1
|
Bruscolini A, Iannitelli A, Segatto M, Rosso P, Fico E, Buonfiglio M, Lambiase A, Tirassa P. Psycho-Cognitive Profile and NGF and BDNF Levels in Tears and Serum: A Pilot Study in Patients with Graves' Disease. Int J Mol Sci 2023; 24:ijms24098074. [PMID: 37175781 PMCID: PMC10178719 DOI: 10.3390/ijms24098074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nerve Growth Factor (NGF) and Brain derived Neurotrophic Factor (BDNF) mature/precursor imbalance in tears and serum is suggested as a risk factor and symptomatology aggravation in ophthalmology and neuropsychiatric disturbances. Cognitive and mood alterations are reported by patients with Graves' Orbitopathy (GO), indicating neurotrophin alterations might be involved. To address this question, the expression levels of NGF and BDNF and their precursors in serum and tears of GO patients were analyzed and correlated with the ophthalmological and psycho-cognitive symptoms. Hamilton Rating Scale for Anxiety (HAM-A) and Depression (HAM-D), Temperament and Character Inventory (TCI), and Cambridge Neuropsychological Test Automated Battery (CANTAB) test were used as a score. NGF and BDNF levels were measured using ELISA and Western Blot and statistically analyzed for psychiatric/ocular variable trend association. GO patients show memorization time and level of distraction increase, together with high irritability and impulsiveness. HAM-A and CANTAB variables association, and some TCI dimensions are also found. NGF and BDNF expression correlates with ophthalmological symptoms only in tears, while mature/precursor NGF and BDNF correlate with the specific psycho-cognitive variables both in tears and serum. Our study is the first to show that changes in NGF and BDNF processing in tears and serum might profile ocular and cognitive alterations in patients.
Collapse
Affiliation(s)
- Alice Bruscolini
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Pamela Rosso
- Institute of Biochemistry & Cell Biology (IBBC), National Research Council (CNR), Unit of Translational & Biomolecular Medicine "Rita Levi-Montalcini", Viale dell'Università 33, 00185 Rome, Italy
| | - Elena Fico
- Institute of Biochemistry & Cell Biology (IBBC), National Research Council (CNR), Unit of Translational & Biomolecular Medicine "Rita Levi-Montalcini", Viale dell'Università 33, 00185 Rome, Italy
| | - Marzia Buonfiglio
- Headache Center, Policlinico Umberto I, Sapienza University, Viale dell'Università 33, 00185 Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry & Cell Biology (IBBC), National Research Council (CNR), Unit of Translational & Biomolecular Medicine "Rita Levi-Montalcini", Viale dell'Università 33, 00185 Rome, Italy
| |
Collapse
|
2
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
3
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
4
|
Zhao XP, Li H, Dai RP. Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry 2022; 12:379-392. [PMID: 35433323 PMCID: PMC8968497 DOI: 10.5498/wjp.v12.i3.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/22/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mood disorders are the most common mental disorders, affecting approximately 350 million people globally. Recent studies have shown that neuroimmune interaction regulates mood disorders. Brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF, are involved in the neuroimmune crosstalk during the development of mood disorders. BDNF is implicated in the pathophysiology of psychiatric and neurological disorders especially in antidepressant pharmacotherapy. In this review, we describe the functions of BDNF/pro-BDNF signaling in the central nervous system in the context of mood disorders. In addition, we summarize the developments for BDNF and pro-BDNF functions in mood disorders. This review aims to provide new insights into the impact of neuroimmune interaction on mood disorders and reveal a new basis for further development of diagnostic targets and mood disorders.
Collapse
Affiliation(s)
- Xiao-Pei Zhao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
5
|
Zarza-Rebollo JA, Molina E, López-Isac E, Pérez-Gutiérrez AM, Gutiérrez B, Cervilla JA, Rivera M. Interaction Effect between Physical Activity and the BDNF Val66Met Polymorphism on Depression in Women from the PISMA-ep Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042068. [PMID: 35206257 PMCID: PMC8872527 DOI: 10.3390/ijerph19042068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
The relationship between depression and the Val66Met polymorphism at the brain-derived neurotrophic factor gene (BDNF), has been largely studied. It has also been related to physical activity, although the results remain inconclusive. The aim of this study is to investigate the relationship between this polymorphism, depression and physical activity in a thoroughly characterised sample of community-based individuals from the PISMA-ep study. A total of 3123 participants from the PISMA-ep study were genotyped for the BDNF Val66Met polymorphism, of which 209 had depression. Our results are in line with previous studies reporting a protective effect of physical activity on depression, specifically in light intensity. Interestingly, we report a gene-environment interaction effect in which Met allele carriers of the BDNF Val66Met polymorphism who reported more hours of physical activity showed a decreased prevalence of depression. This effect was observed in the total sample (OR = 0.95, 95%CI = 0.90–0.99, p = 0.027) and was strengthened in women (OR = 0.93, 95%CI = 0.87–0.98, p = 0.019). These results highlight the potential role of physical activity as a promising therapeutic strategy for preventing and adjuvant treatment of depression and suggest molecular and genetic particularities of depression between sexes.
Collapse
Affiliation(s)
- Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Esther Molina
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Ana M. Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| | - Blanca Gutiérrez
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Psychiatry, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jorge A. Cervilla
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
- Department of Psychiatry, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Mental Health Service, University Hospital San Cecilio, 18016 Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.A.Z.-R.); (E.L.-I.); (A.M.P.-G.); (M.R.)
- Institute of Neurosciences, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; (B.G.); (J.A.C.)
| |
Collapse
|
6
|
Sanada K, de Azúa SR, Nakajima S, Alberich S, Ugarte A, Zugasti J, Vega P, Martínez-Cengotitabengoa M, González-Pinto A. Correlates of neurocognitive functions in individuals at ultra-high risk for psychosis - A 6-month follow-up study. Psychiatry Res 2018; 268:1-7. [PMID: 29986171 DOI: 10.1016/j.psychres.2018.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 01/30/2023]
Abstract
Cognitive deficits are evident at the prodromal phase of psychosis. It has been noted that brain-derived neurotrophic factor (BDNF) is correlated with cognition in both preclinical and clinical studies. However, to our knowledge, no study has evaluated blood BDNF levels and their association with cognitive impairment in individuals at ultra-high risk for psychosis (UHR). We included 13 individuals at UHR and 30 healthy controls (HC) matched by sex, age, and educational level. Plasma BDNF levels were measured at baseline and 6 months. Neurocognitive functions (executive functions, speed of processing, verbal learning and memory, working memory) were examined at 6 months. Regression analyses were conducted to examine the relationship between BDNF levels and cognitive performance. BDNF levels were lower in UHR group than in HC group both at baseline and at 6 months (P = 0.001, and P = 0.007, respectively). There were no associations between plasma BDNF levels and all of the cognitive domains in both groups. Our findings showed that peripheral BDNF levels were not related to cognitive deficits in UHR and HC groups while the lower BDNF level in the former persisted up to 6 months. Further research is needed in a large sample.
Collapse
Affiliation(s)
- Kenji Sanada
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Sonia Ruiz de Azúa
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain; University of the Basque Country
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Susana Alberich
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain
| | - Amaia Ugarte
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain
| | - Jone Zugasti
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain
| | - Patricia Vega
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain
| | - Mónica Martínez-Cengotitabengoa
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain; University of the Basque Country; National Distance Education University (UNED), Spain
| | - Ana González-Pinto
- Department of Psychiatry, Araba University Hospital, BioAraba Research Institute, OSI Araba Vitoria, Spain; Biomedical Research Networking Centre in Mental Health (CIBERSAM), Madrid, Spain; University of the Basque Country.
| |
Collapse
|
7
|
Youssef MM, Underwood MD, Huang YY, Hsiung SC, Liu Y, Simpson NR, Bakalian MJ, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int J Neuropsychopharmacol 2018; 21:528-538. [PMID: 29432620 PMCID: PMC6007393 DOI: 10.1093/ijnp/pyy008] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background Brain-derived neurotrophic factor is implicated in the pathophysiology of major depressive disorder and suicide. Both are partly caused by early life adversity, which reduces brain-derived neurotrophic factor protein levels. This study examines the association of brain-derived neurotrophic factor Val66Met polymorphism and brain brain-derived neurotrophic factor levels with depression and suicide. We hypothesized that both major depressive disorder and early life adversity would be associated with the Met allele and lower brain brain-derived neurotrophic factor levels. Such an association would be consistent with low brain-derived neurotrophic factor mediating the effect of early life adversity on adulthood suicide and major depressive disorder. Methods Brain-derived neurotrophic factor Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 nonsuicides. Additionally, brain-derived neurotrophic factor protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9), anterior cingulate cortex (Brodmann area 24), caudal brainstem, and rostral brainstem. The relationships between these measures and major depressive disorder, death by suicide, and reported early life adversity were examined. Results Subjects with the Met allele had an increased risk for depression. Depressed patients also have lower brain-derived neurotrophic factor levels in anterior cingulate cortex and caudal brainstem compared with nondepressed subjects. No effect of history of suicide death or early life adversity was observed with genotype, but lower brain-derived neurotrophic factor levels in the anterior cingulate cortex were found in subjects who had been exposed to early life adversity and/or died by suicide compared with nonsuicide decedents and no reported early life adversity. Conclusions This study provides further evidence implicating low brain brain-derived neurotrophic factor and the brain-derived neurotrophic factor Met allele in major depression risk. Future studies should seek to determine how altered brain-derived neurotrophic factor expression contributes to depression and suicide.
