1
|
McCarlie S, Bragg RR. Impact of the Stress Response on Quaternary Ammonium Compound Disinfectant Susceptibility in Serratia Species. Microorganisms 2024; 12:2240. [PMID: 39597629 PMCID: PMC11596051 DOI: 10.3390/microorganisms12112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The well-known problem of antibiotic resistance foreshadows a similar threat posed by microbial resistance to biocides such as disinfectants and antiseptics. These products are vital for infection control, yet their overuse during the COVID-19 pandemic has accelerated the development of resistant microorganisms. This study investigates the molecular mechanisms underlying disinfectant resistance in Serratia sp. HRI. The transcriptomic responses of Serratia sp. HRI were used to identify significant gene expression changes during exposure to QACs and revealed increased methionine transport and polyamine synthesis. Polyamines, crucial in cellular stress responses, were notably upregulated, suggesting a pivotal role of the stress response in disinfectant resistance. Further, our susceptibility tests revealed a marked decrease in susceptibility to QACs under various stress conditions, supporting the hypothesis that stress responses, mediated by polyamines, decrease susceptibility to QACs. This research highlights polyamines as key players in disinfectant resistance, offering novel insights into resistance mechanisms and antimicrobial susceptibility. Our findings emphasise the need for continued investigation into disinfectant resistance and the role of stress responses, particularly polyamine-mediated mechanisms, to direct strategies for preserving disinfectant efficacy and developing future antimicrobial agents.
Collapse
Affiliation(s)
| | - Robert R. Bragg
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
2
|
Gonzalez LN, Cabeza MS, Robello C, Guerrero SA, Iglesias AA, Arias DG. Biochemical characterization of GAF domain of free-R-methionine sulfoxide reductase from Trypanosoma cruzi. Biochimie 2023; 213:190-204. [PMID: 37423556 DOI: 10.1016/j.biochi.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.
Collapse
Affiliation(s)
- Lihue N Gonzalez
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías S Cabeza
- Laboratorio de Micología y Diagnóstico Molecular. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Parasitología y Micología. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Parasitología y Micología. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Veerapandian R, Ramos EI, Vijayaraghavan M, Sedano MJ, Carmona A, Chacon JA, Gadad SS, Dhandayuthapani S. Mycobacterium smegmatis secreting methionine sulfoxide reductase A (MsrA) modulates cellular processes in mouse macrophages. Biochimie 2023; 211:1-15. [PMID: 36809827 DOI: 10.1016/j.biochi.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Mahalakshmi Vijayaraghavan
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Melina J Sedano
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Areanna Carmona
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA; Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA; Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA.
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA; Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA.
| |
Collapse
|
4
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
5
|
Lu F, Wu X, Hu H, He Z, Sun J, Zhang J, Song X, Jin X, Chen G. Emodin Combined with Multiple-Low-Frequency, Low-Intensity Ultrasound To Relieve Osteomyelitis through Sonoantimicrobial Chemotherapy. Microbiol Spectr 2022; 10:e0054422. [PMID: 36069576 PMCID: PMC9603654 DOI: 10.1128/spectrum.00544-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment of osteomyelitis is still challenging, as conventional antibiotic therapy is limited by the emergence of resistant strains and the formation of biofilms. Sonoantimicrobial chemotherapy (SACT) is a novel therapy of low-frequency and low-intensity ultrasound (LFLIU) combined with a sonosensitizer. Therefore, in our study, a sonosensitizer named emodin (EM) was proposed to be combined with LFLIU to relieve acute osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) through antibacterial and antibiofilm effects. The efficiencies of different intensities of ultrasound, including single (S-LFLIU, 15 min) and multiple ultrasound (M-LFLIU, 3 times for 5 min at 4-h intervals), against bacteria and biofilms were compared, contributing to developing the best treatment regimen. Our results demonstrated that EM plus S-LFLIU or M-LFLIU (EM+S-LFLIU or EM+M-LFLIU) had significant combined bactericidal and antibiofilm effects, with EM+M-LFLIU in particular exhibiting superior antibiofilm performance. Furthermore, it was suggested that EM+M-LFLIU could produce a large amount of reactive oxygen species (ROS), destroy the integrity of the bacterial membrane and cell wall, and downregulate the expression of genes involved in oxidative stress, membrane wall synthesis, and bacterial virulence, as well as that of other related genes (agrB, pbp3, sgtB, gmk, zwf, and msrA). In vivo studies, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), and bacterial quantification of bone tissue indicated that EM+M-LFLIU could also relieve osteomyelitis due to MRSA infection. Our work proffers an original approach to bacterial osteomyelitis treatment that weakens drug-resistant bacteria and suppresses and degrades biofilm formation through SACT, which may provide new prospects for clinical treatment. IMPORTANCE Antibiotic therapy is the first choice for clinical treatment of osteomyelitis, but the formation of bacterial biofilms and the emergence of many drug-resistant strains also create an urgent need to find an alternative treatment to effectively eliminate the infection. Recently, LFLIU has come to be considered a safe and promising method of debridement and antibacterial therapy. In this study, we found that ultrasound and EM have a significant combined antibacterial effect in vivo and in vitro, which may play an antibacterial role by stimulating the production of ROS, destroying the bacterial cell wall, and inhibiting the expression of related genes. Our study expands the body of knowledge on the antibacterial effect of drugs-specifically emodin (EM)-through combined physiotherapy. If successfully integrated into clinical practice, these methods may reduce the burden of high concentrations of drugs needed to treat bacterial biofilms and avoid the growing resistance of bacteria to antibiotics.
Collapse
Affiliation(s)
- Feng Lu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Wu
- Wenzhou Medical University, Wenzhou, China
- Department of Orthopedics, Taizhou Hospital Affiliated with Wenzhou Medical University, Linhai, China
| | - Huiqun Hu
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixuan He
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jiacheng Sun
- Wenzhou Medical University, Wenzhou, China
- Department of Orthopedics, Taizhou Hospital Affiliated with Wenzhou Medical University, Linhai, China
| | - Jiapeng Zhang
- Wenzhou Medical University, Wenzhou, China
- Department of Orthopedics, Taizhou Hospital Affiliated with Wenzhou Medical University, Linhai, China
| | - Xiaoting Song
- Wenzhou Medical University, Wenzhou, China
- Department of Orthopedics, Taizhou Hospital Affiliated with Wenzhou Medical University, Linhai, China
| | - Xiangang Jin
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Guofu Chen
- Department of Orthopedics, Taizhou Hospital Affiliated with Wenzhou Medical University, Linhai, China
| |
Collapse
|
6
|
Chautrand T, Souak D, Chevalier S, Duclairoir-Poc C. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022; 10:924. [PMID: 35630368 PMCID: PMC9144841 DOI: 10.3390/microorganisms10050924] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.
