1
|
Lim AA, Pouyabahar D, Ashraf M, Huang K, Lohbihler M, Murareanu BM, Chang ML, Kwan M, Alibhai FJ, Tran T, Mazine A, Laflamme MA, Bader GD, Laksman Z, Protze S. Single-cell transcriptome analysis reveals CD34 as a marker of human sinoatrial node pacemaker cardiomyocytes. Nat Commun 2024; 15:10206. [PMID: 39604360 PMCID: PMC11603134 DOI: 10.1038/s41467-024-54337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The sinoatrial node regulates the heart rate throughout life. Failure of this primary pacemaker results in life-threatening, slow heart rhythm. Despite its critical function, the cellular and molecular composition of the human sinoatrial node is not resolved. Particularly, no cell surface marker to identify and isolate sinoatrial node pacemaker cells has been reported. Here we use single-nuclei/cell RNA sequencing of fetal and human pluripotent stem cell-derived sinoatrial node cells to reveal that they consist of three subtypes of pacemaker cells: Core Pacemaker, Sinus Venosus, and Transitional Cells. Our study identifies a host of sinoatrial node pacemaker markers including MYH11, BMP4, and the cell surface antigen CD34. We demonstrate that sorting for CD34+ cells from stem cell differentiation cultures enriches for sinoatrial node cells exhibiting a functional pacemaker phenotype. This sinoatrial node pacemaker cell surface marker is highly valuable for stem cell-based disease modeling, drug discovery, cell replacement therapies, and the targeted delivery of therapeutics to sinoatrial node cells in vivo using antibody-drug conjugates.
Collapse
Affiliation(s)
- Amos A Lim
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mishal Ashraf
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kate Huang
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Lohbihler
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon M Murareanu
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Matthew L Chang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie Kwan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Zachary Laksman
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Sart S, Liu C, Zeng EZ, Xu C, Li Y. Downstream bioprocessing of human pluripotent stem cell-derived therapeutics. Eng Life Sci 2022; 22:667-680. [PMID: 36348655 PMCID: PMC9635003 DOI: 10.1002/elsc.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
With the advancement in lineage-specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC-derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC-derived cells, including the standard separation technologies, such as magnetic-activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large-scale downstream bioprocessing of hPSC-derived cells, the rational quality-by-design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells.
Collapse
Affiliation(s)
- Sebastien Sart
- Laboratory of Physical Microfluidics and BioengineeringDepartment of Genome and GeneticsInstitut PasteurParisFrance
| | - Chang Liu
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| | - Chunhui Xu
- Department of PediatricsEmory University School of Medicine and Children's Healthcare of AtlantaAtlantaGAUSA
| | - Yan Li
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
3
|
Shin JH, Seo BG, Lee IW, Kim HJ, Seo EC, Lee KM, Jeon SB, Baek SK, Kim TS, Lee JH, Choi JW, Hwangbo C, Lee JH. Functional Characterization of Endothelial Cells Differentiated from Porcine Epiblast Stem Cells. Cells 2022; 11:1524. [PMID: 35563830 PMCID: PMC9104949 DOI: 10.3390/cells11091524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells (ECs), lining blood vessels' lumen, play an essential role in regulating vascular functions. As multifunctional components of vascular structures, pluripotent stem cells (PSCs) are the promising source for potential therapeutic applications in various vascular diseases. Our laboratory has previously established an approach for differentiating porcine epiblast stem cells (pEpiSCs) into ECs, representing an alternative and potentially superior cell source. However, the condition of pEpiSCs-derived ECs growth has yet to be determined, and whether pEpiSCs differentiate into functional ECs remained unclear. Changes in morphology, proliferation and functional endothelial marker were assessed in pEpiSCs-derived ECs in vitro. pEpiSCs-derived ECs were subjected to magnetic-activated cell sorting (MACS) to collect CD-31+ of ECs. We found that sorted ECs showed the highest proliferation rate in differentiation media in primary culture and M199 media in the subculture. Next, sorted ECs were examined for their ability to act as typical vascular ECs through capillary-like structure formation assay, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and three-dimensional spheroid sprouting. Consequently, pEpiSCs-derived ECs function as typical vascular ECs, indicating that pEpiSC-derived ECs might be used to develop cell therapeutics for vascular disease.
Collapse
Affiliation(s)
- Joon-Hong Shin
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
| | - Bo-Gyeong Seo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - In-Won Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Chan Seo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang-Min Lee
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24414, Korea;
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon 24414, Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
4
|
Qiao L, Fan X, Yang Z, El-Battrawy I, Zhou X, Akin I. Glucose Counteracts Isoprenaline Effects on Ion Channel Functions in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Dev Dis 2022; 9:jcdd9030076. [PMID: 35323624 PMCID: PMC8955312 DOI: 10.3390/jcdd9030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies indicate that the disorder of glucose metabolism in myocardial tissue is involved in the development of Takotsubo syndrome (TTS). This study investigated the effects of a high level of glucose on the pathogenesis of TTS, focusing on the electrophysiological mechanisms. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with toxic concentration of isoprenaline (Iso, 1 mM) and a high level of glucose (22 mM) to mimic the setting of TTS and diabetes mellitus (DM). Iso prolonged action potential duration (APD) through enhancing the late sodium channel current and suppressing the transient outward potassium current (Ito). However, a high level of glucose prevented the APD prolongation and the change in Ito. High-level glucose reduced the expression levels of PI3K/Akt, β1-adrenoceptors, Gs-protein, and PKA, suggesting their involvement in the protective effects of high-level glucose against toxic effects of catecholamine. High glucose level did not influence Iso-induced ROS-generation, suggesting that the protective effects of high-level glucose against Iso did not result from changes in ROS generation. High-level glucose may protect cardiomyocytes from the toxic effects of catecholamine excess through suppressing β1-adrenoceptor-Gs-PKA signaling. DM may reduce the risk for occurrence of arrhythmias due to QT prolongation in TTS patients.
