1
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
2
|
Chia WK, Chia PY, Abdul Aziz NH, Shuib S, Mustangin M, Cheah YK, Khong TY, Wong YP, Tan GC. Diagnostic Utility of TSSC3 and RB1 Immunohistochemistry in Hydatidiform Mole. Int J Mol Sci 2023; 24:9656. [PMID: 37298606 PMCID: PMC10253801 DOI: 10.3390/ijms24119656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The general notion of complete hydatidiform moles is that most of them consist entirely of paternal DNA; hence, they do not express p57, a paternally imprinted gene. This forms the basis for the diagnosis of hydatidiform moles. There are about 38 paternally imprinted genes. The aim of this study is to determine whether other paternally imprinted genes could also assist in the diagnostic approach of hydatidiform moles. This study comprised of 29 complete moles, 15 partial moles and 17 non-molar abortuses. Immunohistochemical study using the antibodies of paternal-imprinted (RB1, TSSC3 and DOG1) and maternal-imprinted (DNMT1 and GATA3) genes were performed. The antibodies' immunoreactivity was evaluated on various placental cell types, namely cytotrophoblasts, syncytiotrophoblasts, villous stromal cells, extravillous intermediate trophoblasts and decidual cells. TSSC3 and RB1 expression were observed in all cases of partial moles and non-molar abortuses. In contrast, their expression in complete moles was identified in 31% (TSSC3) and 10.3% (RB1), respectively (p < 0.0001). DOG1 was consistently negative in all cell types in all cases. The expressions of maternally imprinted genes were seen in all cases, except for one case of complete mole where GATA3 was negative. Both TSSC3 and RB1 could serve as a useful adjunct to p57 for the discrimination of complete moles from partial moles and non-molar abortuses, especially in laboratories that lack comprehensive molecular service and in cases where p57 staining is equivocal.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Pik Yuen Chia
- Department of Pathology, Hospital Umum Sarawak, Kuching 93586, Sarawak, Malaysia;
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia;
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Teck Yee Khong
- Department of Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia;
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Characteristic DNA methylation profiles of chorionic villi in recurrent miscarriage. Sci Rep 2022; 12:11673. [PMID: 35896560 PMCID: PMC9329430 DOI: 10.1038/s41598-022-15656-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of transcriptional programs that are tightly regulated by DNA methylation during placental and fetal development at different gestational stages, may cause recurrent miscarriage. Here, we examined genome-wide DNA methylation in chorionic villi and decidual tissues from patients suffering RM and from healthy women who had undergone artificial abortion (n = 5 each). We found that 13,426 and 5816 CpG sites were differentially methylated in chorionic villi and decidua, respectively. DNA methylation profiles of chorionic villi, but not decidua, in RM patients was clearly distinct from AA controls. Among the differentially methylated genes, the enhancer region of SPATS2L was significantly more highly methylated in RM patients (n = 19) than AA controls (n = 19; mean methylation level, 52.0%-vs.-28.9%, P < 0.001), resulting in reduced expression of SPATS2L protein in the former. Functionally, depletion of SPATS2L in extravillous trophoblast cells decreased their invasion and migration abilities. Our data indicate that particularly the chorionic villi in RM patients exhibit distinct DNA methylation profiles compared with normal pregnancies and that this changed DNA methylation status may impede the progression of embryo development via the altered expression of genes such as SPATS2L in the villi.
