1
|
Whitfield-Cargile CM, Chung HC, Coleman MC, Cohen ND, Chamoun-Emanuelli AM, Ivanov I, Goldsby JS, Davidson LA, Gaynanova I, Ni Y, Chapkin RS. Integrated analysis of gut metabolome, microbiome, and exfoliome data in an equine model of intestinal injury. MICROBIOME 2024; 12:74. [PMID: 38622632 PMCID: PMC11017594 DOI: 10.1186/s40168-024-01785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The equine gastrointestinal (GI) microbiome has been described in the context of various diseases. The observed changes, however, have not been linked to host function and therefore it remains unclear how specific changes in the microbiome alter cellular and molecular pathways within the GI tract. Further, non-invasive techniques to examine the host gene expression profile of the GI mucosa have been described in horses but not evaluated in response to interventions. Therefore, the objectives of our study were to (1) profile gene expression and metabolomic changes in an equine model of non-steroidal anti-inflammatory drug (NSAID)-induced intestinal inflammation and (2) apply computational data integration methods to examine host-microbiota interactions. METHODS Twenty horses were randomly assigned to 1 of 2 groups (n = 10): control (placebo paste) or NSAID (phenylbutazone 4.4 mg/kg orally once daily for 9 days). Fecal samples were collected on days 0 and 10 and analyzed with respect to microbiota (16S rDNA gene sequencing), metabolomic (untargeted metabolites), and host exfoliated cell transcriptomic (exfoliome) changes. Data were analyzed and integrated using a variety of computational techniques, and underlying regulatory mechanisms were inferred from features that were commonly identified by all computational approaches. RESULTS Phenylbutazone induced alterations in the microbiota, metabolome, and host transcriptome. Data integration identified correlation of specific bacterial genera with expression of several genes and metabolites that were linked to oxidative stress. Concomitant microbiota and metabolite changes resulted in the initiation of endoplasmic reticulum stress and unfolded protein response within the intestinal mucosa. CONCLUSIONS Results of integrative analysis identified an important role for oxidative stress, and subsequent cell signaling responses, in a large animal model of GI inflammation. The computational approaches for combining non-invasive platforms for unbiased assessment of host GI responses (e.g., exfoliomics) with metabolomic and microbiota changes have broad application for the field of gastroenterology. Video Abstract.
Collapse
Affiliation(s)
- C M Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - H C Chung
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
- Mathematics & Statistics Department, College of Science, University of North Carolina Charlotte, Charlotte, NC, USA
| | - M C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - N D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A M Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - I Ivanov
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J S Goldsby
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - L A Davidson
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - I Gaynanova
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - Y Ni
- Department of Statistics, College of Arts & Sciences, Texas A&M University, College Station, TX, USA
| | - R S Chapkin
- Program in Integrative Nutrition & Complex Diseases, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Comparison between Symptomatic and Asymptomatic Mice after Clostridioides difficile Infection Reveals Novel Inflammatory Pathways and Contributing Microbiota. Microorganisms 2022; 10:microorganisms10122380. [PMID: 36557633 PMCID: PMC9782979 DOI: 10.3390/microorganisms10122380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Clostridioides difficile causes the highest number of nosocomial infections. Currently, treatment options for C. difficile infection (CDI) are very limited, resulting in poor treatment outcomes and high recurrence rates. Although the disease caused by CDI is inflammatory in nature, the role of inflammation in the development of CDI symptoms is contradictory and not completely understood. Hence, the use of anti-inflammatory medication is debatable in CDI. In the current study, we evaluated the genetic and microbiome profiles of mice after infection with C. difficile. These mice were categorized based on the severity of CDI and the results were viewed accordingly. Our results indicate that certain genes are upregulated in severe CDI more than in the moderate case. These include oncostatin-M (OSM), matrix metalloprotease 8 (MMP8), triggering receptor expressed on myeloid cells 1 (Trem-1), and dual oxidase 2 (Duox2). We also investigated the microbiome composition of CDI mice before and after infecting with C. difficile. The results show that C. difficile abundance is not indicative of diseases severity. Certain bacterial species (e.g., Citrobacter) were enriched while others (e.g., Turicibacter) were absent in severe CDI. This study identifies novel inflammatory pathways and bacterial species with a potential role in determining the severity of CDI.