Collapse
Affiliation(s)
| | | | | | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-infectious Strategies (UR CBSA), Rouen Normandy University, Normandy University, 55 rue Saint-Germain, 27000 Evreux, France; (T.C.); (D.S.); (S.C.)
| |
Collapse
|
7
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
8
|
Nasreen M, Dhouib R, Hosmer J, Wijesinghe HGS, Fletcher A, Mahawar M, Essilfie AT, Blackall PJ, McEwan AG, Kappler U. Peptide Methionine Sulfoxide Reductase from Haemophilus influenzae Is Required for Protection against HOCl and Affects the Host Response to Infection. ACS Infect Dis 2020; 6:1928-1939. [PMID: 32492342 DOI: 10.1021/acsinfecdis.0c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide methionine sulfoxide reductases (Msrs) are enzymes that repair ROS-damage to sulfur-containing amino acids such as methionine, ensuring functional integrity of cellular proteins. Here we have shown that unlike the majority of pro- and eukaryotic Msrs, the peptide methionine sulfoxide reductase (MsrAB) from the human pathobiont Haemophilus influenzae (Hi) is required for the repair of hypochlorite damage to cell envelope proteins, but more importantly, we were able to demonstrate that MsrAB plays a role in modulating the host immune response to Hi infection. Loss of MsrAB resulted in >1000-fold increase in sensitivity of Hi to HOCl-mediated killing, and also reduced biofilm formation and in-biofilm survival. Expression of msrAB was also induced by hydrogen peroxide and paraquat, but a Hi2019ΔmsrAB strain was not susceptible to killing by these ROS in vitro. Hi2019ΔmsrAB fitness in infection models was low, with a 3-fold reduction in intracellular survival in bronchial epithelial cells, increased susceptibility to neutrophil killing, and a 10-fold reduction in survival in a mouse model of lung infection. Interestingly, infection with Hi2019ΔmsrAB led to specific changes in the antibacterial response of human host cells, with genes encoding antimicrobial peptides (BPI, CAMP) upregulated between 4 and 9 fold compared to infection with Hi2019WT, and reduction in expression of two proteins with antiapoptotic functions (BIRC3, XIAP). Modulation of host immune responses is a novel role for an enzyme of this type and provides first insights into mechanisms by which MsrAB supports Hi survival in vivo.
Collapse
Affiliation(s)
- Marufa Nasreen
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rabeb Dhouib
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer Hosmer
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hewa Godage Sithija Wijesinghe
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Aidan Fletcher
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Manish Mahawar
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Ama-Tawiah Essilfie
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Patrick J. Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alastair G. McEwan
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ulrike Kappler
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
9
|
Ren X, Zou L, Holmgren A. Targeting Bacterial Antioxidant Systems for Antibiotics Development. Curr Med Chem 2020; 27:1922-1939. [PMID: 31589114 DOI: 10.2174/0929867326666191007163654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/18/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
The emergence of multidrug-resistant bacteria has become an urgent issue in modern medicine which requires novel strategies to develop antibiotics. Recent studies have supported the hypothesis that antibiotic-induced bacterial cell death is mediated by Reactive Oxygen Species (ROS). The hypothesis also highlighted the importance of antioxidant systems, the defense mechanism which contributes to antibiotic resistance. Thioredoxin and glutathione systems are the two major thiol-dependent systems which not only provide antioxidant capacity but also participate in various biological events in bacteria, such as DNA synthesis and protein folding. The biological importance makes them promising targets for novel antibiotics development. Based on the idea, ebselen and auranofin, two bacterial thioredoxin reductase inhibitors, have been found to inhibit the growth of bacteria lacking the GSH efficiently. A recent study combining ebselen and silver exhibited a strong synergistic effect against Multidrug-Resistant (MDR) Gram-negative bacteria which possess both thioredoxin and glutathione systems. These drug-repurposing studies are promising for quick clinical usage due to their well-known profile.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Translational Neuroscience & Neural Regeneration and Repair Institute/ Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Das K, Garnica O, Flores J, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) modulates cells and protects against Mycoplasma genitalium induced cytotoxicity. Free Radic Biol Med 2020; 152:323-335. [PMID: 32222467 DOI: 10.1016/j.freeradbiomed.2020.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) is a ubiquitous antioxidant repair enzyme which specifically reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Previous studies have shown that lack of or overexpression of MsrA in cells affects the function of proteins and can lead to altered cellular processes. Interestingly, some pathogenic bacteria secrete and/or carry MsrA on their surface, suggesting some key roles for this enzyme in the modulation of host cellular processes. Therefore, we investigated how exogenously added MsrA affects the ability of the host cells in combating infection by using an in vitroMycoplasma genitalium cytotoxicity model. HeLa cells pretreated with MsrA and infected with M. genitalium showed significantly lower necrosis (cytotoxicity) than untreated cells infected with M. genitalium. Intriguingly, necrotic cell death pathway specific real time RT-PCR revealed that M. genitalium infection upregulates the expression of the TNF gene in HeLa cells and that MsrA pretreatment of the cells downregulates its expression significantly. Consistent with this, enzyme linked immunosorbent assay (ELISA) results showed that HeLa cells pretreated with MsrA secreted reduced levels of TNF-α following M. genitalium infection. Also, our study demonstrates that MsrA treatment of cells affects the phosphorylation status of transcriptional regulators such as NF-кB, JNK and p53 that regulate different cytokines. Further, fluorescent microscopy showed the cellular uptake of exogenously added MsrA fused with red fluorescent protein (MsrA-RFP). Altogether, our results suggest that secreted MsrA may help pathogens to modulate host cellular processes.