Collapse
Affiliation(s)
- Mariam M Youssef
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - Mark D Underwood
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Yung-Yu Huang
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - Shu-chi Hsiung
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - Yan Liu
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - Norman R Simpson
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - Mihran J Bakalian
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - Gorazd B Rosoklija
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
- Macedonian Academy of Sciences & Arts, Republic of Macedonia
| | - Andrew J Dwork
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Victoria Arango
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
- Department of Radiology, Columbia University, New York, New York
| |
Collapse
|
8
|
Simões LR, Sangiogo G, Tashiro MH, Generoso JS, Faller CJ, Dominguini D, Mastella GA, Scaini G, Giridharan VV, Michels M, Florentino D, Petronilho F, Réus GZ, Dal-Pizzol F, Zugno AI, Barichello T. Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. J Psychiatr Res 2018; 100:71-83. [PMID: 29494891 DOI: 10.1016/j.jpsychires.2018.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022]
Abstract
Evidence suggest that prenatal immune system disturbance contributes largely to the pathophysiology of neuropsychiatric disorders. We investigated if maternal immune activation (MIA) could induce inflammatory alterations in fetal brain and pregnant rats. Adult rats subjected to MIA also were investigated to evaluate if ketamine potentiates the effects of infection. On gestational day 15, Wistar pregnant rats received lipopolysaccharide (LPS) to induce MIA. After 6, 12 and 24 h, fetus brain, placenta, and amniotic fluid were collected to evaluate early effects of LPS. MIA increased oxidative stress and expression of metalloproteinase in the amniotic fluid and fetal brain. The blood brain barrier (BBB) integrity in the hippocampus and cortex as well integrity of placental barrier (PB) in the placenta and fetus brain were dysregulated after LPS induction. We observed elevated pro- and anti-inflammatory cytokines after LPS in fetal brain. Other group of rats from postnatal day (PND) 54 after LPS received injection of ketamine at the doses of 5, 15, and 25 mg/kg. On PND 60 rats were subjected to the memories tests, spontaneous locomotor activity, and pre-pulse inhibition test (PPI). Rats that receive MIA plus ketamine had memory impairment and a deficit in the PPI. Neurotrophins were increased in the hippocampus and reduced in the prefrontal cortex in the LPS plus ketamine group. MIA induced oxidative stress and inflammatory changes that could be, at least in part, related to the dysfunction in the BBB and PB permeability of pregnant rats and offspring. Besides, this also generates behavioral deficits in the rat adulthood's that are potentiated by ketamine.
Collapse
Affiliation(s)
- Lutiana Roque Simões
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Sangiogo
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Michael Hikaru Tashiro
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Antunes Mastella
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Gislaine Zilli Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Pedard M, Demougeot C, Prati C, Marie C. Brain-derived neurotrophic factor in adjuvant-induced arthritis in rats. Relationship with inflammation and endothelial dysfunction. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:249-254. [PMID: 29126980 DOI: 10.1016/j.pnpbp.2017.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Both peripheral and central brain-derived neurotrophic factor (BDNF) levels are decreased in depression and normalized by efficient anti-depressive therapies. While depression symptoms are frequent in rheumatoid arthritis, BDNF has been poorly investigated in this pathology. Therefore, the present study explored cerebral and peripheral BDNF in arthritis rats as well as the link between brain BDNF and the two factors recently involved in the pathogenesis of depression and present in rheumatoid arthritis namely inflammation and endothelial dysfunction. METHODS The brain (hippocampus and frontal cortex) and blood (serum) were collected in rats subjected to adjuvant-induced arthritis (AIA) when inflammatory symptoms and endothelial dysfunction are fully developed. Anhedonia as a core symptom of depression symptom was assessed from preference for a saccharin drinking solution. Inflammation was assessed from the arthritis score and serum levels of TNFα and IL-1β. Treatment with the arginase inhibitor N(w)-hydroxy-nor-l-arginine (nor-NOHA) was used as a strategy to prevent endothelial dysfunction without improving inflammatory symptoms. RESULTS As compared to controls, AIA rats displayed decreased brain BDNF levels that coexisted with anhedonia but contrasted with increased BDNF levels in serum. Brain BDNF deficiency correlated neither with arthritis score nor with pro-inflammatory cytokines levels, while it was mitigated by nor-NOHA treatment. A positive correlation was observed between serum BDNF and TNFα levels. CONCLUSIONS Our study reveals that arthritis decreases BDNF levels in the brain and that endothelial dysfunction rather than inflammation contributes to the decrease. It also identifies a disconnection between serum and brain BDNF levels in arthritis.
Collapse
Affiliation(s)
- Martin Pedard
- INSERM U1093, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Service de Neurologie, CHRU, Dijon, France
| | - Céline Demougeot
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Clément Prati
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030 Besançon, France; Service de Rhumatologie, CHRU, Besançon, France
| | - Christine Marie
- INSERM U1093, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
10
|
BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction. J Affect Disord 2018; 227:226-235. [PMID: 29102837 DOI: 10.1016/j.jad.2017.10.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Depression is thought to be multifactorial in etiology, including genetic and environmental components. While a number of gene-environment interaction studies have been carried out, meta-analyses are scarce. The present meta-analysis aimed to quantify evidence on the interaction between brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and stress in depression. METHODS Included were 31 peer-reviewed with a pooled total of 21060 participants published before October 2016 and literature searches were conducted using PubMed, Wolters Kluwer, Web of Science, EBSCO, Elsevier Science Direct and Baidu Scholar databases. RESULTS The results indicated that the Met allele of BDNF Val66Met polymorphism significantly moderated the relationship between stress and depression (Z=2.666, p = 0.003). The results of subgroup analysis concluded that stressful life events and childhood adversity separately interacted with the Met allele of BDNF Val66Met polymorphism in depression (Z = 2.552, p = 0.005; Z = 1.775, p = 0.03). LIMITATIONS The results could be affected by errors or bias in primary studies which had small sample sizes with relatively lower statistic power. We could not estimate how strong the interaction effect between gene and environment was. CONCLUSIONS We found evidence that supported the hypothesis that BDNF Val66Met polymorphism moderated the relationship between stress and depression, despite the fact that many included individual studies did not show this effect.
Collapse
|
11
|
Lee H, Im J, Won H, Kim JY, Kim HK, Kwon JT, Kim YO, Lee S, Cho IH, Lee SW, Kim HJ. Antinociceptive effect of Valeriana fauriei regulates BDNF signaling in an animal model of fibromyalgia. Int J Mol Med 2017; 41:485-492. [PMID: 29115388 DOI: 10.3892/ijmm.2017.3203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
The genus Valeriana has been widely used in popular medicine for centuries, to treat sleep disorders, anxiety, epilepsy and insomnia. Recent studies have focused on the novel pharmacological effects of Valeriana fauriei Briq. (VF) species. Previous studies have attempted to determine the pharmacological functions of Valeriana in various human diseases, particularly with regards to its neuroprotective effects, and its ability to reduce pain and stress. The present study constructed an animal model of fibromyalgia (FM), which was induced by intermittent cold stress with slight modification. Subsequently, the study aimed to determine whether VF exerts antinociceptive effects on the FM‑like model following oral administration of VF extracts. The effects of VF extracts on the FM model were investigated by analyzing behavioral activity, including pain, and detecting protein expression. In the behavioral analysis, the results of a nociception assay indicated that the pain threshold was significantly decreased in the FM group. Subsequently, western blotting and immunohistochemical analyses of the hippocampus demonstrated that the protein expression levels of brain‑derived neurotrophic factor (BDNF) and phosphorylated‑cAMP response element‑binding protein were downregulated in the FM group. Conversely, VF restored these levels. These results suggested that the effects of VF extract on a model of FM may be associated with its modulatory effects on the BDNF signaling pathway in the hippocampus and medial prefrontal cortex. In conclusion, the mechanism underlying the protective effects of VF as a therapeutic agent against FM may involve the BDNF signaling pathway.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Jiyun Im
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Hansol Won
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Jun Young Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Chungbuk 27709, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung‑Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program, and Institute of Korean Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Won Lee
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Chungbuk 27709, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| |
Collapse
|
12
|
Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol 2017; 60:7-18. [PMID: 28477725 DOI: 10.1016/j.alcohol.2017.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022]
Abstract
Stress-related disorders, such as anxiety, early life stress, and posttraumatic stress disorder appear to be important factors in promoting alcoholism, as alcohol consumption can temporarily attenuate the negative affective symptoms of these disorders. Several molecules involved in signaling pathways may contribute to the neuroadaptation induced during alcohol dependence and stress disorders, and among these, brain-derived neurotrophic factor (BDNF), corticotropin releasing factor (CRF), neuropeptide Y (NPY) and opioid peptides (i.e., nociceptin and dynorphin) are involved in the interaction of stress and alcohol. In fact, alterations in the expression and function of these molecules have been associated with the pathophysiology of stress-related disorders and alcoholism. In recent years, various studies have focused on the epigenetic mechanisms that regulate chromatin architecture, thereby modifying gene expression. Interestingly, epigenetic modifications in specific brain regions have been shown to be associated with the neurobiology of psychiatric disorders, including alcoholism and stress. In particular, the enzymes responsible for chromatin remodeling (i.e., histone deacetylases and methyltransferases, DNA methyltransferases) have been identified as common molecular mechanisms for the interaction of stress and alcohol and have become promising therapeutic targets to treat or prevent alcoholism and associated emotional disorders.