Collapse
|
4
|
Rahat B, Hamid A, Bagga R, Kaur J. Folic Acid Levels During Pregnancy Regulate Trophoblast Invasive Behavior and the Possible Development of Preeclampsia. Front Nutr 2022; 9:847136. [PMID: 35578613 PMCID: PMC9106796 DOI: 10.3389/fnut.2022.847136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND One of the unique features of placentation is its similarity to tumorigenesis yet being very well regulated. It allows rapid proliferation, migration, and invasion of mononuclear trophoblast cells into the maternal uterus and remodeling the maternal vasculature. This pseudomalignant nature of trophoblastic cells is strictly regulated and its importance becomes evident in abnormal pregnancies that are characterized by aberrant trophoblast proliferation/invasion like preeclampsia. In addition to this, the importance of folic acid supplementation during pregnancy is well documented. We aimed to analyze the molecular and epigenetic regulation of the pseudomalignant nature of placentation via folic acid levels. METHODS Placental tissue samples were collected from different pregnancies in three different gestational stages. We estimated the impact of folic acid levels on global methylation, LINE1 methylation, and expression of DNMTs in all three gestational stages in pregnant women and preeclampsia pregnancies. We also analyzed the effect of folic acid supplementation on trophoblastic invasion using placental derived cells viz, JEG-3 and HTR-8/SVneo cell line and verified the molecular and epigenetic mechanisms involved in this regulation. RESULTS Development of preeclampsia was observed to be associated with lower folate levels in placental tissue, higher global methylation level, and higher expression of DNMT1and DNMT3A. Folic acid supplementation was found to increase the invasive potential of placental trophoblasts by almost two folds which were associated with the decreased expression of tumor suppressor genes and tissue inhibitors of matrix metalloproteinases; and increased expression of oncogenes, telomerase gene, and matrix metalloproteinases. These folic acid-mediated changes were observed to be regulated by CpG methylation in the case of many genes. Folic acid supplementation was also observed to significantly decrease global methylation in placental trophoblasts related to decreasing expression of DNMT1 and DNMT3A. CONCLUSION Lower folic acid levels are associated with preeclampsia development and folic acid supplementation regulates the invasive potential of placental trophoblasts as mediated by various epigenetic changes in the placenta suggesting the protective effect of folic acid against preeclampsia.
Collapse
Affiliation(s)
- Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Rashmi Bagga
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY) 2021; 13:4962-4975. [PMID: 33668040 PMCID: PMC7950301 DOI: 10.18632/aging.103568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been identified to be dysregulated in multiple cancer types, which are speculated to be of vital significance in regulating several hallmarks of cancer biology. Triple-negative breast cancer (TNBC) is acknowledged as an aggressive subtype of breast cancer. In this study, we found the lncRNA LINC00472 was poorly expressed in TNBC tissues and cells. Overexpression of LINC00472 could inhibit the proliferation, invasion and migration of MDA-MB-231 cells. On the contrary, minichromosome maintenance complex component 6 (MCM6) was highly expressed in TNBC tissues and MDA-MB-231 cells due to suppressed methylation. LINC00472 induced site-specific DNA methylation and reduced the MCM6 expression by recruiting DNA methyltransferases into the MCM6 promoter. Since the restoration of MCM6 weakened the tumor-suppressive effect of LINC00472 on MDA-MB-231 cells, LINC00472 potentially acted as a tumor suppressor by inhibiting MCM6. In addition, in vivo experiments further substantiated that overexpression of LINC00472 inhibited tumor growth and metastasis to lungs by decreasing the expression of MCM6. Overall, the present study demonstrated that LINC00472-mediated epigenetic silencing of MCM6 contributes to the prevention of tumorigenesis and metastasis in TNBC, providing an exquisite therapeutic target for TNBC.
Collapse
|
6
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Xu L, Huo X, Liu Y, Zhang Y, Qin Q, Xu X. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. CHEMOSPHERE 2020; 246:125829. [PMID: 31927382 DOI: 10.1016/j.chemosphere.2020.125829] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Experimental studies have uncovered chemical exposure-induced ototoxicity, but population-based hearing risk assessment especially for early-life exposure to heavy metals and relevant biological mechanism remains unclear. We aimed to measure lead (Pb) and cadmium (Cd) levels, blood DNA methylations of Rb1, CASP8 and MeCP2 and hearing in 116 preschool children 3- to 7-years of age from an e-waste and a reference area, and to evaluate the association of exposures with hearing loss potentially affected by epigenetic modifications. A higher median Pb level but not Cd was found in the exposed group than the reference group. Average hearing thresholds in either ear of the exposed children were higher. Higher promoter methylation levels at cg02978827 and position +14, and lower at position +4 of Rb1 were found in the exposed group. Pb was positively correlated with chewing pencil habit while negatively correlated with washing hands before dinner. Slightly negative trends of promoter methylations in Rb1 and CASP8, while a strong positive trend of MeCP2 promoter methylation, were found along with increasing Pb and Cd levels. Logistic analyses showed the adjusted OR of Pb for hearing loss in the left ear and both ears was 1.46 (95% CI: 1.12, 1.91) and 1.40 (95% CI: 1.06, 1.84), respectively. Our results show an elevated Pb level, altered promoter DNA methylations and hearing ability in children of e-waste areas, suggesting that epigenetic changes of specific genes involves in the development of the auditory system during early exposure to environmental chemicals.