Collapse
Affiliation(s)
- Lin Qiao
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
| | - Xuehui Fan
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Zhen Yang
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
| | - Ibrahim El-Battrawy
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-383-1448; Fax: +49-621-383-1474
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Arch 2021; 473:1023-1039. [PMID: 33928456 DOI: 10.1007/s00424-021-02549-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Human pluripotent stem cells (hPSC) self-renew and represent a potentially unlimited source for the production of cardiomyocytes (CMs) suitable for studies of human cardiac development, drug discovery, cardiotoxicity testing, and disease modelling and for cell-based therapies. However, most cardiac differentiation protocols yield mixed cultures of atrial-, ventricular-, and pacemaker-like cells at various stages of development, as well as non-CMs. The proportions and maturation states of these cell types result from disparities among differentiation protocols and time of cultivation, as well as hPSC reprogramming inconsistencies and genetic background variations. The reproducible use of hPSC-CMs for research and therapy is therefore limited by issues of cell population heterogeneity and functional states of maturation. A validated method that overcomes issues of cell heterogeneity is immunophenotyping coupled with live cell sorting, an approach that relies on accessible surface markers restricted to the desired cell type(s). Here we review current progress in unravelling heterogeneity in hPSC-cardiac cultures and in the identification of surface markers suitable for defining cardiac identity, subtype specificity, and maturation states.
Collapse
|
6
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Jimenez-Tellez N, Greenway SC. Cellular models for human cardiomyopathy: What is the best option? World J Cardiol 2019; 11:221-235. [PMID: 31754410 PMCID: PMC6859298 DOI: 10.4330/wjc.v11.i10.221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
The genetic cardiomyopathies are a group of disorders related by abnormal myocardial structure and function. Although individually rare, these diseases collectively represent a significant health burden since they usually develop early in life and are a major cause of morbidity and mortality amongst affected children. The heterogeneity and rarity of these disorders requires the use of an appropriate model system in order to characterize the mechanism of disease and develop useful therapeutics since standard drug trials are infeasible. A common approach to study human disease involves the use of animal models, especially rodents, but due to important biological and physiological differences, this model system may not recapitulate human disease. An alternative approach for studying the metabolic cardiomyopathies relies on the use of cellular models which have most frequently been immortalized cell lines or patient-derived fibroblasts. However, the recent introduction of induced pluripotent stem cells (iPSCs), which have the ability to differentiate into any cell type in the body, is of great interest and has the potential to revolutionize the study of rare diseases. In this paper we review the advantages and disadvantages of each model system by comparing their utility for the study of mitochondrial cardiomyopathy with a particular focus on the use of iPSCs in cardiovascular biology for the modeling of rare genetic or metabolic diseases.
Collapse
Affiliation(s)
- Nerea Jimenez-Tellez
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Steven C Greenway
- Departments of Pediatrics, Cardiac Sciences, Biochemistry & Molecular Biology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
8
|
Devalla HD, Passier R. Cardiac differentiation of pluripotent stem cells and implications for modeling the heart in health and disease. Sci Transl Med 2019; 10:10/435/eaah5457. [PMID: 29618562 DOI: 10.1126/scitranslmed.aah5457] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 07/15/2016] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Cellular models comprising cardiac cell types derived from human pluripotent stem cells are valuable for studying heart development and disease. We discuss transcriptional differences that define cellular identity in the heart, current methods for generating different cardiomyocyte subtypes, and implications for disease modeling, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands.
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, Netherlands. .,Department of Applied Stem Cell Technologies, Technical Medical Center, University of Twente, 7500 AE Enschede, Netherlands
| |
Collapse
|
9
|
Rossdam C, Konze SA, Oberbeck A, Rapp E, Gerardy-Schahn R, von Itzstein M, Buettner FFR. Approach for Profiling of Glycosphingolipid Glycosylation by Multiplexed Capillary Gel Electrophoresis Coupled to Laser-Induced Fluorescence Detection To Identify Cell-Surface Markers of Human Pluripotent Stem Cells and Derived Cardiomyocytes. Anal Chem 2019; 91:6413-6418. [PMID: 31058489 DOI: 10.1021/acs.analchem.9b01114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Application of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as tissue transplants in regenerative medicine depends on cell-surface marker-based characterization and/or purification. Glycosphingolipids (GSLs) are a family of highly diverse surface-exposed biomolecules that have been neglected as potential surface markers for hiPSC-CMs due to significant analytical challenges. Here, we describe the development of a novel and high-throughput-compatible workflow for the analysis of GSL-derived glycans based on ceramide glycanase digestion, 8-aminopyrene-1,3,6-trisulfonic acid (APTS) labeling, and multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection (xCGE-LIF). GSL glycans were detected with highly reproducible migration times after repeated analysis by xCGE-LIF. We built up a migration time database comprising 38 different glycan species, and we showed exemplarily that as few as 10 pg of fucosyl lactotetra was detectable. GSL glycan profiling could be performed with 105 human induced pluripotent stem cells, and we quantitatively dissected global alterations of GSL glycosylation of human induced pluripotent stem cells (hiPSCs) and hiPSC-CMs by employing xCGE-LIF. In our study, we observed a general switch from complex GSLs with lacto- and globo-series core structures comprising the well-known human pluripotent stem cell marker stage-specific embryonic antigen 3 (SSEA3) and SSEA4 in hiPSCs toward the simple gangliosides GM3 and GD3 in hiPSC-CMs. This is the first description of GM3 and GD3 being highly abundant GSLs on the cell surface of stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Charlotte Rossdam
- Institute of Clinical Biochemistry , Hannover Medical School , Hannover 30625 , Germany.,REBIRTH Cluster of Excellence , Hannover Medical School , Hannover 30625 , Germany
