1
|
Chen S, Wang L, Zou Y, Li Y, Zhong X, Li G. Pathogenesis of Focal Segmental Glomerulosclerosis Caused by a Leu754Val Mutation in ARHGAP32. FASEB J 2025; 39:e70534. [PMID: 40231370 DOI: 10.1096/fj.202403242r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Focal segmental glomerulosclerosis (FSGS) shows a poor response to hormones and other treatment schemes and rapidly progresses to end-stage renal disease. Genetic factors are important causes of FSGS. We recently identified a new candidate pathogenic ARHGAP32 mutation in a family affected by FSGS and further investigated its functional impact through in vivo and in vitro studies. We established in vitro models of ARHGAP32 overexpression in podocytes and COS-7 kidney cells by plasmid transfection. Mice with the point mutation were established using CRISPR/Cas9 technology, followed by the establishment of a kidney injury model by adriamycin administration via the tail vein. The ARHGAP32 protein was found to be expressed in human kidney tissues. Podocytes transfected with mutant ARHGAP32 showed a significant decrease in the expression of the podocyte markers nephrin. Similarly, COS-7 cells transfected with mutant ARHGAP32 showed decreased expression of the cytoskeletal protein F-actin. The ARHGAP32 mutant protein had 20-fold higher affinity for Cdc42 than the wild-type protein. Adriamycin-induced L405V mutant mice showed slow growth, proteinuria, increased serum creatinine and blood urea nitrogen levels, and pathological kidney damage. RhoA, Rac1, and Cdc42 all showed decreased expression in podocytes overexpressing mutant ARHGAP32 and in the kidneys of mutant mice. These findings suggest that the ARHGAP32 L754V mutation induces podocyte damage, leading to kidney damage and the potential development of FSGS. This study provides a new basis for elucidating the pathogenesis of FSGS and the exploration of new therapeutic measures.
Collapse
Affiliation(s)
- Sipei Chen
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Li Wang
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Yang Zou
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Xiang Zhong
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| | - Guisen Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, Sichuan, P.R. China
| |
Collapse
|
2
|
Mani S, Lalani SR, Pammi M. Genomics and multiomics in the age of precision medicine. Pediatr Res 2025:10.1038/s41390-025-04021-0. [PMID: 40185865 DOI: 10.1038/s41390-025-04021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Precision medicine is a transformative healthcare model that utilizes an understanding of a person's genome, environment, lifestyle, and interplay to deliver customized healthcare. Precision medicine has the potential to improve the health and productivity of the population, enhance patient trust and satisfaction in healthcare, and accrue health cost-benefits both at an individual and population level. Through faster and cost-effective genomics data, next-generation sequencing has provided us the impetus to understand the nuances of complex interactions between genes, diet, and lifestyle that are heterogeneous across the population. The emergence of multiomics technologies, including transcriptomics, proteomics, epigenomics, metabolomics, and microbiomics, has enhanced the knowledge necessary for maximizing the applicability of genomics data for better health outcomes. Integrative multiomics, the combination of multiple 'omics' data layered over each other, including the interconnections and interactions between them, helps us understand human health and disease better than any of them separately. Integration of these multiomics data is possible today with the phenomenal advancements in bioinformatics, data sciences, and artificial intelligence. Our review presents a broad perspective on the utility and feasibility of a genomics-first approach layered with other omics data, offering a practical model for adopting an integrated multiomics approach in pediatric health care and research. IMPACT: Precision medicine provides a paradigm shift from a conventional, reactive disease control approach to proactive disease prevention and health preservation. Phenomenal advancements in bioinformatics, data sciences, and artificial intelligence have made integrative multiomics feasible and help us understand human health and disease better than any of them separately. The genotype-first approach or reverse phenotyping has the potential to overcome the limitations of the phenotype-first approach by identifying new genotype-phenotype associations, enhancing the subclassification of diseases by widening the phenotypic spectrum of genetic variants, and understanding functional mechanisms of genetic variations.
Collapse
Affiliation(s)
- Srinivasan Mani
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mohan Pammi
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Kim JH, Ahn YH, Jang Y, Park E, Lee H, Kim SH, Song JY, Han KH, Jung J, Lee JH, Kang HG, Jung JH, Cheong HI. Genotype of PAX2-related disorders correlates with kidney and ocular manifestations. Eur J Hum Genet 2025; 33:441-450. [PMID: 39994403 PMCID: PMC11986020 DOI: 10.1038/s41431-025-01822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/23/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
PAX2-related disorders encompass renal coloboma syndrome (RCS) and hereditary focal segmental glomerulosclerosis (FSGS) type 7. We retrospectively analyzed 27 Korean patients with PAX2 pathogenic variants detected between 2004 and 2022 and conducted a literature review of 328 cases, including 301 previously reported. In our cohort, 19 had RCS, 4 had FSGS, and 4 had isolated congenital anomalies of the kidneys and urinary tract. Patients were classified by variant type into predicted loss of function (pLoF) and non-pLoF variant groups, and by variant location into paired domain and other sites group. pLoF variants were predominantly associated with RCS, observed in 82% of patients in both our data (18 of 22, P = 0.017) and the literature (140 of 171, P < 0.001). Kidney failure developed in 52% of Korean patients at a median age of 14.5 years, with no difference in kidney survival between variant types. However, the literature review indicated faster progression to kidney failure in patients with pLoF variants (11.0 vs. 24.0 years; pLoF, n = 138 vs. non-pLoF, n = 71; P = 0.002), with no significant difference by variant location. Ocular manifestations were more common, had earlier onset, and were more severe in the pLoF variants group in our cohort (P = 0.038). The literature confirmed a higher prevalence of ocular involvement in patients with pLoF variants (pLoF, n = 175 vs. non-pLoF, n = 88; P < 0.001) and in those with paired domain variants (P = 0.01). pLoF variants in PAX2 were associated with worse kidney and ocular outcomes. These findings support genotype-phenotype correlations, contributing to tailored management in patients with PAX2-related disorders.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
- Kidney Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Yeonji Jang
- Department of Ophthalmology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Eujin Park
- Department of Pediatrics, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Heon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Ji Yeon Song
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea
| | - Kyoung Hee Han
- Department of Pediatrics, Jeju National University, College of Medicine, Jeju, Republic of Korea
| | - Jiwon Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Kidney Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Ho Jung
- Department of Ophthalmology, Seoul National University Children's Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hae Il Cheong
- Department of Pediatrics, Seoul Red Cross Hospital, Seoul, Republic of Korea
| |
Collapse
|
4
|
Yadav M, Jadon T, Singh G, Devi KG, Chandan M, Khandelwal P, Meena J, Geetha TS, Faruq M, Hari P, Sinha A, Bagga A. Spectrum of Alport syndrome in an Indian cohort. Pediatr Nephrol 2025; 40:393-405. [PMID: 39278986 DOI: 10.1007/s00467-024-06507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Next-generation sequencing has enabled non-invasive diagnosis of type IV collagen disease in clinical settings other than the typical presentation of Alport syndrome (AS). METHODS We reviewed the clinical and histological records of children diagnosed with Alport syndrome based on next-generation sequencing. Variants on clinical exome sequencing were categorized using ACMG 2015 criteria. RESULTS During 2015-2023, we found 43 patients (34 boys) with 39 variants in COL4A5 (n = 27), COL4A4 (n = 7), and COL4A3 (n = 5). Thirty, 8, and 5 patients had X-linked, autosomal recessive, and autosomal dominant disease, respectively. The median (IQR) age and eGFR at diagnosis were 10 (7-13) years and 100.1 (59-140) ml/min/1.73 m2, respectively. Fifteen patients were initially diagnosed with steroid-resistant nephrotic syndrome. Alport syndrome was suspected in these patients due to persistent microscopic hematuria, eGFR < 90 ml/min/1.73 m2, characteristic histology, and/or non-response to immunosuppression. Of 26 patients who underwent kidney biopsy, light microscopy revealed focal segmental glomerulosclerosis, minimal change disease, and mesangial proliferative glomerulonephritis in 9, 9, and 8 patients, respectively. Electron microscopy (n = 18) showed characteristic glomerular basement membrane changes and/or foot process effacement in 12 and 16 cases, respectively. Twenty-one patients (48.8%) had high-frequency sensorineural hearing loss, while two had lenticonus. Twelve patients progressed to chronic kidney disease stages 4-5. Median survival (IQR) with eGFR > 30 ml/min/1.73 m2 was 15.6 (13-18) years. CONCLUSIONS The phenotype of Alport syndrome varies from asymptomatic urinary abnormalities to hematuria, proteinuria and/or low eGFR, and steroid-resistant nephrotic syndrome. Adverse outcomes are common, especially in boys with X-linked disease.