Collapse
Affiliation(s)
- Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China; Department of Cell Biolog Park y and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
9
|
Zhang L, Zhao F, Li C, Li H, Tang Q, Chen Y, Yao Y, Ding Z, Xu Y, Chen A, Liu S. Hypomethylation of DNA promoter upregulates ADAMTS7 and contributes to HTR-8/SVneo and JEG-3 cells abnormalities in pre-eclampsia. Placenta 2020; 93:26-33. [PMID: 32250736 DOI: 10.1016/j.placenta.2020.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Accumulating evidences have suggested a crucial role of epigenetics in the initiation and progression of pre-eclampsia (PE). Here, we studied the expression of the metalloproteinase ADAMTS7 and the methylation level of its promoter in PE placentas and investigated ADAMTS7 role in the pathogenesis of PE. METHODS We first explored ADAMTS7 expression in PE and normal placentas by reverse transcription quantitative PCR (RT-qPCR), western blot, and immunohistochemistry. Methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) were performed to evaluate the methylation status of ADAMTS7 promoter. Treatment with 5'-Aza was used to induce demethylation and thereby to explore the direct relationship between promoter methylation and ADAMTS7 expression. CCK8 assay, colony formation assay, and trans-well assay were conducted to assess the viability, migration, and invasion of HTR-8/SVneo and JEG-3 cells. RESULTS Our results showed that ADAMTS7 expression was upregulated in PE placentas. Methylation analysis revealed a hypomethylated status of ADAMTS7 promoter regions in PE placenta tissues. Besides, demethylation induced by 5'-Aza directly restored ADAMTS7 expression in trophoblast cells. Finally, overexpression of ADAMTS7 inhibited viability, migration, and invasion of HTR-8/SVneo and JEG-3 cells, while silence of ADAMTS7 by RNA interference reciprocally facilitated cell viability, migration and invasion in vitro. DISCUSSION Upregulation of ADAMTS7 by promoter hypomethylation in placenta might contribute to the etiology of PE via suppressing cell functions of trophoblasts.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fei Zhao
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chuan Li
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Tang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yushuang Yao
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhaoxia Ding
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yinglei Xu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Aiping Chen
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
10
|
Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S. The effects of placental long noncoding RNA H19 polymorphisms and promoter methylation on H19 expression in association with preeclampsia susceptibility. IUBMB Life 2019; 72:413-425. [PMID: 31769935 DOI: 10.1002/iub.2199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of DNA methylation on gene expression triggered it as a susceptibility factor in various diseases including preeclampsia (PE). The pathogenesis of PE is closely associated with the methylation status and genetic variants of relevant genes. Therefore, the aim of the study was to investigate the possible impacts of the placental DNA methylation and rs3741219, rs217727, and rs2107425 polymorphisms of the H19 gene on the PE susceptibility as well as the its mRNA expression. Moreover, eight haplotypes of three loci in the H19 gene were analyzed. In this case-control study, the placentas of 107 preeclamptic and 113 non-preeclamptic women were collected after delivery. The methylation status was assessed by methylation-specific polymerase chain reaction (PCR). The H19 polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism or amplification refractory mutation system-polymerase chain reaction methods. The quantitative real time PCR was used for mRNA expression assay. The placental H19 rs3741219 and rs2107425 polymorphisms were not associated with PE. However, H19 rs217727CT and TT genotypes might be associated with a 9.2- and 17.7-fold increased risk of PE, respectively. The Trs3741219 Crs217727 Crs2107425 and Trs3741219 Crs217727 Trs2107425 haplotypes were significantly lower, whereas the Trs3741219 Trs217727 Crs2107425 and Crs3741219 Trs217727 Crs2107425 haplotypes were significantly higher in PE women. Promoter but not upstream region hypermethylation of H19 gene could be led to decreased risk of PE (MM vs. UM + UU). No significant difference was observed in the placental mRNA expression between two groups. The H19 expression was significantly higher in women with unmethylated (UU), compared to methylated promoter (MM). The H19 expression was 17- and 15-fold higher in H19-rs2107425 CC and CT genotypes in PE women. In conclusion, the H19 rs2107425 polymorphism was associated with a higher risk of PE and increased H19 mRNA expression. The promoter hypermethylation of H19 gene was associated with a lower risk of PE and decreased H19 mRNA expression.