Collapse
|
13
|
Bak ST, Staunstrup NH, Starnawska A, Daugaard TF, Nyengaard JR, Nyegaard M, Børglum A, Mors O, Dorph-Petersen KA, Nielsen AL. Evaluating the Feasibility of DNA Methylation Analyses Using Long-Term Archived Brain Formalin-Fixed Paraffin-Embedded Samples. Mol Neurobiol 2016; 55:668-681. [PMID: 27995571 DOI: 10.1007/s12035-016-0345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/05/2016] [Indexed: 01/14/2023]
Abstract
We here characterize the usability of archival formalin-fixed paraffin-embedded (FFPE) brain tissue as a resource for genetic and DNA methylation analyses with potential relevance for brain-manifested diseases. We analyzed FFPE samples from The Brain Collection, Aarhus University Hospital Risskov, Denmark (AUBC), constituting 9479 formalin-fixated brains making it one of the largest collections worldwide. DNA extracted from brain FFPE tissue blocks was interrogated for quality and usability in genetic and DNA methylation analyses by different molecular techniques. Overall, we found that DNA quality was inversely correlated with storage time and DNA quality was insufficient for Illumina methylation arrays; data from methylated DNA immunoprecipitation, clonal bisulfite sequencing, and pyrosequencing of BDNF and ST6GALNAC1 suggested that the original methylation pattern is indeed preserved. Proof-of-principle experiments predicting sex based on the methylation status of the X-inactivated SLC9A7 gene, or genotype differences of the Y and X chromosomes, showed consistency between predicted and actual sex for a subset of FFPE samples. In conclusion, even though DNA from FFPE samples is of low quality and technically challenging, it is likely that a subset of samples can provide reliable data given that the methodology used is designed for small DNA fragments. We propose that simple PCR-based quality control experiments at the genetic and DNA methylation level, carried out at the beginning of any given project, can be used to enrich for the best-performing FFPE samples. The apparent preservation of genetic and DNA methylation patterns in archival FFPE samples may bring along new perspectives for the identification of genetic and epigenetic changes associated with brain-manifested diseases.
Collapse
Affiliation(s)
- Stine T Bak
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark
| | - Nicklas H Staunstrup
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark.,Translational Neuropsychiatric Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Tina F Daugaard
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Anders Børglum
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Research Department P, Department of General Psychiatry, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Research Department P, Department of General Psychiatry, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karl-Anton Dorph-Petersen
- Translational Neuropsychiatric Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Aarhus, Denmark.,Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, Bartholin building, DK-8000, Aarhus C, Denmark. .,The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark.
| |
Collapse
|
14
|
Glerup S, Bolcho U, Mølgaard S, Bøggild S, Vaegter CB, Smith AH, Nieto-Gonzalez JL, Ovesen PL, Pedersen LF, Fjorback AN, Kjolby M, Login H, Holm MM, Andersen OM, Nyengaard JR, Willnow TE, Jensen K, Nykjaer A. SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Mol Psychiatry 2016; 21:1740-1751. [PMID: 27457814 DOI: 10.1038/mp.2016.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficit-hyperactivity disorder. Here we report that hippocampal N-methyl-d-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75NTR, required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75NTR was static, SorCS2 bound to TrkB in an activity-dependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2-/- mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75NTR and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.
Collapse
Affiliation(s)
- S Glerup
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - U Bolcho
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Mølgaard
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Bøggild
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A H Smith
- Yale School of Medicine, Interdepartmental Neuroscience Program and Medical Scientist Training Program, New Haven, CT, USA
- Department of Psychiatry, VAT CT Healthcare Center, and Yale School of Medicine, New Haven, CT, USA
| | | | - P L Ovesen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - L F Pedersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A N Fjorback
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M Kjolby
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - H Login
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M M Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - O M Andersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - J R Nyengaard
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, Aarhus C, Denmark
| | - T E Willnow
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - K Jensen
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - A Nykjaer
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
15
|
Dotson VM, Hsu FC, Langaee TY, McDonough CW, King AC, Cohen RA, Newman AB, Kritchevsky SB, Myers V, Manini TM, Pahor M. Genetic Moderators of the Impact of Physical Activity on Depressive Symptoms. J Frailty Aging 2016; 5:6-14. [PMID: 26980363 DOI: 10.14283/jfa.2016.76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Converging evidence suggests that physical activity is an effective intervention for both clinical depression and sub-threshold depressive symptoms; however, findings are not always consistent. These mixed results might reflect heterogeneity in response to physical activity, with some subgroups of individuals responding positively, but not others. OBJECTIVES 1) To examine the impact of genetic variation and sex on changes in depressive symptoms in older adults after a physical activity (PA) intervention, and 2) to determine if PA differentially improves particular symptom dimensions of depression. DESIGN Randomized controlled trial. SETTING Four field centers (Cooper Institute, Stanford University, University of Pittsburgh, and Wake Forest University). PARTICIPANTS 396 community-dwelling adults aged 70-89 years who participated in the Lifestyle Interventions and Independence for Elders Pilot Study (LIFE-P). INTERVENTION 12-month PA intervention compared to an education control. MEASUREMENTS Polymorphisms in the serotonin transporter (5-HTT), brain-derived neurotrophic factor (BDNF), and apolipoprotein E (APOE) genes; 12-month change in the Center for Epidemiologic Studies Depression Scale total score, as well as scores on the depressed affect, somatic symptoms, and lack of positive affect subscales. RESULTS Men randomized to the PA arm showed the greatest decreases in somatic symptoms, with a preferential benefit in male carriers of the BDNF Met allele. Symptoms of lack of positive affect decreased more in men compared to women, particularly in those possessing the 5-HTT L allele, but the effect did not differ by intervention arm. APOE status did not affect change in depressive symptoms. CONCLUSIONS Results of this study suggest that the impact of PA on depressive symptoms varies by genotype and sex, and that PA may mitigate somatic symptoms of depression more than other symptoms. The results suggest that a targeted approach to recommending PA therapy for treatment of depression is viable.
Collapse
Affiliation(s)
- V M Dotson
- Vonetta Dotson, Ph.D., Department of Clinical and Health, Psychology, University of Florida, P.O. Box 100165, Gainesville, FL 32610-0165, USA. Phone: +1 (352) 273-6041. Fax: +1 (352) 273-6156.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cargnin S, Massarotti A, Terrazzino S. BDNF Val66Met and clinical response to antipsychotic drugs: A systematic review and meta-analysis. Eur Psychiatry 2016; 33:45-53. [PMID: 26854986 DOI: 10.1016/j.eurpsy.2015.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The polymorphic brain-derived neurotrophic factor (BDNF) gene has been postulated to be involved in inter-individual variability response to antipsychotic drugs. PURPOSE To perform a qualitative and quantitative synthesis of studies evaluating the influence of BDNF genetic variation on clinical response to antipsychotics. METHODS The review protocol was published in the PROSPERO database (Reg. n(o) CRD42015024614). A comprehensive search was performed through PubMed, Web of Knowledge and Cochrane databases up to July 2015. The methodological quality of identified studies was assessed using the MINORS criteria. Publication bias was estimated and potential sources of heterogeneity were investigated via meta-regression, subgroup and sensitivity analyses. RESULTS Nine studies including a total of 2461 antipsychotic-treated patients fulfilled inclusion criteria for meta-analysis of BDNF Val66Met. Using the random-effects model, the pooled results showed no significant association with antipsychotic response for the dominant (Met carriers vs Val/Val, OR: 0.93, 95% CI: 0.72-1.19, P=0.55), codominant (Met/Met vs Val/Val, OR: 0.82, 95% CI: 0.59-1.15, P=0.25), recessive (Met/Met vs Val carriers, OR: 0.81, 95% CI 0.60-1.10, P=0.18) or the allelic contrast (Met vs Val, OR: 0.92, 95% CI 0.76-1.10, P=0.34). Visual inspection of funnel plots and further evaluation with Egger's test did not suggest evidence of publication bias. Despite lack of significant heterogeneity in most comparisons, no evidence of association also emerged in the subgroup and sensitivity analyses conducted. CONCLUSION The present meta-analysis excludes a clinically relevant effect of BDNF Val66Met on antipsychotic drug response per se. Nevertheless, further investigation is still needed to clarify in well-designed, large sample-based studies, the impact of BDNF haplotypes containing the Val66Met polymorphism.