Collapse
Affiliation(s)
- Menka Yadav
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Trishla Jadon
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kshetrimayum Ghanapriya Devi
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Monica Chandan
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Priyanka Khandelwal
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jitendra Meena
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Mohammed Faruq
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Delhi, India
| | - Pankaj Hari
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Aditi Sinha
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Arvind Bagga
- Division of Nephrology, ICMR Center for Advanced Research in Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
5
|
Li S, Hu M, He C, Sun Y, Huang W, Lei F, Liu Y, Huang Z, Meng Y, Liu W, Lei X, Dong Y, Lin Z, Huang C, Zhao R, Qin Y. A multicenter study investigating the genetic analysis of childhood steroid-resistant nephrotic syndrome: Variants in COL4A5 may not be coincidental. PLoS One 2024; 19:e0304864. [PMID: 39625990 PMCID: PMC11614205 DOI: 10.1371/journal.pone.0304864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 12/06/2024] Open
Abstract
This study aimed to discuss the pathogenic hereditary factors of children with steroid-resistant nephrotic syndrome (SRNS) in Guangxi, China. We recruited 89 patients with SRNS or infantile NS from five major pediatric nephrology centers in Guangxi, and conducted a retrospective analysis of clinical data. Whole-exome sequencing analysis was also performed on all patients. The risk of progression to chronic kidney disease (CKD) was assessed using the Kaplan-Meier method and Cox proportional hazards model. The study included 69 male and 20 female participants from 86 distinct families, with the median age of disease onset being 48 months (interquartile range: 24-93). Overall, 24.7% had a family history of SRNS, whereas 13.5% exhibited extra-kidney manifestations. We identified disease-causing variants in 24.7% (22/89) of patients across eight screened genes. The most frequently detected variant was found in COL4A5, followed by NPHS2 (5.6%), NPHS1 (2.2%), PAX2 (2.2%), WT1 (1.1%), LMX1B (1.1%), NUP105 (1.1%), and COL4A6 (1.1%). Twelve of the 26 pathogenic variants were determined to be de novo. Based on gene detection results, pathogenic variants were categorized into two groups: identified and unidentified variants. The identified variant group demonstrated a significant association with positive family history, steroid resistant-style, and response to immune therapy (P<0.001). Patients with the identified genetic variant were approximately ten times more likely to develop CKD (P<0.001) than those in the unidentified group at the last follow-up. Kidney biopsy was performed on 66 patients, and minimal change disease was the most prevalent histopathological diagnosis (29 cases; 32.6%). These findings suggest that children diagnosed with SRNS exhibit a diverse range of genetic alterations. We identified the COL4A5 variant as the predominant genetic abnormality and a low frequency of NPHS1 gene involvement in these children. Gene variants may serve as an independent predictor for SRNS progression to CKD.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Miaoyue Hu
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
| | - Chao He
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yu Sun
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
| | - Weifang Huang
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
| | - Fengying Lei
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
| | - Yunguang Liu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Province, China
| | - Zengpo Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Province, China
| | - Yongqiu Meng
- Department of Pediatrics, Guigang People’s Hospital, Guigang, China
| | - Wenjing Liu
- Department of Pediatrics, Guigang People’s Hospital, Guigang, China
| | - Xianqiang Lei
- Department of Pediatrics, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Yanfang Dong
- Department of Pediatrics, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Zihui Lin
- Department of Pediatrics, Maternity and Child Healthcare of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunlin Huang
- Department of Pediatrics, Maternity and Child Healthcare of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rihong Zhao
- Department of Pediatrics, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Raglianti V, Angelotti ML, Cirillo L, Ravaglia F, Landini S, Palazzo V, Melica ME, Antonelli G, Conte C, Buti E, Errichiello C, De Chiara L, Peired AJ, Lasagni L, Buccoliero AM, Allinovi M, Montero AM, Cruzado JM, Bruschi M, Ghiggeri GM, Angeletti A, Anders HJ, Lazzeri E, Mazzinghi B, Becherucci F, Romagnani P. Anti-slit diaphragm antibodies on kidney biopsy identify pediatric patients with steroid-resistant nephrotic syndrome responsive to second-line immunosuppressants. Kidney Int 2024; 106:1124-1134. [PMID: 39368741 DOI: 10.1016/j.kint.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Podocytopathies represent a group of glomerular disorders associated with minimal changes (MC) or focal segmental glomerulosclerosis (FSGS) lesion patterns at biopsy and heterogeneous responses to steroids. Anti-nephrin antibodies were previously found in such patients, suggesting an autoimmune form of podocytopathy. High resolution confocal microscopy on kidney biopsies of a cohort of 128 pediatric patients revealed localization of IgG along the slit diaphragm in 30% of patients with MC and 25% of those with FSGS, but not in other lesion patterns. Anti-nephrin IgG ELISA assay in the serum and stimulated emission depletion microscopy of kidney biopsies showed IgG-nephrin co-localization only in 77.8% of cases. Similar observations were obtained in a cohort of 48 adult patients with MC or FSGS at kidney biopsy, where IgG-nephrin colocalization was only 44.4%, suggesting the existence of autoantibodies binding to other slit proteins. Patients with anti-slit antibodies showed nephrotic syndrome at onset in 94.4% of cases. Patients with primary steroid-resistance had anti-slit antibodies in 27%, while those with secondary steroid-resistance in 87.5% of cases, irrespective of the histopathological lesion pattern. Steroid-resistant patients with anti-slit antibodies responded to second-line immunosuppressants in 92.3% vs. only 20% of patients that were anti-slit negative. No patient with anti-slit antibodies developed kidney failure vs. 51.7% of those negative for antibodies (66.7% with a genetic cause and 41.2% with a non-genetic cause). Thus, the detection of anti-slit antibodies can identify patients with an autoimmune podocytopathy responsive to treatment with second-line immunosuppressants, irrespective of the histopathological lesion pattern at biopsy.
Collapse
Affiliation(s)
- Valentina Raglianti
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | | | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Maria Elena Melica
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Giulia Antonelli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Carolina Conte
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Elisa Buti
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Anna Julie Peired
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Laura Lasagni
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Anna Maria Buccoliero
- Pathology Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital (AUOC), Florence, Italy
| | - Anna Manonelles Montero
- Renal Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep Maria Cruzado
- Renal Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Maurizio Bruschi
- Nephrology, Dialysis and Transplantation Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany
| | - Elena Lazzeri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy.
| |
Collapse
|
7
|
Yan Q, Liu M, Xie Y, Lin Y, Fu P, Pu Y, Wang B. Kidney-brain axis in the pathogenesis of cognitive impairment. Neurobiol Dis 2024; 200:106626. [PMID: 39122123 DOI: 10.1016/j.nbd.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The kidney-brain axis is a bidirectional communication network connecting the kidneys and the brain, potentially affected by inflammation, uremic toxin, vascular injury, neuronal degeneration, and so on, leading to a range of diseases. Numerous studies emphasize the disruptions of the kidney-brain axis may contribute to the high morbidity of neurological disorders, such as cognitive impairment (CI) in the natural course of chronic kidney disease (CKD). Although the pathophysiology of the kidney-brain axis has not been fully elucidated, epidemiological data indicate that patients at all stages of CKD have a higher risk of developing CI compared with the general population. In contrast to other reviews, we mentioned some commonly used medicines in CKD that may play a pivotal role in the pathogenesis of CI. Revealing the pathophysiology interactions between kidney damage and brain function can reduce the potential risk of future CI. This review will deeply explore the characteristics, indicators, and potential pathophysiological mechanisms of CKD-related CI. It will provide a theoretical basis for identifying CI that progresses during CKD and ultimately prevents and treats CKD-related CI.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mengyuan Liu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu 610011, China
| | - Yiling Xie
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yimi Lin
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Bo Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
9
|
Finn LS. Nephrotic Syndrome Throughout Childhood: Diagnosing Podocytopathies From the Womb to the Dorm. Pediatr Dev Pathol 2024; 27:426-458. [PMID: 38745407 DOI: 10.1177/10935266241242669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The etiologies of podocyte dysfunction that lead to pediatric nephrotic syndrome (NS) are vast and vary with age at presentation. The discovery of numerous novel genetic podocytopathies and the evolution of diagnostic technologies has transformed the investigation of steroid-resistant NS while simultaneously promoting the replacement of traditional morphology-based disease classifications with a mechanistic approach. Podocytopathies associated with primary and secondary steroid-resistant NS manifest as diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy. Molecular testing, once an ancillary option, has become a vital component of the clinical investigation and when paired with kidney biopsy findings, provides data that can optimize treatment and prognosis. This review focuses on the causes including selected monogenic defects, clinical phenotypes, histopathologic findings, and age-appropriate differential diagnoses of nephrotic syndrome in the pediatric population with an emphasis on podocytopathies.
Collapse
Affiliation(s)
- Laura S Finn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Knoers NV, van Eerde AM. The Role of Genetic Testing in Adult CKD. J Am Soc Nephrol 2024; 35:1107-1118. [PMID: 39288914 PMCID: PMC11377809 DOI: 10.1681/asn.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Mounting evidence indicates that monogenic disorders are the underlying cause in a significant proportion of patients with CKD. In recent years, the diagnostic yield of genetic testing in these patients has increased significantly as a result of revolutionary developments in genetic sequencing techniques and sequencing data analysis. Identification of disease-causing genetic variant(s) in patients with CKD may facilitate prognostication and personalized management, including nephroprotection and decisions around kidney transplantation, and is crucial for genetic counseling and reproductive family planning. A genetic diagnosis in a patient with CKD allows for screening of at-risk family members, which is also important for determining their eligibility as kidney transplant donors. Despite evidence for clinical utility, increased availability, and data supporting the cost-effectiveness of genetic testing in CKD, especially when applied early in the diagnostic process, many nephrologists do not use genetic testing to its full potential because of multiple perceived barriers. Our aim in this article was to empower nephrologists to (further) implement genetic testing as a diagnostic means in their clinical practice, on the basis of the most recent insights and exemplified by patient vignettes. We stress why genetic testing is of significant clinical benefit to many patients with CKD, provide recommendations for which patients to test and which test(s) to order, give guidance about interpretation of genetic testing results, and highlight the necessity for and essential components of pretest and post-test genetic counseling.
Collapse
Affiliation(s)
- Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
11
|
Bacci GM, Marziali E, Bargiacchi S, Paques M, Virgili G, Fortunato P, Durand M, Rocca C, Pagliazzi A, Palazzo V, Tiberi L, Vergani D, Landini S, Peron A, Artuso R, Pacini B, Stabile M, Sodi A, Caputo R. Multimodal phenotyping of foveal hypoplasia in albinism and albino-like conditions: a pediatric case series with adaptive optics insights. Sci Rep 2024; 14:15454. [PMID: 38965328 PMCID: PMC11224352 DOI: 10.1038/s41598-024-66326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Aim of the present study is to evaluate the relationship between genetic and phenotypic data in a series of patients affected by grade I and II of foveal hypoplasia with stable fixation and good visual acuity using multimodal imaging techniques. All patients underwent complete clinical and instrumental assessment including structural Optical Coherence Tomography (OCT), OCT Angiography and Adaptive Optics (AO) imaging. Central macular thickness (CMT), inner nuclear layer (INL), vessel density in superficial capillary plexus were the main variables evaluated with OCT technology. Cone density, cone spacing, cone regularity, cone dispersion and angular density were the parameters evaluated with AO. Genetic evaluation and trio exome sequencing were performed in all affected individuals. Eight patients (3 males and 5 females) with a mean age of 12.62 years (range 8-18) were enrolled. The mean best corrected visual acuity (BCVA) was 0.18 ± 0.13 logMAR, mean CMT was 291.9 ± 16.6 µm and INL was 26.2 ± 4.6 µm. The absence of a foveal avascular zone (FAZ) was documented by examination of OCT-A in seven patients in the superficial capillary plexus. However, there was a partial FAZ in the deep plexus in patients P5 and P8. Of note, all the patients presented with major retinal vessels clearly crossing the foveal center. All individuals exhibited a grade I or II of foveal hypoplasia. In 5 patients molecular analyses showed an extremely mild form of albinism caused by compound heterozygosity of a TYR pathogenic variant and the hypomorphic p.[Ser192Tyr;Arg402Gln] haplotype. One patient had Waardenburg syndrome type 2A caused by a de novo variant in MITF. Two patients had inconclusive molecular analyses. All the patients displayed abnormalities on OCT-A. Photoreceptor count did not differ from normal subjects according to the current literature, but qualitative analysis of AO imaging showed distinctive features likely related to an abnormal pigment distribution in this subset of individuals. In patients with foveal hypoplasia, genetic and multimodal imaging data, including AO findings, can help understand the physiopathology of the foveal hypoplasia phenotype. This study confirms that cone density and visual function can both be preserved despite the absence of a pit.
Collapse
Affiliation(s)
- Giacomo M Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy.
