebo, with the largest surface area under the cumulative ranking curve, while prebiotics and synbiotics showed no advantages. Probiotics were also able to reduce malondialdehyde (MDA) (MD -0.54, 95% CI -0.96, -0.13) and increase glutathione (MD 72.86, 95% CI 25.44, 120.29). Prebiotics showed greater efficacy in decreasing high-sensitivity C-reactive protein (MD -2.06, 95% CI -3.79, -0.32) and tumor necrosis factor-α (MD -2.65, 95% CI -3.91, -1.39). Synbiotics showed a partially synergistic function in reducing MDA (MD -0.66, 95% CI -1.23, -0.09) and high-sensitivity C-reactive protein (MD -2.01, 95% CI -3.87, -0.16) and increasing total antioxidant capacity (MD 145.20, 95% CI 9.32, 281.08). Conclusion The results indicated that microbial supplements improved renal function and lipid profiles and favorably affected measures of oxidative stress and inflammation in patients with CKD. After thorough consideration, probiotics provide the most comprehensive and beneficial effects for patients with CKD and might be used as the best choice for microecological preparations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022295497, PROSPERO 2022, identifier: CRD42022295497.
Collapse
Affiliation(s)
- Jiaxing Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaxin Deng
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiantong Sun
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiaoyuan Zhou
- West China School of Public Health, West China Forth Hospital of Sichuan University, Chengdu, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|