Collapse
|
3
|
Acuña-Amador L, Quesada-Gómez C, Rodríguez C. Clostridioides difficile in Latin America: A comprehensive review of literature (1984-2021). Anaerobe 2022; 74:102547. [PMID: 35337973 DOI: 10.1016/j.anaerobe.2022.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
This narrative review summarizes literature on C. difficile and C. difficile infections (CDI) that emerged from Latin America (LA) between 1984 and 2021. The revised information includes papers in English, Spanish, or Portuguese that were retrieved from the databases Pubmed, Scopus, Web of Science, Google Scholar, Scielo, and Lilacs. Information is presented chronologically and segregated in subregions, focusing on clinical presentation, risk factors, detection and typing methods, prevalence and incidence rates, circulating strains, and, when available, phenotypic traits, such as antimicrobial susceptibility patterns. Studies dealing with cases, clinical aspects of CDI, and performance evaluations of diagnostic methods predominated. However, they showed substantial differences in case definitions, measuring units, populations, and experimental designs. Although a handful of autochthonous strains were identified, predominantly in Brazil and Costa Rica, the presentation and epidemiology of CDI in LA were highly comparable to what has been reported in other regions of the world. Few laboratories isolate and type this bacterium and even less generate whole genome sequences or perform basic science on C. difficile. Less than ten countries lead academic productivity on C. difficile or CDI-related topics, and information from various countries in Central America and the Caribbean is still lacking. The review ends with a global interpretation of the data and recommendations to further develop and consolidate this discipline in LA.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - Carlos Quesada-Gómez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - César Rodríguez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
4
|
Soto Ocaña J, Bayard NU, Zackular JP. Pain killers: the interplay between nonsteroidal anti-inflammatory drugs and Clostridioides difficile infection. Curr Opin Microbiol 2022; 65:167-174. [PMID: 34894543 PMCID: PMC9058983 DOI: 10.1016/j.mib.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile is one of the leading causes of nosocomial infections worldwide. Increases in incidence, severity, and healthcare cost associated with C. difficile infection (CDI) have made this pathogen an urgent public health threat worldwide. The factors shaping the evolving epidemiology of CDI and impacting clinical outcomes of infection are not well understood, but involve tripartite interactions between the host, microbiota, and C. difficile. In addition to this, emerging data suggests an underappreciated role for environmental factors, such as diet and pharmaceutical drugs, in CDI. In this review, we discuss the role of nonsteroidal anti-inflammatory drugs (NSAIDs) and eicosanoids in CDI.