Collapse
Affiliation(s)
- Kishore Das
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Javier Flores
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
11
|
Liao X, Liu D, Ding T. Nonthermal Plasma Induces the Viable-but-Nonculturable State in Staphylococcus aureus via Metabolic Suppression and the Oxidative Stress Response. Appl Environ Microbiol 2020; 86:e02216-19. [PMID: 31836577 PMCID: PMC7028965 DOI: 10.1128/aem.02216-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
As a novel nonthermal technology, nonthermal plasma (NTP) has attracted a lot of attention. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, the molecular mechanisms of VBNC Staphylococcus aureus induced by NTP were investigated. With the use of a propidium monoazide quantitative PCR (PMA-qPCR) technique combined with a plate count method, we confirmed that 8.1 to 24.3 kJ NTP induced S. aureus into a VBNC state at a level of 7.4 to 7.6 log10 CFU/ml. The transcriptomic analysis was conducted and revealed that most energy-dependent physiological activities (e.g., metabolism) were arrested in VBNC S. aureus, while the oxidative stress response-related genes (katA, dps, msrB, msrA, and trxA) were significantly upregulated. In addition, this study showed that the ATP depletion by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) pretreatment could accelerate the formation of VBNC S. aureus The NTP-generated oxidative stress triggers the staphylococcal oxidative stress response, which consumes part of cellular energy (e.g., ATP). The energy allocation is therefore changed, and the energy assigned for other energy-dependent physiological activities (cell growth and division, etc.) is reduced, subsequently forcing S. aureus into a VBNC state. Therefore, the alterations of energy allocation should be some of the major contributors to the induction of VBNC S. aureus with NTP exposure. This study provides valuable knowledge for controlling the formation of VBNC S. aureus during NTP treatment.IMPORTANCE In recent years, nonthermal plasma (NTP) technology has received a lot of attention as a promising alternative to thermal pasteurization in the food industry. However, little is known about the microbial stress response toward NTP, which could be a potential risk to food safety and impede the development of NTP. A viable but nonculturable (VBNC) state is one of the most common survival strategies employed by microorganisms against external stress. This study investigated the mechanisms of the formation of VBNC Staphylococcus aureus by NTP in a more comprehensive and systematic aspect than had been done before. Our work confirmed that the NTP-generated oxidative stress induced changes in energy allocation as a driving force for the formation of VBNC S. aureus This study could provide better knowledge for controlling the occurrence of VBNC S. aureus induced by NTP, which could lead to more rational design and ensure the development of safe foods.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:110-117. [PMID: 31563091 DOI: 10.1016/j.plaphy.2019.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 05/27/2023]
Abstract
Pathogen recognition is linked to the perception of microbe/pathogen-associated molecular patterns triggering a specific and transient accumulation of reactive oxygen species (ROS) at the pathogen attack site. The apoplastic oxidative "burst" generated at the pathogen attack site depends on the ROS-generator systems including enzymes such as plasma membrane NADP (H) oxidases, cell wall peroxidases and lipoxygenase. ROS are cytotoxic molecules that inhibit invading pathogens or signalling molecules that control the local and systemic induction of defence genes. Post-translational modifications induced by ROS are considered as a potential signalling mechanism that can modify protein structure and/or function, localisation and cellular stability. Thus, this review focuses on how ROS are essential molecules regulating the function of proteins involved in the plant response to a pathogen attack through post-translational modifications.
Collapse
Affiliation(s)
- D Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain; Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Guzmán-Cedeño
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador; University, School of Agriculture and Livestock, ULEAM-MES, Ecuador.
| | - L Vera-Macias
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain.
| |
Collapse
|
13
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Singh VK, Singh K, Baum K. The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants (Basel) 2018; 7:antiox7100128. [PMID: 30274148 PMCID: PMC6210949 DOI: 10.3390/antiox7100128] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductases (MSRA1 and MSRB) are proteins overproduced in Staphylococcus aureus during exposure with cell wall-active antibiotics. Later studies identified the presence of two additional MSRA proteins (MSRA2 and MSRA3) in S. aureus. These MSR proteins have been characterized in many other bacteria as well. This review provides the current knowledge about the conditions and regulatory network that mimic the expression of these MSR encoding genes and their role in defense from oxidative stress and virulence.
Collapse
Affiliation(s)
- Vineet K Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| | | | - Kyle Baum
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| |
Collapse
|
15
|
Gomide ACP, Ibraim IC, Alves JTC, de Sá PG, de Oliveira Silva YR, Santana MP, Silva WM, Folador EL, Mariano DCB, de Paula Castro TL, Barbosa S, Dorella FA, Carvalho AF, Pereira FL, Leal CAG, Figueiredo HCP, Azevedo V, Silva A, Folador ARC. Transcriptome analysis of Corynebacterium pseudotuberculosis biovar Equi in two conditions of the environmental stress. Gene 2018; 677:349-360. [PMID: 30098432 DOI: 10.1016/j.gene.2018.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
Corynebacterium pseudotuberculosis has been widely studied in an effort to understand its biological evolution. Transcriptomics has revealed possible candidates for virulence and pathogenicity factors of strain 1002 (biovar Ovis). Because C. pseudotuberculosis is classified into two biovars, Ovis and Equi, it was interesting to assess the transcriptional profile of biovar Equi strain 258, the causative agent of ulcerative lymphangitis. The genome of this strain was re-sequenced; the reassembly was completed using optical mapping technology, and the sequence was subsequently re-annotated. Two growth conditions that occur during the host infection process were simulated for the transcriptome: the osmotic and acid medium. Genes that may be associated with the microorganism's resilience under unfavorable conditions were identified through RNAseq, including genes present in pathogenicity islands. The RT-qPCR was performed to confirm the results in biological triplicate for each condition for some genes. The results extend our knowledge of the factors associated with the spread and persistence of C. pseudotuberculosis during the infection process and suggest possible avenues for studies related to the development of vaccines, diagnosis, and therapies that might help minimize damage to agribusinesses.
Collapse
Affiliation(s)
- Anne Cybelle Pinto Gomide
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte 31.270-901, Brazil.
| | - Izabela Coimbra Ibraim
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte 31.270-901, Brazil
| | - Jorianne T C Alves
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil, Rua Augusto Corrêa, Belém 66.075-110, Brazil
| | - Pablo Gomes de Sá
- Federal Rural University of Amazonia, Rodovia PA 140, 2428 Tomé-Açu, PA, Brazil
| | - Yuri Rafael de Oliveira Silva
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil, Rua Augusto Corrêa, Belém 66.075-110, Brazil
| | - Mariana Passos Santana
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte 31.270-901, Brazil
| | - Wanderson Marques Silva
- National Institute of Agricultural Technology, Los Reseros y Nicolás Repetto, Hurlingham 1686, Argentina
| | - Edson Luiz Folador
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil.
| | - Diego C B Mariano
- Department of Computer Sciences, Institute of Exact Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte 31.270-901, Brazil.
| | - Thiago Luiz de Paula Castro
- Department of Biointeraction, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Vale do Canela, Bahia, Brazil
| | - Silvanira Barbosa
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil, Rua Augusto Corrêa, Belém 66.075-110, Brazil
| | - Fernanda Alves Dorella
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alex F Carvalho
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe L Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Carlos A G Leal
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Henrique C P Figueiredo
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte 31.270-901, Brazil.
| | - Artur Silva
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil, Rua Augusto Corrêa, Belém 66.075-110, Brazil.
| | - Adriana Ribeiro Carneiro Folador
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil, Rua Augusto Corrêa, Belém 66.075-110, Brazil.
| |
Collapse
|
16
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
MetQ of Neisseria gonorrhoeae Is a Surface-Expressed Antigen That Elicits Bactericidal and Functional Blocking Antibodies. Infect Immun 2017; 85:IAI.00898-16. [PMID: 27895130 PMCID: PMC5278169 DOI: 10.1128/iai.00898-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/19/2016] [Indexed: 01/30/2023] Open
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection (STI) gonorrhea, is a growing public health threat for which a vaccine is urgently needed. We characterized the functional role of the gonococcal MetQ protein, which is the methionine binding component of an ABC transporter system, and assessed its potential as a candidate antigen for inclusion in a gonococcal vaccine. MetQ has been found to be highly conserved in all strains investigated to date, it is localized on the bacterial surface, and it binds l-methionine with a high affinity. MetQ is also involved in gonococcal adherence to cervical epithelial cells. Mutants lacking MetQ have impaired survival in human monocytes, macrophages, and serum. Furthermore, antibodies raised against MetQ are bactericidal and are able to block gonococcal adherence to epithelial cells. These data suggest that MetQ elicits both bactericidal and functional blocking antibodies and is a valid candidate antigen for additional investigation and possible inclusion in a vaccine for prevention of gonorrhea.