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Michel Paques
- Clinical Investigation Center Vision 1423, INSERM-DGOS, Sorbonne Université, Quinze-Vingts Hospital, Paris, France
- Institut de la Vision, Paris, France
| | - Gianni Virgili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS - Fondazione Bietti, Rome, Italy
| | - Pina Fortunato
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
| | | | - Camilla Rocca
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Angela Peron
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Bianca Pacini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Monica Stabile
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
| |
Collapse
|
12
|
Suresh V, Stillman IE, Campbell KN, Meliambro K. Focal Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:275-289. [PMID: 39084753 DOI: 10.1053/j.akdh.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 08/02/2024]
Abstract
Focal segmental glomerular sclerosis (FSGS) is a histological lesion characterized by sclerosis in sections (segmental) of some glomeruli (focal) in association with podocyte injury. Historically, FSGS has often been characterized as a disease, but it is a heterogeneous entity based on etiology, clinical course, and therapeutic approach. A unifying feature is podocyte injury and loss, which can be primary or the result of secondary maladaptive responses to glomerular stressors. FSGS has been demonstrated over time to carry a large health burden and remains a leading glomerular cause of ESRD globally. Recent clinical practice guidelines highlight the unmet scientific need for better understanding of disease pathogenesis, particularly for immunologic etiologies, as well as more targeted therapeutic drug development. In this review, we will discuss the current FSGS classification scheme, pathophysiologic mechanisms of injury, and treatment guidelines, along with emerging and investigational therapeutics.
Collapse
Affiliation(s)
- Varsha Suresh
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isaac E Stillman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
13
|
Ilic N, Maric N, Maver A, Armengol L, Kravljanac R, Cirkovic J, Krstic J, Radivojevic D, Cirkovic S, Ostojic S, Krasic S, Paripovic A, Vukomanovic V, Peterlin B, Maric G, Sarajlija A. Reverse Phenotyping after Whole-Exome Sequencing in Children with Developmental Delay/Intellectual Disability-An Exception or a Necessity? Genes (Basel) 2024; 15:789. [PMID: 38927725 PMCID: PMC11203244 DOI: 10.3390/genes15060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
This study delves into the diagnostic yield of whole-exome sequencing (WES) in pediatric patients presenting with developmental delay/intellectual disability (DD/ID), while also exploring the utility of Reverse Phenotyping (RP) in refining diagnoses. A cohort of 100 pediatric patients underwent WES, yielding a diagnosis in 66% of cases. Notably, RP played a significant role in cases with negative prior genetic testing, underscoring its significance in complex diagnostic scenarios. The study revealed a spectrum of genetic conditions contributing to DD/ID, illustrating the heterogeneity of etiological factors. Despite challenges, WES demonstrated effectiveness, particularly in cases with metabolic abnormalities. Reverse phenotyping was indicated in half of the patients with positive WES findings. Neural network models exhibited moderate-to-exceptional predictive abilities for aiding in patient selection for WES and RP. These findings emphasize the importance of employing comprehensive genetic approaches and RP in unraveling the genetic underpinnings of DD/ID, thereby facilitating personalized management and genetic counseling for affected individuals and families. This research contributes insights into the genetic landscape of DD/ID, enhancing our understanding and guiding clinical practice in this particular field of clinical genetics.
Collapse
Affiliation(s)
- Nikola Ilic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
| | - Nina Maric
- Clinic for Children Diseases, University Clinical Center of the Republic of Srpska, Banja Luka 78000, Bosnia and Herzegovina;
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (B.P.)
| | - Lluis Armengol
- CIBER en Epidemiología y Salud Pública (CIBERESP), Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), 08003 Barcelona, Spain;
| | - Ruzica Kravljanac
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (R.K.); (S.O.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
| | - Jana Cirkovic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
| | - Jovana Krstic
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
| | - Danijela Radivojevic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (D.R.); (S.C.)
| | - Sanja Cirkovic
- Laboratory of Medical Genetics, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (D.R.); (S.C.)
| | - Slavica Ostojic
- Department of Neurology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (R.K.); (S.O.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
| | - Stasa Krasic
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia;
| | - Aleksandra Paripovic
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
- Department of Nephrology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia
| | - Vladislav Vukomanovic
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
- Department of Cardiology, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia;
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.M.); (B.P.)
| | - Gorica Maric
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Adrijan Sarajlija
- Clinical Genetics Outpatient Clinic, Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”, 11070 Belgrade, Serbia; (N.I.); (J.C.); (J.K.)
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.P.); (V.V.)
| |
Collapse
|
14
|
Savige J. Tips for Testing Adults With Suspected Genetic Kidney Disease. Am J Kidney Dis 2024; 83:816-824. [PMID: 38147894 DOI: 10.1053/j.ajkd.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 12/28/2023]
Abstract
Genetic kidney disease is common but often unrecognized. It accounts for most cystic kidney diseases and tubulopathies, many forms of congenital abnormalities of the kidney and urinary tract (CAKUT), and some glomerulopathies. Genetic kidney disease is typically suspected where the disease usually has a genetic basis or there is another affected family member, a young age at onset, or extrarenal involvement, but there are also many exceptions to these "rules". Genetic testing requires the patient's written informed consent. When a patient declines testing, another later conversation may be worthwhile. Genetic testing not only indicates the diagnosis but also the inheritance pattern, likely at-risk family members, disease in other organs, clinical course, and possibly effective treatments. Sometimes genetic testing does not identify a pathogenic variant even where other evidence is strong. A variant of uncertain significance (VUS) may be reported but should not be used for clinical decision making. It may be reclassified after more information becomes available without necessarily retesting the patient. Patients should be provided with a copy of their genetic test report, the results explained, and at-risk family members offered "cascade" testing. A referral to a clinical geneticist or genetic counselor helps identify affected family members and in providing advice to assist with reproductive decisions.
Collapse
Affiliation(s)
- Judy Savige
- University of Melbourne Department of Medicine (Melbourne Health and Northern health), Royal Melbourne Hospital, Parkville, Australia.
| |
Collapse
|
15
|
Cheng X, Chen J, Yang X, Chan H, Yang X, Jiao J, Wang A, Zhang G, Chen X, Li X, Wang M, Yang B, Yang H, Li Q. Comparison of different genetic testing modalities applied in paediatric patients with steroid-resistant nephrotic syndrome. Ital J Pediatr 2024; 50:85. [PMID: 38654395 DOI: 10.1186/s13052-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) are monogenic in some cases, however, there are still no clear guidelines on genetic testing in the clinical practice of SRNS in children. METHODS Three hundred thirty-two children were diagnosed with SRNS, and all children underwent genetic testing, including gene panels and/or whole-exome/genome sequencing (WES/WGS), during treatment. We analysed the relationship between clinical manifestation and genotype, and compared different genetic testing methods' detection rates and prices. RESULTS In this study, 30.12% (100/332) of children diagnosed with SRNS had monogenic causes of the disease. With 33.7% (122/332) of children achieving complete remission, 88.5% (108/122) received steroids combined with tacrolimus (TAC). In detectability, WES increased by 8.69% (4/46) on gene panel testing, while WGS increased by 4.27% (5/117) on WES, and WES was approximately 1/7 of the price of WGS for every further 1% increase in pathogenicity. CONCLUSIONS We verified that steroids combined with TAC were the most effective option in paediatric SRNS. In detection efficiency, we found that WGS was the highest, followed by WES. The panel was the lowest, but the most cost-effective method when considering the economic-benefit ratio, and thus it should be recommended first in SRNS.
Collapse
Affiliation(s)
- Xueting Cheng
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahuan Chen
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xueying Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Han Chan
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelan Chen
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqin Li
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mo Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Baohui Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qiu Li
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Zhang L, Zhao F, Ding G, Chen Y, Zhao S, Chen Q, Sha Y, Che R, Huang S, Zheng B, Zhang A. Monogenic Causes Identified in 23.68% of Children with Steroid-Resistant Nephrotic Syndrome: A Single-Centre Study. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:61-68. [PMID: 38322629 PMCID: PMC10843177 DOI: 10.1159/000534853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 02/08/2024]
Abstract
Introduction Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of end-stage kidney disease in children, mostly associated with focal segmental glomerulosclerosis (FSGS). Advances in genomic science have enabled the identification of causative variants in 20-30% of SRNS patients. Methods We used whole exome sequencing to explore the genetic causes of SRNS in children. Totally, 101 patients with SRNS and 13 patients with nephrotic proteinuria and FSGS were retrospectively enrolled in our hospital between 2018 and 2022. For the known monogenic causes analysis, we generated a known SRNS gene list of 71 genes through reviewing the OMIM database and literature. Results Causative variants were identified in 23.68% of our cohort, and the most frequently mutated genes in our cohort were WT1 (7/27), NPHS1 (3/27), ADCK4 (3/27), and ANLN (2/27). Five patients carried variants in phenocopy genes, including MYH9, MAFB, TTC21B, AGRN, and FAT4. The variant detection rate was the highest in the two subtype groups with congenital nephrotic syndrome and syndromic SRNS. In total, 68.75% of variants we identified were novel and have not been previously reported in the literature. Conclusion Comprehensive genetic analysis is key to realizing the clinical benefits of a genetic diagnosis. We suggest that all children with SRNS undergo genetic testing, especially those with early-onset and extrarenal phenotypes.
Collapse
Affiliation(s)
- Luyan Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Sanlong Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuxia Chen
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yugen Sha
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruochen Che
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Liu W, Su ZH, Wan QJ. Proteinuria selectivity index in renal disease. Clin Chim Acta 2024; 552:117675. [PMID: 38007057 DOI: 10.1016/j.cca.2023.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
One of the main barriers to early detection and subsequent prevention of kidney diseases is the accessibility and feasibility of testing, especially in urine research. The proteinuria selectivity index (PSI or SI) is a method used to assess changes in glomerular permeability in glomerular diseases. It describes the pattern of proteinuria by comparing the clearance rates of large molecular proteins and transferrin, categorizing it as selective or non-selective. PSI is widely applied for kidney disease classification, prediction of corticosteroid efficacy, and prognosis. Herein, we reviewed the clinical applications and recent advancements of PSI in glomerular diseases, compared it with commonly used renal function biomarkers, and discussed the future research directions for PSI as a potential predictive marker for response to specific biologics.