Collapse
Affiliation(s)
- Joshua Soto Ocaña
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nile U. Bayard
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States;,Corresponding author:
| |
Collapse
|
5
|
Azimirad M, Noori M, Raeisi H, Yadegar A, Shahrokh S, Asadzadeh Aghdaei H, Bentivegna E, Martelletti P, Petrosillo N, Zali MR. How Does COVID-19 Pandemic Impact on Incidence of Clostridioides difficile Infection and Exacerbation of Its Gastrointestinal Symptoms? Front Med (Lausanne) 2021; 8:775063. [PMID: 34966759 PMCID: PMC8710593 DOI: 10.3389/fmed.2021.775063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world with a very high rate of mortality. Different symptoms developed by COVID-19 infection and its impacts on various organs of the human body have highlighted the importance of both coinfections and superinfections with other pathogens. The gastrointestinal (GI) tract is vulnerable to infection with COVID-19 and can be exploited as an alternative transmission route and target for virus entry and pathogenesis. The GI manifestations of COVID-19 disease are associated with severe disease outcomes and death in all age groups, in particular, elderly patients. Empiric antibiotic treatments for microbial infections in hospitalized patients with COVID-19 in addition to experimental antiviral and immunomodulatory drugs may increase the risk of antibiotic-associated diarrhea (AAD) and Clostridioides difficile infection (CDI). Alterations of gut microbiota are associated with depletion of beneficial commensals and enrichment of opportunistic pathogens such as C. difficile. Hence, the main purpose of this review is to explain the likely risk factors contributing to higher incidence of CDI in patients with COVID-19. In addition to lung involvement, common symptoms observed in COVID-19 and CDI such as diarrhea, highlight the significance of bacterial infections in COVID-19 patients. In particular, hospitalized elderly patients who are receiving antibiotics might be more prone to CDI. Indeed, widespread use of broad-spectrum antibiotics such as clindamycin, cephalosporins, penicillin, and fluoroquinolones can affect the composition and function of the gut microbiota of patients with COVID-19, leading to reduced colonization resistance capacity against opportunistic pathogens such as C. difficile, and subsequently develop CDI. Moreover, patients with CDI possibly may have facilitated the persistence of SARS-CoV-2 viral particles in their feces for approximately one month, even though the nasopharyngeal test turned negative. This coinfection may increase the potential transmissibility of both SARS-CoV-2 and C. difficile by fecal materials. Also, CDI can complicate the outcome of COVID-19 patients, especially in the presence of comorbidities or for those patients with prior exposure to the healthcare setting. Finally, physicians should remain vigilant for possible SARS-CoV-2 and CDI coinfection during the ongoing COVID-19 pandemic and the excessive use of antimicrobials and biocides.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enrico Bentivegna
- Internal Medicine and Emergency Medicine, St'Andrea Hospital, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Nicola Petrosillo
- Infectious Diseases Service, University Hospital Campus Bio-Medico, Rome, Italy
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kociolek LK, Zackular JP, Savidge T. Translational Aspects of the Immunology of Clostridioides difficile Infection: Implications for Pediatric Populations. J Pediatric Infect Dis Soc 2021; 10:S8-S15. [PMID: 34791392 PMCID: PMC8600028 DOI: 10.1093/jpids/piab089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clostridioides difficile has become the most common healthcare-associated pathogen in the United States, leading the US Centers for Disease Control and Prevention (CDC) to classify C. difficile as an "urgent" public health threat that requires "urgent and aggressive action." This call to action has led to new discoveries that have advanced our understanding of Clostridioides difficile infection (CDI) immunology and clinical development of immunologic-based therapies for CDI prevention. However, CDI immunology research has been limited in pediatric populations, and several unanswered questions remain regarding the function of host immune response in pediatric CDI pathogenesis and the potential role of immunologic-based therapies in children. This review summarizes the innate and adaptive immune responses previously characterized in animals and humans and provides a current update on clinical development of immunologic-based therapies for CDI prevention in adults and children. These data inform the future research needs for children.