Collapse
|
18
|
Saha SS, Hashino M, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Contribution of methionine sulfoxide reductase B (MsrB) to Francisella tularensis infection in mice. FEMS Microbiol Lett 2016; 364:fnw260. [PMID: 28108583 DOI: 10.1093/femsle/fnw260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/05/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
The essential mechanisms and virulence factors enabling Francisella species to replicate inside host macrophages are not fully understood. Methionine sulfoxide reductase (Msr) is an antioxidant enzyme that converts oxidized methionine into methionine. Francisella tularensis carries msrA and msrB in different parts of its chromosome. In this study, single and double mutants of msrA and msrB were constructed, and the characteristics of these mutants were investigated. The msrB mutant exhibited decreased in vitro growth, exogenous oxidative stress resistance and intracellular growth in macrophages, whereas the msrA mutant displayed little difference with wild-type strain. The double mutant exhibited the same characteristics as the msrB mutant. The bacterial count of the msrB mutant was significantly lower than that of the wild-type strain in the liver and spleen of mice. The bacterial count of the msrA mutant was lower than that of the wild-type strain in the liver, but not in the spleen, of mice. These results suggest that MsrB has an important role in the intracellular replication of F. tularensis in macrophages and infection in mice.
Collapse
Affiliation(s)
- Shib Shankar Saha
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan.,Department of Pathology and Parasitology, Patuakhali Science and Technology, Babugonj, Barisal-8210, Bangladesh
| | - Masanori Hashino
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
19
|
Regulation of Expression of Oxacillin-Inducible Methionine Sulfoxide Reductases in Staphylococcus aureus. Int J Microbiol 2015; 2015:617925. [PMID: 26483841 PMCID: PMC4592908 DOI: 10.1155/2015/617925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
Cell wall-active antibiotics cause induction of a locus that leads to elevated synthesis of two methionine sulfoxide reductases (MsrA1 and MsrB) in Staphylococcus aureus. To understand the regulation of this locus, reporter strains were constructed by integrating a DNA fragment consisting of the msrA1/msrB promoter in front of a promoterless lacZ gene in the chromosome of wild-type and MsrA1-, MsrB-, MsrA1/MsrB-, and SigB-deficient methicillin-sensitive S. aureus strain SH1000 and methicillin-resistant S. aureus strain COL. These reporter strains were cultured in TSB and the cellular levels of β-galactosidase activity in these cultures were assayed during different growth phases. β-galactosidase activity assays demonstrated that the lack of MsrA1, MsrB, and SigB upregulated the msrA1/msrB promoter in S. aureus strain SH1000. In S. aureus strain COL, the highest level of β-galactosidase activity was observed under the conditions when both MsrA1 and MsrB proteins were absent. The data suggest that the msrA1/msrB locus, in part, is negatively regulated by MsrA1, MsrB, and SigB in S. aureus.
Collapse
|
20
|
Lee CR, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol 2015; 6:828. [PMID: 26322035 PMCID: PMC4531251 DOI: 10.3389/fmicb.2015.00828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
21
|
Pan H, Xu J, Kweon OG, Zou W, Feng J, He GX, Cerniglia CE, Chen H. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes. J Ind Microbiol Biotechnol 2015; 42:745-57. [PMID: 25720844 DOI: 10.1007/s10295-015-1599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes.
Collapse
Affiliation(s)
- Hongmiao Pan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079-9502, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Singh VK, Vaish M, Johansson TR, Baum KR, Ring RP, Singh S, Shukla SK, Moskovitz J. Significance of four methionine sulfoxide reductases in Staphylococcus aureus. PLoS One 2015; 10:e0117594. [PMID: 25680075 PMCID: PMC4334518 DOI: 10.1371/journal.pone.0117594] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and emergence of antibiotic resistance in clinical staphylococcal isolates raises concerns about our ability to control these infections. Cell wall-active antibiotics cause elevated synthesis of methionine sulfoxide reductases (Msrs: MsrA1 and MsrB) in S. aureus. MsrA and MsrB enzymes reduce S-epimers and R-epimers of methionine sulfoxide, respectively, that are generated under oxidative stress. In the S. aureus chromosome, there are three msrA genes (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a triple msrA (msrA1, msrA2 and msrA3) and a quadruple msrAB (msrA1, msrA2, msrA3, msrB) mutant. These mutants were used to determine the roles of Msr proteins in staphylococcal growth, antibiotic resistance, adherence to human lung epithelial cells, pigment production, and survival in mice relative to the wild-type strains. MsrA1-deficient strains were sensitive to oxidative stress conditions, less pigmented and less adherent to human lung epithelial cells, and showed reduced survival in mouse tissues. In contrast, MsrB-deficient strains were resistant to oxidants and were highly pigmented. Lack of MsrA2 and MsrA3 caused no apparent growth defect in S. aureus. In complementation experiments with the triple and quadruple mutants, it was MsrA1 and not MsrB that was determined to be critical for adherence and phagocytic resistance of S. aureus. Overall, the data suggests that MsrA1 may be an important virulence factor and MsrB probably plays a balancing act to counter the effect of MsrA1 in S. aureus.
Collapse
Affiliation(s)
- Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
- * E-mail:
| | - Manisha Vaish
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Trintje R. Johansson
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Kyle R. Baum
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Robert P. Ring
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Saumya Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Sanjay K. Shukla
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
23
|
Pinto AC, de Sá PHCG, Ramos RTJ, Barbosa S, Barbosa HPM, Ribeiro AC, Silva WM, Rocha FS, Santana MP, de Paula Castro TL, Miyoshi A, Schneider MPC, Silva A, Azevedo V. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 2014; 15:14. [PMID: 24405787 PMCID: PMC3890534 DOI: 10.1186/1471-2164-15-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/13/2013] [Indexed: 11/12/2022] Open
Abstract
Background The completion of whole-genome sequencing for Corynebacterium pseudotuberculosis strain 1002 has contributed to major advances in research aimed at understanding the biology of this microorganism. This bacterium causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death. In the current study, we simulated the conditions experienced by the bacteria during host infection. By sequencing transcripts using the SOLiDTM 3 Plus platform, we identified new targets expected to potentiate the survival and replication of the pathogen in adverse environments. These results may also identify possible candidates useful for the development of vaccines, diagnostic kits or therapies aimed at the reduction of losses in agribusiness. Results Under the 3 simulated conditions (acid, osmotic and thermal shock stresses), 474 differentially expressed genes exhibiting at least a 2-fold change in expression levels were identified. Important genes to the infection process were induced, such as those involved in virulence, defence against oxidative stress, adhesion and regulation, and many genes encoded hypothetical proteins, indicating that further investigation of the bacterium is necessary. The data will contribute to a better understanding of the biology of C. pseudotuberculosis and to studies investigating strategies to control the disease. Conclusions Despite the veterinary importance of C. pseudotuberculosis, the bacterium is poorly characterised; therefore, effective treatments for caseous lymphadenitis have been difficult to establish. Through the use of RNAseq, these results provide a better biological understanding of this bacterium, shed light on the most likely survival mechanisms used by this microorganism in adverse environments and identify candidates that may help reduce or even eradicate the problems caused by this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av, Antônio Carlos, Belo Horizonte 31,270-901, Brazil.