| | - Sarah A Konze
- Institute of Clinical Biochemistry , Hannover Medical School , Hannover 30625 , Germany.,REBIRTH Cluster of Excellence , Hannover Medical School , Hannover 30625 , Germany
| | - Astrid Oberbeck
- Institute of Clinical Biochemistry , Hannover Medical School , Hannover 30625 , Germany.,REBIRTH Cluster of Excellence , Hannover Medical School , Hannover 30625 , Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems , Magdeburg 39106 , Germany.,glyXera GmbH , Magdeburg 39120 , Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry , Hannover Medical School , Hannover 30625 , Germany.,REBIRTH Cluster of Excellence , Hannover Medical School , Hannover 30625 , Germany
| | - Mark von Itzstein
- Institute for Glycomics , Griffith University , Gold Coast Campus , Gold Coast , Queensland 4222 , Australia
| | - Falk F R Buettner
- Institute of Clinical Biochemistry , Hannover Medical School , Hannover 30625 , Germany.,REBIRTH Cluster of Excellence , Hannover Medical School , Hannover 30625 , Germany
| |
Collapse
|
10
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
11
|
Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018; 9:201. [PMID: 30053890 PMCID: PMC6062943 DOI: 10.1186/s13287-018-0947-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as myocardial disease modeling and cardiac regeneration are emphasized.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, “Attikon” Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christopher Rao
- Department of Surgery, Queen Elizabeth Hospital, Woolwich, London, UK
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Ion Channel Expression and Characterization in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Int 2018. [PMID: 29535773 PMCID: PMC5835237 DOI: 10.1155/2018/6067096] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are providing new possibilities for the biological study, cell therapies, and drug discovery. However, the ion channel expression and functions as well as regulations in hiPSC-CMs still need to be fully characterized. Methods Cardiomyocytes were derived from hiPS cells that were generated from two healthy donors. qPCR and patch clamp techniques were used for the study. Results In addition to the reported ion channels, INa, ICa-L, ICa-T, If, INCX, IK1, Ito, IKr, IKs IKATP, IK-pH, ISK1–3, and ISK4, we detected both the expression and currents of ACh-activated (KACh) and Na+-activated (KNa) K+, volume-regulated and calcium-activated (Cl-Ca) Cl−, and TRPV channels. All the detected ion currents except IK1, IKACh, ISK, IKNa, and TRPV1 currents contribute to AP duration. Isoprenaline increased ICa-L, If, and IKs but reduced INa and INCX, without an effect on Ito, IK1, ISK1–3, IKATP, IKr, ISK4, IKNa, ICl-Ca, and ITRPV1. Carbachol alone showed no effect on the tested ion channel currents. Conclusion Our data demonstrate that most ion channels, which are present in healthy or diseased cardiomyocytes, exist in hiPSC-CMs. Some of them contribute to action potential performance and are regulated by adrenergic stimulation.
Collapse
|
13
|
Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, Sun X, Delmar M, Bu L. Culture in Glucose-Depleted Medium Supplemented with Fatty Acid and 3,3',5-Triiodo-l-Thyronine Facilitates Purification and Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Endocrinol (Lausanne) 2017; 8:253. [PMID: 29067001 PMCID: PMC5641374 DOI: 10.3389/fendo.2017.00253] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 01/23/2023] Open
Abstract
With recent advances in stem cell technology, it is becoming efficient to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, which can subsequently be used for myriad purposes, ranging from interrogating mechanisms of cardiovascular disease, developing novel cellular therapeutic approaches, as well as assessing the cardiac safety profile of compounds. However, the relative inability to acquire abundant pure and mature cardiomyocytes still hinders these applications. Recently, it was reported that glucose-depleted culture medium supplemented with lactate can facilitate purification of hPSC-derived cardiomyocytes. Here, we report that fatty acid as a lactate replacement has not only a similar purification effect but also improves the electrophysiological characteristics of hPSC-derived cardiomyocytes. Glucose-depleted culture medium supplemented with fatty acid and 3,3',5-Triiodo-l-thyronine (T3) was used during enrichment of hPSC-derived cardiomyocytes. Compared to untreated control cells, the treated cardiomyocytes exhibited enhanced action potential (AP) maximum upstroke velocity (as shown by a significant increase in dV/dtmax), action potential amplitude, as well as AP duration at 50% (APD50) and 90% (APD90) of repolarization. The treated cardiomyocytes displayed higher sensitivity to isoproterenol, more organized sarcomeric structures, and lower proliferative activity. Expression profiling showed that various ion channel and cardiac-specific genes were elevated as well. Our results suggest that the use of fatty acid and T3 can facilitate purification and maturation of hPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Bin Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Maxine Stachel
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Elisha Wang
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Yumei Luo
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joshua Lader
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
- Department of Cell Biology, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
15
|
Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, Buettner FFR. Quantitative Assessment of Sialo-Glycoproteins and N-Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. Chembiochem 2017; 18:1317-1331. [PMID: 28509371 DOI: 10.1002/cbic.201700100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 12/25/2022]
Abstract
Human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC CMs) may be used in regenerative medicine for individualized tissue transplants in the future. For application in patients, the generated CMs have to be highly pure and well characterized. In order to overcome the prevalent scarcity of CM-specific markers, we quantitatively assessed cell-surface-exposed sialo-glycoproteins and N-glycans of hiPSCs, CM progenitors, and CMs. Applying a combination of metabolic labeling and specific sialo-glycoprotein capture, we could highly enrich and quantify membrane proteins during cardiomyogenic differentiation. Among them we identified a number of novel, putative biomarkers for hiPSC CMs. Analysis of the N-glycome by capillary gel electrophoresis revealed three novel structures comprising β1,3-linked galactose, α2,6-linked sialic acid and complex fucosylation; these were highly specific for hiPSCs. Bisecting GlcNAc structures strongly increased during differentiation, and we propose that they are characteristic of early, immature CMs.