Collapse
Affiliation(s)
- S Cargnin
- Dipartimento di Scienze del Farmaco and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - A Massarotti
- Dipartimento di Scienze del Farmaco and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - S Terrazzino
- Dipartimento di Scienze del Farmaco and Centro di Ricerca Interdipartimentale di Farmacogenetica e Farmacogenomica (CRIFF), Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
17
|
Asthana MK, Brunhuber B, Mühlberger A, Reif A, Schneider S, Herrmann MJ. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism. Int J Neuropsychopharmacol 2015; 19:pyv137. [PMID: 26721948 PMCID: PMC4926796 DOI: 10.1093/ijnp/pyv137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. METHODS An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. RESULTS The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. CONCLUSIONS Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans.
Collapse
Affiliation(s)
- Manish Kumar Asthana
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Bettina Brunhuber
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Andreas Mühlberger
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Andreas Reif
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Simone Schneider
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif)
| | - Martin J Herrmann
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil (Dr Asthana); Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany (Drs Brunhuber, Schneider, and Herrmann); Department of Psychology, University of Regensburg, Germany (Dr Mühlberger); Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Germany (Dr Reif).
| |
Collapse
|
18
|
Hashimoto R, Ohi K, Yamamori H, Yasuda Y, Fujimoto M, Umeda-Yano S, Watanabe Y, Fukunaga M, Takeda M. Imaging genetics and psychiatric disorders. Curr Mol Med 2015; 15:168-75. [PMID: 25732148 PMCID: PMC4460286 DOI: 10.2174/1566524015666150303104159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 02/01/2023]
Abstract
Imaging genetics is an integrated research method that uses neuroimaging and genetics to assess the impact of genetic variation on brain function and structure. Imaging genetics is both a tool for the discovery of risk genes for psychiatric disorders and a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative and mechanistic aspects of brain function implicated in psychiatric disease. Early studies of imaging genetics included association analyses between brain morphology and single nucleotide polymorphisms whose function is well known, such as catechol-Omethyltransferase (COMT) and brain-derived neurotrophic factor (BDNF). GWAS of psychiatric disorders have identified genes with unknown functions, such as ZNF804A, and imaging genetics has been used to investigate clues of the biological function of these genes. The difficulty in replicating the findings of studies with small sample sizes has motivated the creation of largescale collaborative consortiums, such as ENIGMA, CHARGE and IMAGEN, to collect thousands of images. In a genome-wide association study, the ENIGMA consortium successfully identified common variants in the genome associated with hippocampal volume at 12q24, and the CHARGE consortium replicated this finding. The new era of imaging genetics has just begun, and the next challenge we face is the discovery of small effect size signals from large data sets obtained from genetics and neuroimaging. New methods and technologies for data reduction with appropriate statistical thresholds, such as polygenic analysis and parallel independent component analysis (ICA), are warranted. Future advances in imaging genetics will aid in the discovery of genes and provide mechanistic insight into psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - M Takeda
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.
| |
Collapse
|
19
|
Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB. Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res 2015; 168. [PMID: 26206493 PMCID: PMC4591187 DOI: 10.1016/j.schres.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal immune activation (MIA) is an environmental risk factor for schizophrenia, and may contribute to other developmental disorders including autism and epilepsy. Activation of pro-inflammatory cytokine systems by injection of the synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C) mediates important neurochemical and behavioral corollaries of MIA, which have relevance to deficits observed in schizophrenia. We examined the consequences of MIA on forebrain expression of neuregulin-1 (NRG-1), brain-derived neurotrophic factor (BDNF) and their receptors, ErbB4 and trkB, respectively, genes associated with schizophrenia. On gestational day 14, pregnant rats were injected with Poly I:C or vehicle. Utilizing in situ hybridization, expression of NRG-1, ErbB4, BDNF, and trkB was examined in male rat offspring at postnatal day (P) 14, P30 and P60. ErbB4 mRNA expression was significantly increased at P30 in the anterior cingulate (AC Ctx), frontal, and parietal cortices, with increases in AC Ctx expression continuing through P60. ErbB4 expression was also elevated in the prefrontal cortex (PFC) at P14. In contrast, NRG-1 mRNA was decreased in the PFC at P60. Expression of BDNF mRNA was significantly upregulated in the PFC at P60 and decreased in the AC Ctx at P14. Expression of trkB was increased in two regions, the piriform cortex at P14 and the striatum at P60. These findings demonstrate developmentally and regionally selective alterations in the expression of schizophrenia-related genes as a consequence of MIA. Further study is needed to determine contributions of these effects to the development of alterations of relevance to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ann M. Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Ahlbrand
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Stefanie L. Bronson
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil M. Richtand
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,San Diego Veterans Affairs Healthcare System, San Diego, CA 92161USA,Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Corresponding Author: Kim B. Seroogy, PhD, The Selma Schottenstein Harris Laboratory for Research in Parkinson’s, Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati College of Medicine, Medical Sciences Building, ML0536, 231 Albert Sabin Way, Cincinnati, OH 45267-0536, USA. Telephone: 513-558-7086; Fax: 513-558-7009;
| |
Collapse
|
20
|
Chau CMY, Cepeda IL, Devlin AM, Weinberg J, Grunau RE. The Val66Met brain-derived neurotrophic factor gene variant interacts with early pain exposure to predict cortisol dysregulation in 7-year-old children born very preterm: Implications for cognition. Neuroscience 2015; 342:188-199. [PMID: 26318333 DOI: 10.1016/j.neuroscience.2015.08.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 01/19/2023]
Abstract
Early stress in the form of repetitive neonatal pain, in infants born very preterm, is associated with long-term dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and with poorer cognitive performance. Brain-derived neurotrophic factor (BDNF) which is important in synaptic plasticity and cognitive functions is reduced by stress. Therefore the BDNF Val66Met variant, which affects secretion of BDNF, may interact with early exposure to pain-related stress in children born very preterm, to differentially affect HPA regulation that in turn may be associated with altered cognitive performance. The aims of this study were to investigate whether in children born very preterm, the BDNF Val66Met variant modulates the association between neonatal pain-related stress and cortisol levels at age 7years, and if cortisol levels were related to cognitive function. Furthermore, we examined whether these relationships were sex-specific. Using a longitudinal cohort design, N=90 children born very preterm (24-32weeks gestation) were followed from birth to age 7years. Cortisol was assayed from hair as an index of cumulative stress and from saliva to measure reactivity to a cognitive challenge. BDNF Val66Met variant was genotyped at 7years using real-time polymerase chain reaction (PCR). Using generalized linear modeling, in boys with the Met allele, greater neonatal pain-related stress (adjusted for clinical risk factors) predicted lower hair cortisol (p=0.006) and higher reactivity salivary cortisol (p=0.002). In both boys and girls with the Met allele, higher salivary cortisol reactivity was correlated with lower IQ (r=-0.60; p=0.001) and poorer visual-motor integration (r=-0.48; p=0.008). Our findings show associations between lower BDNF availability (presence of the Met allele) and vulnerability to neonatal pain/stress in boys, but not girls. This exploratory study suggests new directions for research into possible mechanisms underlying how neonatal pain/stress is related to cognitive performance in children born very preterm.
Collapse
Affiliation(s)
- C M Y Chau
- Developmental Neurosciences and Child Health, Child & Family Research Institute, Vancouver, BC, Canada; Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - I L Cepeda
- Developmental Neurosciences and Child Health, Child & Family Research Institute, Vancouver, BC, Canada; Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - A M Devlin
- Developmental Neurosciences and Child Health, Child & Family Research Institute, Vancouver, BC, Canada; Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - J Weinberg
- Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - R E Grunau
- Developmental Neurosciences and Child Health, Child & Family Research Institute, Vancouver, BC, Canada; Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes. Dev Psychopathol 2015; 27:137-50. [DOI: 10.1017/s0954579414001357] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractEarly life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine–phosphate–guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine–phosphate–guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.
Collapse
|
22
|
Lopizzo N, Bocchio Chiavetto L, Cattane N, Plazzotta G, Tarazi FI, Pariante CM, Riva MA, Cattaneo A. Gene-environment interaction in major depression: focus on experience-dependent biological systems. Front Psychiatry 2015; 6:68. [PMID: 26005424 PMCID: PMC4424810 DOI: 10.3389/fpsyt.2015.00068] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to lifelong risk for mental health outcomes. In this review, we will discuss how genetic variants (polymorphisms, SNPs) within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene × environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, we aim to underlie the role of genetic and epigenetic processes involved in stress- and neuroplasticity-related biological systems on the development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.