| |
Collapse
|
24
|
Fu F, Cheng VWT, Wu Y, Tang Y, Weiner JH, Li L. Comparative proteomic and metabolomic analysis of Staphylococcus warneri SG1 cultured in the presence and absence of butanol. J Proteome Res 2013; 12:4478-89. [PMID: 23961999 DOI: 10.1021/pr400533m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complete genome of the solvent tolerant Staphylococcus warneri SG1 was recently published. This Gram-positive bacterium is tolerant to a large spectrum of organic solvents including short-chain alcohols, alkanes, esters and cyclic aromatic compounds. In this study, we applied a two-dimensional liquid chromatography (2D-LC) mass spectrometry (MS) shotgun approach, in combination with quantitative 2-MEGA (dimethylation after guanidination) isotopic labeling, to compare the proteomes of SG1 grown under butanol-free and butanol-challenged conditions. In total, 1585 unique proteins (representing 65% of the predicted open reading frames) were identified, covering all major metabolic pathways. Of the 967 quantifiable proteins by 2-MEGA labeling, 260 were differentially expressed by at least 1.5-fold. These proteins are involved in energy metabolism, oxidative stress response, lipid and cell envelope biogenesis, or have chaperone functions. We also applied differential isotope labeling LC-MS to probe metabolite changes in key metabolic pathways upon butanol stress. This is the first comprehensive proteomic and metabolomic study of S. warneri SG1 and presents an important step toward understanding its physiology and mechanism of solvent tolerance.
Collapse
Affiliation(s)
- Feifei Fu
- Department of Chemistry and ‡Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G2G2, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Chen H, Liu Y, Zhao C, Xiao D, Zhang J, Zhang F, Chen M, Wang H. Comparative proteomics-based identification of genes associated with glycopeptide resistance in clinically derived heterogeneous vancomycin-intermediate Staphylococcus aureus strains. PLoS One 2013; 8:e66880. [PMID: 23840544 PMCID: PMC3696005 DOI: 10.1371/journal.pone.0066880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/10/2013] [Indexed: 11/29/2022] Open
Abstract
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) is associated with clinical treatment failure. However, the resistance mechanism of hVISA has not been fully clarified. In the present study, comparative proteomics analysis of two pairs of isogenic vancomycin-susceptible S. aureus (VSSA) and hVISA strains isolated from two patients identified five differentially expressed proteins, IsaA, MsrA2, Asp23, GpmA, and AhpC, present in both isolate pairs. All the proteins were up-regulated in the hVISA strains. These proteins were analyzed in six pairs of isogenic VSSA and hVISA strains, and unrelated VSSA (n = 30) and hVISA (n = 24) by real-time quantitative reverse transcriptase–PCR (qRT–PCR). Of the six pairs of isogenic strains, isaA, msrA2 and ahpC were up-regulated in all six hVISA strains; whereas asp23 and gpmA were up-regulated in five hVISA strains compared with the VSSA parental strains. In the unrelated strains, statistical analyses showed that only isaA was significantly up-regulated in the hVISA strains. Analysis of the five differentially expressed proteins in 15 pairs of persistent VSSA strains by qRT–PCR showed no differences in the expression of the five genes among the persistent strains, suggesting that these genes are not associated with persistence infection. Our results indicate that increased expression of isaA may be related to hVISA resistance.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yali Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Di Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jianzhong Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Feifei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Minjun Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
26
|
Couturier J, Vignols F, Jacquot JP, Rouhier N. Glutathione- and glutaredoxin-dependent reduction of methionine sulfoxide reductase A. FEBS Lett 2012; 586:3894-9. [PMID: 23022439 DOI: 10.1016/j.febslet.2012.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/07/2023]
Abstract
A natural fusion occurring between two tandemly repeated glutaredoxin (Grx) modules and a methionine sulfoxide reductase A (MsrA) has been detected in Gracilaria gracilis. Using an in vivo yeast complementation assay and in vitro activity measurements, we demonstrated that this fusion enzyme was able to reduce methionine sulfoxide into methionine using glutathione as a reductant. Consistently, a poplar cytosolic MsrA can be regenerated in vitro by glutaredoxins with an efficiency comparable to that of thioredoxins, but using a different mechanism. We hypothesize that the glutathione/glutaredoxin system could constitute an evolutionary conserved alternative regeneration system for MsrA.
Collapse
Affiliation(s)
- Jérémy Couturier
- UMR1136 Université de Lorraine-INRA, Interactions Arbres-Microorganismes, IFR 110, Faculté des Sciences, 54500 Vandoeuvre, France.
| | | | | | | |
Collapse
|
27
|
Nodwell MB, Menz H, Kirsch SF, Sieber SA. Rugulactone and its Analogues Exert Antibacterial Effects through Multiple Mechanisms Including Inhibition of Thiamine Biosynthesis. Chembiochem 2012; 13:1439-46. [DOI: 10.1002/cbic.201200265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 11/11/2022]
|
28
|
Zhang T, Ding Y, Li T, Wan Y, Li W, Chen H, Zhou R. A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis. BMC Microbiol 2012; 12:85. [PMID: 22646062 PMCID: PMC3458967 DOI: 10.1186/1471-2180-12-85] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/02/2012] [Indexed: 01/16/2023] Open
Abstract
Background Metal ions are important micronutrients in cellular metabolism, but excess ions that cause toxic reactive oxygen species are harmful to cells. In bacteria, Fur family proteins such as Fur, Zur and PerR manage the iron and zinc uptake and oxidative stress responses, respectively. The single Fur-like protein (annotated as PerR) in Streptococcus suis has been demonstrated to be involved in zinc and iron uptake in previous studies, but the reports on oxidative stress response and gene regulation are limited. Results In the present study, the perR gene deletion mutant ΔperR was constructed in Streptococcus suis serotype 2 strain SC-19, and the mutant strain ΔperR exhibited less sensitivity to H2O2 stress compared to the wild-type. The dpr and metQIN were found to be upregulated in the ΔperR strain compared with SC-19. Electrophoretic mobility shift assays showed that the promoters of dpr and metQIN could be bound by the PerR protein. These results suggest that dpr and metQIN are members of the PerR regulon of S. suis. dpr encodes a Dps-like peroxide resistance protein, and the dpr knockout strains (Δdpr and ΔdprΔperR) were highly sensitive to H2O2. MetQIN is a methionine transporter, and the increased utilization of methionine in the ΔperR strain indirectly affected the peroxide resistance. Using a promoter–EGFP gene fusion reporting system, we found that the PerR regulon was induced by H2O2, and the induction was modulated by metal ions. Finally, we found that the pathogenicity of the perR mutant was attenuated and easily cleared by mice. Conclusions These data strongly suggest that the Fur-like protein PerR directly regulates dpr and metQIN and plays a crucial role in oxidative stress response in S. suis.