Collapse
Affiliation(s)
- Sarah A Konze
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Astrid Oberbeck
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
16
|
Skelton RJP, Kamp TJ, Elliott DA, Ardehali R. Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. Trends Mol Med 2017; 23:651-668. [PMID: 28576602 DOI: 10.1016/j.molmed.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer a practical source for the de novo generation of cardiac tissues and a unique opportunity to investigate cardiovascular lineage commitment. Numerous strategies have focused on the in vitro production of cardiomyocytes, smooth muscle, and endothelium from hPSCs. However, these differentiation protocols often yield undesired cell types. Thus, establishing a set of stage-specific markers for pure cardiac subpopulations will assist in defining the hierarchy of cardiac differentiation, aid in the development of cellular therapy, and facilitate drug screening and disease modeling. The recent characterization of many such markers is enabling the isolation of major cardiac lineages and subpopulations from differentiating hPSCs. We provide here a comprehensive review detailing the suite of biomarkers used to differentiate cardiac lineages from mixed hPSC-derived populations.
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Timothy J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Ahmed N, Khan I, Begum S, Salim A. Effect of 2,4-Dinitrophenol preconditioning on the expression levels of mesenchymal markers in neonatal cardiac progenitors. Hellenic J Cardiol 2017; 58:98-102. [PMID: 28163152 DOI: 10.1016/j.hjc.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/21/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Nazia Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sumreen Begum
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
18
|
Masuda S, Shimizu T. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv Drug Deliv Rev 2016; 96:103-9. [PMID: 25980939 DOI: 10.1016/j.addr.2015.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Cardiac tissue engineering is a promising therapeutic strategy for severe heart failure. However, conventional tissue engineering methods by seeding cells into biodegradable scaffolds have intrinsic limitations such as inflammatory responses and fibrosis arising from the degradation of scaffolds. On the other hand, we have developed cell sheet engineering as a scaffold-free approach for cardiac tissue engineering. Confluent cultured cells are harvested as an intact cell sheet using a temperature-responsive culture surface. By layering cardiac cell sheets, it is possible to form electrically communicative three-dimensional cardiac constructs. Cell sheet transplantation onto damaged hearts in several animal models has revealed improvements in heart functions. Because of the lack of vasculature, the thickness of viable cardiac cell sheet-layered tissues is limited to three layers. Pre-vascularized structure formation within cardiac tissue and multi-step transplantation methods has enabled the formation of thick vascularized tissues in vivo. Furthermore, development of original bioreactor systems with vascular beds has allowed reconstruction of three-dimensional cardiac tissues with a functional vascular structure in vitro. Large-scale culture systems to generate pluripotent stem cell-derived cardiac cells can create large numbers of cardiac cell sheets. Three-dimensional cardiac tissues fabricated by cell sheet engineering may be applied to treat heart disease and tissue model construction.
Collapse
Affiliation(s)
- Shinako Masuda
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| |
Collapse
|
19
|
Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016; 96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation.
Collapse
Affiliation(s)
- Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Birgit Andree
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
20
|
Wiencierz AM, Kernbach M, Ecklebe J, Monnerat G, Tomiuk S, Raulf A, Christalla P, Malan D, Hesse M, Bosio A, Fleischmann BK, Eckardt D. Differential Expression Levels of Integrin α6 Enable the Selective Identification and Isolation of Atrial and Ventricular Cardiomyocytes. PLoS One 2015; 10:e0143538. [PMID: 26618511 PMCID: PMC4664422 DOI: 10.1371/journal.pone.0143538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
Rationale Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. Methods and Results In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Conclusion Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications.
Collapse
Affiliation(s)
| | | | | | - Gustavo Monnerat
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | - Alexandra Raulf
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
21
|
Szebényi K, Péntek A, Erdei Z, Várady G, Orbán TI, Sarkadi B, Apáti Á. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression. Tissue Eng Part C Methods 2015; 21:35-45. [PMID: 24734786 DOI: 10.1089/ten.tec.2013.0646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.
Collapse
Affiliation(s)
- Kornélia Szebényi
- 1 Institute of Molecular Pharmacology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Barbuti A, Robinson RB. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool: insights from sinoatrial node development and function. Pharmacol Rev 2015; 67:368-88. [PMID: 25733770 DOI: 10.1124/pr.114.009597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents. All such applications require reasonably efficient methods for selecting or enriching the "nodal-like" cells, however, which in turn depends on first defining what constitutes a nodal-like cell since not all pacemaking cells are necessarily of nodal lineage. This review discusses the current state of the field in terms of characterizing sinoatrial-like cardiomyocytes derived from embryonic and induced pluripotent stem cells, markers that might be appropriate based on the current knowledge of the gene program leading to sinoatrial node development, what functional characteristics might be expected and desired based on studies of the sinoatrial node, and recent efforts at enrichment and selection of nodal-like cells.
