1
|
Clemente-Suárez VJ, Martín-Rodríguez A, Curiel-Regueros A, Rubio-Zarapuz A, Tornero-Aguilera JF. Neuro-Nutrition and Exercise Synergy: Exploring the Bioengineering of Cognitive Enhancement and Mental Health Optimization. Bioengineering (Basel) 2025; 12:208. [PMID: 40001727 PMCID: PMC11851474 DOI: 10.3390/bioengineering12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between nutrition, physical activity, and mental health has emerged as a frontier in bioengineering research, offering innovative pathways for enhancing cognitive function and psychological resilience. This review explores the neurobiological mechanisms underlying the synergistic effects of tailored nutritional strategies and exercise interventions on brain health and mental well-being. Key topics include the role of micronutrients and macronutrients in modulating neurogenesis and synaptic plasticity, the impact of exercise-induced myokines and neurotrophins on cognitive enhancement, and the integration of wearable bioelectronics for personalized monitoring and optimization. By bridging the disciplines of nutrition, psychology, and sports science with cutting-edge bioengineering, this review highlights translational opportunities for developing targeted interventions that advance mental health outcomes. These insights are particularly relevant for addressing global challenges such as stress, anxiety, and neurodegenerative diseases. The article concludes with a roadmap for future research, emphasizing the potential of bioengineered solutions to revolutionize preventive and therapeutic strategies in mental health care.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alexandra Martín-Rodríguez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Faculty of Applied Social Sciences and Communications, UNIE, 28015 Madrid, Spain
| | - Agustín Curiel-Regueros
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | | |
Collapse
|
2
|
Roman S, Campos-Medina L, Leal-Mercado L. Personalized nutrition: the end of the one-diet-fits-all era. Front Nutr 2024; 11:1370595. [PMID: 38854164 PMCID: PMC11157041 DOI: 10.3389/fnut.2024.1370595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Personalized Nutrition emerged as a new trend for providing nutritional and food advice based on the individual's genetic composition, a field driven by the advancements in the multi-omic sciences throughout the last century. It intends not only to tailor the recommended daily allowances of nutrients and functional foods that a person may need but also to maintain the principles of sustainability and eco-friendliness. This principle implies the implementation of strategies within the healthcare system to advocate for the ending of the one-diet-fits-all paradigm by considering a personalized diet as an ally to prevent diet-related chronic diseases. In this Perspective, we highlight the potential benefits of such a paradigm within the region of Latin America, particularly Mexico, where the genetic admixture of the population, food biodiversity, and food culture provide unique opportunities to establish personalized nutrigenetic strategies. These strategies could play a crucial role in preventing chronic diseases and addressing the challenges confronted in the region.
Collapse
Affiliation(s)
- Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Liliana Campos-Medina
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Doctoral Program in Molecular Biology in Medicine, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Leonardo Leal-Mercado
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
- Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Doctoral Program in Molecular Biology in Medicine, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
3
|
Park SH, Choi HK, Park JH, Hwang JT. Current insights into genome-based personalized nutrition technology: a patent review. Front Nutr 2024; 11:1346144. [PMID: 38318472 PMCID: PMC10838982 DOI: 10.3389/fnut.2024.1346144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Unlike general nutritional ranges that meet the nutritional needs essential for maintaining the life of an entire population, personalized nutrition is characterised by maintaining health through providing customized nutrition according to individuals' lifestyles or genetic characteristics. The development of technology and services for personalized nutrition is increasing, owing to the acquisition of knowledge about the differences in nutritional requirements according to the diversity of individuals and an increase in health interest. Regarding genetics, technology is being developed to distinguish the various characteristics of individuals and provide customized nutrition. Therefore, to understand the current state of personalized nutrition technology, understanding genomics is necessary to acquire information on nutrition research based on genomics. We reviewed patents related to personalized nutrition-targeting genomics and examined their mechanisms of action. Using the patent database, we searched 694 patents on nutritional genomics and extracted 561 highly relevant valid data points. Furthermore, an in-depth review was conducted by selecting core patents related to genome-based personalized nutrition technology. A marked increase was observed in personalized nutrition technologies using methods such as genetic scoring and disease-specific dietary recommendations.
Collapse
Affiliation(s)
| | | | - Jae Ho Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Aslam S, Iqbal R, Saeed RF, Akram N, Ijaz F, Liaqat I, Aslam AS. Nutritional Genomics and Cancer Prevention. Cancer Treat Res 2024; 191:217-244. [PMID: 39133410 DOI: 10.1007/978-3-031-55622-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.
Collapse
Affiliation(s)
- Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nuzhat Akram
- Hamdard College of Medicine, Hamdard University, Karachi, Pakistan
| | - Farhat Ijaz
- CMH Lahore Medical College & IOD (NUMS), Lahore, Pakistan
| | - Irfana Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
5
|
Ciarmela P, Greco S. Impact of Nutrition on Female Reproductive Disorders. Nutrients 2023; 15:4576. [PMID: 37960228 PMCID: PMC10650105 DOI: 10.3390/nu15214576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
The female reproductive system is a delicate and complex system in the body that can be affected by many disorders [...].