Collapse
Affiliation(s)
- Larry K Kociolek
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Division of Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA,Corresponding Author: Larry K. Kociolek, MD, MSCI, Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Box 20, Chicago, IL 60611, USA. E-mail:
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tor Savidge
- Department of Pathology & Immunology, Baylor College of Medicine & Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
7
|
Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol 2021; 11:679396. [PMID: 34295835 PMCID: PMC8290187 DOI: 10.3389/fcimb.2021.679396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
As a class of the commonly used drugs in clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) can cause a series of adverse events including gastrointestinal injuries. Besides upper gastrointestinal injuries, NSAID enteropathy also attracts attention with the introduction of capsule endoscopy and double balloon enteroscopy. However, the pathogenesis of NSAID enteropathy remains to be entirely clarified. Growing evidence from basic and clinical studies presents that gut microbiota is a critical factor in NSAID enteropathy progress. We have reviewed the recent data about the interplay between gut microbiota dysbiosis and NSAID enteropathy. The chronic medication of NSAIDs could change the composition of the intestinal bacteria and aggravate bile acids cytotoxicity. Meanwhile, NSAIDs impair the intestinal barrier by inhibiting cyclooxygenase and destroying mitochondria. Subsequently, intestinal bacteria translocate into the mucosa, and then lipopolysaccharide released from gut microbiota combines to Toll-like receptor 4 and induce excessive production of nitric oxide and pro-inflammatory cytokines. Intestinal injuries present in the condition of intestinal inflammation and oxidative stress. In this paper, we also have reviewed the possible strategies of regulating gut microbiota for the management of NSAID enteropathy, including antibiotics, probiotics, prebiotics, mucosal protective agents, and fecal microbiota transplant, and we emphasized the adverse effects of proton pump inhibitors on NSAID enteropathy. Therefore, this review will provide new insights into a better understanding of gut microbiota in NSAID enteropathy.
Collapse
Affiliation(s)
- Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| |
Collapse
|
8
|
Smith AB, Soto Ocana J, Zackular JP. From Nursery to Nursing Home: Emerging Concepts in Clostridioides difficile Pathogenesis. Infect Immun 2020; 88:IAI.00934-19. [PMID: 32122939 PMCID: PMC7309631 DOI: 10.1128/iai.00934-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacterium that infects the human gastrointestinal tract, causing a wide range of disorders that vary in severity from mild diarrhea to toxic megacolon and/or death. Over the past decade, incidence, severity, and costs associated with C. difficile infection (CDI) have increased dramatically in both the pediatric and adult populations. The factors driving this rapidly evolving epidemiology remain largely unknown but are likely due in part to previously unappreciated host, microbiota, and environmental factors. In this review, we will cover the risks and challenges of CDI in adult and pediatric populations and examine asymptomatic colonization in infants. We will also discuss the emerging role of diet, pharmaceutical drugs, and pathogen-microbiota interactions in C. difficile pathogenesis, as well as the impact of host-microbiota interactions in the manifestation of C. difficile-associated disease. Finally, we highlight new areas of research and novel strategies that may shed light on this complex infection and provide insights into the future of microbiota-based therapeutics for CDI.
Collapse
Affiliation(s)
- Alexander B Smith
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua Soto Ocana
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Abutaleb NS, Seleem MN. Auranofin, at clinically achievable dose, protects mice and prevents recurrence from Clostridioides difficile infection. Sci Rep 2020; 10:7701. [PMID: 32382070 PMCID: PMC7206065 DOI: 10.1038/s41598-020-64882-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile is the leading cause of nosocomial infections and a worldwide urgent public health threat. Without doubt, there is an urgent need for new effective anticlostridial agents due to the increasing incidence and severity of C. difficile infection (CDI). The aim of the present study is to investigate the in vivo efficacy of auranofin (rheumatoid arthritis FDA-approved drug) in a CDI mouse model and establish an adequate dosage for treatment. The effects of increased C. difficile inoculum, and pre-exposure to simulated gastric intestinal fluid (SGF) and simulated intestinal fluid (SIF), on the antibacterial activity of auranofin were investigated. Auranofin's in vitro antibacterial activity was stable in the presence of high bacterial inoculum size compared to vancomycin and fidaxomicin. Moreover, it maintained its anti-C. difficile activity after being exposed to SGF and SIF. Upon testing in a CDI mouse model, auranofin at low clinically achievable doses (0.125 mg/kg and 0.25 mg/kg) significantly protected mice against CDI with 100% and 80% survival, respectively. Most importantly, auranofin (0.125 mg/kg and 0.25 mg/kg) significantly prevented CDI recurrence when compared with vancomycin. Collectively, these results indicate that auranofin could potentially provide an effective, safe and quick supplement to the current approaches for treating CDI.