Collapse
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy (A.B.); and Department of Pharmacology, Columbia University Medical Center, New York, New York (R.B.R.)
| | - Richard B Robinson
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy (A.B.); and Department of Pharmacology, Columbia University Medical Center, New York, New York (R.B.R.)
| |
Collapse
|
23
|
Olmer R, Martin U. Induced Pluripotent Stem Cells Differentiate into Functional Cardiomyocytes. STEM CELLS AND CANCER STEM CELLS, VOLUME 12 2014. [DOI: 10.1007/978-94-017-8032-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Raynaud CM, Ahmad FS, Allouba M, Abou-Saleh H, Lui KO, Yacoub M. Reprogramming for cardiac regeneration. Glob Cardiol Sci Pract 2014; 2014:309-29. [PMID: 25763379 PMCID: PMC4352683 DOI: 10.5339/gcsp.2014.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
Treatment of cardiovascular diseases remains challenging considering the limited regeneration capacity of the heart muscle. Developments of reprogramming strategies to create in vitro and in vivo cardiomyocytes have been the focus point of a considerable amount of research in the past decades. The choice of cells to employ, the state-of-the-art methods for different reprogramming strategies, and their promises and future challenges before clinical entry, are all discussed here.
Collapse
Affiliation(s)
| | | | - Mona Allouba
- Aswan Heart Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Haissam Abou-Saleh
- Qatar Cardiovascular Research Center, Qatar Foundation-Education City, Doha, Qatar
| | - Kathy O Lui
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | | |
Collapse
|
25
|
Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA. Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS One 2013; 8:e77784. [PMID: 24204964 PMCID: PMC3804624 DOI: 10.1371/journal.pone.0077784] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 12/26/2022] Open
Abstract
Human (h) embryonic stem cells (ESC) represent an unlimited source of cardiomyocytes (CMs); however, these differentiated cells are immature. Thus far, gene profiling studies have been performed with non-purified or non-chamber specific CMs. Here we took a combinatorial approach of using systems biology to guide functional discoveries of novel biological properties of purified hESC-derived ventricular (V) CMs. We profiled the transcriptomes of hESCs, hESC-, fetal (hF) and adult (hA) VCMs, and showed that hESC-VCMs displayed a unique transcriptomic signature. Not only did a detailed comparison between hESC-VCMs and hF-VCMs confirm known expression changes in metabolic and contractile genes, it further revealed novel differences in genes associated with reactive oxygen species (ROS) metabolism, migration and cell cycle, as well as potassium and calcium ion transport. Following these guides, we functionally confirmed that hESC-VCMs expressed IKATP with immature properties, and were accordingly vulnerable to hypoxia/reoxygenation-induced apoptosis. For mechanistic insights, our coexpression and promoter analyses uncovered a novel transcriptional hierarchy involving select transcription factors (GATA4, HAND1, NKX2.5, PPARGC1A and TCF8), and genes involved in contraction, calcium homeostasis and metabolism. These data highlight novel expression and functional differences between hESC-VCMs and their fetal counterparts, and offer insights into the underlying cell developmental state. These findings may lead to mechanism-based methods for in vitro driven maturation.
Collapse
Affiliation(s)
- Ellen Poon
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China
| | - Shaohong Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, Guangzhou University, Guangzhou, China
| | - Stephanie Rushing
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Lihuan Ren
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Deborah K. Lieu
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis, Davis, California, United States of America
| | - Lin Geng
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Chi-Wing Kong
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Jiaxian Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Hau San Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Kenneth R. Boheler
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP. Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 2013; 34:6339-54. [DOI: 10.1016/j.biomaterials.2013.04.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/17/2013] [Indexed: 11/15/2022]
|
27
|
Scavone A, Capilupo D, Mazzocchi N, Crespi A, Zoia S, Campostrini G, Bucchi A, Milanesi R, Baruscotti M, Benedetti S, Antonini S, Messina G, DiFrancesco D, Barbuti A. Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res 2013; 113:389-98. [PMID: 23753573 DOI: 10.1161/circresaha.113.301283] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN. OBJECTIVE We have explored the possibility of using CD166 expression for isolating SAN progenitors from differentiating embryonic stem cells. METHODS AND RESULTS We found that in embryonic day 10.5 mouse hearts, CD166 and HCN4, markers of the pacemaker tissue, are coexpressed. Sorting embryonic stem cells for CD166 expression at differentiation day 8 selects a population of pacemaker precursors. CD166+ cells express high levels of genes involved in SAN development (Tbx18, Tbx3, Isl-1, Shox2) and function (Cx30.2, HCN4, HCN1, CaV1.3) and low levels of ventricular genes (Cx43, Kv4.2, HCN2, Nkx2.5). In culture, CD166+ cells form an autorhythmic syncytium composed of cells morphologically similar to and with the electrophysiological properties of murine SAN myocytes. Isoproterenol increases (+57%) and acetylcholine decreases (-23%) the beating rate of CD166-selected cells, which express the β-adrenergic and muscarinic receptors. In cocultures, CD166-selected cells are able to pace neonatal ventricular myocytes at a rate faster than their own. Furthermore, CD166+ cells have lost pluripotency genes and do not form teratomas in vivo. CONCLUSIONS We demonstrated for the first time the isolation of a nonteratogenic population of cardiac precursors able to mature and form a fully functional SAN-like tissue.