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | |
Collapse
|
6
|
Birla M, Choudhary C, Singh G, Gupta S, Bhawana, Vavilala P. The Advent of Nutrigenomics: A Narrative Review with an Emphasis on Psychological Disorders. Prev Nutr Food Sci 2022; 27:150-164. [PMID: 35919568 PMCID: PMC9309077 DOI: 10.3746/pnf.2022.27.2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/06/2022] Open
Abstract
A new research field is emerging that combines nutrition and genetics at the molecular level, namely nutrigenomics. Several aspects of nutrigenomics are examined in this review, with a particular focus on psychological disorders. The origin of this field in the 20th century and its modern developments have been investigated. Various studies have reported the impact of genetic factors and diet on various chronic disorders, elucidating how the deficiency of several macronutrients results in significant ailments, including diabetes, cancer, cardiovascular disorders, and others. Furthermore, the application of nutrigenomics to diet and its impact on the global disease rate and quality of life have been discussed. The relationship between diet and gene expression can facilitate the classification of diet-gene interactions and the diagnosis of polymorphisms and anomalies. Numerous databases and research tools for the study of nutrigenomics are essential to the medical application of this field. The nutrition-gene interrelationships can be utilized to study brain development, impairment, and diseases, which could be a significant medical breakthrough. It has also been observed that psychological conditions are exacerbated by the interaction between gut microbes and the prevalence of malnutrition. This article focuses on the impact of nutrition on genes involved in various psychological disorders and the potential application of nutrigenomics as a revolutionary treatment method.
Collapse
Affiliation(s)
- Meghna Birla
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Chanchal Choudhary
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Garima Singh
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Salvi Gupta
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Bhawana
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Pratyusha Vavilala
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| |
Collapse
|
7
|
Ortea I. Foodomics in health: advanced techniques for studying the bioactive role of foods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
The Relationship between Online and Offline Information-Seeking Behaviors for Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910241. [PMID: 34639541 PMCID: PMC8547137 DOI: 10.3390/ijerph181910241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
In addition to preserving their health, young people can also play a role in providing information to wider society. Nutrition habits that have developed over the years at college have an impact on the foundation of a lifelong lifestyle. Our aim was to identify university students’ online and offline information-seeking attitudes related to healthy nutrition and create a new theoretical concept. Participants were university students (n = 612), and the self-administered, paper-based questionnaires were sent out to nine Hungarian universities. Both descriptive and multivariate statistical procedures were used in the analysis. Online and offline information sources were categorized. In relation to university students’ information-seeking competence, the component of electronic health literacy was determined. In analyzing attitudes, the components of acceptance of, incentive for, and rejection of or ambivalence towards healthy nutrition were identified. The information-seeking categories related to the stages of university students’ conscious transition to healthy nutrition were also identified. University students’ competences related to electronic health literacy are essentially favorable. This target group accepts healthy nutrition and tries to recommend it to others, too. However, a rejecting or ambivalent attitude could also be identified. Online and offline sources of information accompany university students’ transition of the relevant stages of changes. The theoretical concept that we developed can contribute to bridging gaps in the interrelatedness of diverse information sources and healthy nutrition.
Collapse
|
9
|
Bibyk MJ, Campbell MJ, Hummon AB. Mass spectrometric investigations of caloric restriction mimetics. Proteomics 2021; 21:e2000121. [PMID: 33460282 PMCID: PMC8262777 DOI: 10.1002/pmic.202000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022]
Abstract
Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs: resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.
Collapse
Affiliation(s)
- Michael J. Bibyk
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Melanie J. Campbell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Ciebiera M, Esfandyari S, Siblini H, Prince L, Elkafas H, Wojtyła C, Al-Hendy A, Ali M. Nutrition in Gynecological Diseases: Current Perspectives. Nutrients 2021; 13:1178. [PMID: 33918317 PMCID: PMC8065992 DOI: 10.3390/nu13041178] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Diet and nutrition are fundamental in maintaining the general health of populations, including women's health. Health status can be affected by nutrient deficiency and vice versa. Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to diseases, including cancer, through several mechanisms. Gynecological diseases in general are diseases involving the female reproductive system and include benign and malignant tumors, infections, and endocrine diseases. Benign diseases such as uterine fibroids and endometriosis are common, with a negative impact on women's quality of life, while malignant tumors are among the most common cause of death in the recent years. In this comprehensive review article, a bibliographic search was performed for retrieving information about nutrients and how their deficiencies can be associated with gynecological diseases, namely polycystic ovary syndrome, infertility, uterine fibroids, endometriosis, dysmenorrhea, and infections, as well as cervical, endometrial, and ovarian cancers. Moreover, we discussed the potential beneficial impact of promising natural compounds and dietary supplements on alleviating these significant diseases.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.)
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.S.); (A.A.-H.)
| | - Lillian Prince
- Biological Sciences Division, Public Health Sciences, University of Chicago, Chicago, IL 60637, USA;
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA), Cairo 15301, Egypt
| | - Cezary Wojtyła
- International Prevention Research Institute-Collaborating Centre, Calisia University, 62-800 Kalisz, Poland;
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.S.); (A.A.-H.)
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
11
|
Szakály Z, Kovács B, Szakály M, T. Nagy-Pető D, Popovics P, Kiss M. Consumer acceptance of genetic-based personalized nutrition in Hungary. GENES & NUTRITION 2021; 16:3. [PMID: 33648454 PMCID: PMC7923598 DOI: 10.1186/s12263-021-00683-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/06/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Despite the increasing number of personalized nutrition services available on the market, nutrigenomics-based level of personalization is still the exception rather than a mainstream activity. This can be partly explained by various factors of consumer acceptance of the new technology. While consumer attitudes toward genetic tests aiming to reveal the risks of a predisposition to various illnesses have already been examined by several research studies worldwide; consumer acceptance of nutrigenomics-based personalized nutrition has only been examined by a significantly lower number of papers, especially in the Central and Eastern European region. OBJECTIVE The purpose of this paper is to examine consumer acceptance of genetic-based personalized nutrition in Hungary. Therefore a national representative survey was conducted involving 1000 individuals. The starting point of the model used is the assumption that the consumer acceptance of personalized nutrition is influenced by its consumer perceptions, which are affected by psychological processes that, in a more general sense, determine acceptance of food innovations. RESULTS The results show that 23.5% of respondents accept genetic test-based personalized nutrition. Women were found to reject the new technology in a significantly smaller proportion than men. The relationship between other demographic variables (i.e. age groups, education and subjective income level) and the perception of genetic-based personalized nutrition is also significant. Our results indicate that it is perceived cost/benefit that is most strongly related to genetically based personalized dietary preferences, followed by perceived risk and subjective norms. Perceived uncertainty and perceived behavioural control, however, have only a weak relationship with genetic-based personalized dietary preferences. CONCLUSIONS Compared with the magnitude of the effect of socio-demographic criteria, it can be concluded that, on the whole, psychological processes in the individual have a greater influence on the development of preferences for genetic-based personalized nutrition than any socio-demographic factor. This also confirms the trend that there are more and more value-added products or value propositions (where a significant part of the value added is to be found in product innovation), for which psychological characteristics are/should be given more emphasis among the segmentation criteria.