Collapse
Affiliation(s)
- Mahdiyeh Harati-Sadegh
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leila Kohan
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
11
|
Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells 2019; 8:cells8111459. [PMID: 31752198 PMCID: PMC6912400 DOI: 10.3390/cells8111459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
As the majority of cancers and gestational diseases are prognostically stage- and grade-dependent, the ultimate goal of ongoing studies in precision medicine is to provide early and timely diagnosis of such disorders. These studies have enabled the development of various new diagnostic biomarkers, such as free circulating nucleic acids, and detection of their epigenetic changes. Recently, extracellular vesicles including exosomes, microvesicles, oncosomes, and apoptotic bodies have been recognized as powerful diagnostic tools. Extracellular vesicles carry specific proteins, lipids, DNAs, mRNAs, and miRNAs of the cells that produced them, thus reflecting the function of these cells. It is believed that exosomes, in particular, may be the optimal biomarkers of pathological pregnancies and cancers, especially those that are frequently diagnosed at an advanced stage, such as ovarian cancer. In the present review, we survey and critically appraise novel epigenetic biomarkers related to free circulating nucleic acids and extracellular vesicles, focusing especially on their status in trophoblasts (pregnancy) and neoplastic cells (cancers).
Collapse
|
12
|
Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, Ahmadi M. The role of epigenetic changes in preeclampsia. Biofactors 2019; 45:712-724. [PMID: 31343798 DOI: 10.1002/biof.1542] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disorder affecting 2-10% of pregnancies and has a major role for perinatal and maternal mortality and morbidity. PE can be occurred by initiation of new hypertension combined with proteinuria after 20 weeks gestation, as well as various reasons such as inflammatory cytokines, poor trophoblast invasion can be related with PE disease. Environmental factors can cause epigenetic changes including DNA methylation, microRNAs (miRNAs), and histone modification that may be related to different diseases such as PE. Abnormal DNA methylation during placentation is the most important epigenetic factor correlated with PE. Moreover, changes in histone modification like acetylation and also the effect of overregulation or low regulation of miRNAs or long noncoding RNAs on variety signaling pathways can be resulted in PE. The aim of this review is to describe of studies about epigenetic changes in PE and its therapeutic strategies.
Collapse
Affiliation(s)
- Amin Kamrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Lv S, Wang N, Lv H, Yang J, Liu J, Li WP, Zhang C, Chen ZJ. The Attenuation of Trophoblast Invasion Caused by the Downregulation of EZH2 Is Involved in the Pathogenesis of Human Recurrent Miscarriage. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:377-387. [PMID: 30710891 PMCID: PMC6356049 DOI: 10.1016/j.omtn.2018.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Recurrent miscarriage (RM) is currently defined as two or more losses of a clinically established intrauterine pregnancy. Despite years of research, RM continues to be a clinically frustrating challenge for patients and physicians, and its etiology remains poorly understood. Accumulating evidence has suggested that epigenetic modifications are involved in early embryogenesis, and defects in epigenetic patterning contribute to the development of RM. Here, we studied the role of enhancer of zeste homolog 2 (EZH2) in the pathogenesis of RM and found that the EZH2 expression was significantly decreased in the villi from women with RM compared with that in control villi. EZH2 promoted the invasion of trophoblast cells. Moreover, EZH2 could promote epithelial-mesenchymal transition by epigenetically silencing CDX1. Both chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase report assays demonstrated that EZH2 repressed CDX1 transcription via direct binding to its promoter region and then trimethylating Histone3-Lysine27. Furthermore, we discovered that progesterone, which is used extensively in the treatment of miscarriage and RM, increased the expression of EZH2 via the extracellular signaling-regulated kinase (ERK1/2) pathway. These findings revealed that EZH2 may regulate trophoblast invasion as an epigenetic factor, suggesting that EZH2 might be a potential therapeutic target for RM.