Collapse
Affiliation(s)
- Angela Scavone
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moon SH, Kang SW, Park SJ, Bae D, Kim SJ, Lee HA, Kim KS, Hong KS, Kim JS, Do JT, Byun KH, Chung HM. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 2013; 34:4013-4026. [DOI: 10.1016/j.biomaterials.2013.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2013] [Indexed: 11/15/2022]
|
29
|
Xu XQ, Sun W. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes. J Cell Biochem 2013; 114:39-46. [PMID: 22903726 DOI: 10.1002/jcb.24359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/08/2012] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSC) are self-renewing cells with the potential to differentiate into a variety of human cells. They hold great promise for regenerative medicine and serve as useful in vitro models for studying human biology. For the past few years, there is vast interest in applying these cells to advance cardiovascular medicine. Human cardiomyocytes can be readily generated from hPSC and they have been characterized extensively with regards to molecular and functional properties. They have been transplanted into animal models of cardiovascular diseases and also shown to be potentially useful reagents for drug discovery. Yet, despite great progress in this field, significant technical hurdles remain before these cells could be used clinically or for pharmaceutical research and development. Further research using novel approaches will be required to overcome these bottlenecks.
Collapse
Affiliation(s)
- Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, China, Xiamen, Fujian, 361005, PR China.
| | | |
Collapse
|
30
|
Park SJ, Bae D, Moon SH, Chung HM. Modification of a purification and expansion method for human embryonic stem cell-derived cardiomyocytes. Cardiology 2013; 124:139-50. [PMID: 23428747 DOI: 10.1159/000346390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to develop a simple and efficient purification method for human embryonic stem cell (hESC)-derived cardiomyocytes (CMs) using a low-glucose culture system. In addition, we investigated whether intercellular adhesion between single hESC-CMs plays a critical role in enhancing proliferation of purified hESC-CMs. METHOD hESCs were cultured in suspension to form human embryoid bodies (hEBs) from which ∼15% contracting clusters were derived after 15-20 days in culture. To purify CMs from contracting hEBs, we first manually isolated contracting clumps that were re-cultured on gelatin-coated plates with media containing a low concentration of glucose. The purified hESC-CMs were cultured at different densities to examine whether cell-cell contact enhances proliferation of hESC-CMs. RESULTS Purified CMs demonstrated spontaneous contraction and strongly expressed the CM-specific markers cardiac troponin T and slow myosin heavy chain. We investigated the purification efficiency by examining the expression levels of cardiac-related genes and the expression of MitoTracker Red dye. In addition, purified hESC-CMs in low-glucose culture demonstrated a 1.5-fold increase in their proliferative capacity compared to those cultured as single hESC-CMs. CONCLUSION A low level of glucose is efficient in purifying hESC-CMs and intercellular adhesion between individual hESC-CMs plays a critical role in enhancing hESC-CM proliferation.
Collapse
Affiliation(s)
- Soon-Jung Park
- Stem Cell Research Laboratory, CHA Stem Cell Institute, CHA University, Seol 135-081, Korea
| | | | | | | |
Collapse
|
31
|
David R, Schwarz F, Rimmbach C, Nathan P, Jung J, Brenner C, Jarsch V, Stieber J, Franz WM. Selection of a common multipotent cardiovascular stem cell using the 3.4-kb MesP1 promoter fragment. Basic Res Cardiol 2012. [DOI: 10.1007/s00395-012-0312-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:178-95. [PMID: 22958937 DOI: 10.1016/j.pbiomolbio.2012.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells have emerged as the prototypical source from which cardiomyocytes can be derived for use in drug discovery and cell therapy. However, such applications require that these cardiomyocytes (hESC-CMs) faithfully recapitulate the physiology of adult cells, especially in relation to their electrophysiological and contractile function. We review what is known about the electrophysiology of hESC-CMs in terms of beating rate, action potential characteristics, ionic currents, and cellular coupling as well as their contractility in terms of calcium cycling and contraction. We also discuss the heterogeneity in cellular phenotypes that arises from variability in cardiac differentiation, maturation, and culture conditions, and summarize present strategies that have been implemented to reduce this heterogeneity. Finally, we present original electrophysiological data from optical maps of hESC-CM clusters.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012; 5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantation is still the only effective therapy to address this cardiomyocyte loss. However, drawbacks, such as immune rejection and insufficient donor availability, are limiting this last-resort solution. Recent developments in the stem cell biology field have improved the potential of cardiac regeneration. Improvements in reprogramming strategies of differentiated adult cells into induced pluripotent stem cells, together with increased efficiency of directed differentiation of pluripotent stem cells toward cardiac myocytes, have brought cell-based heart muscle regeneration a few steps closer to the clinic. In this review, we outline the status of research on cardiac regeneration with a focus on directed differentiation of pluripotent stem cells toward the cardiac lineage.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Lin B, Kim J, Li Y, Pan H, Carvajal-Vergara X, Salama G, Cheng T, Li Y, Lo CW, Yang L. High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovasc Res 2012; 95:327-35. [PMID: 22673369 DOI: 10.1093/cvr/cvs185] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS A variety of human inherited heart diseases affect the normal functions of cardiomyocytes (CMs), endothelial cells (ECs), or smooth muscle cells (SMCs). To study human heart disease and generate cardiac cells for basic and translational research, an efficient strategy is needed for production of cardiac lineages from human stem cells. In the present study, a highly reproducible method was developed that can simultaneously enrich a large number of CMs and cardiac SMCs and ECs from human induced pluripotent stem (iPS) cells with high purity. METHODS AND RESULTS Human multipotent cardiovascular progenitor cells were generated from human iPS cells, followed by selective differentiation of the multipotent cardiovascular progenitor cells into CMs, ECs, and SMCs. With further fluorescence-activated cell sorting, each of the three cardiovascular cell types could be enriched with high purity (>90%). These enriched cardiovascular cells exhibited specific gene expression signatures and normal functions when assayed both in vitro and in vivo. Moreover, CMs purified from iPS cells derived from a patient with LEOPARD syndrome, a disease characterized by cardiac hypertrophy, showed the expected up-regulated expression of genes associated with cardiac hypertrophy. CONCLUSIONS Overall, our technical advance provides the means for generating a renewable resource of pure human cardiovascular cells that can be used to dissect the mechanisms of human inherited heart disease and for the future development of drug and cell therapeutics for heart disease.