Collapse
Affiliation(s)
- Zoltán Szakály
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Bence Kovács
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Márk Szakály
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Dorka T. Nagy-Pető
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Péter Popovics
- Institute of Applied Economics Sciences, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| | - Marietta Kiss
- Institute of Marketing and Commerce, Faculty of Economics and Business, University of Debrecen, Debrecen, 4032 Hungary
| |
Collapse
|
12
|
Chan L, Vasilevsky N, Thessen A, McMurry J, Haendel M. The landscape of nutri-informatics: a review of current resources and challenges for integrative nutrition research. Database (Oxford) 2021; 2021:baab003. [PMID: 33494105 PMCID: PMC7833928 DOI: 10.1093/database/baab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Informatics has become an essential component of research in the past few decades, capitalizing on the efficiency and power of computation to improve the knowledge gained from increasing quantities and types of data. While other fields of research such as genomics are well represented in informatics resources, nutrition remains underrepresented. Nutrition is one of the most integral components of human life, and it impacts individuals far beyond just nutrient provisions. For example, nutrition plays a role in cultural practices, interpersonal relationships and body image. Despite this, integrated computational investigations have been limited due to challenges within nutrition informatics (nutri-informatics) and nutrition data. The purpose of this review is to describe the landscape of nutri-informatics resources available for use in computational nutrition research and clinical utilization. In particular, we will focus on the application of biomedical ontologies and their potential to improve the standardization and interoperability of nutrition terminologies and relationships between nutrition and other biomedical disciplines such as disease and phenomics. Additionally, we will highlight challenges currently faced by the nutri-informatics community including experimental design, data aggregation and the roles scientific journals and primary nutrition researchers play in facilitating data reuse and successful computational research. Finally, we will conclude with a call to action to create and follow community standards regarding standardization of language, documentation specifications and requirements for data reuse. With the continued movement toward community standards of this kind, the entire nutrition research community can transition toward greater usage of Findability, Accessibility, Interoperability and Reusability principles and in turn more transparent science.
Collapse
Affiliation(s)
- Lauren Chan
- College of Public Health and Human Sciences, Oregon State University, 101 Milam Hall, Corvallis, OR 97331, USA
| | - Nicole Vasilevsky
- Oregon Clinical and Translational Research Institute, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd SN4N, Portland, OR 97239, USA
| | - Anne Thessen
- Environmental and Molecular Toxicology Department, Oregon State University, 1007 Ag & Life Sciences Building, Corvallis, OR 97331, USA
| | - Julie McMurry
- College of Public Health and Human Sciences, Oregon State University, 101 Milam Hall, Corvallis, OR 97331, USA
| | - Melissa Haendel
- Oregon Clinical and Translational Research Institute, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd SN4N, Portland, OR 97239, USA
- Environmental and Molecular Toxicology Department, Oregon State University, 1007 Ag & Life Sciences Building, Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Mustapa MAC, Amin L, Frewer LJ. Predictors of stakeholders’ intention to adopt nutrigenomics. GENES & NUTRITION 2020; 15:16. [PMID: 32962632 PMCID: PMC7509940 DOI: 10.1186/s12263-020-00676-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Background Nutrigenomics is an emerging science that studies the relationship between genes, diet and nutrients that can help prevent chronic disease. The development of this science depends on whether the public accept its application; therefore, predicting their intention to adopt it is important for its successful implementation. Objective This study aims to analyse Malaysian stakeholders’ intentions to adopt nutrigenomics, and determines the factors that influence their intentions. Methods A survey was conducted based on the responses of 421 adults (aged 18 years and older) and comprising two stakeholder groups: healthcare providers (n = 221) and patients (n = 200) who were located in the Klang Valley, Malaysia. The SPSS software was used to analyse the descriptive statistics of intention to adopt nutrigenomics and the SmartPLS software was used to determine the predicting factors affecting their decisions to adopt nutrigenomics. Results The results show that the stakeholders perceived the benefits of nutrigenomics as outweighing its risks, suggesting that the perceived benefits represent the most important direct predictor of the intention to adopt nutrigenomics. The perceived risks of nutrigenomics, trust in key players, engagement with medical genetics and religiosity also predict the intention to adopt nutrigenomics. Additionally, the perceived benefits of nutrigenomics served as a mediator for four factors: perceived risks of nutrigenomics, engagement with medical genetics, trust in key players and religiosity, whilst the perceived risks were a mediator for engagement with medical genetics. Conclusion The findings of this study suggest that the intentions of Malaysian stakeholders to adopt nutrigenomics are a complex decision-making process where all the previously mentioned factors interact. Although the results showed that the stakeholders in Malaysia were highly positive towards nutrigenomics, they were also cautious about adopting it.