Collapse
Affiliation(s)
- Shijian Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Na Wang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, No. 128, Shenyang Road, Yangpu District, Shanghai 200090, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jianwei Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Wei-Ping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Ji'nan, Shandong 250014, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
14
|
Li X, Wu C, Shen Y, Wang K, Tang L, Zhou M, Yang M, Pan T, Liu X, Xu W. Ten-eleven translocation 2 demethylates the MMP9 promoter, and its down-regulation in preeclampsia impairs trophoblast migration and invasion. J Biol Chem 2018; 293:10059-10070. [PMID: 29773648 DOI: 10.1074/jbc.ra117.001265] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia is the most common clinical disorder in pregnancy and might result from disordered uterine environments caused by epigenetic modifications, including deregulation of DNA methylation/demethylation. Recent research has indicated that 5-hydroxymethylcytosine (5hmC), a DNA base derived from 5-methylcytosine (5mC) via oxidation by ten-eleven translocation (TET) enzymes, is involved in DNA methylation-related plasticity. Here, we report that TET2 expression and 5hmC abundance are significantly altered in the placentas from preeclampsia patients. shRNA-mediated TET2 knockdown (shTET2) reduced trophoblast migration and invasion when cultured in Matrigel. Both real-time PCR of matrix metalloproteinase (MMP)-related transcripts and a human angiogenesis antibody array indicated that TET2 knockdown in trophoblasts inhibits the expression of MMP transcript, of which MMP9 represented one of the most significant TET2 downstream targets. Using an established shTET2 HTR-8/SVneo cell model, we further confirmed alterations of 5hmC levels and MMP9 expression at both mRNA and protein levels. In particular, we found that TET2 bound to and removed 5mC modifications at the MMP9 promoter region. Interestingly, in TET2 knockdown cells, both MMP9 expression and the compromised trophoblast phenotype could be rescued by vitamin C, an activator of TET enzyme activity. Finally, TET2 expression correlated with MMP9 levels in placenta samples from the preeclampsia patients, indicating that TET2 deregulation is critically involved in the pathogenesis of preeclampsia through down-regulation of MMP9 expression. Our findings highlight a critical role of TET2 in regulating trophoblast cell migration through demethylation at the MMP9 promoter, and suggest that down-regulation of the TET2-MMP9-mediated pathway contributes to preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Xiaoliang Li
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and.,Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong 637009 China
| | - Chunlian Wu
- Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong 637009 China
| | - Ying Shen
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Ke Wang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Li Tang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Mi Zhou
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Ming Yang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Tianying Pan
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Xinghui Liu
- Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Wenming Xu
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China, .,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| |
Collapse
|
15
|
Sun K, Lun FMF, Leung TY, Chiu RWK, Lo YMD, Sun H. Noninvasive reconstruction of placental methylome from maternal plasma DNA: Potential for prenatal testing and monitoring. Prenat Diagn 2018; 38:196-203. [PMID: 29334402 DOI: 10.1002/pd.5214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE During human pregnancy, the DNA methylation of placental tissue is highly relevant to the normal growth and development of the fetus; therefore, methylomic analysis of the placental tissue possesses high research and clinical value in prenatal testing and monitoring. Thus, our aim is to develop an approach for reconstruction of the placental methylome, which should be completely noninvasive and achieve high accuracy and resolution. RESULTS We propose a novel size-based algorithm, FEtal MEthylome Reconstructor (FEMER), to noninvasively reconstruct the placental methylome by genomewide bisulfite sequencing and size-based analysis of maternal plasma DNA. By applying FEMER on a real clinical dataset, we demonstrate that FEMER achieves both high accuracy and resolution, thus provides a high-quality view of the placental methylome from maternal plasma DNA. FEtal MEthylome Reconstructor could also predict the DNA methylation profile of CpG islands with high accuracy, thus shows potential in monitoring of key genes involved in placental/fetal development. Source code and testing datasets for FEMER are available at http://sunlab.cpy.cuhk.edu.hk/FEMER/. CONCLUSION FEtal MEthylome Reconstructor could enhance the noninvasive fetal/placental methylomic analysis and facilitate its application in prenatal testing and monitoring.