Collapse
Affiliation(s)
- Bo Lin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, Rangos Research Center, Pittsburgh, PA 15201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu C. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol 2012; 52:1203-12. [PMID: 22484618 DOI: 10.1016/j.yjmcc.2012.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
Abstract
Human cardiomyocytes derived from pluripotent stem cells hold great promise for cardiac cell therapy, disease modeling, drug discovery, and the study of developmental biology. Reaching these potentials fully requires the development of methods that enable efficient and robust generation of cardiomyocytes with expected characteristics. This review summarizes and discusses up-to-date methods that have been used to derive and enrich human cardiomyocytes from pluripotent stem cells, provides a brief overview of in vitro and in vivo characterization of these cardiomyocytes, and considers future advancement needed to further harness the power of these cells.
Collapse
Affiliation(s)
- Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
Sison-Young RLC, Kia R, Heslop J, Kelly L, Rowe C, Cross MJ, Kitteringham NR, Hanley N, Park BK, Goldring CEP. Human pluripotent stem cells for modeling toxicity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:207-256. [PMID: 22776643 DOI: 10.1016/b978-0-12-398339-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of xenobiotics, driven by the demand for therapeutic, domestic and industrial uses continues to grow. However, along with this increasing demand is the risk of xenobiotic-induced toxicity. Currently, safety screening of xenobiotics uses a plethora of animal and in vitro model systems which have over the decades proven useful during compound development and for application in mechanistic studies of xenobiotic-induced toxicity. However, these assessments have proven to be animal-intensive and costly. More importantly, the prevalence of xenobiotic-induced toxicity is still significantly high, causing patient morbidity and mortality, and a costly impediment during drug development. This suggests that the current models for drug safety screening are not reliable in toxicity prediction, and the results not easily translatable to the clinic due to insensitive assays that do not recapitulate fully the complex phenotype of a functional cell type in vivo. Recent advances in the field of stem cell research have potentially allowed for a readily available source of metabolically competent cells for toxicity studies, derived using human pluripotent stem cells harnessed from embryos or reprogrammed from mature somatic cells. Pluripotent stem cell-derived cell types also allow for potential disease modeling in vitro for the purposes of drug toxicology and safety pharmacology, making this model possibly more predictive of drug toxicity compared with existing models. This article will review the advances and challenges of using human pluripotent stem cells for modeling metabolism and toxicity, and offer some perspectives as to where its future may lie.
Collapse
Affiliation(s)
- R L C Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Synnergren J, Améen C, Jansson A, Sartipy P. Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue. Physiol Genomics 2011; 44:245-58. [PMID: 22166955 DOI: 10.1152/physiolgenomics.00118.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is now well documented that human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes. These cells constitute a promising source of material for use in drug development, toxicity testing, and regenerative medicine. To assess their utility as replacement or complement to existing models, extensive phenotypic characterization of the cells is required. In the present study, we used microarrays and analyzed the global transcription of hESC-derived cardiomyocyte clusters (CMCs) and determined similarities as well as differences compared with reference samples from fetal and adult heart tissue. In addition, we performed a focused analysis of the expression of cardiac ion channels and genes involved in the Ca(2+)-handling machinery, which in previous studies have been shown to be immature in stem cell-derived cardiomyocytes. Our results show that hESC-derived CMCs, on a global level, have a highly similar gene expression profile compared with human heart tissue, and their transcriptional phenotype was more similar to fetal than to adult heart. Despite the high similarity to heart tissue, a number of significantly differentially expressed genes were identified, providing some clues toward understanding the molecular difference between in vivo sourced tissue and stem cell derivatives generated in vitro. Interestingly, some of the cardiac-related ion channels and Ca(2+)-handling genes showed differential expression between the CMCs and heart tissues. These genes may represent candidates for future genetic engineering to create hESC-derived CMCs that better mimic the phenotype of the cardiomyocytes present in the adult human heart.
Collapse
Affiliation(s)
- Jane Synnergren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden.
| | | | | | | |
Collapse
|
38
|
Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011; 6:e23657. [PMID: 21876760 PMCID: PMC3158088 DOI: 10.1371/journal.pone.0023657] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Rationale Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. Method and Result We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30–70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7–8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95–98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5−10×105 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. Conclusion We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.
Collapse
|
39
|
Szebényi K, Erdei Z, Péntek A, Sebe A, Orbán TI, Sarkadi B, Apáti Á. Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Per Med 2011; 8:347-364. [DOI: 10.2217/pme.11.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human stem cells provide an important novel tool for generating in vitro pharmacological and toxicological test systems. In the development of new targeted therapies, as well as in critical safety issues, including hepato-, neuro- and cardio-toxicity, animal-based tests are mostly unsatisfactory, whereas the use of in vitro model systems is limited by the unavailability of relevant human tissues. Human embryonic stem cell lines may fill this gap and offer an advantage over primary cultures as well as tissue-derived (adult) stem cells. Human embryonic stem cells represent an unlimited source for the production of differentiated somatic progenies and allow various stable genetic manipulations. As a new opening in personalized medicine test systems, the generation of induced pluripotent stem cell lines and their derivatives can provide patient- and disease-specific cellular assays for drug development and safety assessments. This article reviews promising human stem cell applications in pharmacological and toxicological screenings, focusing on the implications for personalized medicine.