Collapse
|
14
|
Hernandez-Baixauli J, Quesada-Vázquez S, Mariné-Casadó R, Gil Cardoso K, Caimari A, Del Bas JM, Escoté X, Baselga-Escudero L. Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients 2020; 12:E806. [PMID: 32197513 PMCID: PMC7146483 DOI: 10.3390/nu12030806] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The metabolic syndrome is a multifactorial disease developed due to accumulation and chronification of several risk factors associated with disrupted metabolism. The early detection of the biomarkers by NMR spectroscopy could be helpful to prevent multifactorial diseases. The exposure of each risk factor can be detected by traditional molecular markers but the current biomarkers have not been enough precise to detect the primary stages of disease. Thus, there is a need to obtain novel molecular markers of pre-disease stages. A promising source of new molecular markers are metabolomics standing out the research of biomarkers in NMR approaches. An increasing number of nutritionists integrate metabolomics into their study design, making nutrimetabolomics one of the most promising avenues for improving personalized nutrition. This review highlight the major five risk factors associated with metabolic syndrome and related diseases including carbohydrate dysfunction, dyslipidemia, oxidative stress, inflammation, and gut microbiota dysbiosis. Together, it is proposed a profile of metabolites of each risk factor obtained from NMR approaches to target them using personalized nutrition, which will improve the quality of life for these patients.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Katherine Gil Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| |
Collapse
|
15
|
Andreescu N, Puiu M, Niculescu M. Effects of Dietary Nutrients on Epigenetic Changes in Cancer. Methods Mol Biol 2019; 1856:121-139. [PMID: 30178249 DOI: 10.1007/978-1-4939-8751-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor's microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.
Collapse
Affiliation(s)
- Nicoleta Andreescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | - Maria Puiu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Mihai Niculescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
- Advanced Nutrigenomics, Hillsborough, NC, USA
| |
Collapse
|
16
|
Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: A review. Biomed Pharmacother 2018; 111:537-547. [PMID: 30597307 DOI: 10.1016/j.biopha.2018.12.104] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023] Open
Abstract
Last few decades have witnessed the unprecedented growth in the application of probiotics for promoting the general gut health as well as their inception as biotherapeutics to alleviate certain clinical disorders related to dysbiosis. While numerous studies have substantiated the health-restoring potentials for a restricted group of microbial species, the marketed extrapolation of a similar probiotic label to a large number of partially characterized microbial formulations seems biased. In particular, the individuals under neonatal stages and/or those with some clinical conditions including malignancies, leaky gut, diabetes mellitus, and post-organ transplant convalescence likely fail to reap the benefits of probiotics. Further exacerbating the conditions, some probiotic strains might take advantage of the weak immunity in these vulnerable groups and turn into opportunistic pathogens engendering life-threatening pneumonia, endocarditis, and sepsis. Moreover, the unregulated and rampant use of probiotics potentially carry the risk of plasmid-mediated antibiotic resistance transfer to the gut infectious pathogens. In this review, we discuss the safety perspectives of probiotics and their therapeutic interventions in certain at-risk population groups. The embodied arguments and hypotheses certainly will shed light on the fact why probiotic usage should be treated with caution.
Collapse
Affiliation(s)
- Damini Kothari
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
17
|
Melocchi A, Parietti F, Maccagnan S, Ortenzi MA, Antenucci S, Briatico-Vangosa F, Maroni A, Gazzaniga A, Zema L. Industrial Development of a 3D-Printed Nutraceutical Delivery Platform in the Form of a Multicompartment HPC Capsule. AAPS PharmSciTech 2018; 19:3343-3354. [PMID: 29872975 DOI: 10.1208/s12249-018-1029-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/21/2018] [Indexed: 11/30/2022] Open
Abstract
Following recent advances in nutrigenomics and nutrigenetics, as well as in view of the increasing use of nutraceuticals in combination with drug treatments, considerable attention is being directed to the composition, bioefficacy, and release performance of dietary supplements. Moreover, the interest in the possibility of having such products tailored to meet specific needs is fast growing among costumers. To fulfill these emerging market trends, 3D-printed capsular devices originally intended for conveyance and administration of drugs were proposed for delivery of dietary supplements. Being composed of separate inner compartments, such a device could yield customized combinations of substances, relevant doses, and release kinetics. In particular, the aim of this work was to face early-stage industrial development of the processes involved in fabrication of nutraceutical capsules for oral pulsatile delivery. A pilot plant for extrusion of filaments based on pharmaceutical-grade polymers and intended for 3D printing was set up, and studies aimed at demonstrating feasibility of fused deposition modeling in 3D printing of capsule shells according to Current Good Manufacturing Practices for dietary supplements were undertaken. In this respect, the stability of the starting material after hot processing and of the resulting items was investigated, and compliance of elemental and microbiological contaminants, as well as of by-products, with internal specifications was assessed. Finally, operating charts highlighting critical process variables and parameters that would serve as indices of both intermediate and final product quality were developed.
Collapse
|
18
|
Fernandes SP, Kvitko K, da Silva J, Rohr P, Bandinelli E, Kahl VF, Mai C, Brenner N, da Silva FR. Influence of vitamin intake and MTHFR polymorphism on the levels of DNA damage in tobacco farmers. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2017; 23:311-318. [PMID: 30052162 PMCID: PMC6147114 DOI: 10.1080/10773525.2018.1500796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetic damage may occur spontaneously under normal metabolic circumstances, inadequate intake of nutrients, and excessive exposure to environmental mutagens. OBJECTIVES To evaluate the influence of the intake of micronutrients vitamin B12, vitamin B6, and folate and of the polymorphism methylenetetrahydrofolate reductase (MTHFR) C677T on the induction of DNA damage in tobacco farmers. METHODS The study involved 66 men and 44 women engaged in tobacco cultivation in the region of Venâncio Aires (Rio Grande do Sul state, Brazil). Peripheral blood samples were collected to analyze DNA damage using the Comet assay, the micronucleus (MN) test and MTHFR C677T polymorphism. Dietary intake was evaluated based on the mean values obtained from three 24-h diet recall questionnaires, and nutrient intake data were computerized and estimated in the Food Processor SQL 10.9 program. The statistical tests used to generate the stated results were Kruskal-Wallis test, Exact Fisher's test, and multivariate linear regression analysis. RESULTS DNA damage was significantly higher in individuals who had an inadequate intake of folate, vitamin B12, and vitamin B6 (P < 0.01) assessed by Comet assay. In relation to MN test results, buccal cells showed MN frequency higher in individuals with inadequate intake of vitamin B6 (P < 0.01). No difference was observed in MN lymphocytes frequency. No significant association was detected between MTHFR C677T polymorphism and DNA damage in tobacco farmers. CONCLUSION Our results suggest that folate, vitamin B12, and vitamin B6 deficiency may be associated with genotoxic effect in individuals exposed to pesticides.