Collapse
Affiliation(s)
- Wen Liu
- Department of Nephrology, the First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518036, China
| | - Zhi-Hang Su
- Department of Nephrology, the First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518036, China
| | - Qi-Jun Wan
- Department of Nephrology, the First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518036, China.
| |
Collapse
|
18
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Cirillo L, De Chiara L, Innocenti S, Errichiello C, Romagnani P, Becherucci F. Chronic kidney disease in children: an update. Clin Kidney J 2023; 16:1600-1611. [PMID: 37779846 PMCID: PMC10539214 DOI: 10.1093/ckj/sfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a major healthcare issue worldwide. However, the prevalence of pediatric CKD has never been systematically assessed and consistent information is lacking in this population. The current definition of CKD is based on glomerular filtration rate (GFR) and the extent of albuminuria. Given the physiological age-related modification of GFR in the first years of life, the definition of CKD is challenging per se in the pediatric population, resulting in high risk of underdiagnosis in this population, treatment delays and untailored clinical management. The advent and spreading of massive-parallel sequencing technology has prompted a profound revision of the epidemiology and the causes of CKD in children, supporting the hypothesis that CKD is much more frequent than currently reported in children and adolescents. This acquired knowledge will eventually converge in the identification of the molecular pathways and cellular response to damage, with new specific therapeutic targets to control disease progression and clinical features of children with CKD. In this review, we will focus on recent innovations in the field of pediatric CKD and in particular those where advances in knowledge have become available in the last years, with the aim of providing a new perspective on CKD in children and adolescents.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Samantha Innocenti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Yadav K, Ramachandran R, Kumar V, Yadav AK, Pal D, Gopalakrishnan N, Sharma S, Priyamvada PS, Lahiri A, Sahay M, Raju SB, Sreelatha M, Manorajan R, Mukhopadhyay P, Prasad N, Meena P, Kohli HS, Vikrant S, Jha V. Indian TrANslational GlomerulonephrItis BioLogy nEtwork (I-TANGIBLE): Design and Methods. Indian J Nephrol 2023; 33:277-282. [PMID: 37781560 PMCID: PMC10503576 DOI: 10.4103/ijn.ijn_305_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND AND AIM Primary glomerular disease accounts for one-sixth of all chronic kidney diseases (CKDs) in India. We remain limited in our ability to effectively treat these conditions because of lack of understanding of the disease mechanisms and lack of predictors to identify the clinical course and therapeutic responsiveness. We propose to develop a network of investigators in glomerular diseases, collect information in a systematic fashion to understand the clinical outcomes, answer translational research questions better, and identify and recruit patients for clinical trials. MATERIALS AND METHODS This is a prospective, observational study. The Indian TrANslational GlomerulonephrItis BioLogy nEtwork (I-TANGIBLE) cohort will enroll patients (>18 years) with biopsy-proven minimal change disease (MCD), focal segmental glomerulonephritis (FSGS), membranous nephropathy (MN), IgA nephropathy (IgAN), or membranoproliferative glomerulonephritis (MPGN) (immune complex- and complement-mediated), with first biopsy taken within 2 years of enrollment. Patients with estimated glomerular filtration (eGFR) rate <15 ml/min/1.73 m2 for >3 months at the time of screening, kidney transplant or bone marrow transplant recipients, patients with active malignancy, and patients with active hepatitis B/C replication or human immunodeficiency virus (HIV)-I/II will be excluded. Clinical details including history, medication history and details, and family history will be obtained. Consenting patient's blood and urine samples will be collected and stored, aligned to their clinical follow-up. EXPECTED OUTCOMES The network will allow accurate ascertainment of disease burden of glomerular diseases across study sites, establishment of the treatment pattern of common glomerular diseases, investigation of medium- and long-term outcomes (remission, relapse, rate of eGFR decline), and building a suitable infrastructure to carry out clinical trials in primary glomerular disease.
Collapse
Affiliation(s)
- Kavita Yadav
- Chronic Kidney Disease, George Institute for Global Health India, New Delhi, India
| | - Raja Ramachandran
- Departments of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar
- Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashok K. Yadav
- Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deeksha Pal
- Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Sourabh Sharma
- Department of Nephrology, VMMC and Safdarjung Hospital, New Delhi, India
| | - P. S. Priyamvada
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Arpita Lahiri
- Department of Nephrology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Manisha Sahay
- Department of Nephrology, Osmania Medical College, Hyderabad, Telangana, India
| | - Sree Bhushan Raju
- Department of Nephrology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - M Sreelatha
- Department of Nephrology, Government Medical College, Calicut, Kerala, India
| | - R Manorajan
- Department of Nephrology, Madurai Medical College, Madurai, Tamil Nadu, India
| | | | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
| | - Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Harbir S. Kohli
- Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Vikrant
- Department of Nephrology, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India
| | - Vivekanand Jha
- Chronic Kidney Disease, George Institute for Global Health India, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Medicine, School of Public Health, Imperial College, London, UK
| |
Collapse
|
21
|
Marcos González S, Rodrigo Calabia E, Varela I, Červienka M, Freire Salinas J, Gómez Román JJ. High Rate of Mutations of Adhesion Molecules and Extracellular Matrix Glycoproteins in Patients with Adult-Onset Focal and Segmental Glomerulosclerosis. Biomedicines 2023; 11:1764. [PMID: 37371859 DOI: 10.3390/biomedicines11061764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Focal and segmental glomerulosclerosis (FSGS) is a pattern of injury that results from podocyte loss in the setting of a wide variety of injurious mechanisms. These include both acquired and genetic as well as primary and secondary causes, or a combination thereof, without optimal therapy, and a high rate of patients develop end-stage renal disease (ESRD). Genetic studies have helped improve the global understanding of FSGS syndrome; thus, we hypothesize that patients with primary FSGS may have underlying alterations in adhesion molecules or extracellular matrix glycoproteins related to previously unreported mutations that may be studied through next-generation sequencing (NGS). (2) Methods: We developed an NGS panel with 29 genes related to adhesion and extracellular matrix glycoproteins. DNA was extracted from twenty-three FSGS patients diagnosed by renal biopsy; (3) Results: The average number of accumulated variants in FSGS patients was high. We describe the missense variant ITGB3c.1199G>A, which is considered pathogenic; in addition, we discovered the nonsense variant CDH1c.499G>T, which lacks a Reference SNP (rs) Report and is considered likely pathogenic. (4) Conclusions: To the best of our knowledge, this is the first account of a high rate of change in extracellular matrix glycoproteins and adhesion molecules in individuals with adult-onset FSGS. The combined effect of all these variations may result in a genotype that is vulnerable to the pathogenesis of glomerulopathy.
Collapse
Affiliation(s)
- Sara Marcos González
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Emilio Rodrigo Calabia
- Nephrology Department, Marqués de Valdecilla University Hospital, 39008, University of Cantabria, 39005 Santander, Spain
| | - Ignacio Varela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), 39011, University of Cantabria-CSIC, 39005 Santander, Spain
| | - Michal Červienka
- Nephrology Department, Rio Carrion General Hospital, 34005 Palencia, Spain
| | - Javier Freire Salinas
- Anatomic Pathology, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José Javier Gómez Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008 Santander, Spain
| |
Collapse
|
22
|
Elshafey SA, Thabet MAEH, Elwafa RAHA, Schneider R, Shril S, Buerger F, Hildebrandt F, Fathy HM. Genetic stratification reveals COL4A variants and spontaneous remission in Egyptian children with proteinuria in the first 2 years of life. Acta Paediatr 2023; 112:1324-1332. [PMID: 36847718 PMCID: PMC10175230 DOI: 10.1111/apa.16732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
AIM The earlier the onset of proteinuria, the higher the incidence of genetic forms. Therefore, we aimed to analyse the spectrum of monogenic proteinuria in Egyptian children presenting at age <2 years. METHODS The results of 27-gene panel or whole-exome sequencing were correlated with phenotype and treatment outcomes in 54 patients from 45 families. RESULTS Disease-causing variants were identified in 29/45 (64.4%) families. Mutations often occurred in three podocytopathy genes: NPHS1, NPHS2 and PLCE1 (19 families). Some showed extrarenal manifestations. Additionally, mutations were detected in 10 other genes, including novel variants of OSGEP, SGPL1 and SYNPO2. COL4A variants phenocopied isolated steroid-resistant nephrotic syndrome (2/29 families, 6.9%). NPHS2 M1L was the single most common genetic finding beyond the age of 3 months (4/18 families, 22.2%). Biopsy results did not correlate with genotypes (n = 30). On renin-angiotensin-aldosterone system antagonists alone, partial and complete remission occurred in 3/24 (12.5%) patients with monogenic proteinuria each, whereas 6.3% (1/16) achieved complete remission on immunosuppression. CONCLUSION Genotyping is mandatory to avoid biopsies and immunosuppression when proteinuria presents at age <2 years. Even with such a presentation, COL4A genes should be included. NPHS2 M1L was prevalent in Egyptian children (4 months-2 years) with proteinuria, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Samar Atef Elshafey
- Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Ronen Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanan M Fathy
- Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Becherucci F, Landini S, Palazzo V, Cirillo L, Raglianti V, Lugli G, Tiberi L, Dirupo E, Bellelli S, Mazzierli T, Lomi J, Ravaglia F, Sansavini G, Allinovi M, Giannese D, Somma C, Spatoliatore G, Vergani D, Artuso R, Rosati A, Cirami C, Dattolo PC, Campolo G, De Chiara L, Papi L, Vaglio A, Lazzeri E, Anders HJ, Mazzinghi B, Romagnani P. A Clinical Workflow for Cost-Saving High-Rate Diagnosis of Genetic Kidney Diseases. J Am Soc Nephrol 2023; 34:706-720. [PMID: 36753701 PMCID: PMC10103218 DOI: 10.1681/asn.0000000000000076] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/19/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT To optimize the diagnosis of genetic kidney disorders in a cost-effective manner, we developed a workflow based on referral criteria for in-person evaluation at a tertiary center, whole-exome sequencing, reverse phenotyping, and multidisciplinary board analysis. This workflow reached a diagnostic rate of 67%, with 48% confirming and 19% modifying the suspected clinical diagnosis. We obtained a genetic diagnosis in 64% of children and 70% of adults. A modeled cost analysis demonstrated that early genetic testing saves 20% of costs per patient. Real cost analysis on a representative sample of 66 patients demonstrated an actual cost reduction of 41%. This workflow demonstrates feasibility, performance, and economic effect for the diagnosis of genetic kidney diseases in a real-world setting. BACKGROUND Whole-exome sequencing (WES) increases the diagnostic rate of genetic kidney disorders, but accessibility, interpretation of results, and costs limit use in daily practice. METHODS Univariable analysis of a historical cohort of 392 patients who underwent WES for kidney diseases showed that resistance to treatments, familial history of kidney disease, extrarenal involvement, congenital abnormalities of the kidney and urinary tract and CKD stage ≥G2, two or more cysts per kidney on ultrasound, persistent hyperechoic kidneys or nephrocalcinosis on ultrasound, and persistent metabolic abnormalities were most predictive for genetic diagnosis. We prospectively applied these criteria to select patients in a network of nephrology centers, followed by centralized genetic diagnosis by WES, reverse phenotyping, and multidisciplinary board discussion. RESULTS We applied this multistep workflow to 476 patients with eight clinical categories (podocytopathies, collagenopathies, CKD of unknown origin, tubulopathies, ciliopathies, congenital anomalies of the kidney and urinary tract, syndromic CKD, metabolic kidney disorders), obtaining genetic diagnosis for 319 of 476 patients (67.0%) (95% in 21 patients with disease onset during the fetal period or at birth, 64% in 298 pediatric patients, and 70% in 156 adult patients). The suspected clinical diagnosis was confirmed in 48% of the 476 patients and modified in 19%. A modeled cost analysis showed that application of this workflow saved 20% of costs per patient when performed at the beginning of the diagnostic process. Real cost analysis of 66 patients randomly selected from all categories showed actual cost reduction of 41%. CONCLUSIONS A diagnostic workflow for genetic kidney diseases that includes WES is cost-saving, especially if implemented early, and is feasible in a real-world setting.