Collapse
Affiliation(s)
- Nicola Lopizzo
- IRCCS Fatebenefratelli San Giovanni di Dio , Brescia , Italy
| | - Luisella Bocchio Chiavetto
- IRCCS Fatebenefratelli San Giovanni di Dio , Brescia , Italy ; Faculty of Psychology, eCampus University , Novedrate, Como , Italy
| | - Nadia Cattane
- IRCCS Fatebenefratelli San Giovanni di Dio , Brescia , Italy
| | - Giona Plazzotta
- IRCCS Fatebenefratelli San Giovanni di Dio , Brescia , Italy
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience Program, McLean Hospital, Harvard Medical School , Belmont, MA , USA
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London , London , UK
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | - Annamaria Cattaneo
- IRCCS Fatebenefratelli San Giovanni di Dio , Brescia , Italy ; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London , London , UK
| |
Collapse
|
23
|
Wu YWC, Du X, van den Buuse M, Hill RA. Analyzing the influence of BDNF heterozygosity on spatial memory response to 17β-estradiol. Transl Psychiatry 2015; 5:e498. [PMID: 25603414 PMCID: PMC4312832 DOI: 10.1038/tp.2014.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/02/2014] [Indexed: 12/25/2022] Open
Abstract
The recent use of estrogen-based therapies as adjunctive treatments for the cognitive impairments of schizophrenia has produced promising results; however the mechanism behind estrogen-based cognitive enhancement is relatively unknown. Brain-derived neurotrophic factor (BDNF) regulates learning and memory and its expression is highly responsive to estradiol. We recently found that estradiol modulates the expression of hippocampal parvalbumin-positive GABAergic interneurons, known to regulate neuronal synchrony and cognitive function. What is unknown is whether disruptions to the aforementioned estradiol-parvalbumin pathway alter learning and memory, and whether BDNF may mediate these events. Wild-type (WT) and BDNF heterozygous (+/-) mice were ovariectomized (OVX) at 5 weeks of age and simultaneously received empty, estradiol- or progesterone-filled implants for 7 weeks. At young adulthood, mice were tested for spatial and recognition memory in the Y-maze and novel-object recognition test, respectively. Hippocampal protein expression of BDNF and GABAergic interneuron markers, including parvalbumin, were assessed. WT OVX mice show impaired performance on Y-maze and novel-object recognition test. Estradiol replacement in OVX mice prevented the Y-maze impairment, a Behavioral abnormality of dorsal hippocampal origin. BDNF and parvalbumin protein expression in the dorsal hippocampus and parvalbumin-positive cell number in the dorsal CA1 were significantly reduced by OVX in WT mice, while E2 replacement prevented these deficits. In contrast, BDNF(+/-) mice showed either no response or an opposite response to hormone manipulation in both behavioral and molecular indices. Our data suggest that BDNF status is an important biomarker for predicting responsiveness to estrogenic compounds which have emerged as promising adjunctive therapeutics for schizophrenia patients.
Collapse
Affiliation(s)
- Y W C Wu
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia
| | - X Du
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - M van den Buuse
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia,School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - R A Hill
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia,Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, Genetics Lane, Royal Parade, University of Melbourne, Parkville, VIC 3010, Australia. E-mail:
| |
Collapse
|
24
|
Zhao X, Huang Y, Chen K, Li D, Han C, Kan Q. The brain-derived neurotrophic factor Val66Met polymorphism is not associated with schizophrenia: An updated meta-analysis of 11,480 schizophrenia cases and 13,490 controls. Psychiatry Res 2015; 225:217-220. [PMID: 25468641 DOI: 10.1016/j.psychres.2014.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 02/05/2023]
|
25
|
Keller S, Errico F, Zarrilli F, Florio E, Punzo D, Mansueto S, Angrisano T, Pero R, Lembo F, Castaldo G, Usiello A, Chiariotti L. DNA methylation state of BDNF gene is not altered in prefrontal cortex and striatum of schizophrenia subjects. Psychiatry Res 2014; 220:1147-50. [PMID: 25219617 DOI: 10.1016/j.psychres.2014.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
In this study we assessed the BDNF promoter IV methylation state of a large genomic region surrounding promoter IV and evaluated BDNF transcript IV expression from prefrontal cortex and striatum of 15 schizophrenic and 15 control subjects. In prefrontal cortex, a single CpG site at -93, appeared to be undermethylated in patients׳group. BDNF mRNA levels in frontal cortex and striatum were variable among individuals but did not associate with disease.
Collapse
Affiliation(s)
- Simona Keller
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via S. Pansini, 5, 80131 Naples, Italy; Istituto di Endocrinologia ed Oncologia Sperimentale IEOS-CNR, Naples, Italy.
| | | | - Federica Zarrilli
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Bioscienze e Territorio, Università del Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy
| | - Ermanno Florio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via S. Pansini, 5, 80131 Naples, Italy; Istituto di Endocrinologia ed Oncologia Sperimentale IEOS-CNR, Naples, Italy
| | | | - Sonia Mansueto
- Istituto di Endocrinologia ed Oncologia Sperimentale IEOS-CNR, Naples, Italy
| | - Tiziana Angrisano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via S. Pansini, 5, 80131 Naples, Italy
| | - Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via S. Pansini, 5, 80131 Naples, Italy
| | - Francesca Lembo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano, 49, 80131, Naples, Italy
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via S. Pansini, 5, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy
| | | | - Lorenzo Chiariotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via S. Pansini, 5, 80131 Naples, Italy; Istituto di Endocrinologia ed Oncologia Sperimentale IEOS-CNR, Naples, Italy; Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano, 49, 80131, Naples, Italy.
| |
Collapse
|
26
|
Samarajeewa A, Goldemann L, Vasefi MS, Ahmed N, Gondora N, Khanderia C, Mielke JG, Beazely MA. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation. Front Behav Neurosci 2014; 8:391. [PMID: 25426041 PMCID: PMC4224134 DOI: 10.3389/fnbeh.2014.00391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022] Open
Abstract
The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.
Collapse
Affiliation(s)
| | | | - Maryam S Vasefi
- School of Pharmacy, University of Waterloo Kitchener, ON, Canada
| | - Nawaz Ahmed
- School of Pharmacy, University of Waterloo Kitchener, ON, Canada
| | - Nyasha Gondora
- School of Pharmacy, University of Waterloo Kitchener, ON, Canada
| | | | - John G Mielke
- School of Public Health and Health Systems, University of Waterloo Waterloo, ON, Canada
| | | |
Collapse
|
27
|
Chaieb L, Antal A, Ambrus GG, Paulus W. Brain-derived neurotrophic factor: its impact upon neuroplasticity and neuroplasticity inducing transcranial brain stimulation protocols. Neurogenetics 2014; 15:1-11. [DOI: 10.1007/s10048-014-0393-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
|
28
|
Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R. Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 2014; 12:7. [PMID: 24433458 PMCID: PMC3912923 DOI: 10.1186/1741-7015-12-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Major depression is a disabling psychiatric illness with complex origins. Life stress (childhood adversity and recent stressful events) is a robust risk factor for depression. The relationship between life stress and Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene has received much attention. The aim of the present work was to review and conduct a meta-analysis on the results from published studies examining this interaction. METHODS A literature search was conducted using PsychINFO and PubMed databases until 22 November 2013. A total of 22 studies with a pooled total of 14,233 participants met the inclusion criteria, the results of which were combined and a meta-analysis performed using the Liptak-Stouffer z-score method. RESULTS The results suggest that the Met allele of BDNF Val66Met significantly moderates the relationship between life stress and depression (P = 0.03). When the studies were stratified by type of environmental stressor, the evidence was stronger for an interaction with stressful life events (P = 0.01) and weaker for interaction of BDNF Val66Met with childhood adversity (P = 0.051). CONCLUSIONS The interaction between BDNF and life stress in depression is stronger for stressful life events rather than childhood adversity. Methodological limitations of existing studies include poor measurement of life stress.
Collapse
Affiliation(s)
- Georgina M Hosang
- Psychology Department, Goldsmiths, University of London, New Cross, London SE14 6NW, UK.
| | | | | | | | | |
Collapse
|
29
|
BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genomics 2014; 23:301-13. [PMID: 23619509 DOI: 10.1097/fpc.0b013e328360b175] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Brain-derived neurotrophic factor (BDNF) is associated with antidepressant response on the cellular level, in animal models, and in clinical studies. A common variant in the BDNF gene results in a substitution of a methionine (Met) for a valine at the amino acid position 66. Previous studies reported that the Met variant results in enhanced response to antidepressant medications. These findings may be at odds with studies indicating that on a cellular level the Met variant impairs the secretion of BDNF. MATERIALS AND METHODS We examined the effects of BDNF single nucleotide polymorphisms (SNPs) in response to the antidepressants paroxetine and mirtazapine in a sample of 246 geriatric patients with major depression, treated in a double-blind, randomized, 8-week clinical trial. We also examined the effects of genetic variation at the BDNF-related loci neurotrophic tyrosine kinase receptor 2, cyclic AMP responsive element binding protein 1 (CREB1), and CREB binding protein. A total of 53 SNPs were genotyped. RESULTS BDNF genetic variation had a significant effect on the efficacy of paroxetine, with patients carrying the Met allele showing impaired response. SNPs at the CREB1 locus, which encodes a transcription factor important in BDNF signaling, also predicted response to paroxetine. Furthermore, we found a significant gene-gene interaction between BDNF and CREB1 that affected response to paroxetine. Because BDNF has been associated with cognitive function, we tested the effects of BDNF SNPs on change in a wide variety of cognitive tests over the 8-week trial, but there were no significant effects of genotype on cognition. CONCLUSION These results provide new evidence for the importance of the BDNF pathway in antidepressant response in geriatric patients. The negative effect of the Met66 allele on antidepressant outcomes is consistent with basic science findings indicating a negative effect of this variant on BDNF activity in the brain. Further, the effect of BDNF genetic variation on antidepressant treatment is modified by variation in the gene encoding the downstream effector CREB1.