Collapse
Affiliation(s)
- Simone P. Fernandes
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Nutrition Department, Centro Universitário Ritter dos Reis, Laureate International Universities, Porto Alegre, Brazil
| | - Katia Kvitko
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Laboratory of Toxicological Genetics, Post-Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil, Canoas, RS, Brazil
| | - Paula Rohr
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eliane Bandinelli
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivian F. Kahl
- Telomere Length Regulation Unit, Children’s Medical Research Institute, Sydney, Australia
| | - Camila Mai
- School of Nutrition, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Nathália Brenner
- School of Nutrition, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Fernanda R. da Silva
- Master’s Degree in Environmental Impact Evaluation, La Salle University, Canoas, RS, Brazil
| |
Collapse
|
19
|
Gough LA, Deb SK, Sparks A, McNaughton LR. The Reproducibility of 4-km Time Trial (TT) Performance Following Individualised Sodium Bicarbonate Supplementation: a Randomised Controlled Trial in Trained Cyclists. SPORTS MEDICINE - OPEN 2017; 3:34. [PMID: 28936625 PMCID: PMC5608656 DOI: 10.1186/s40798-017-0101-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Individual time to peak blood bicarbonate (HCO3-) has demonstrated good to excellent reproducibility following ingestion of both 0.2 g kg-1 body mass (BM) and 0.3 g kg-1 BM sodium bicarbonate (NaHCO3), but the consistency of the time trial (TT) performance response using such an individualised NaHCO3 ingestion strategy remains unknown. This study therefore evaluated the reproducibility of 4-km TT performance following NaHCO3 ingestion individualised to time to peak blood bicarbonate. METHODS Eleven trained male cyclists completed five randomised treatments with prior ingestion of 0.2 g kg-1 (SBC2) or 0.3 g kg-1 BM (SBC3) NaHCO3, on two separate occasions each, or a control trial entailing no supplementation. Participants completed a 4-km cycling TT on a Velotron ergometer where time to complete, power and speed were measured, whilst acid-base blood parameters were also recorded (pH and blood bicarbonate concentration HCO3-) and lactate [La-]. RESULTS Alkalosis was achieved prior to exercise in both SBC2 and SBC3, as pH and HCO3- were greater compared to baseline (p < 0.001), with no differences between treatments (p > 0.05). The reproducibility of the mean absolute change from baseline to peak in HCO3- was good in SBC2 (r = 0.68) and excellent in SBC3 (r = 0.78). The performance responses following both SBC2 and SBC3 displayed excellent reproducibility (r range = 0.97 to 0.99). CONCLUSIONS Results demonstrate excellent reproducibility of exercise performance following individualised NaHCO3 ingestion, which is due to the high reproducibility of blood acid-base variables with repeat administration of NaHCO3. Using a time to peak HCO3- strategy seems to cause no dose-dependent effects on performance for exercise of this duration and intensity; therefore, athletes may consider smaller doses of NaHCO3 to mitigate gastrointestinal (GI) discomfort.
Collapse
Affiliation(s)
- Lewis Anthony Gough
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire L39 4QP UK
| | - Sanjoy Kumar Deb
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire L39 4QP UK
| | - Andy Sparks
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire L39 4QP UK
| | - Lars Robert McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire L39 4QP UK
| |
Collapse
|
20
|
Abstract
There is a great deal of interest in personalized, individualized, or precision interventions for disease and health-risk mitigation. This is as true of nutrition-based intervention and prevention strategies as it is for pharmacotherapies and pharmaceutical-oriented prevention strategies. Essentially, technological breakthroughs have enabled researchers to probe an individual's unique genetic, biochemical, physiological, behavioral, and exposure profile, allowing them to identify very specific and often nuanced factors that an individual might possess, which may make it more or less likely that he or she responds favorably to a particular intervention (e.g., nutrient supplementation) or disease prevention strategy (e.g., specific diet). However, as compelling and intuitive as personalized nutrition might be in the current era in which data-intensive biomedical characterization of individuals is possible, appropriately and objectively vetting personalized nutrition strategies is not trivial and requires novel study designs and data analytical methods. These designs and methods must consider a very integrated use of the multiple contemporary biomedical assays and technologies that motivate them, which adds to their complexity. Single-subject or N-of-1 trials can be used to assess the utility of personalized interventions and, in addition, can be crafted in such a way as to accommodate the necessarily integrated use of many emerging biomedical technologies and assays. In this review, we consider the motivation, design, and implementation of N-of-1 trials in translational nutrition research that are meant to assess the utility of personalized nutritional strategies. We provide a number of example studies, discuss appropriate analytical methods given the complex data they generate and require, and consider how such studies could leverage integration of various biomarker assays and clinical end points. Importantly, we also consider the development of strategies and algorithms for matching nutritional needs to individual biomedical profiles and the issues surrounding them. Finally, we discuss the limitations of personalized nutrition studies, possible extensions of N-of-1 nutritional intervention studies, and areas of future research.