Collapse
Affiliation(s)
- Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Valentina Raglianti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Gianmarco Lugli
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Lucia Tiberi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Elia Dirupo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Tommaso Mazzierli
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Jacopo Lomi
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Giulia Sansavini
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | | | - Chiara Somma
- Nephrology Unit Florence 1, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Giuseppe Spatoliatore
- Nephrology and Dialysis Unit, San Giovanni di Dio Hospital, AUSL Toscana Centro, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alberto Rosati
- Nephrology and Dialysis Unit, San Giovanni di Dio Hospital, AUSL Toscana Centro, Florence, Italy
| | - Calogero Cirami
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | - Pietro Claudio Dattolo
- Nephrology Unit Florence 1, Santa Maria Annunziata Hospital, Bagno a Ripoli, Florence, Italy
| | - Gesualdo Campolo
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Elena Lazzeri
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich, Germany
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio,” University of Florence, Florence, Italy
| |
Collapse
|
24
|
Doreille A, Lombardi Y, Dancer M, Lamri R, Testard Q, Vanhoye X, Lebre AS, Garcia H, Rafat C, Ouali N, Luque Y, Izzedine H, Esteve E, Cez A, Petit-Hoang C, François H, Marchal A, Letavernier E, Frémeaux-Bacchi V, Boffa JJ, Rondeau E, Raymond L, Mesnard L. Exome-First Strategy in Adult Patients With CKD: A Cohort Study. Kidney Int Rep 2023; 8:596-605. [PMID: 36938085 PMCID: PMC10014383 DOI: 10.1016/j.ekir.2022.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Exome sequencing (ES) has widened the field of nephrogenomics in adult nephrology. In addition to reporting the diagnostic yield of ES in an adult cohort study, we investigated the clinical implications of molecular diagnosis and developed a clinical score to predict the probability of obtaining positive result. Methods From September 2018 we have used ES to prospectively perform a first-tier liberal exploration of adult nephropathies of unknown origin and/or when a genetic kidney disease was clinically suggested. We also analyzed copy number variant using the same assay. Results Molecular diagnosis was made in 127 of 538 patients sequenced (diagnostic yield: 24%), comprising 47 distinct monogenic disorders. Eight of these monogenic disorders (17% [8/47]) accounted for 52% of genetic diagnoses. In 98% (n = 125/127) of the patients, the genetic information was reported to have major clinical implications. We developed a 4-value clinical score to predict the probability of obtaining a molecular diagnosis (area under the receiver operating characteristics curve [AUC] 0.726 [95% confidence interval: 0.670-0.782]) (available at http://allogenomics.com/score). Conclusion This study reinforces the role of ES as a first-tier exploration for adult chronic kidney disease patients in whom phenotypes are often poor and atypical. Although external validation is required, our clinical score could be a useful tool for the implementation of nephrogenomics in adults.
Collapse
Affiliation(s)
- Alice Doreille
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de médecine, Sorbonne Université, Paris, France
| | - Yannis Lombardi
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de médecine, Sorbonne Université, Paris, France
| | | | | | | | | | - Anne-Sophie Lebre
- Service de génétique, Pole de biologie, Hôpital Maison Blanche, CHU Reims, Reims, France
- Département de Génétique, hôpital Pité Salpétrière, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Hugo Garcia
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Cédric Rafat
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Nacera Ouali
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Yosu Luque
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de médecine, Sorbonne Université, Paris, France
| | - Hassan Izzedine
- Department of Nephrology, Peupliers Private Hospital, Ramsay Générale de Santé, Paris, France
| | - Emmanuel Esteve
- Faculté de médecine, Sorbonne Université, Paris, France
- Department of Nephrology, hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Alexandre Cez
- Department of Nephrology, hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Camille Petit-Hoang
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Hélène François
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de médecine, Sorbonne Université, Paris, France
- Inserm UMR_S1155, Paris, France
| | - Armance Marchal
- Faculté de médecine, Sorbonne Université, Paris, France
- Department of Nephrology, hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Emmanuel Letavernier
- Faculté de médecine, Sorbonne Université, Paris, France
- Department of Nephrology, hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
- Inserm UMR_S1155, Paris, France
| | - Véronique Frémeaux-Bacchi
- Immunology Department, Hôpital Européen Georges Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Jacques Boffa
- Faculté de médecine, Sorbonne Université, Paris, France
- Department of Nephrology, hôpital Tenon, Assistance Publique–Hôpitaux de Paris, Paris, France
- Inserm UMR_S1155, Paris, France
| | - Eric Rondeau
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de médecine, Sorbonne Université, Paris, France
- Inserm UMR_S1155, Paris, France
| | | | - Laurent Mesnard
- Soins Intensifs Néphrologiques et Rein Aigu, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Faculté de médecine, Sorbonne Université, Paris, France
- Inserm UMR_S1155, Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, Paris, France
- Centre Maladie Rare MAHREA, hôpital Tenon, Assistance Publique – Hôpitaux de Paris, Paris, France
- Correspondence: Laurent Mesnard, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Département de Néphrologie, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France.
| |
Collapse
|
25
|
Fang Z, Zhang C, Jin Y, Tong J, Liu J, Hao X, Weng Q, Yu S, Du W, Cai Y, Zheng Q, Yang L, Ren H, Pan X, Xie J. Adult-Onset Focal Segmental Glomerulosclerosis With Steroid-Dependent Nephrotic Syndrome Caused by a Novel TBC1D8B Variant: A Case Report and Literature Review. Am J Kidney Dis 2023; 81:240-244. [PMID: 35970429 DOI: 10.1053/j.ajkd.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological lesion with a variety of potential causes, including rare variants of podocyte-related genes. Recently, it has been found that variants in the TBC1D8B gene on the X chromosome can lead to early-onset focal segmental glomerulosclerosis and steroid-resistant nephrotic syndrome by affecting endocytosis and recycling of nephrin. Here, we report a 19-year-old Chinese patient with nephrotic syndrome and normal kidney function. He had a complete remission of nephrotic syndrome after full-dose prednisone and cyclosporine treatment. Unfortunately, a relapse of nephrotic syndrome occurred during prednisone tapering. Focal segmental glomerulosclerosis was proven by a kidney biopsy, and a hemizygous pathogenic variant located in the TBC (Tre-2-Bub2-Cdc16) domain of TBC1D8B was detected by whole-exome sequencing. By comparing our case with reports of other patients with TBC1D8B variants, we suggest possible genotype-phenotype correlations. To our knowledge, this is the first report identifying a pathogenetic variant in the TBC domain of TBC1D8B in an adult-onset focal segmental glomerulosclerosis patient with steroid-dependent NS. With this report, we broaden the clinical and genetic spectrum of X-linked genetic FSGS.
Collapse
Affiliation(s)
- Zhengying Fang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunli Zhang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanmeng Jin
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tong
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Hao
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Weng
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuwen Yu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Du
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikai Cai
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Zheng
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yang
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Ren
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Pan
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Sitaram S, Banka HC, Vassallo G, Pavaine J, Fairclough A, Wright R, Fairbanks L, Bierau J, Bowden L, Schwahn B, Horman A, Banka S. Anticipatory banking of samples enables diagnosis of adenylosuccinase deficiency following molecular autopsy in an infant with vacuolating leukoencephalopathy. Am J Med Genet A 2023; 191:234-237. [PMID: 36271826 PMCID: PMC10091700 DOI: 10.1002/ajmg.a.62999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.
Collapse
Affiliation(s)
- Spatikha Sitaram
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Hetalika C Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Grace Vassallo
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.,Department of Paediatric Neurology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Julija Pavaine
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Adele Fairclough
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Ronnie Wright
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | | | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lydia Bowden
- Department of Neonatology, Royal Oldham Hospital, Oldham, UK
| | - Bernd Schwahn
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Alistair Horman
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.,Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Best S, Yu J, Lord J, Roche M, Watson CM, Bevers RPJ, Stuckey A, Madhusudhan S, Jewell R, Sisodiya SM, Lin S, Turner S, Robinson H, Leslie JS, Baple E, Toomes C, Inglehearn C, Wheway G, Johnson CA. Uncovering the burden of hidden ciliopathies in the 100 000 Genomes Project: a reverse phenotyping approach. J Med Genet 2022; 59:1151-1164. [PMID: 35764379 PMCID: PMC9691823 DOI: 10.1136/jmedgenet-2022-108476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.