Collapse
|
30
|
Wang LJ, Chen CK, Hsu HJ, Wu IW, Sun CY, Lee CC. Depression, 5HTTLPR and BDNF Val66Met polymorphisms, and plasma BDNF levels in hemodialysis patients with chronic renal failure. Neuropsychiatr Dis Treat 2014; 10:1235-41. [PMID: 25045267 PMCID: PMC4094571 DOI: 10.2147/ndt.s54277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Depression is the most prevalent comorbid psychiatric disease among hemodialysis patients with end-stage renal disease. This cross-sectional study investigated whether depression in hemodialysis patients is associated with the polymorphism of the 5' flanking transcriptional region (5-HTTLPR) of the serotonin transporter gene, the valine (Val)-to-methionine (Met) substitution at codon 66 (Val66Met) polymorphism of the brain-derived neurotrophic factor (BDNF) gene, or plasma BDNF levels. METHODS A total of 188 participants (mean age: 58.5±14.0 years; 89 men and 99 women) receiving hemodialysis at the Chang Gung Memorial Hospital were recruited. The diagnosis of major depressive disorder (MDD) was confirmed using the Chinese version of the Mini International Neuropsychiatric Interview. The genotypes of 5-HTTLPR and BDNF Val66Met were conducted using polymerase chain reactions plus restriction fragment length polymorphism analysis. The plasma BDNF levels were measured using an enzyme-linked immunosorbent assay kit. RESULTS Forty-five (23.9%) patients fulfilled the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV-TR) criteria for a MDD. There were no significant effects of the 5-HTTLPR or BDNF Val66Met gene polymorphism on MDD among the hemodialysis patients. The plasma BDNF levels correlated significantly with age (P=0.003) and sex (P=0.047) but not with depression, the genotypes of 5-HTTLPR and BDNF Val66Met, the current antidepressant treatment, or the duration under hemodialysis. CONCLUSION Our results did not support the hypothesis of an involvement of the 5HTTLPR and BDNF Val66Met genotypes, or plasma BDNF levels in the pathogenesis of depression, in patients receiving hemodialysis. A study with a large sample size and homogenous patient group is warranted to confirm these findings.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Ken Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan ; Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Heng-Jung Hsu
- Chang Gung University School of Medicine, Taoyuan, Taiwan ; Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - I-Wen Wu
- Chang Gung University School of Medicine, Taoyuan, Taiwan ; Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Chang Gung University School of Medicine, Taoyuan, Taiwan ; Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Chang Gung University School of Medicine, Taoyuan, Taiwan ; Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
31
|
Gray JD, McEwen BS. Lithium's role in neural plasticity and its implications for mood disorders. Acta Psychiatr Scand 2013; 128:347-61. [PMID: 23617566 PMCID: PMC3743945 DOI: 10.1111/acps.12139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Lithium (Li) is often an effective treatment for mood disorders, especially bipolar disorder (BPD), and can mitigate the effects of stress on the brain by modulating several pathways to facilitate neural plasticity. This review seeks to summarize what is known about the molecular mechanisms underlying Li's actions in the brain in response to stress, particularly how Li is able to facilitate plasticity through regulation of the glutamate system and cytoskeletal components. METHOD The authors conducted an extensive search of the published literature using several search terms, including Li, plasticity, and stress. Relevant articles were retrieved, and their bibliographies consulted to expand the number of articles reviewed. The most relevant articles from both the clinical and preclinical literature were examined in detail. RESULTS Chronic stress results in morphological and functional remodeling in specific brain regions where structural differences have been associated with mood disorders, such as BPD. Li has been shown to block stress-induced changes and facilitate neural plasticity. The onset of mood disorders may reflect an inability of the brain to properly respond after stress, where changes in certain regions may become 'locked in' when plasticity is lost. Li can enhance plasticity through several molecular mechanisms, which have been characterized in animal models. Further, the expanding number of clinical imaging studies has provided evidence that these mechanisms may be at work in the human brain. CONCLUSION This work supports the hypothesis that Li is able to improve clinical symptoms by facilitating neural plasticity and thereby helps to 'unlock' the brain from its maladaptive state in patients with mood disorders.
Collapse
Affiliation(s)
- Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| |
Collapse
|
32
|
BDNF Val66Met polymorphism and anxiety/depression symptoms in schizophrenia in a Chinese Han population. Psychiatr Genet 2013; 23:124-9. [PMID: 23532065 DOI: 10.1097/ypg.0b013e328360c866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although several lines of evidences suggest that the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism may be involved in the pathophysiology of schizophrenia, this association remains controversial. Here, we aim to investigate the genetic association between the BDNF Val66Met polymorphism and schizophrenia and to explore whether this polymorphism could influence the severity of clinical symptoms in schizophrenic patients in a Chinese Han population. PATIENTS AND METHODS Genotyping of the BDNF Val66Met polymorphism was carried out in 456 schizophrenic patients and 483 controls using the fluorescence resonance energy transfer method. The patients' psychotic symptoms were assessed using the Positive and Negative Syndrome Scale. The general clinical data of schizophrenic patients were analyzed. RESULTS There were significant differences in the genotype distribution and allelic frequencies of the BDNF Val66Met polymorphism between the schizophrenia group and the controls. Multiple linear regression analysis showed that the BDNF Val66Met polymorphism explained ~16% of the variance in anxiety/depression symptoms in schizophrenic patients. CONCLUSION Our data provide evidence that the BDNF Val66Met polymorphism may be involved in the etiology of schizophrenia in a Chinese Han population. Furthermore, the BDNF Val66Met polymorphism is a significant factor influencing the severity of anxiety/depression symptoms in schizophrenic patients.
Collapse
|
33
|
Wu Y, Hill R, Gogos A, van den Buuse M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience 2013; 239:67-83. [DOI: 10.1016/j.neuroscience.2012.10.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
|
34
|
Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp 2012; 35:847-65. [PMID: 23238908 DOI: 10.1002/hbm.22218] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023] Open
Abstract
Midlife decline in cognition, specifically in areas of executive functioning, is a frequent concern for which menopausal women seek clinical intervention. The dependence of executive processes on prefrontal cortex function suggests estrogen effects on this brain region may be key in identifying the sources of this decline. Recent evidence from rodent, nonhuman primate, and human subject studies indicates the importance of considering interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events when determining the cognitive effects of menopause and estrogen therapy.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
35
|
Burghardt KJ, Pop-Busui R, Bly MJ, Grove TB, Taylor SF, Ellingrod VL. The influence of the brain-derived neurotropic factor Val66Met genotype and HMG-CoA reductase inhibitors on insulin resistance in the schizophrenia and bipolar populations. Clin Transl Sci 2012; 5:486-90. [PMID: 23253673 PMCID: PMC4426971 DOI: 10.1111/cts.12001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) Val66Met variant and HMG-COA reductase inhibitors (statins) have been implicated in insulin resistance with a possible increased risk of diabetes. We sought to determine the effect of the BDNF Met variant and statin medication use on insulin resistance in schizophrenia and bipolar disorder using the homeostasis model assessment of insulin resistance (HOMA-IR). METHODS A cross-sectional design was used and patients with diabetes or on any medications affecting glucose regulation were -excluded. Associations between insulin resistance and genotype were then analyzed by ANOVA and regression analysis. Subjects were grouped by BDNF genotype as well as presence of statin. RESULTS Two hundred fifty-two subjects with a mean age of 44 years were included. The group was 53% male and 41% had a diagnosis of bipolar disorder; 78% and 19% were receiving atypical antipsychotics (AAPs) and statin medications, respectively. Analysis showed schizophrenia subjects with the BDNF met allele as well as schizophrenia subjects with both the BDNF met allele and were receiving a statin had significantly higher HOMA-IR values compared to the other groups (p= 0.046 and p= 0.016, respectively). CONCLUSIONS Our results suggest that in the metabolically high-risk population of schizophrenia the BDNF met allele alone and in combination with statin medications is associated with higher insulin resistance values. This was not seen in the bipolar population. Further validation of these associations remains necessary.