Collapse
Affiliation(s)
- Tengfei Zhang
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Turnbull WB, Stalford SA. Methylthioxylose--a jewel in the mycobacterial crown? Org Biomol Chem 2012; 10:5698-706. [PMID: 22575989 DOI: 10.1039/c2ob25630d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ten years ago an unusual sugar was discovered in a cell wall polysaccharide of Mycobacterium tuberculosis. Structural elucidation revealed the presence of the first thiosugar in a bacterial polysaccharide. Synthetic studies have helped to define its relative and absolute configuration as α-D-methylthioxylofuranosyl. While its biosynthetic origins remain the subject of speculation, work has begun to define its possible biological roles.
Collapse
Affiliation(s)
- W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
30
|
Das K, De la Garza G, Maffi S, Saikolappan S, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS One 2012; 7:e36247. [PMID: 22558404 PMCID: PMC3340341 DOI: 10.1371/journal.pone.0036247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/29/2012] [Indexed: 02/02/2023] Open
Abstract
Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells.
Collapse
Affiliation(s)
- Kishore Das
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Georgina De la Garza
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Shivani Maffi
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Sankaralingam Saikolappan
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Subramanian Dhandayuthapani
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| |
Collapse
|
31
|
Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem Rev 2012; 112:4156-220. [PMID: 22519511 DOI: 10.1021/cr608202m] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Smoum
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
32
|
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2012; 2:33. [PMID: 22919625 PMCID: PMC3417528 DOI: 10.3389/fcimb.2012.00033] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/23/2022] Open
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Collapse
Affiliation(s)
- Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE, USA
| | | | | |
Collapse
|
33
|
Expression of Four Methionine Sulfoxide Reductases in Staphylococcus aureus. Int J Microbiol 2012; 2012:719594. [PMID: 22272204 PMCID: PMC3261475 DOI: 10.1155/2012/719594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus possesses three MsrA enzymes (MsrA1, MsrA2, MsrA3) that reduce the S-epimer of methionine sulfoxide (MetO) and an MsrB enzyme that reduces R-MetO. The four msr genes are expressed from three different promoters. The msrA1/msrB genes are coexpressed. To determine the expression pattern of msr genes, three independent reporter strains were constructed where msr promoter was cloned in front of a promoterless lacZ and the resulting construct was integrated in the chromosome. Using these strains, it was determined that the msrA1/B expression is significantly higher in S. aureus compared to msrA2 or msrA3. Expression of msrA1/B was highest during stationary phase growth, but the expression of msrA2 and msrA3 was highest during the early to midexponential growth phase. Expression of msrA1/B was induced by oxacillin and the expression of msrA3 was upregulated by salt. Expression of msrA2 remained unchanged under all tested conditions.
Collapse
|
34
|
Hébert L, Moumen B, Pons N, Duquesne F, Breuil MF, Goux D, Batto JM, Laugier C, Renault P, Petry S. Genomic characterization of the Taylorella genus. PLoS One 2012; 7:e29953. [PMID: 22235352 PMCID: PMC3250509 DOI: 10.1371/journal.pone.0029953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/07/2011] [Indexed: 01/21/2023] Open
Abstract
The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus.
Collapse
Affiliation(s)
- Laurent Hébert
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
- * E-mail: (LH); (SP)
| | - Bouziane Moumen
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Nicolas Pons
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Fabien Duquesne
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
| | | | - Didier Goux
- Centre de Microscopie Appliquée à la Biologie, Université de Caen Basse-Normandie et IFR146 ICORE, Caen, France
| | - Jean-Michel Batto
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Claire Laugier
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
| | - Pierre Renault
- Institut National de la Recherche Agronomique, UMR1319 Micalis, Domaine de Vilvert, Jouy-en-Josas, France
| | - Sandrine Petry
- ANSES, Dozulé Laboratory for Equine Diseases, Dozulé, France
- * E-mail: (LH); (SP)
| |
Collapse
|
35
|
Dhandayuthapani S, Jagannath C, Nino C, Saikolappan S, Sasindran SJ. Methionine sulfoxide reductase B (MsrB) of Mycobacterium smegmatis plays a limited role in resisting oxidative stress. Tuberculosis (Edinb) 2011; 89 Suppl 1:S26-32. [PMID: 20006300 DOI: 10.1016/s1472-9792(09)70008-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathogenic mycobacteria including Mycobacterium tuberculosis resists phagocyte generated reactive oxygen intermediates (ROI) and this constitutes an important virulence mechanism. We have previously reported, using Mycobacterium smegmatis as a model to identify the bacterial components that resist intracellular ROI, that an antioxidant methionine sulfoxide reductase A (MsrA) plays a critical role in this process. In this study, we report the role of methionine sulfoxide reductase B (MsrB) in resistance to ROI by constructing a msrB mutant (MSDeltamsrB) and MsrA/B double mutant (MSDeltamsrA/B) strains of M. smegmatis and testing their survival in unactivated and interferon gamma activated mouse macrophages. WhilemsrB mutant exhibited significantly lower intracellular survival than its wild type counterpart, the survival rate seemed to be much higher than msrA mutant (MSDeltamsrA) strain. Further, the msrB mutant showed no sensitivity to oxidants in vitro. The msrA/B double mutant (MSDeltamsrA/B), on the other hand, exhibited a phenotype similar to that of msrA mutant in terms of both intracellular survival and sensitivity to oxidants. We conclude, therefore, that MsrB of M. smegmatis plays only a limited role in resisting intracellular and in vitro ROI.
Collapse
Affiliation(s)
- Subramanian Dhandayuthapani
- Department of Microbiology and Immunology and Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, TX 78541, USA.
| | | | | | | | | |
Collapse
|
36
|
Denkel LA, Horst SA, Rouf SF, Kitowski V, Böhm OM, Rhen M, Jäger T, Bange FC. Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. PLoS One 2011; 6:e26974. [PMID: 22073230 PMCID: PMC3206869 DOI: 10.1371/journal.pone.0026974] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/06/2011] [Indexed: 12/24/2022] Open
Abstract
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.