Collapse
Affiliation(s)
- Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Castro-Córdova P, Díaz-Yáñez F, Muñoz-Miralles J, Gil F, Paredes-Sabja D. Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence. Anaerobe 2020; 62:102149. [PMID: 31940467 DOI: 10.1016/j.anaerobe.2020.102149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The anaerobic bacterium Clostridioides difficile is the leading cause of antibiotic-associated diarrhea that can culminate in life-threating colitis. During the C. difficile infection (CDI), C. difficile produces toxins that generate the clinical symptoms of the disease, and produce spores, which persist in the host during antibiotic treatment and can cause recurrent CDI (R-CDI). In this work, we aimed to compare three antibiotic regimens in the susceptibility of mice to CDI and R-CDI (i.e., antibiotic cocktail followed by clindamycin, 5 days of cefoperazone and 10 days of cefoperazone) with three different C. difficile isolates (i.e., strains 630; R20291, and VPI 10463). We observed that the severity of the clinical symptoms of CDI and R-CDI was dependent on the antibiotic treatment used to induce C. difficile-susceptibility, and that the three strains generated a different onset to diarrhea and weight loss in mice that were administrated with the same antibiotic treatment and which differed in comparison to the effect previously reported by other research groups. Our results suggest that, in our experimental conditions, in those animals treated with antibiotic cocktail followed by clindamycin, infection with strain R20291 had the highest diarrhea manifestation in comparison to strains 630 and VPI 10463. In animals treated with cefoperazone for 5 days, infection with strains R20291 or 630 had the highest diarrhea manifestation in comparison to VPI 10463, while in animals treated with cefoperazone for 10 days, infection with strain R20291 or VPI 10463, but not 630, had the highest diarrhea manifestation.
Collapse
Affiliation(s)
- Pablo Castro-Córdova
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Díaz-Yáñez
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan Muñoz-Miralles
- Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Millennium Nucleus in the Biology of Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Microbiota-Host Interactions & Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
11
|
Reply to Noori et al., "A Complex Scenario of Nonsteroidal Anti-inflammatory Drugs Induced Prostaglandin E2 Production and Gut Microbiota Alteration in Clostridium difficile-Infected Mice". mBio 2020; 11:mBio.03142-19. [PMID: 31992624 PMCID: PMC6989112 DOI: 10.1128/mbio.03142-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Noori M, Yadegar A, Zali MR. A Complex Scenario of Nonsteroidal Anti-inflammatory Drugs Induced Prostaglandin E2 Production and Gut Microbiota Alteration in Clostridium difficile-Infected Mice. mBio 2020; 11:e02596-19. [PMID: 31937640 PMCID: PMC6960283 DOI: 10.1128/mbio.02596-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Maseda D, Ricciotti E. NSAID-Gut Microbiota Interactions. Front Pharmacol 2020; 11:1153. [PMID: 32848762 PMCID: PMC7426480 DOI: 10.3389/fphar.2020.01153] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID)s relieve pain, inflammation, and fever by inhibiting the activity of cyclooxygenase isozymes (COX-1 and COX-2). Despite their clinical efficacy, NSAIDs can cause gastrointestinal (GI) and cardiovascular (CV) complications. Moreover, NSAID use is characterized by a remarkable individual variability in the extent of COX isozyme inhibition, therapeutic efficacy, and incidence of adverse effects. The interaction between the gut microbiota and host has emerged as a key player in modulating host physiology, gut microbiota-related disorders, and metabolism of xenobiotics. Indeed, host-gut microbiota dynamic interactions influence NSAID disposition, therapeutic efficacy, and toxicity. The gut microbiota can directly cause chemical modifications of the NSAID or can indirectly influence its absorption or metabolism by regulating host metabolic enzymes or processes, which may have consequences for drug pharmacokinetic and pharmacodynamic properties. NSAID