Collapse
Affiliation(s)
- Nicholas J Schork
- Translational Genomics Research Institute, Phoenix, Arizona 85004; .,J. Craig Venter Institute, La Jolla, California 92037; .,Departments of Psychiatry and Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92037
| | - Laura H Goetz
- J. Craig Venter Institute, La Jolla, California 92037; .,Department of Surgery, Scripps Clinic Medical Group, La Jolla, California 92037.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
21
|
He YB, Ren HW, Cao YT, Li HJ, Zhang Z, Liu N. Comparing the composition and trend of fatty acid in human milk with bovine milk and infant formula in northeast region of China. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1188858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yang-Bo He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Technical Research Center, Heilongjiang Dairy Industry Technical Development Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, China
| | - Hao-Wei Ren
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Technical Research Center, Heilongjiang Dairy Industry Technical Development Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, China
| | - Yu-Tong Cao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Technical Research Center, Heilongjiang Dairy Industry Technical Development Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, China
| | - He-Jia Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Technical Research Center, Heilongjiang Dairy Industry Technical Development Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhen Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Technical Research Center, Heilongjiang Dairy Industry Technical Development Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, China
| | - Ning Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- National Dairy Engineering & Technical Research Center, Heilongjiang Dairy Industry Technical Development Center, Harbin, China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Kohlmeier M, De Caterina R, Ferguson LR, Görman U, Allayee H, Prasad C, Kang JX, Nicoletti CF, Martinez JA. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition: Part 2 - Ethics, Challenges and Endeavors of Precision Nutrition. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:28-46. [PMID: 27286972 DOI: 10.1159/000446347] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutrigenetics considers the influence of individual genetic variation on differences in response to dietary components, nutrient requirements and predisposition to disease. Nutrigenomics involves the study of interactions between the genome and diet, including how nutrients affect the transcription and translation process plus subsequent proteomic and metabolomic changes, and also differences in response to dietary factors based on the individual genetic makeup. Personalized characteristics such as age, gender, physical activity, physiological state and social status, and special conditions such as pregnancy and risk of disease can inform dietary advice that more closely meets individual needs. Precision nutrition has a promising future in treating the individual according to their phenotype and genetic characteristics, aimed at both the treatment and prevention of disease. However, many aspects are still in progress and remain as challenges for the future of nutrition. The integration of the human genotype and microbiome needs to be better understood. Further advances in data interpretation tools are also necessary, so that information obtained through newer tests and technologies can be properly transferred to consumers. Indeed, precision nutrition will integrate genetic data with phenotypical, social, cultural and personal preferences and lifestyles matters to provide a more individual nutrition, but considering public health perspectives, where ethical, legal and policy aspects need to be defined and implemented.
Collapse
Affiliation(s)
- Martin Kohlmeier
- Department of Nutrition, School of Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Allison DB, Bassaganya-Riera J, Burlingame B, Brown AW, le Coutre J, Dickson SL, van Eden W, Garssen J, Hontecillas R, Khoo CSH, Knorr D, Kussmann M, Magistretti PJ, Mehta T, Meule A, Rychlik M, Vögele C. Goals in Nutrition Science 2015-2020. Front Nutr 2015; 2:26. [PMID: 26442272 PMCID: PMC4563164 DOI: 10.3389/fnut.2015.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- David B Allison
- Office of Energetics and Nutrition Obesity Research Center, School of Public Health, University of Alabama at Birmingham , Birmingham, AL , USA ; Section on Statistical Genetics, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Nutrition Sciences, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Biostatistics, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech , Blacksburg, VA , USA
| | - Barbara Burlingame
- Deakin University , Melbourne, VIC , Australia ; American University of Rome , Rome , Italy
| | - Andrew W Brown
- Office of Energetics and Nutrition Obesity Research Center, School of Public Health, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Johannes le Coutre
- Nestlé Research Center , Lausanne , Switzerland ; Organization for Interdisciplinary Research Projects, The University of Tokyo , Tokyo , Japan ; École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Suzanne L Dickson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg , Gothenburg , Sweden
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech , Blacksburg, VA , USA
| | - Chor San H Khoo
- North American Branch of International Life Sciences Institute , Washington, DC , USA
| | | | - Martin Kussmann
- École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland ; Nestlé Institute of Health Sciences SA , Lausanne , Switzerland
| | - Pierre J Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology , Thuwal , Saudi Arabia ; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Tapan Mehta
- Department of Health Services Administration, Nutrition Obesity Research Center, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Adrian Meule
- Department of Psychology, University of Salzburg , Salzburg , Austria
| | - Michael Rychlik
- Analytical Food Chemistry, Technische Universität München , Freising , Germany
| | - Claus Vögele
- Research Unit INSIDE, Institute for Health and Behaviour, University of Luxembourg , Luxembourg , Luxembourg
| |
Collapse
|
24
|
Sauer S, Luge T. Nutriproteomics: Facts, concepts, and perspectives. Proteomics 2015; 15:997-1013. [DOI: 10.1002/pmic.201400383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/03/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sascha Sauer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Toni Luge
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| |
Collapse
|
25
|
Westergaard D, Li J, Jensen K, Kouskoumvekaki I, Panagiotou G. Exploring mechanisms of diet-colon cancer associations through candidate molecular interaction networks. BMC Genomics 2014; 15:380. [PMID: 24886433 PMCID: PMC4055784 DOI: 10.1186/1471-2164-15-380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/13/2014] [Indexed: 02/08/2023] Open
Abstract
Background Epidemiological studies in the recent years have investigated the relationship between dietary habits and disease risk demonstrating that diet has a direct effect on public health. Especially plant-based diets -fruits, vegetables and herbs- are known as a source of molecules with pharmacological properties for treatment of several malignancies. Unquestionably, for developing specific intervention strategies to reduce cancer risk there is a need for a more extensive and holistic examination of the dietary components for exploring the mechanisms of action and understanding the nutrient-nutrient interactions. Here, we used colon cancer as a proof-of-concept for understanding key regulatory sites of diet on the disease pathway. Results We started from a unique vantage point by having a database of 158 plants positively associated to colon cancer reduction and their molecular composition (~3,500 unique compounds). We generated a comprehensive picture of the interaction profile of these edible and non-edible plants with a predefined candidate colon cancer target space consisting of ~1,900 proteins. This knowledge allowed us to study systematically the key components in colon cancer that are targeted synergistically by phytochemicals and identify statistically significant and highly correlated protein networks that could be perturbed by dietary habits. Conclusion We propose here a framework for interrogating the critical targets in colon cancer processes and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. Our methodology for better delineating prevention of colon cancer by nutritional interventions relies heavily on the availability of information about the small molecule constituents of our diet and it can be expanded to any other disease class that previous evidence has linked to lifestyle.