Collapse
Affiliation(s)
- Luisa A. Denkel
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Sarah A. Horst
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Syed Fazle Rouf
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Vera Kitowski
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Oliver M. Böhm
- Molecular Links Sachsen-Anhalt Gesellschaft mit beschränkter Haftung, Magdeburg, Germany
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Timo Jäger
- Molecular Links Sachsen-Anhalt Gesellschaft mit beschränkter Haftung, Magdeburg, Germany
| | - Franz-Christoph Bange
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
37
|
Letek M, González P, MacArthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vázquez-Boland JA. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 2010; 6:e1001145. [PMID: 20941392 PMCID: PMC2947987 DOI: 10.1371/journal.pgen.1001145] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022] Open
Abstract
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. Rhodococcus is a prototypic genus within the Actinobacteria, one of the largest microbial groups on Earth. Many of the ubiquitous rhodococcal species are biotechnologically useful due to their metabolic versatility and biodegradative properties. We have deciphered the genome of a facultatively parasitic Rhodococcus, the animal and human pathogen R. equi. Comparative genomic analyses of related species provide a unique opportunity to increase our understanding of niche-adaptive genome evolution and specialization. The environmental rhodococci have much larger genomes, richer in metabolic and degradative pathways, due to gene duplication and acquisition, not genome contraction in R. equi. This probably reflects that the host-associated R. equi habitat is more stable and favorable than the chemically diverse but nutrient-poor environmental niches of nonpathogenic rhodococci, necessitating metabolically more complex, expanded genomes. Our work also highlights that the recruitment or cooption of core microbial traits, following the horizontal acquistion of a few critical genes that provide access to the host niche, is an important mechanism in actinobacterial virulence evolution. Gene cooption is a key evolutionary mechanism allowing rapid adaptive change and novel trait acquisition. Recognizing the contribution of cooption to virulence provides a rational framework for understanding and interpreting the emergence and evolution of microbial pathogenicity.
Collapse
Affiliation(s)
- Michal Letek
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia González
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Iain MacArthur
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Héctor Rodríguez
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom C. Freeman
- Division of Genetics and Genomics, Roslin BioCentre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Valero-Rello
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Mónica Blanco
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Tom Buckley
- Irish Equine Centre, Johnstown, Naas, Ireland
| | - Inna Cherevach
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Ruth Fahey
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Alexia Hapeshi
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Jolyon Holdstock
- Oxford Gene Technology, Begbroke Science Park, Oxford, United Kingdom
| | | | - Jesús Navas
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | - Michael A. Quail
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mandy Sanders
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mariela M. Scortti
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense, Madrid, Spain
| | - John F. Prescott
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | | | - Wim G. Meijer
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - José A. Vázquez-Boland
- Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain
- * E-mail:
| |
Collapse
|
38
|
Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 2010; 78:3889-97. [PMID: 20566694 DOI: 10.1128/iai.00165-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methionine sulfoxide reductases A and B are antioxidant repair enzymes that reduce the S- and R-diastereomers of methionine sulfoxides back to methionine, respectively. Enterococcus faecalis, an important nosocomial pathogen, has one msrA gene and one msrB gene situated in different parts of the chromosome. Promoters have been mapped and mutants have been constructed in two E. faecalis strains (strains JH2-2 and V583) and characterized. For both backgrounds, the mutants are more sensitive than the wild-type parents to exposure to H2O2, and in combination the mutations seem to be additive. The virulence of the mutants has been analyzed in four different models. Survival of the mutants inside mouse peritoneal macrophages stimulated with recombinant gamma interferon plus lipopolysaccharide but not in naïve phagocytes is significantly affected. The msrA mutant is attenuated in the Galleria mellonella insect model. Deficiency in either Msr enzyme reduced the level of virulence in a systemic and urinary tract infection model. Virulence was reconstituted in the complemented strains. The combined results show that Msr repair enzymes are important for the oxidative stress response, macrophage survival, and persistent infection with E. faecalis.
Collapse
|
39
|
Bong SM, Kwak GH, Moon JH, Lee KS, Kim HS, Kim HY, Chi YM. Structural and kinetic analysis of free methionine-R-sulfoxide reductase from Staphylococcus aureus: conformational changes during catalysis and implications for the catalytic and inhibitory mechanisms. J Biol Chem 2010; 285:25044-52. [PMID: 20504774 DOI: 10.1074/jbc.m110.103119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free methionine-R-sulfoxide reductase (fRMsr) reduces free methionine R-sulfoxide back to methionine, but its catalytic mechanism is poorly understood. Here, we have determined the crystal structures of the reduced, substrate-bound, and oxidized forms of fRMsr from Staphylococcus aureus. Our structural and biochemical analyses suggest the catalytic mechanism of fRMsr in which Cys(102) functions as the catalytic residue and Cys(68) as the resolving Cys that forms a disulfide bond with Cys(102). Cys(78), previously thought to be a catalytic Cys, is a non-essential residue for catalytic function. Additionally, our structures provide insights into the enzyme-substrate interaction and the role of active site residues in substrate binding. Structural comparison reveals that conformational changes occur in the active site during catalysis, particularly in the loop of residues 97-106 containing the catalytic Cys(102). We have also crystallized a complex between fRMsr and isopropyl alcohol, which acts as a competitive inhibitor for the enzyme. This isopropyl alcohol-bound structure helps us to understand the inhibitory mechanism of fRMsr. Our structural and enzymatic analyses suggest that a branched methyl group in alcohol seems important for competitive inhibition of the fRMsr due to its ability to bind to the active site.
Collapse
Affiliation(s)
- Seoung Min Bong
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Bizzini A, Zhao C, Auffray Y, Hartke A. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64:1196-202. [PMID: 19828491 DOI: 10.1093/jac/dkp369] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Enterococcus faecalis is a human commensal that has the ability to become a pathogen. Because of its ruggedness, it can persist in the hospital setting and cause serious nosocomial infections. E. faecalis can acquire multiple drug resistance determinants but is also intrinsically tolerant to a number of antibiotics, such as penicillin or vancomycin, meaning that these usually bactericidal drugs only exhibit a bacteriostatic effect. Recently, evidence has been presented that exposure to bactericidal antibiotics induced the production of reactive oxygen species in bacteria. Here, we studied the role of enzymes involved in the oxidative stress response in the survival of E. faecalis after antibiotic treatment. METHODS Mutants defective in genes encoding oxidative stress defence activities were tested by time-kill curves for their contribution to antibiotic tolerance in comparison with the E. faecalis JH2-2 wild-type (WT). RESULTS In killing assays, WT cultures lost 0.2 +/- 0.1 and 1.3 +/- 0.2 log(10) cfu/mL after 24 h of vancomycin or penicillin exposure, respectively. A deletion mutant of the superoxide dismutase gene (DeltasodA) exhibited a lack of tolerance as cultures lost 4.1 +/- 0.5 and 4.8 +/- 0.7 log(10) cfu/mL after 24 h of exposure to the same drugs. Complementation of DeltasodA re-established the tolerant phenotype. Bacterial killing was an oxygen-dependent process and a model is presented implicating the superoxide anion as the mediator of this killing. As predicted from the model, a mutant defective in peroxidase activities excreted hydrogen peroxide at an elevated rate. CONCLUSIONS SodA is central to the intrinsic ability of E. faecalis to withstand drug-induced killing, and the superoxide anion seems to be the key effector of bacterial death.