itself can directly impact the composition and function of the gut microbiota or indirectly alter the physiological properties or functions of the host which may, in turn, precipitate in dysbiosis. Thus, the complex interconnectedness between host-gut microbiota and drug may contribute to the variability in NSAID response and ultimately influence the outcome of NSAID therapy. Herein, we review the interplay between host-gut microbiota and NSAID and its consequences for both drug efficacy and toxicity, mainly in the GI tract. In addition, we highlight progress towards microbiota-based intervention to reduce NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Emanuela Ricciotti,
| |
Collapse
|
14
|
Patel H, Makker J, Vakde T, Shaikh D, Badipatla K, Dunne J, Mantri N, Nayudu SK, Glandt M, Balar B, Chilimuri S. Nonsteroidal Anti-Inflammatory Drugs Impact on the Outcomes of Hospitalized Patients with Clostridium difficile Infection. Clin Exp Gastroenterol 2019; 12:449-456. [PMID: 31849510 PMCID: PMC6911331 DOI: 10.2147/ceg.s223886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Mouse model experiments have demonstrated an increased Clostridium difficile infection (CDI) severity with Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) use. We aim to evaluate the impact of NSAIDs in humans after a diagnosis of CDI on primary outcomes defined as I) all-cause mortality and II) toxic mega-colon attributable to CDI. PATIENTS AND METHODS All hospitalized patients with a diagnosis of CDI were divided into two groups; those with NSAIDs administered up to 10 days after onset of CDI versus no NSAIDs use. The primary outcomes were analyzed between the groups, while controlling for severity of CDI. A logistic regression analysis was performed to identify the predictors of worse outcomes. RESULTS NSAIDs were administered in 14% (n=80) of the 568 hospitalized visits for an average of 2.5 days after the CDI diagnosis. All-cause mortality was high in patients who did not receive NSAIDs as compared to those who did receive NSAIDs (16.6% vs 12.5%, p 0.354). Patients who were prescribed NSAIDs were more likely to have toxic mega-colon as compared to those who were not prescribed NSAIDs (2.5% vs 0.6%, p 0.094). Results were not statistically significant, even after controlling for CDI severity. Logistic regression analysis did not identify NSAIDs administration as a significant factor for all-cause mortality in CDI patients. CONCLUSION This retrospective study results, contrary to mouse model, did not show association between NSAID use and CDI related mortality and toxic mega-colon. Shorter duration of NSAIDs use, younger people in study group, and timely CDI treatment may have resulted in contrasting results.
Collapse
Affiliation(s)
- Harish Patel
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Jasbir Makker
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Trupti Vakde
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Pulmonary and Critical Care Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Danial Shaikh
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Kanthi Badipatla
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - James Dunne
- Support Service and Operation, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Nikhitha Mantri
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Suresh Kumar Nayudu
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Mariela Glandt
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Bhavna Balar
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Sridhar Chilimuri
- Department of Medicine, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
- Division of Gastroenterology, Bronx Care Health System, Affiliated with Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| |
Collapse
|
15
|
DeMarco GJ, Nunamaker EA. A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies. Comp Med 2019; 69:520-534. [PMID: 31896389 PMCID: PMC6935697 DOI: 10.30802/aalas-cm-19-000041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to balance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particular immune function or model are incomplete or don't exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function.