Collapse
Affiliation(s)
- Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jenny Lord
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Matthew Roche
- Windsor House Group Practice, Mid Yorkshire Hospitals NHS Trust, Leeds, UK
| | - Christopher Mark Watson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roel P J Bevers
- Genomics England, Queen Mary University of London, London, UK
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, London, UK
| | | | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sanjay M Sisodiya
- University College London (UCL) Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont, UK
| | - Siying Lin
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen Turner
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
| | - Hannah Robinson
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Emma Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Chris Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gabrielle Wheway
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
28
|
Cirillo L, Ravaglia F, Errichiello C, Anders HJ, Romagnani P, Becherucci F. Expectations in children with glomerular diseases from SGLT2 inhibitors. Pediatr Nephrol 2022; 37:2997-3008. [PMID: 35286452 DOI: 10.1007/s00467-022-05504-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
Abstract
Chronic kidney disease (CKD) is a global public healthcare concern in the pediatric population, where glomerulopathies represent the second most common cause. Although classification and diagnosis of glomerulopathies still rely mostly on histopathological patterns, patient stratification should complement information supplied by kidney biopsy with clinical data and etiological criteria. Genetic determinants of glomerular injury are particularly relevant in children, with important implications for prognosis and treatment. Targeted therapies addressing the primary cause of the disease are available for a limited number of glomerular diseases. Consequently, in the majority of cases, the treatment of glomerulopathies is actually the treatment of CKD. The efficacy of the currently available strategies is limited, but new prospects evolve. Although the exact mechanisms of action are still under investigation, accumulating data in adults demonstrate the efficacy of sodium-glucose transporter 2 inhibitors (SGLT2i) in slowing the progression of CKD due to diabetic and non-diabetic kidney disease. SGLT2i has proved effective on other comorbidities, such as obesity, glycemic control, and cardiovascular risk that frequently accompany CKD. The use of SGLT2i is not yet approved in children. However, no pathophysiological clues theoretically exclude their application. The hallmark of pediatric CKD is the inevitable imbalance between the metabolic needs of a growing child and the functional capacity of a failing kidney to handle those needs. In this view, developing better strategies to address any modifiable progressor in kidney disease is mandatory, especially considering the long lifespan typical of the pediatric population. By improving the hemodynamic adaptation of the kidney and providing additional beneficial effects on the overall complications of CKD, SGLT2i is a candidate as a potentially innovative drug for the treatment of CKD and glomerular diseases in children.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | |
Collapse
|
29
|
Cirillo L, Lugli G, Raglianti V, Ravaglia F, Buti E, Landini S, Becherucci F. Defining diagnostic trajectories in patients with podocytopathies. Clin Kidney J 2022; 15:2006-2019. [PMID: 36325008 PMCID: PMC9613436 DOI: 10.1093/ckj/sfac123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are glomerular disorders in which podocyte injury drives proteinuria and progressive kidney disease. They encompass a broad spectrum of aetiologies, resulting in pathological pictures of minimal-changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis or collapsing glomerulopathy. Despite improvement in classifying podocytopathies as a distinct group of disorders, the histological definition fails to capture the relevant biological heterogeneity underlying each case, manifesting as extensive variability in disease progression and response to therapies. Increasing evidence suggests that podocytopathies can result from a single causative factor or a combination of multiple genetic and/or environmental risk factors with different relative contributions, identifying complex physiopathological mechanisms. Consequently, the diagnosis can still be challenging. In recent years, significant advances in genetic, microscopy and biological techniques revolutionized our understanding of the molecular mechanisms underlying podocytopathies, pushing nephrologists to integrate innovative information with more conventional data obtained from kidney biopsy in the diagnostic workflow. In this review, we will summarize current approaches in the diagnosis of podocytopathies, focusing on strategies aimed at elucidating the aetiology underlying the histological picture. We will provide several examples of an integrative view of traditional concepts and new data in patients with suspected podocytopathies, along with a perspective on how a reclassification could help to improve not only diagnostic pathways and therapeutic strategies, but also the management of disease recurrence after kidney transplantation. In the future, the advantages of precision medicine will probably allow diagnostic trajectories to be increasingly focused, maximizing therapeutic results and long-term prognosis.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | - Gianmarco Lugli
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | | | | | - Elisa Buti
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
| | | |
Collapse
|
30
|
Gan C, Zhou X, Chen D, Chi H, Qiu J, You H, Chen Y, Wang M, Yang H, Jiang W, Li Q. Novel pathogenic variants in CUBN uncouple proteinuria from renal function. J Transl Med 2022; 20:480. [PMID: 36266725 PMCID: PMC9583559 DOI: 10.1186/s12967-022-03706-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteinuria is an unfavorable clinical condition highly associated with a risk of renal and cardiovascular disease in chronic kidney disease (CKD). However, whether all proteinuria forms are linked to renal impairment are still unclear. Cubilin is an endocytic receptor highly expressed in renal proximal tubules mediating uptake of albumin, transferrin and α1-microglobulin. METHODS Exome sequencing method initially identified candidate genes. With the application of exome sequencing combined with Sanger sequencing, we further focused on CUBN through bioinformatics analysis. The pathogenic effects of the potentially causative variants were verified utilizing complementary analysis of clinical data and systematic characterization of the variants' expression and function with clinical samples and in vitro experiments in HEK293T cell lines along with in vivo experiments in mice. RESULTS In this study, we identified four novel variants locating after the vitamin B12 (vitB12)-binding domain of Cubilin (encoded by CUBN, NM_001081.3: c.4397G > A (p.C1466Y), c.6796C > T (p.R2266X), c.6821 + 3A > G and c.5153_5154delCT (p.S1718X)) in two families. Moreover, the variants severely affected the expression and function of Cubilin in renal proximal tubules and caused albuminuria, increasing levels in urine transferrin and α1-microglobulin, but without progressive glomerular filtration barrier (GFB) impairment, vitB12 deficiencies or abnormal blood levels of HDL and albumin. Further mechanistic insights showed that the variants after the vitB12-binding domain of CUBN merely disrupted the association with Amnionless (AMN) that exhibited aberrant localization in cell cytoplasm rather than membrane. CONCLUSIONS Here, our findings suggested that different mutation types after the vitB12-binding domain of CUBN uncouple proteinuria from glomerular filtration barrier, that may be an unexpectedly common benign condition in humans and may not require any proteinuria-lowering treatment or renal biopsy.
Collapse
Affiliation(s)
- Chun Gan
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xindi Zhou
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Chen
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Huan Chi
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiawen Qiu
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui You
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mo Wang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haiping Yang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Jiang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
31
|
Deleersnijder D, Knops N, Trouet D, Van Hoeck K, Karamaria S, Vande Walle J, Mauel R, Cools L, Meeus G, Dendooven A, De Meester J, Laurens W, Sprangers B. Epidemiology and clinicopathological characteristics of native kidney disease in children in Flanders, Belgium. Pediatr Nephrol 2022; 38:1533-1545. [PMID: 36227435 DOI: 10.1007/s00467-022-05719-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The Flemish Collaborative Glomerulonephritis Group (FCGG) registry is a population-based kidney biopsy registry that has been including all native kidney biopsies performed in children in Flanders (Belgium), since 2017. METHODS From 2017 to 2020, 148 pediatric (< 18 years) native kidney biopsies were included. Each biopsy received a histopathological and final nephrological diagnosis, and concordance between both was assessed. Disease chronicity, summarized by the Mayo Clinic Chronicity Score, was determined on 122 biopsies with > 5 glomeruli. RESULTS Kidney biopsy rate was high (29.0 biopsies per million children per year), median age was 10.0 years (IQR 5.8-14.7), and boys predominated (56.1% males). A total of 140 biopsies (94.6%) showed a representative pathology result. Glomerular disease was most prevalent, with IgA nephropathy/IgA vasculitis (43 biopsies, 29.1%) and minimal change disease (MCD) (29 biopsies, 19.6%) being the overall most frequent diagnoses. In general, diagnostic concordance was high (80.7%). In Alport syndrome and focal segmental glomerulosclerosis (FSGS), concordance was lower, as the nephrological diagnosis was often determined by results of genetic analysis. Nephrotic syndrome was the most frequent indication for kidney biopsy (31.8%) and was mainly caused by MCD and FSGS. The degree of disease chronicity on kidney biopsies was generally low, although 27.3% of biopsies with a diagnosis of FSGS showed moderate-to-severe chronic damage. CONCLUSIONS The presented epidemiological findings validate data from previous European registry studies and may inspire kidney biopsy registries worldwide to implement novel features such as clinicopathological concordance and chronicity grading. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Dries Deleersnijder
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Louvain, Belgium. .,Division of Nephrology, University Hospitals Leuven, Louvain, Belgium.
| | - Noël Knops
- Pediatric Nephrology and Solid Organ Transplantation, University Hospitals Leuven, Louvain, Belgium.,Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Dominique Trouet
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Wilrijk, Belgium.,Department of Pediatric Nephrology, Antwerp University Hospital, Edegem, Belgium
| | - Koen Van Hoeck
- Department of Pediatric Nephrology, Antwerp University Hospital, Edegem, Belgium
| | - Sevasti Karamaria
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Reiner Mauel
- Department of Pediatrics, University Hospital Brussels, Brussels, Belgium
| | - Louise Cools
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Louvain, Belgium
| | - Gert Meeus
- Department of Nephrology, AZ Groeninge Hospital, Kortrijk, Belgium
| | - Amélie Dendooven
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Wilrijk, Belgium.,Division of Pathology, University Hospital Ghent, Ghent, Belgium
| | - Johan De Meester
- Department of Nephrology and Dialysis, VITAZ Hospital, Sint-Niklaas, Belgium
| | - Wim Laurens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Nephrology and Dialysis, VITAZ Hospital, Sint-Niklaas, Belgium
| | - Ben Sprangers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Louvain, Belgium. .,Division of Nephrology, University Hospitals Leuven, Louvain, Belgium.
| | | |
Collapse
|
32
|
Claus LR, Snoek R, Knoers NVAM, van Eerde AM. Review of genetic testing in kidney disease patients: Diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:358-376. [PMID: 36161467 PMCID: PMC9828643 DOI: 10.1002/ajmg.c.31995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023]
Abstract
Genetic kidney disease comprises a diverse group of disorders. These can roughly be divided in the phenotype groups congenital anomalies of the kidney and urinary tract, ciliopathies, glomerulopathies, stone disorders, tubulointerstitial kidney disease, and tubulopathies. Many etiologies can lead to chronic kidney disease that can progress to end-stage kidney disease. Despite each individual disease being rare, together these genetic disorders account for a large proportion of kidney disease cases. With the introduction of massively parallel sequencing, genetic testing has become more accessible, but a comprehensive analysis of the diagnostic yield is lacking. This review gives an overview of the diagnostic yield of genetic testing across and within the full range of kidney disease phenotypes through a systematic literature search that resulted in 115 included articles. Patient, test, and cohort characteristics that can influence the diagnostic yield are highlighted. Detection of copy number variations and their contribution to the diagnostic yield is described for all phenotype groups. Also, the impact of a genetic diagnosis for a patient and family members, which can be diagnostic, therapeutic, and prognostic, is shown through the included articles. This review will allow clinicians to estimate an a priori probability of finding a genetic cause for the kidney disease in their patients.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rozemarijn Snoek
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine V. A. M. Knoers
- Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
| | | |
Collapse
|
33
|
Expanding the Spectrum of Oculocutaneous Albinism: Does Isolated Foveal Hypoplasia Really Exist? Int J Mol Sci 2022; 23:ijms23147825. [PMID: 35887175 PMCID: PMC9317384 DOI: 10.3390/ijms23147825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Oculocutaneous albinism is an autosomal recessive disorder characterized by the presence of typical ocular features, such as foveal hypoplasia, iris translucency, hypopigmented fundus oculi and reduced pigmentation of skin and hair. Albino patients can show significant clinical variability; some individuals can present with only mild depigmentation and subtle ocular changes. Here, we provide a retrospective review of the standardized clinical charts of patients firstly addressed for evaluation of foveal hypoplasia and slightly subnormal visual acuity, whose diagnosis of albinism was achieved only after extensive phenotypic and genotypic characterization. Our report corroborates the pathogenicity of the two common TYR polymorphisms p.(Arg402Gln) and p.(Ser192Tyr) when both are located in trans with a pathogenic TYR variant and aims to expand the phenotypic spectrum of albinism in order to increase the detection rate of the albino phenotype. Our data also suggest that isolated foveal hypoplasia should be considered a clinical sign instead of a definitive diagnosis of an isolated clinical entity, and we recommend deep phenotypic and molecular characterization in such patients to achieve a proper diagnosis.
Collapse
|
34
|
Anders HJ, Boor P. Predicting Future Outcomes from Kidney Biopsies with MCD/FSGS Lesions: Opportunities and Limitations. J Am Soc Nephrol 2022; 33:1233-1235. [PMID: 35728879 PMCID: PMC9257806 DOI: 10.1681/asn.2022040506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Hans-Joachim Anders
- Renal Division, University Hospital of the Ludwig Maximilian, Munich, Germany
| | - Peter Boor
- Institute of Pathology, Department of Nephrology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
35
|
Clinical and Genetic Characterization of Patients with Bartter and Gitelman Syndrome. Int J Mol Sci 2022; 23:ijms23105641. [PMID: 35628451 PMCID: PMC9144947 DOI: 10.3390/ijms23105641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Bartter (BS) and Gitelman (GS) syndrome are autosomal recessive inherited tubulopathies, whose clinical diagnosis can be challenging, due to rarity and phenotypic overlap. Genotype-phenotype correlations have important implications in defining kidney and global outcomes. The aim of our study was to assess the diagnostic rate of whole-exome sequencing (WES) coupled with a bioinformatic analysis of copy number variations in a population of 63 patients with BS and GS from a single institution, and to explore genotype-phenotype correlations. We obtained a diagnostic yield of 86% (54/63 patients), allowing disease reclassification in about 14% of patients. Although some clinical and laboratory features were more commonly reported in patients with BS or GS, a significant overlap does exist, and age at onset, preterm birth, gestational age and nephro-calcinosis are frequently misleading. Finally, chronic kidney disease (CKD) occurs in about 30% of patients with BS or GS, suggesting that the long-term prognosis can be unfavorable. In our cohort the features associated with CKD were lower gestational age at birth and a molecular diagnosis of BS, especially BS type 1. The results of our study demonstrate that WES is useful in dealing with the phenotypic heterogeneity of these disorders, improving differential diagnosis and genotype-phenotype correlation.