Collapse
Affiliation(s)
| | | | | | | | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Berezowska A, Fischer ARH, Ronteltap A, Kuznesof S, Macready A, Fallaize R, van Trijp HCM. Understanding consumer evaluations of personalised nutrition services in terms of the privacy calculus: a qualitative study. Public Health Genomics 2014; 17:127-40. [PMID: 24732571 DOI: 10.1159/000358851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Personalised nutrition (PN) may provide major health benefits to consumers. A potential barrier to the uptake of PN is consumers' reluctance to disclose sensitive information upon which PN is based. This study adopts the privacy calculus to explore how PN service attributes contribute to consumers' privacy risk and personalisation benefit perceptions. METHODS Sixteen focus groups (n = 124) were held in 8 EU countries and discussed 9 PN services that differed in terms of personal information, communication channel, service provider, advice justification, scope, frequency, and customer lock-in. Transcripts were content analysed. RESULTS The personal information that underpinned PN contributed to both privacy risk perception and personalisation benefit perception. Disclosing information face-to-face mitigated the perception of privacy risk and amplified the perception of personalisation benefit. PN provided by a qualified expert and justified by scientific evidence increased participants' value perception. Enhancing convenience, offering regular face-to face support, and employing customer lock-in strategies were perceived as beneficial. CONCLUSION This study suggests that to encourage consumer adoption, PN has to account for face-to-face communication, expert advice providers, support, a lifestyle-change focus, and customised offers. The results provide an initial insight into service attributes that influence consumer adoption of PN.
Collapse
Affiliation(s)
- Aleksandra Berezowska
- Department of Social Sciences, Marketing and Consumer Behaviour Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Kussmann M. Role of proteomics in nutrigenomics and nutrigenetics. Expert Rev Proteomics 2014; 6:453-6. [DOI: 10.1586/epr.09.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Hurlimann T, Menuz V, Graham J, Robitaille J, Vohl MC, Godard B. Risks of nutrigenomics and nutrigenetics? What the scientists say. GENES AND NUTRITION 2013; 9:370. [PMID: 24293399 DOI: 10.1007/s12263-013-0370-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/18/2013] [Indexed: 01/12/2023]
Abstract
Nutrigenomics and nutrigenetics (hereafter NGx) have stimulated expectations for beneficial applications in public health and individuals. Yet, the potential achievability of such promise is not without socioethical considerations that challenge NGx implementation. This paper focuses on the opinions of NGx researchers about potential risks raised by NGx. The results of an online survey show that these researchers (n = 126) are fairly confident about the potential benefits of NGx, and that most downplay its potential risks. Researchers in this field do not believe that NGx will reconfigure foods as medication or transform the conception of eating into a health hazard. The majority think that NGx will produce no added burden on individuals to get tested or to remain compliant with NGx recommendations, nor that NGx will threaten individual autonomy in daily food choice. The majority of researchers do not think that NGx will lead to discrimination against and/or stigmatization of people who do not comply with NGx dietary recommendations. Despite this optimism among NGx researchers, we suggest that key risk factors raised by the socioethical context in which NGx applications will be implemented need to be considered.
Collapse
Affiliation(s)
- T Hurlimann
- Department of Social and Preventive Medicine, Bioethics Programmes, School of Public Health (ESPUM), University of Montreal, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Tholey A, Treitz C, Kussmann M, Bendixen E, Schrimpf SP, Hengartner MO. Model Organisms Proteomics-From Holobionts to Human Nutrition. Proteomics 2013; 13:2537-41. [DOI: 10.1002/pmic.201370144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Tholey
- Division of Systematic Proteome Research; Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel; Germany
| | - Christian Treitz
- Division of Systematic Proteome Research; Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel; Germany
| | | | - Emöke Bendixen
- Department of Molecular Biology and Genetics; Laboratory of Proteomics and Mass spectrometry; Aarhus University; Arhus; Denmark
| | - Sabine P. Schrimpf
- Institute of Molecular Life Sciences; University of Zurich; Zurich; Switzerland
| | | |
Collapse
|
30
|
Abstract
Personalized nutrition has been traditionally based on the adjustment of food and diet according to individual needs and preferences. At present, this concept is being reinforced through the application of state-of-the-art high-throughput technologies to help understand the molecular mechanisms underlying a healthy state. This knowledge could enable the adjustment of general dietary recommendations to match the needs of specific population groups based on their molecular profiles. The optimal development of evidence-based nutritional guidance to promote health requires an adequate assessment of nutrient bioavailability, bioactivity, and bioefficacy. To achieve this, reliable information about exposure to nutrients, their intake, and functional effects is required; thus, the identification of valid biomarkers using standardized analytical procedures is necessary. Although some nutritional biomarkers are now successfully used (eg, serum retinol, zinc, ferritin, and folate), a comprehensive set to assess the nutritional status and metabolic conditions of nutritional relevance is not yet available. Also, there is very limited knowledge on how the extensive human genetic variability influences the interpretation of these biomarkers. In this context, nutrigenomics seems to be a promising approach to identify new biomarkers in nutrition, through an integrative application of transcriptomics, proteomics, metabolomics, epigenomics, and nutrigenetics in human nutritional research.