Collapse
Affiliation(s)
- Kornélia Szebényi
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Zsuzsa Erdei
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Adrienn Péntek
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Attila Sebe
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
- Department of Biochemistry & Molecular Biology, Medical & Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Tamás I Orbán
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Balázs Sarkadi
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | | |
Collapse
|
40
|
Rajala K, Pekkanen-Mattila M, Aalto-Setälä K. Cardiac differentiation of pluripotent stem cells. Stem Cells Int 2011; 2011:383709. [PMID: 21603143 PMCID: PMC3096314 DOI: 10.4061/2011/383709] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/01/2011] [Accepted: 02/08/2011] [Indexed: 01/12/2023] Open
Abstract
The ability of human pluripotent stem cells to differentiate towards the cardiac lineage has attracted significant interest, initially with a strong focus on regenerative medicine. The ultimate goal to repair the heart by cardiomyocyte replacement has, however, proven challenging. Human cardiac differentiation has been difficult to control, but methods are improving, and the process, to a certain extent, can be manipulated and directed. The stem cell-derived cardiomyocytes described to date exhibit rather immature functional and structural characteristics compared to adult cardiomyocytes. Thus, a future challenge will be to develop strategies to reach a higher degree of cardiomyocyte maturation in vitro, to isolate cardiomyocytes from the heterogeneous pool of differentiating cells, as well as to guide the differentiation into the desired subtype, that is, ventricular, atrial, and pacemaker cells. In this paper, we will discuss the strategies for the generation of cardiomyocytes from pluripotent stem cells and their characteristics, as well as highlight some applications for the cells.
Collapse
Affiliation(s)
- Kristiina Rajala
- Regea - Institute for Regenerative Medicine, University of Tampere, Tampere University Hospital, 33520 Tampere, Finland
| | | | | |
Collapse
|
41
|
Abstract
The human heart is the first organ to develop during embryogenesis and is arguably the most essential organ for life. However, after birth, the heart has very little capacity to repair malformations such as congenital heart defects or to regenerate after an injury such as myocardial infarction. Cardiac tissue engineering addresses the need for a therapeutic biologic implant to restore cardiac structure and muscle mass. This review highlights current research in cardiac tissue engineering that uses human cardiomyocytes derived from embryonic stem cells. Other human cell sources are discussed because future human therapies will benefit from novel techniques using human-induced pluripotent stem cells and cardiomyocytes derived from direct reprogramming of somatic cells. Furthermore, this review examines the main approaches to creating engineered cardiac tissue with synthetic scaffolds, natural scaffolds, or no exogenous scaffold (i.e., "scaffold free"). The choice of scaffold and cells ultimately depends on the goals of the therapy, so the review considers how congenital heart defects define the design parameters for cardiac tissue engineering needed for surgical repair in pediatric cardiac patients.
Collapse
Affiliation(s)
- Kareen L. Kreutziger
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 358050, 815 Mercer Street, Brotman 454, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Box 357470, Seattle, WA 98195, USA
| | - Charles E. Murry
- Department of Pathology, University of Washington, Box 357470, Seattle, WA 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 358050, 815 Mercer Street, Brotman 453, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, USA
- Department of Medicine/Cardiology, University of Washington, Box 356422, Seattle, WA 98195, USA
| |
Collapse
|
42
|
Mandenius CF, Steel D, Noor F, Meyer T, Heinzle E, Asp J, Arain S, Kraushaar U, Bremer S, Class R, Sartipy P. Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol 2011; 31:191-205. [DOI: 10.1002/jat.1663] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Fozia Noor
- Biochemical Engineering; Saarland University; Saarbruecken; Germany
| | | | - Elmar Heinzle
- Biochemical Engineering; Saarland University; Saarbruecken; Germany
| | - Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine; Institute of Biomedicine; the Sahlgrenska Academy; University of Gothenburg; Göteborg; Sweden
| | | | - Udo Kraushaar
- Natural and Medical Sciences Institute at the University of Tübingen; Germany
| | - Susanne Bremer
- ECVAM; Institute for Health and Consumer Protection (IHCP); European Commission Joint Research Center; Ispra; Italy
| | | | | |
Collapse
|
43
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
44
|
Vidarsson H, Hyllner J, Sartipy P. Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev Rep 2010; 6:108-20. [PMID: 20091143 DOI: 10.1007/s12015-010-9113-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability of human embryonic stem cells to differentiate into spontaneously contracting cardiomyocyte-like cells has attracted substantial interest from the scientific community over the last decade. From having been difficult to control, human cardiomyogenesis in vitro is now becoming a process which, to a certain extent, can be effectively manipulated and directed. Although much research remains, new and improved protocols for guiding pluripotent stem cells to the cardiomyocyte lineage are accumulating in the scientific literature. However, the stem cell derived cardiomyocytes described to date, generally resemble immature embryonic/fetal cardiomyocytes, and they are in some functional and structural aspects different from adult cardiomyocytes. Thus, a future challenge will be to design strategies that eventually may allow the cells to reach a higher degree of maturation in vitro. Nevertheless, the cells which can be prepared using current protocols still have wide spread utility, and they have begun to find their way into the drug discovery platforms used in the pharmaceutical industry. In addition, stem cell derived cardiomyocytes and cardiac progenitors are anticipated to have a tremendous impact on how heart disease will be treated in the future. Here, we will discuss recent strategies for the generation of cardiomyocytes from human embryonic stem cells and recapitulate their features, as well as highlight some in vitro applications for the cells. Finally, opportunities in the area of cardiac regenerative medicine will be illustrated.
Collapse
Affiliation(s)
- Hilmar Vidarsson
- Cellartis AB, Arvid Wallgrens Backe 20, SE-413 46, Göteborg, Sweden
| | | | | |
Collapse
|