Collapse
Affiliation(s)
- Kun Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fiona M F Lun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
16
|
Heng J, Guo X, Wu W, Wang Y, Li G, Chen M, Peng L, Wang S, Dai L, Tang L, Wang J. Integrated analysis of promoter mutation, methylation and expression of AKT1 gene in Chinese breast cancer patients. PLoS One 2017; 12:e0174022. [PMID: 28301567 PMCID: PMC5354459 DOI: 10.1371/journal.pone.0174022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As downstream mediators of PI3K /PTEN /AKT /mTORC1 pathway, the AKT isoforms play critical roles in tumorgenesis. Although the pleiotropic effects of AKT1 in breast cancer have been reported, the genetic and epigenetic characteristics of AKT1 promoter region in breast cancer remains to be identified. In this study we aimed to investigate the promoter mutation spectrum, methylation and gene expression pattern of AKT1 and their relationship with breast cancer. METHODS By using PCR target sequence enrichment and next-generation sequencing technology, we sequenced AKT1 promoter region in pairs of breast tumor and normal tissues from 95 unselected Chinese breast cancer patients. The methylation of the promoter region and the expression profile of AKT1 in the same cohort were detected with bisulfite next-generation sequencing and qPCR, respectively. RESULTS We identified 28 somatic mutations in 23 of the 95 (24.2%) breast cancer samples. And 19 of the 28 mutations were located in transcription factor (TF) binding sites. In the 23 patients with somatic mutations, no significant change of methylation or expression was found comparing with other patients. AKT1 promoter region was significantly hypo-methylated in tumor compared with matched normal tissue (P = 0.0014) in the 95 patients. The expression of AKT1 was significantly suppressed in tumor tissue (P = 0.0375). In clinicopathological factor analysis, AKT1 showed significant hypo-methylation (P = 0.0249) and suppressed expression (P = 0.0375) in HER2 negative subtype. And a trend of decrease in expression level (P = 0.0624) of AKT1 in the ER negative subtype was observed, which is significantly decreased in basal-like breast tumor (P = 0.0328). CONCLUSIONS Hypo-methylation and suppressed expression of AKT1 was observed to be associated with breast cancer in our cohort. The methylation and expression of AKT1 were both significantly associated with HER2 status. The promoter mutation of AKT1 did not show significant association with its methylation and expression status. These results suggested that the promoter mutation, methylation and gene expression of AKT1 may play distinct roles in tumorgenesis of breast cancer and the integrated analysis of methylation and expression of AKT1 might serve as potential biomarkers for diagnosis and classification of breast cancer.
Collapse
Affiliation(s)
- Jianfu Heng
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinwu Guo
- Sanway Gene Technology Inc., Changsha, Hunan, China
| | - Wenhan Wu
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yue Wang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guoli Li
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, Hunan, China
| | - Limin Peng
- Sanway Gene Technology Inc., Changsha, Hunan, China
| | - Shouman Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhong Dai
- Sanway Gene Technology Inc., Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics, Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics and Therapeutics, Changsha, Hunan, China
| | - Lili Tang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (JW); (LLT)
| | - Jun Wang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics, Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics and Therapeutics, Changsha, Hunan, China
- * E-mail: (JW); (LLT)
| |
Collapse
|
17
|
Wang C, Shan S, Wang C, Wang J, Li J, Hu G, Dai K, Li Q, Zhang X. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog. Exp Cell Res 2017; 352:346-356. [PMID: 28215635 DOI: 10.1016/j.yexcr.2017.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down-regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading.
Collapse
Affiliation(s)
- Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shengzhou Shan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jing Wang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiao Li
- Department of cell biology, Zunyi Medical College, Zunyi 563000, China
| | - Guoli Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|