Collapse
|
36
|
Jiao J, Wang L, Ni F, Wang M, Feng S, Gao X, Chan H, Yang X, Lee H, Chi H, Chen X, Wu D, Zhang G, Yang B, Wang A, Yang Q, Wan J, Yu S, Li X, Wang M, Chen X, Mai X, Ruan X, Yang H, Li Q. Whole-exome sequencing of a multicenter cohort identifies genetic changes associated with clinical phenotypes in pediatric nephrotic syndrome. Genes Dis 2022; 9:1662-1673. [PMID: 36157477 PMCID: PMC9485284 DOI: 10.1016/j.gendis.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the association between the genetic and clinical phenotypes in children with nephrotic syndrome (NS) of different etiologies is critical for early clinical guidance. We employed whole-exome sequencing (WES) to detect monogenic causes of NS in a multicenter cohort of 637 patients. In this study, a genetic cause was identified in 30.0% of the idiopathic steroid-resistant nephrotic syndrome (SRNS) patients. Other than congenital nephrotic syndrome (CNS), there were no significant differences in the incidence of monogenic diseases based on the age at manifestation. Causative mutations were detected in 39.5% of patients with focal segmental glomerulosclerosis (FSGS) and 9.2% of those with minimal change disease (MCD). In terms of the patterns in patients with different types of steroid resistance, a single gene mutation was identified in 34.8% of patients with primary resistance, 2.9% with secondary resistance, and 71.4% of children with multidrug resistance. Among the various intensified immunosuppressive therapies, tacrolimus (TAC) showed the highest response rate, with 49.7% of idiopathic SRNS patients achieving complete remission. Idiopathic SRNS patients with monogenic disease showed a similar multidrug resistance pattern, and only 31.4% of patients with monogenic disease achieved a partial remission on TAC. During an average 4.1-year follow-up, 21.4% of idiopathic SRNS patients with monogenic disease progressed to end-stage renal disease (ESRD). Collectively, this study provides evidence that genetic testing is necessary for presumed steroid-resistant and idiopathic SRNS patients, especially those with primary and/or multidrug resistance.
Collapse
Affiliation(s)
- Jia Jiao
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Li Wang
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, Sichuan 610091, PR China
| | - Fenfen Ni
- Department of Nephrology, Sheen Children's Hospital, Shenzhen, Guangdong 518034, PR China
| | - Mo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Shipin Feng
- Department of Nephrology, Chengdu Women and Children Central Hospital, Chengdu, Sichuan 610091, PR China
| | - Xiaojie Gao
- Department of Nephrology, Sheen Children's Hospital, Shenzhen, Guangdong 518034, PR China
| | - Han Chan
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Xueying Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Hao Lee
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Huan Chi
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Xuelan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Daoqi Wu
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Gaofu Zhang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Baohui Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Anshuo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Qin Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Junli Wan
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Sijie Yu
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Xiaoqin Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Mei Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Xiaofeng Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Xianying Mai
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
| | - Xiongzhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London WC1E 6BT, United Kingdom
| | - Haiping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
- Corresponding author.
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400015, PR China
- Corresponding author.
| |
Collapse
|
37
|
Ravaglia F, Melica ME, Angelotti ML, De Chiara L, Romagnani P, Lasagni L. The Pathology Lesion Patterns of Podocytopathies: How and why? Front Cell Dev Biol 2022; 10:838272. [PMID: 35281116 PMCID: PMC8907833 DOI: 10.3389/fcell.2022.838272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Podocytopathies are a group of proteinuric glomerular disorders driven by primary podocyte injury that are associated with a set of lesion patterns observed on kidney biopsy, i.e., minimal changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis and collapsing glomerulopathy. These unspecific lesion patterns have long been considered as independent disease entities. By contrast, recent evidence from genetics and experimental studies demonstrated that they represent signs of repeated injury and repair attempts. These ongoing processes depend on the type, length, and severity of podocyte injury, as well as on the ability of parietal epithelial cells to drive repair. In this review, we discuss the main pathology patterns of podocytopathies with a focus on the cellular and molecular response of podocytes and parietal epithelial cells.
Collapse
Affiliation(s)
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology Unit, Meyer Children’s Hospital, Florence, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Doreille A, Villié P, Mesnard L. National survey on genetic test prescription in French adult nephrologists: a call for simplification and education. Clin Kidney J 2022; 15:1213-1215. [PMID: 35664266 PMCID: PMC9155225 DOI: 10.1093/ckj/sfac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice Doreille
- Sorbonne Université, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Patricia Villié
- Centre Hospitalier Université de la Réunion, Saint Pierre, France
| | - Laurent Mesnard
- Sorbonne Université, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| |
Collapse
|
39
|
Identification of Nephrin gene variants in Indian children associated with Steroid sensitive and Steroid resistant nephrotic syndrome. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
40
|
Seltzsam S, Wang C, Zheng B, Mann N, Connaughton DM, Wu CHW, Schneider S, Schierbaum L, Kause F, Kolvenbach CM, Nakayama M, Dai R, Ottlewski I, Schneider R, Deutsch K, Buerger F, Klämbt V, Mao Y, Onuchic-Whitford AC, Nicolas-Frank C, Yousef K, Pantel D, Lai EW, Salmanullah D, Majmundar AJ, Bauer SB, Rodig NM, Somers MJG, Traum AZ, Stein DR, Daga A, Baum MA, Daouk GH, Tasic V, Awad HS, Eid LA, El Desoky S, Shalaby M, Kari JA, Fathy HM, Soliman NA, Mane SM, Shril S, Ferguson MA, Hildebrandt F. Reverse phenotyping facilitates disease allele calling in exome sequencing of patients with CAKUT. Genet Med 2022; 24:307-318. [PMID: 34906515 PMCID: PMC8876311 DOI: 10.1016/j.gim.2021.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.
Collapse
Affiliation(s)
- Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Chunyan Wang
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bixia Zheng
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nina Mann
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dervla M Connaughton
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Chen-Han Wilfred Wu
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sophia Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Luca Schierbaum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Franziska Kause
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Caroline M Kolvenbach
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Makiko Nakayama
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rufeng Dai
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Isabel Ottlewski
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ronen Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Konstantin Deutsch
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Verena Klämbt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Youying Mao
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ana C Onuchic-Whitford
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Camille Nicolas-Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Kirollos Yousef
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dalia Pantel
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ethan W Lai
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Daanya Salmanullah
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Amar J Majmundar
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nancy M Rodig
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael J G Somers
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Avram Z Traum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Deborah R Stein
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ankana Daga
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michelle A Baum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ghaleb H Daouk
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Hazem S Awad
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Loai A Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Sherif El Desoky
- Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia; Pediatric Nephrology Center of Excellence, Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mohammed Shalaby
- Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia; Pediatric Nephrology Center of Excellence, Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Jameela A Kari
- Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia; Pediatric Nephrology Center of Excellence, Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Hanan M Fathy
- Pediatric Nephrology Unit, University of Alexandria, Alexandria, Egypt
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael A Ferguson
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
41
|
Kumar R, Keskinyan V, Stangl MC, Lane BM, Buckley AF, Barisoni L, Howell DN, Gbadegesin RA. Case Report: Unusual Aggregation of Different Glomerulopathies in a Family Resolved by Genetic Testing and Reverse Phenotyping. Front Pediatr 2022; 10:826330. [PMID: 35295700 PMCID: PMC8918647 DOI: 10.3389/fped.2022.826330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Glomerular diseases (GDs) are a major cause of chronic kidney disease in children. The conventional approach to diagnosis of GDs includes clinical evaluation and, in most cases, kidney biopsy to make a definitive diagnosis. However, in many cases, clinical presentations of different GDs can overlap, leading to uncertainty in diagnosis and management even after renal biopsy. In this report, we identify a family with clinical diagnoses of postinfectious glomerulonephritis and IgA nephropathy in a parent and two children. Renal biopsies were initially inconclusive; however, genetic testing showed that the two individuals diagnosed at different points with IgA nephropathy carried novel segregating pathogenic variants in COL4A5 gene. We were only able to make the final diagnoses in each of the family members after genetic testing and reverse phenotyping. This case highlights the utility of genetic testing and reverse phenotyping in resolving clinical diagnosis in families with unusual constellations of different glomerulopathies. We propose that clustering of different glomerular disease phenotypes in a family should be an indication for genetic testing followed by reverse phenotyping.