Collapse
Affiliation(s)
- K J Burghardt
- Department of Clinical Social and Administrative Sciences, College of Pharmacy, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-genotype of the BDNF Val66Met polymorphism is associated with reduced Stroop interference in elderly. Neuropsychologia 2012; 50:3554-63. [PMID: 23041465 DOI: 10.1016/j.neuropsychologia.2012.09.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023]
Abstract
Aging is accompanied by impairments of executive functions that rely on the functional integrity of fronto-striatal networks. This integrity is modulated by the release of neurotrophins like the brain-derived-neurotrophic factor (BDNF). Here, we investigate effects of the functional BDNF Val66Met polymorphism on interference processing in 131 healthy elderly subjects using event-related potentials (ERPs). In a Stroop task, participants had to indicate the name or the colour of colour-words while colour was either compatible or incompatible with the name. We show that susceptibility to Stroop-interference is affected by the BDNF Val66Met polymorphism: the Met-allele carriers showed better performance and enhanced N450 in interference trials. Other processes necessary to prepare and allocate cognitive resources to a particular task were not affected by BDNF Val66Met polymorphism, underlining the specificity of the observed effects. The observed performance and ERP difference is possibly due to dopamine related effects of BDNF in fronto-striatal networks, where it putatively mediates a shift in the balance of the direct and indirect pathway involved in inhibitory functions.
Collapse
Affiliation(s)
- Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.
| | | | | | | | | |
Collapse
|
37
|
Bath KG, Chuang J, Spencer-Segal JL, Amso D, Altemus M, McEwen BS, Lee FS. Variant brain-derived neurotrophic factor (Valine66Methionine) polymorphism contributes to developmental and estrous stage-specific expression of anxiety-like behavior in female mice. Biol Psychiatry 2012; 72:499-504. [PMID: 22552045 PMCID: PMC3414635 DOI: 10.1016/j.biopsych.2012.03.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 02/29/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Most anxiety and depressive disorders are twice as common in women compared with men, and the sex difference in prevalence typically emerges during adolescence. Hormonal changes across the menstrual cycle and during the postpartum and perimenopausal periods are associated with increased risk for anxiety and depression symptoms. In humans and animals, reduced brain-derived neurotrophic factor (BDNF) has been associated with increased expression of affective pathology. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (BDNF Valine66Methionine [Val66Met]), which reduces BDNF bioavailability, has been identified in humans and associated with a variety of neuropsychiatric disorders. Although BDNF expression can be directly influenced by estrogen and progesterone, the potential impact of the BDNF Val66Met SNP on sensitivity to reproductive hormone changes remains an open question. METHODS As a predictive model, we used female mice in which the human SNP (BDNF Val66Met) was inserted into the mouse BDNF gene. Using standard behavioral paradigms, we tested the impact of this SNP on age and estrous-cycle-specific expression of anxiety-like behaviors. RESULTS Mice homozygous for the BDNF Val66Met SNP begin to exhibit increased anxiety-like behaviors over prepubertal and early adult development, show significant fluctuations in anxiety-like behaviors over the estrous cycle, and, as adults, differ from wild-type mice by showing significant fluctuations in anxiety-like behaviors over the estrous cycle-specifically, more anxiety-like behaviors during the estrus phase. CONCLUSIONS These findings have implications regarding the potential role of this SNP in contributing to developmental and reproductive hormone-dependent changes in affective disorders in humans.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065,Department of Neuroscience, Brown University, 185 Meeting St., Providence, RI 02912
| | - Jocelyn Chuang
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| | | | - Dima Amso
- Department of Cognitive, Linguistic, and Psychological Science, Brown University, Box 1812, Providence, RI 02912
| | - Margaret Altemus
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| |
Collapse
|
38
|
Getzmann S, Gajewski PD, Hengstler JG, Falkenstein M, Beste C. BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly - evidence from auditory distraction. Neuroimage 2012; 64:290-8. [PMID: 22963854 DOI: 10.1016/j.neuroimage.2012.08.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022] Open
Abstract
Aging affects the ability to focus attention on a given task and to ignore distractors. These functions subserve response control processes for which fronto-striatal networks have been shown to play an important role. Within these networks, the brain-derived-neurotrophic-factor (BDNF), which is known to underlie aging effects, plays a pivotal role. We investigated how cognitive subprocesses constituting a cycle of distraction, orientation and refocusing of attention are affected by the functional BDNF Val66Met polymorphism using event-related potentials (ERPs) in 122 healthy elderly. Using an auditory distraction paradigm we found that the Val/Val genotype confers a disadvantage to its carriers. This disadvantage was partly compensated by intensified attentional shifting mechanisms. It could be based on response selection processes being more vulnerable against interference from distractors in this genotype group. Processes reflecting transient sensory memory processes, or the re-orientation of attention were not affected by the BDNF Val66Met polymorphism, suggesting a higher importance of BDNF for mechanisms related to response control, than stimulus processing. The results add on recent literature showing that the Met allele confers some benefit to its carriers. We suggest an account for unifying different results of BDNF Val66Met association studies in executive functions, based on the role of BDNF in fronto-striatal circuits.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at Technical University of Dortmund (IfADo), Germany.
| | | | | | | | | |
Collapse
|
39
|
Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, Quirion R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res 2012; 1470:145-58. [PMID: 22771711 DOI: 10.1016/j.brainres.2012.06.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 02/07/2023]
Abstract
Serine/threonine protein kinase v-akt murine thymoma viral oncogene homolog (Akt) is one of the survival kinases with multiple biological functions in the brain and throughout the body. Schizophrenia is one of the most devastating psychiatric disorders. Accumulating evidence has indicated the involvement of the Akt signaling pathway in the pathogenesis of this disorder. Genetic linkage and association studies have identified Akt-1 as a candidate susceptibility gene related for schizophrenia. The level of Akt-1 protein and its kinase activity decreased significantly both in white blood cells from schizophrenic patients and in postmortem brain tissue of schizophrenic patients. Consistent with these findings, alterations in the upstream and downstream pathways of Akt have also been found in many psychiatric disorders. Furthermore, both typical and atypical antipsychotic drugs modify the Akt signaling pathway in a variety of conditions relative to schizophrenia. In addition as a survival kinase, Akt participates in neurodevelopment, synaptic plasticity, protein synthesis and neurotransmission in the central nervous system. It is thought that reduced activity of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway could at least partially explain the cognitive impairment, synaptic morphologic abnormality, neuronal atrophy and dysfunction of neurotransmitter signaling in schizophrenia. In addition, reduced levels of Akt may increase the effects of risk factors on neurodevelopment, attenuate the effects of growth factors on neurodevelopment and reduce the response of patients to antipsychotic agents. More recently, the role of Akt signaling in the functions of schizophrenia susceptibility genes such as disrupted-in-schizophrenia 1 (DISC-1), neuregulin-1 (NRG-1) and dysbindin-1 has been reported. Thus, Akt deficiency may create a context permissive for the expression of risk-gene effects in neuronal morphology and function. This paper reviews the role of Akt in the pathophysiology of schizophrenia and as a potential therapeutic strategy targeting Akt.
Collapse
Affiliation(s)
- Wenhua Zheng
- Neuropharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Pei Y, Smith AK, Wang Y, Pan Y, Yang J, Chen Q, Pan W, Bao F, Zhao L, Tie C, Wang Y, Wang J, Zhen W, Zhou J, Ma X. The brain-derived neurotrophic-factor (BDNF) val66met polymorphism is associated with geriatric depression: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:560-6. [PMID: 22610920 PMCID: PMC3549636 DOI: 10.1002/ajmg.b.32062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 04/25/2012] [Indexed: 11/08/2022]
Abstract
Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. Genetic association studies of the BDNF Val66Met polymorphism (rs6265) in geriatric depression have produced inconsistent results. A meta-analysis of studies was conducted to compare the frequency of the BDNF Val66Met variant between cases with geriatric depression and age-matched controls. A total of five studies involving 523 cases with geriatric depression and 1,220 psychiatrically healthy controls was included. Met allele carriers had an increased risk for geriatric depression when compared to Val/Val homozygotes (P = 0.004, OR = 1.48, 95% CI = 1.13-1.93). Our findings suggest the BDNF Met allele may confer increased risk for depression as individual age.
Collapse
Affiliation(s)
- Yu Pei
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yongjun Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yanli Pan
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi Chen
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Weigang Pan
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Feng Bao
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lisha Zhao
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Changle Tie
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yizheng Wang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Jian Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Wenfeng Zhen
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhou
- Neuroscience Research Australia and the University of New South Wales, Sydney, New South Wales 2031, Australia
| | - Xin Ma
- Beijing Anding Hospital, Capital Medical University, Beijing, China,Correspondence to: Prof. Xin Ma, M.D., Beijing Anding Hospital, Capital Medical University, Xicheng District, Beijing 100088, China.
| |
Collapse
|
41
|
European Group for the Study of Resistant Depression (GSRD)--where have we gone so far: review of clinical and genetic findings. Eur Neuropsychopharmacol 2012; 22:453-68. [PMID: 22464339 DOI: 10.1016/j.euroneuro.2012.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/22/2012] [Indexed: 12/22/2022]
Abstract
The primary objective of this review is to give an overview of the main findings of the European multicenter project "Patterns of Treatment Resistance and Switching Strategies in Affective Disorder", performed by the Group for the Study of Resistant Depression (GSRD). The aim was to study methodological issues, operational criteria, clinical characteristics, and genetic variables associated with treatment resistant depression (TRD), that is failure to reach response after at least two consecutive adequate antidepressant trials. The primary findings of clinical variables associated with treatment resistance include comorbid anxiety disorders as well as non-response to the first antidepressant received lifetime. Although there is a plethora of hints in textbooks that switching the mechanism of action should be obtained in case of nonresponse to one medication, the results of the GSRD challenge this notion by demonstrating in retrospective and prospective evaluations that staying on the same antidepressant mechanism of action for a longer time is more beneficial than switching, however, when switching is an option there is no benefit to switch across class. The GSRD candidate gene studies found that metabolism status according to cytochrome P450 gene polymorphisms may not be helpful to predict response and remission rates to antidepressants. Significant associations with MDD and antidepressant treatment response were found for COMT SNPs. Investigating the impact of COMT on suicidal behaviour, we found a significant association with suicide risk in MDD patients not responding to antidepressant treatment, but not in responders. Further significant associations with treatment response phenotypes were found with BDNF, 5HTR2A and CREB1. Additional investigated candidate genes were DTNBP1, 5HT1A, PTGS2, GRIK4 and GNB3.