Collapse
|
31
|
Bouchard C, Ordovas JM. Fundamentals of Nutrigenetics and Nutrigenomics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:1-15. [DOI: 10.1016/b978-0-12-398397-8.00001-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Panchaud A, Affolter M, Kussmann M. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J Proteomics 2011; 75:3546-59. [PMID: 22227401 DOI: 10.1016/j.jprot.2011.12.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 01/24/2023]
Abstract
We describe nutritional peptidomics for discovery and validation of bioactive food peptide and their health effects. Understanding nature and bioactivity of nutritional peptides means comprehending an important level of environmental regulation of the human genome, because diet is the environmental factor with the most profound life-long influence on health. We approach the theme from three angles, namely the analysis, the discovery and the biology perspective. Food peptides derive from parent food proteins via in vitro hydrolysis (processing) or in vivo digestion by various unspecific and specific proteases, as opposed to the tryptic peptides typically generated in biomarker proteomics. A food bioactive peptide may be rare or unique in terms of sequence and modification, and many food genomes are less well annotated than e.g. the human genome. Bioactive peptides can be discovered either empirically or by prediction: we explain both the classical hydrolysis strategy and the bioinformatics-driven reversed genome engineering. In order to exert bioactivity, food peptides must be either ingested and then reach the intestine in their intact form or be liberated in situ from their parent proteins to act locally, that is in the gut, or even systemically, i.e. through the blood stream. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Alexandre Panchaud
- Functional Genomics Group, Nestlé Research Centre, Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
Eussen SR, Verhagen H, Klungel OH, Garssen J, van Loveren H, van Kranen HJ, Rompelberg CJ. Functional foods and dietary supplements: Products at the interface between pharma and nutrition. Eur J Pharmacol 2011; 668 Suppl 1:S2-9. [DOI: 10.1016/j.ejphar.2011.07.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 11/24/2022]
|
34
|
Kussmann M, Van Bladeren PJ. The Extended Nutrigenomics - Understanding the Interplay between the Genomes of Food, Gut Microbes, and Human Host. Front Genet 2011; 2:21. [PMID: 22303317 PMCID: PMC3268576 DOI: 10.3389/fgene.2011.00021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 12/28/2022] Open
Abstract
Comprehensive investigation of nutritional health effects at the molecular level requires the understanding of the interplay between three genomes, the food, the gut microbial, and the human host genome. Food genomes are researched for discovery and exploitation of macro- and micronutrients as well as specific bioactives, with those genes coding for bioactive proteins and peptides being of central interest. The human gut microbiota encompasses a complex ecosystem in the intestine with profound impact on host metabolism. It is being studied at genomic and, more recently, also at proteomic and metabonomic level. Humans are being characterized at the level of genetic pre-disposition and inter-individual variability in terms of (i) response to nutritional interventions and direction of health trajectories; (ii) epigenetic, metabolic programming at certain life stages with health consequences later in life and even for subsequent generations; and (iii) acute genomic expression as a holistic response to diet, monitored at gene transcript, protein and metabolite level. Modern nutrition science explores health-related aspects of bioactive food components, thereby promoting health, preventing, or delaying the onset of disease, optimizing performance and assessing benefits and risks in individuals and subpopulations. Personalized nutrition means adapting food to individual needs, depending on the human host's life stage, -style, and -situation. Traditionally, nutrigenomics and nutri(epi)genetics are seen as the key sciences to understand human variability in preferences and requirements for diet as well as responses to nutrition. This article puts the three nutrition and health-relevant genomes into perspective, namely the food, the gut microbial and the human host's genome, and calls for an "extended nutrigenomics" approach in order to build the future tools for personalized nutrition, health maintenance, and disease prevention. We discuss examples of these genomes, proteomes, transcriptomes, and metabolomes under the definition of genomics as the overarching term covering essentially all Omics rather than the sole study of DNA and RNA.
Collapse
Affiliation(s)
- Martin Kussmann
- Nestlé Institute of Health SciencesLausanne, Switzerland
- Faculty of Science, Aarhus UniversityDenmark
| | | |
Collapse
|
35
|
Kussmann M, Panchaud A, Affolter M. Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J Proteome Res 2010; 9:4876-87. [PMID: 20718507 DOI: 10.1021/pr1004339] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Food and beverages are the only physical matter we take into our body, if we disregard the air we inhale and the drugs we may have to apply. While traditional nutrition research has aimed at providing nutrients to nourish populations and preventing specific nutrient deficiencies, it more recently explores health-related aspects of individual bioactive components as well as entire diets and this at group rather than population level. The new era of nutrition research translates empirical knowledge to evidence-based molecular science. Modern nutrition research focuses on promoting health, preventing or delaying the onset of disease, optimizing performance, and assessing risk. Personalized nutrition is a conceptual analogue to personalized medicine and means adapting food to individual needs. Nutrigenomics and nutrigenetics build the science foundation for understanding human variability in preferences, requirements, and responses to diet and may become the future tools for consumer assessment motivated by personalized nutritional counseling for health maintenance and disease prevention. The scope of this paper is to review the current and future aspects of nutritional proteomics, focusing on the two main outputs: identification of health biomarkers and analysis of food bioactives.
Collapse
Affiliation(s)
- Martin Kussmann
- Functional Genomics Group, Department of BioAnalytical Sciences, Nestlé Research Center, Lausanne, Switzerland.
| | | | | |
Collapse
|
36
|
Proteomics at the center of nutrigenomics: Comprehensive molecular understanding of dietary health effects. Nutrition 2009; 25:1085-93. [DOI: 10.1016/j.nut.2009.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 05/31/2009] [Indexed: 11/18/2022]
|