Collapse
Affiliation(s)
- Reeti Kumar
- Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Vahakn Keskinyan
- Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Megan Chryst Stangl
- Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Brandon M Lane
- Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Anne F Buckley
- Division of Renal Pathology, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Laura Barisoni
- Division of Renal Pathology, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - David N Howell
- Division of Renal Pathology, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
42
|
Li J, Zhao M, Xiang X, He Q, Gui R. A novel biomimetic nanomedicine system with anti-inflammatory and anti-osteoporosis effects improves the therapy efficacy of steroid-resistant nephrotic syndrome. J Nanobiotechnology 2021; 19:417. [PMID: 34903236 PMCID: PMC8670287 DOI: 10.1186/s12951-021-01165-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 01/28/2023] Open
Abstract
Clinically, steroid-resistant nephrotic syndrome (SRNS) is always prolonged and difficult to treat and easily develops into end-stage renal disease, resulting in a low survival rate. Strategies to reverse steroid resistance and reduce the long-term use of high doses of steroid medicines are urgently needed. In this study, a novel nanoparticle drug system (Pm-GCH) with a core–shell structure was designed. Metal–organic frameworks, synthesized by glycyrrhizic acid (G) and calcium ions (Ca2+) loaded with hydrocortisone (H) were the core of the nanoparticles. Platelet membrane vesicles were the shells. The natural platelet membrane endows Pm-GCH with good biocompatibility and the ability to promote immune escape. In addition, under the chemotaxis of inflammatory factors, platelet membranes assist Pm-GCH in nonspecific targeting of the inflammatory sites of the kidney. Under an inflammatory acid environment, GCH slowly degrades and releases glycyrrhizic acid and hydrocortisone. Glycyrrhizic acid inhibits the inactivation of hydrocortisone, jointly inhibits the activity of phospholipase A2 (PLA2) and the classic activation pathway of complement C2, blocks the production of inflammatory factors, plays an anti-inflammatory role, and enhances the efficacy of hydrocortisone in the treatment of SRNS. Moreover, glycyrrhizic acid alleviates osteoporosis induced by long-term use of glucocorticoids. These results indicate that Pm-GCH is a promising treatment strategy for SRNS. ![]()
Collapse
Affiliation(s)
- Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xinying Xiang
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
43
|
Allinovi M, Trivioli G, Lugli G, Villanti M, Gianassi I, Antognoli G, Romagnani P, Vaglio A, Caroti L, Cirami CL. Proteinuria selectivity index predicts response to rituximab in adults with minimal change disease and focal segmental glomerulosclerosis. Nephrol Dial Transplant 2021; 37:789-791. [PMID: 34788862 DOI: 10.1093/ndt/gfab323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marco Allinovi
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy
| | - Giorgio Trivioli
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy.,Nephrology Unit, Meyer Children's Hospital and Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gianmarco Lugli
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy.,Nephrology Unit, Meyer Children's Hospital and Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maurizio Villanti
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy
| | - Iacopo Gianassi
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy
| | - Giulia Antognoli
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy
| | - Paola Romagnani
- Nephrology Unit, Meyer Children's Hospital and Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Augusto Vaglio
- Nephrology Unit, Meyer Children's Hospital and Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Leonardo Caroti
- Nephrology and Dialysis Unit, Careggi University Hospital, Florence, Italy
| | | |
Collapse
|
44
|
De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol 2021; 17:619-630. [PMID: 34017116 PMCID: PMC8136112 DOI: 10.1038/s41581-021-00427-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a specific disease entity but a lesion that primarily targets the podocyte. In a broad sense, the causes of the lesion can be divided into those triggered by a presumed circulating permeability factor, those that occur secondary to a process that might originate outside the kidneys, those caused by a genetic mutation in a podocyte or glomerular basement membrane protein, and those that arise through an as yet unidentifiable process, seemingly unrelated to a circulating permeability factor. A careful attempt to correctly stratify patients with FSGS based on their clinical presentation and pathological findings on kidney biopsy is essential for sound treatment decisions in individual patients. However, it is also essential for the rational design of therapeutic trials in FSGS. Greater recognition of the pathophysiology underlying podocyte stress and damage in FSGS will increase the likelihood that the cause of an FSGS lesion is properly identified and enable stratification of patients in future interventional trials. Such efforts will facilitate the identification of effective therapeutic agents.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Richard J Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
45
|
Pinto E Vairo F, Prochnow C, Kemppainen JL, Lisi EC, Steyermark JM, Kruisselbrink TM, Pichurin PN, Dhamija R, Hager MM, Albadri S, Cornell LD, Lazaridis KN, Klee EW, Senum SR, El Ters M, Amer H, Baudhuin LM, Moyer AM, Keddis MT, Zand L, Sas DJ, Erickson SB, Fervenza FC, Lieske JC, Harris PC, Hogan MC. Genomics Integration Into Nephrology Practice. Kidney Med 2021; 3:785-798. [PMID: 34746741 PMCID: PMC8551494 DOI: 10.1016/j.xkme.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE & OBJECTIVE The etiology of kidney disease remains unknown in many individuals with chronic kidney disease (CKD). We created the Mayo Clinic Nephrology Genomics Clinic to improve our ability to integrate genomic and clinical data to identify the etiology of unexplained CKD. STUDY DESIGN Retrospective study. SETTING & PARTICIPANTS An essential component of our program is the Nephrology Genomics Board which consists of nephrologists, geneticists, pathologists, translational omics scientists, and trainees who interpret the patient's clinical and genetic data. Since September 2016, the Board has reviewed 163 cases (15 cystic, 100 glomerular, 6 congenital anomalies of kidney and urinary tract (CAKUT), 20 stones, 15 tubulointerstitial, and 13 other). ANALYTICAL APPROACH Testing was performed with targeted panels, single gene analysis, or analysis of kidney-related genes from exome sequencing. Variant classification was obtained based on the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS A definitive genetic diagnosis was achieved for 50 families (30.7%). The highest diagnostic yield was obtained in individuals with tubulointerstitial diseases (53.3%), followed by congenital anomalies of the kidney and urological tract (33.3%), glomerular (31%), cysts (26.7%), stones (25%), and others (15.4%). A further 20 (12.3%) patients had variants of interest, and variant segregation, and research activities (exome, genome, or transcriptome sequencing) are ongoing for 44 (40%) unresolved families. LIMITATIONS Possible overestimation of diagnostic rate due to inclusion of individuals with variants with evidence of pathogenicity but classified as of uncertain significance by the clinical laboratory. CONCLUSIONS Integration of genomic and research testing and multidisciplinary evaluation in a nephrology cohort with CKD of unknown etiology or suspected monogenic disease provided a diagnosis in a third of families. These diagnoses had prognostic implications, and often changes in management were implemented.
Collapse
Affiliation(s)
- Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Carri Prochnow
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | | | - Emily C Lisi
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joan M Steyermark
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Rhadika Dhamija
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, Arizona
| | - Megan M Hager
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, Arizona
| | - Sam Albadri
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lynn D Cornell
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Sarah R Senum
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Mireille El Ters
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hatem Amer
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Linnea M Baudhuin
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ann M Moyer
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mira T Keddis
- Division of Nephrology, Mayo Clinic, Scottsdale, Arizona
| | - Ladan Zand
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - David J Sas
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stephen B Erickson
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - John C Lieske
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peter C Harris
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Marie C Hogan
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Hogan JJ. A Case of Focal Segmental Glomerulosclerosis. Clin J Am Soc Nephrol 2021; 16:1272-1274. [PMID: 33687967 PMCID: PMC8455043 DOI: 10.2215/cjn.19591220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jonathan J Hogan
- Division of Nephrology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Leveson J, Oates TM. Exome sequencing as a diagnostic tool in chronic kidney disease: ready for clinical application? Curr Opin Nephrol Hypertens 2021; 29:608-612. [PMID: 32889981 DOI: 10.1097/mnh.0000000000000639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Patients who develop chronic kidney disease at an early age, or from an uncertain cause, may benefit from genomic sequencing approaches to define causative mutations and inform subsequent management. RECENT FINDINGS Whole-exome sequencing has been used to investigate the molecular genetic variants associated with chronic kidney disease in both specific phenotypes such as steroid-resistant nephrotic syndrome, and in large cohorts of patients not selected for a certain diagnosis. These studies have shown that whole-exome sequencing is able to find a genetic variant in a significant number of patients. Often these variants may reclassify the diagnosis, the variants may have ramifications for the patient's management, and some variants may be previously undescribed in the literature. SUMMARY Whole-exome sequencing is likely to become widely used in the investigation of chronic kidney disease, especially in certain phenotypes.
Collapse
Affiliation(s)
- James Leveson
- Departments of Nephrology and General Medicine, Royal London Hospital, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
48
|
Peluso F, Caraffi SG, Zuntini R, Trimarchi G, Ivanovski I, Valeri L, Barbieri V, Marinelli M, Pancaldi A, Melli N, Cesario C, Agolini E, Cellini E, Radio FC, Crisafi A, Napoli M, Guerrini R, Tartaglia M, Novelli A, Gargano G, Zuffardi O, Garavelli L. Whole Exome Sequencing Is the Minimal Technological Approach in Probands Born to Consanguineous Couples. Genes (Basel) 2021; 12:genes12070962. [PMID: 34202629 PMCID: PMC8303193 DOI: 10.3390/genes12070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
We report on two siblings suffering from different pathogenic conditions, born to consanguineous parents. A multigene panel for brain malformations and microcephaly identified the homozygous splicing variant NM_005886.3:c.1416+1del in the KATNB1 gene in the older sister. On the other hand, exome sequencing revealed the homozygous frameshift variant NM_005245.4:c.9729del in the FAT1 gene in the younger sister, who had a more complex phenotype: in addition to bilateral anophthalmia and heart defects, she showed a right split foot with 4 toes, 5 metacarpals, second toe duplication and preaxial polydactyly on the right hand. These features have been never reported before in patients with pathogenic FAT1 variants and support the role of this gene in the development of limb buds. Notably, each parent was heterozygous for both of these variants, which were ultra-rare and rare, respectively. This study raises awareness about the value of using whole exome/genome sequencing rather than targeted gene panels when testing affected offspring born to consanguineous couples. In this way, exomic data from the parents are also made available for carrier screening, to identify heterozygous pathogenetic and likely pathogenetic variants in genes responsible for other recessive conditions, which may pose a risk for subsequent pregnancies.
Collapse
Affiliation(s)
- Francesca Peluso
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Gabriele Trimarchi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Ivan Ivanovski
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
- Institut für Medizinische Genetik, Universität Zürich, 8952 Zürich, Switzerland
| | - Lara Valeri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
- Post Graduate School of Paediatrics, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Veronica Barbieri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Maria Marinelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
| | - Alessia Pancaldi
- Post Graduate School of Paediatrics, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (N.M.); (G.G.)
| | - Nives Melli
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (N.M.); (G.G.)
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.C.); (E.A.); (A.N.)
| | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.C.); (E.A.); (A.N.)
| | - Elena Cellini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy; (E.C.); (R.G.)
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (F.C.R.); (M.T.)
| | - Antonella Crisafi
- Pediatric Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy; (E.C.); (R.G.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (F.C.R.); (M.T.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.C.); (E.A.); (A.N.)
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (N.M.); (G.G.)
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.P.); (S.G.C.); (R.Z.); (G.T.); (I.I.); (L.V.); (V.B.); (M.M.)
- Correspondence:
| |
Collapse
|
49
|
Kikkawa Y, Hashimoto T, Takizawa K, Urae S, Masuda H, Matsunuma M, Yamada Y, Hamada K, Nomizu M, Liapis H, Hisano M, Akioka Y, Miura K, Hattori M, Miner JH, Harita Y. Laminin β2 variants associated with isolated nephropathy that impact matrix regulation. JCI Insight 2021; 6:145908. [PMID: 33749661 PMCID: PMC8026196 DOI: 10.1172/jci.insight.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in LAMB2, encoding laminin β2, cause Pierson syndrome and occasionally milder nephropathy without extrarenal abnormalities. The most deleterious missense mutations that have been identified affect primarily the N-terminus of laminin β2. On the other hand, those associated with isolated nephropathy are distributed across the entire molecule, and variants in the β2 LEa-LF-LEb domains are exclusively found in cases with isolated nephropathy. Here we report the clinical features of mild isolated nephropathy associated with 3 LAMB2 variants in the LEa-LF-LEb domains (p.R469Q, p.G699R, and p.R1078C) and their biochemical characterization. Although Pierson syndrome missense mutations often inhibit laminin β2 secretion, the 3 recombinant variants were secreted as efficiently as WT. However, the β2 variants lost pH dependency for heparin binding, resulting in aberrant binding under physiologic conditions. This suggests that the binding of laminin β2 to negatively charged molecules is involved in glomerular basement membrane (GBM) permselectivity. Moreover, the excessive binding of the β2 variants to other laminins appears to lead to their increased deposition in the GBM. Laminin β2 also serves as a potentially novel cell-adhesive ligand for integrin α4β1. Our findings define biochemical functions of laminin β2 variants influencing glomerular filtration that may underlie the pathogenesis of isolated nephropathy caused by LAMB2 abnormalities.
Collapse
Affiliation(s)
- Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taeko Hashimoto
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan.,Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiichi Takizawa
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Masuda
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masumi Matsunuma
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuji Yamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Helen Liapis
- Department of Pathology and Immunology and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Masataka Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
|