Collapse
|
42
|
Lanz TA, Bove SE, Pilsmaker CD, Mariga A, Drummond EM, Cadelina GW, Adamowicz WO, Swetter BJ, Carmel S, Dumin JA, Kleiman RJ. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma. Biomarkers 2012; 17:524-31. [DOI: 10.3109/1354750x.2012.694476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Abstract
Abnormal brain-derived neurotrophic factor (BDNF) signaling seems to have a central role in the course and development of various neurological and psychiatric disorders. In addition, positive effects of psychotropic drugs are known to activate BDNF-mediated signaling. Although the BDNF gene has been associated with several diseases, molecular mechanisms other than functional genetic variations can impact on the regulation of BDNF gene expression and lead to disturbed BDNF signaling and associated pathology. Thus, epigenetic modifications, representing key mechanisms by which environmental factors induce enduring changes in gene expression, are suspected to participate in the onset of various psychiatric disorders. More specifically, various environmental factors, particularly when occurring during development, have been claimed to produce long-lasting epigenetic changes at the BDNF gene, thereby affecting availability and function of the BDNF protein. Such stabile imprints on the BDNF gene might explain, at least in part, the delayed efficacy of treatments as well as the high degree of relapses observed in psychiatric disorders. Moreover, BDNF gene has a complex structure displaying differential exon regulation and usage, suggesting a subcellular- and brain region-specific distribution. As such, developing drugs that modify epigenetic regulation at specific BDNF exons represents a promising strategy for the treatment of psychiatric disorders. Here, we present an overview of the current literature on epigenetic modifications at the BDNF locus in psychiatric disorders and related animal models.
Collapse
|
44
|
DCLK1 variants are associated across schizophrenia and attention deficit/hyperactivity disorder. PLoS One 2012; 7:e35424. [PMID: 22539971 PMCID: PMC3335166 DOI: 10.1371/journal.pone.0035424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4×10−5 and 4×10−6, respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3′UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.
Collapse
|
45
|
Matrisciano F, Tueting P, Maccari S, Nicoletti F, Guidotti A. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology 2012; 37:929-38. [PMID: 22089319 PMCID: PMC3280642 DOI: 10.1038/npp.2011.274] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Patricia Tueting
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Stefania Maccari
- Neuroplasticity Team – CNRS UMR 8576/UGSF, North University of Lille1, Lille, France
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome ‘Sapienza', Rome, Italy,INM Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
Jung YH, Kang DH, Byun MS, Shim G, Kwon SJ, Jang GE, Lee US, An SC, Jang JH, Kwon JS. Influence of brain-derived neurotrophic factor and catechol O-methyl transferase polymorphisms on effects of meditation on plasma catecholamines and stress. Stress 2012; 15:97-104. [PMID: 21790467 DOI: 10.3109/10253890.2011.592880] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meditation may show differential effects on stress and plasma catecholamines based on genetic polymorphisms in brain-derived neurotrophic factor (BDNF) and catechol O-methyl transferase (COMT). Eighty adults (40 men, 40 women; mean age 26 years) who practiced meditation regularly and 57 healthy control adults (35 men, 22 women; mean age 26 years) participated. Plasma catecholamines (norepinephrine (NE), epinephrine (E), and dopamine (DA)) concentrations were measured, and a modified form of the Stress Response Inventory was administered. The results were analyzed using two-way analysis of covariance (ANCOVA) with control and meditation subjects, gene polymorphism as factors, and meditation duration as the covariate. Two-way ANCOVA showed a significant interaction between control and meditation subjects, and BDNF Val66Met polymorphism on DA/NE+DA/E (p = 0.042) and NE/E+NE/DA (p = 0.046) ratios. A significant interaction was found for control and meditation subjects with COMT Val158Met polymorphism and plasma NE concentrations (p = 0.009). Post hoc ANCOVA in the meditation group, adjusted for meditation duration, showed significantly higher plasma NE concentrations for COMT Met carriers than COMT Val/Val subjects (p = 0.025). Significant differences of stress levels were found between the control and meditation subjects in BDNF Val/Met (p < 0.001) and BDNF Met/Met (p = 0.003), whereas stress levels in the BDNF Val/Val genotype did not differ between the control and meditation groups. This is the first evidence that meditation produces different effects on plasma catecholamines according to BDNF or COMT polymorphisms.
Collapse
Affiliation(s)
- Ye-Ha Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blood CADPS2ΔExon3 expression is associated with intelligence and memory in healthy adults. Biol Psychol 2012; 89:117-22. [DOI: 10.1016/j.biopsycho.2011.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022]
|
48
|
van Thriel C, Westerink RHS, Beste C, Bale AS, Lein PJ, Leist M. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 2011; 33:911-24. [PMID: 22008243 DOI: 10.1016/j.neuro.2011.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
Abstract
The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can result in neurobehavioural alterations, and these have been used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-d-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment.
Collapse
Affiliation(s)
- Christoph van Thriel
- Neurobehavioural Toxicology and Chemosensation, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Zhang XB, Wang X, Sha WW, Zhou HH, Zhang YM. Val66Met polymorphism and serum brain-derived neurotrophic factor concentration in depressed patients. Acta Neuropsychiatr 2011; 23:229-234. [PMID: 25379894 DOI: 10.1111/j.1601-5215.2011.00560.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zhang X, Wang X, Sha W, Zhou H, Zhang Y. Val66Met polymorphism and serum brain-derived neurotrophic factor concentration in depressed patients.Objective:Accumulating evidence has suggested a pathophysiological role for brain-derived neurotrophic factor (BDNF) in major depressive disorder (MDD). The present study evaluated serum levels of BDNF and explored whether Val66Met BDNF gene polymorphism is correlated with changes in circulating BDNF levels in patients with MDD and control subjects.Methods:Subjects were 76 patients with MDD and 50 controls. Diagnosis of MDD was determined by the use of a structured clinical interview according to Diagnostic and Statistical Manual of Mental Disorder-IV (DSM-IV) criteria. The concentrations of BDNF were measured by using the enzyme-linked immunosorbent assay. The Val66Met BDNF gene polymorphism was examined by the polymerase chain reaction technique.Results:Serum BDNF was significantly lower in MDD patients than in normal control subjects (p< 0.001). There were no significant differences either in allele or genotype in the Val66Met polymorphism between the MDD and control groups. Moreover, genotype did not significantly correlate with the BDNF serum levels in the MDD or control groups.Conclusions:Our study suggests that there is a decrease in serum BDNF levels in untreated MDD patients. However, serum BDNF levels were not associated with the Val66Met polymorphism.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| | - Xin Wang
- Department of Tradition Chinese and Western medicine, Nanjing University of Chinese Medicine, Nanjing 210009, P.R. China
| | - Wei-Wei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| | - Hong-Hui Zhou
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| | - Yu-Mei Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| |
Collapse
|
50
|
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol Aging 2011; 32:2327.e7-19. [PMID: 21803453 DOI: 10.1016/j.neurobiolaging.2011.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/31/2011] [Accepted: 06/13/2011] [Indexed: 11/15/2022]
Abstract
In this study we examined the relevance of the functional brain-derived neurotrophic factor (BDNF) Val66Met polymorphism as a modulator of task-switching performance in healthy elderly by using behavioral and event-related potential (ERP) measures. Task switching was examined in a cue-based and a memory-based paradigm. Val/Val carriers were generally slower, showed enhanced reaction time variability and higher error rates, particularly during memory-based task switching than the Met-allele individuals. On a neurophysiological level these dissociative effects were reflected by variations in the N2 and P3 ERP components. The task switch-related N2 was increased while the P3 was decreased in Met-allele carriers, while the Val/Val genotype group revealed the opposite pattern of results. In cue-based task-switching no behavioral and ERP differences were seen between the genotypes. These data suggest that superior memory-based task-switching performance in elderly Met-allele carriers may emerge due to more efficient response selection processes. The results implicate that under special circumstances the Met-allele renders cognitive processes more efficient than the Val/Val genotype in healthy elderly, corroborating recent findings in young subjects.
Collapse
Affiliation(s)
- Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors at Technical University of Dortmund (IfADo), Dortmund, Germany.
| | | | | | | | | |
Collapse
|