Collapse
Affiliation(s)
- Alain Bizzini
- Laboratoire de Microbiologie de l'Environnement, EA956, USC INRA 2017, Université de Caen, Caen, France
| | | | | | | |
Collapse
|
41
|
Thioredoxin 1 participates in the activity of the Salmonella enterica serovar Typhimurium pathogenicity island 2 type III secretion system. J Bacteriol 2009; 191:6918-27. [PMID: 19767428 DOI: 10.1128/jb.00532-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.
Collapse
|
42
|
The Mycoplasma genitalium MG_454 gene product resists killing by organic hydroperoxides. J Bacteriol 2009; 191:6675-82. [PMID: 19717589 DOI: 10.1128/jb.01066-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma genitalium is the smallest self-replicating organism and a successful human pathogen associated with a range of genitourinary maladies. As a consequence of its restricted genome size, genes that are highly conserved in other bacteria are absent in M. genitalium. Significantly, genes that encode antioxidants like superoxide dismutase and catalase-peroxidase are lacking. Nevertheless, comparative genomics has revealed that MG_454 of M. genitalium encodes a protein with putative function as an organic hydroperoxide reductase (Ohr). In this study, we found that an M. genitalium transposon mutant that lacks expression of MG_454 was sensitive to killing by t-butyl hydroperoxide and cumene hydroperoxide. To understand whether this sensitivity to hydroperoxides was linked to MG_454, we cloned this gene behind an arabinose-inducible PBAD promoter in plasmid pHERD20T and transformed this construct (pHERDMG454) into a Pseudomonas aeruginosa strain having deletion in its ohr gene (ohr mutant) and showing sensitivity to organic hydroperoxides. The P. aeruginosa ohr mutant harboring pHERDMG454, when induced with arabinose, was able to reverse its sensitivity to organic hydroperoxides, thus supporting the notion that the product of MG_454 resists organic hydroperoxides in M. genitalium. Surprisingly, real-time reverse transcription-PCR showed that expression of MG_454 in M. genitalium was not elevated in response to oxidative stress but was elevated in response to physical stresses, like salt (NaCl) and heat. Although failure of MG_454 to respond to oxidative stress in M. genitalium implies the absence of a known oxidative stress response regulator in the genome of M. genitalium, elevated expression of MG_454 due to physical stress suggests its control by an unidentified regulator.
Collapse
|
43
|
Champion MD, Zeng Q, Nix EB, Nano FE, Keim P, Kodira CD, Borowsky M, Young S, Koehrsen M, Engels R, Pearson M, Howarth C, Larson L, White J, Alvarado L, Forsman M, Bearden SW, Sjöstedt A, Titball R, Michell SL, Birren B, Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog 2009; 5:e1000459. [PMID: 19478886 PMCID: PMC2682660 DOI: 10.1371/journal.ppat.1000459] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/29/2009] [Indexed: 01/15/2023] Open
Abstract
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
Collapse
Affiliation(s)
- Mia D Champion
- Microbial Analysis Group, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Walss-Bass C, Soto-Bernardini MC, Johnson-Pais T, Leach RJ, Ontiveros A, Nicolini H, Mendoza R, Jerez A, Dassori A, Chavarria-Siles I, Escamilla MA, Raventos H. Methionine sulfoxide reductase: a novel schizophrenia candidate gene. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:219-25. [PMID: 18506707 PMCID: PMC3781017 DOI: 10.1002/ajmg.b.30791] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Methionine sulfoxide reductase (MSRA) is an antioxidant enzyme implicated in protection against oxidative stress and protein maintenance. We have previously reported the association of marker D8S542, located within the MSRA gene, with schizophrenia in the Central Valley of Costa Rica (CVCR). By performing fine mapping analysis, we have now identified a potential three-marker at risk haplotype within MSRA in the same CVCR sample, with a global P-value slightly above nominal significance (P = 0.0526). By sequencing the MSRA gene in individuals carrying this haplotype, we identified a novel 4-base pair deletion 1,792 bases upstream of the MSRA transcription start site. This deletion was significantly under-transmitted to schizophrenia patients in the CVCR sample (P = 0.0292) using FBAT, and this was replicated in a large independent sample of 321 schizophrenia families from the Hispanic population (P = 0.0367). These findings suggest a protective effect of the deletion against schizophrenia. Further, MSRA mRNA levels were significantly lower in lymphoblastoid cell lines of individuals homozygous for the deletion compared to carriers of the normal allele (P = 0.0135), although significance was only evident when genotypes were collapsed. This suggests that the deleted sequence may play a role in regulating MSRA expression. In conclusion, this work points towards MSRA as a novel schizophrenia candidate gene. Further studies into the mechanisms by which MSRA is involved in schizophrenia pathophysiology may shed light into the biological underpinnings of this disorder.
Collapse
Affiliation(s)
- Consuelo Walss-Bass
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, USA.
| | | | - Teresa Johnson-Pais
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Robin J. Leach
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Alfonso Ontiveros
- Center for Investigation, School of Medicine, Division of the Health Sciences ITESM, Institute of Information for the Investigation in Mental Health, Monterrey N.L., Mexico
| | - Humberto Nicolini
- Medical and Family Research Group, Carracci S.C., Mexico D.F. Mexico
| | - Ricardo Mendoza
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Torrence, California
| | - Alvaro Jerez
- International Center for Affective Illnesses and Addictive Conduct (CITACA), Guatemala, Guatemala
| | - Albana Dassori
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Ivan Chavarria-Siles
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Michael A. Escamilla
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Henriette Raventos
- Center for Investigation of Molecular and Cellular Biology, University of Costa Rica, San Jose, Costa Rica
,Genetics Section, School of Biology, University of Costa Rica, San Jose, Costa Rica
| |
Collapse
|
45
|
Stalford SA, Fascione MA, Sasindran SJ, Chatterjee D, Dhandayuthapani S, Turnbull WB. A natural carbohydrate substrate for Mycobacterium tuberculosis methionine sulfoxide reductase A. Chem Commun (Camb) 2008:110-2. [PMID: 19082015 DOI: 10.1039/b817483k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic reduction of the methylsulfinylxylofuranosyl (MSX) groups in lipoarabinomannan provides proof of the absolute configuration of MSX and a possible biochemical mechanism for oxidative protection in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Susanne A Stalford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UKLS2 9JT
| | | | | | | | | | | |
Collapse
|