Collapse
Key Words
- cb,endocannabinoid receptor
- cd,crohn disease
- cfa, complete freund adjuvant
- cgrp,calcitonin gene-related peptide
- cox,cyclooxygenase
- ctl, cytotoxic t-lymphocytes
- damp,damage-associated molecular pattern molecules
- drg,dorsal root ganglion
- dss, dextran sodium sulphate
- ecs,endocannabinoid system
- ibd, inflammatory bowel disease
- ifa,incomplete freund adjuvant
- las, local anesthetics
- pamp,pathogen-associated molecular pattern molecules
- pge2, prostaglandin e2
- p2y, atp purine receptor y
- p2x, atp purine receptor x
- tnbs, 2,4,6-trinitrobenzene sulphonic acid
- trp, transient receptor potential ion channels
- trpv, transient receptor potential vanilloid
- tg,trigeminal ganglion
- uc,ulcerative colitis
Collapse
Affiliation(s)
- George J DeMarco
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts;,
| | | |
Collapse
|
16
|
Zackular JP, Kirk L, Trindade BC, Skaar EP, Aronoff DM. Misoprostol protects mice against severe Clostridium difficile infection and promotes recovery of the gut microbiota after antibiotic perturbation. Anaerobe 2019; 58:89-94. [PMID: 31220605 PMCID: PMC6697607 DOI: 10.1016/j.anaerobe.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/15/2019] [Indexed: 01/13/2023]
Abstract
Clostridium difficile infection (CDI) is one of the most common nosocomial infections worldwide and an urgent public health threat. Epidemiological and experimental studies have demonstrated an association between nonsteroidal anti-inflammatory drug (NSAID) exposure and enhanced susceptibility to, and severity of, CDI. NSAIDs target cyclooxygenase enzymes and inhibit the production of prostaglandins (PGs), but the therapeutic potential of exogenous introduction of PGs for the treatment of CDI has not been explored. In this study, we report that treatment with the FDA-approved stable PGE1 analogue, misoprostol, protects mice against C. difficile-associated mortality, intestinal pathology, and CDI-mediated intestinal permeability. Furthermore, we report that the effect of misoprostol on the gastrointestinal tract contributes to increased recovery of the gut microbiota following antibiotic perturbation. Together, these data implicate PGs as an important host-factor associated with recovery to C. difficile-associated disease and demonstrate the potential for misoprostol in the treatment of CDI. Further studies to explore the safety and efficacy of misoprostol treatment of CDI in humans is needed.
Collapse
Affiliation(s)
- Joseph P Zackular
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Leslie Kirk
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruno C Trindade
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
17
|
Maseda D, Zackular JP, Trindade B, Kirk L, Roxas JL, Rogers LM, Washington MK, Du L, Koyama T, Viswanathan VK, Vedantam G, Schloss PD, Crofford LJ, Skaar EP, Aronoff DM. Nonsteroidal Anti-inflammatory Drugs Alter the Microbiota and Exacerbate Clostridium difficile Colitis while Dysregulating the Inflammatory Response. mBio 2019; 10:mBio.02282-18. [PMID: 30622186 PMCID: PMC6325247 DOI: 10.1128/mbio.02282-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a major public health threat worldwide. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enhanced susceptibility to and severity of CDI; however, the mechanisms driving this phenomenon have not been elucidated. NSAIDs alter prostaglandin (PG) metabolism by inhibiting cyclooxygenase (COX) enzymes. Here, we found that treatment with the NSAID indomethacin prior to infection altered the microbiota and dramatically increased mortality and the intestinal pathology associated with CDI in mice. We demonstrated that in C. difficile-infected animals, indomethacin treatment led to PG deregulation, an altered proinflammatory transcriptional and protein profile, and perturbed epithelial cell junctions. These effects were paralleled by increased recruitment of intestinal neutrophils and CD4+ cells and also by a perturbation of the gut microbiota. Together, these data implicate NSAIDs in the disruption of protective COX-mediated PG production during CDI, resulting in altered epithelial integrity and associated immune responses.IMPORTANCEClostridium difficile infection (CDI) is a spore-forming anaerobic bacterium and leading cause of antibiotic-associated colitis. Epidemiological data suggest that use of nonsteroidal anti-inflammatory drugs (NSAIDs) increases the risk for CDI in humans, a potentially important observation given the widespread use of NSAIDs. Prior studies in rodent models of CDI found that NSAID exposure following infection increases the severity of CDI, but mechanisms to explain this are lacking. Here we present new data from a mouse model of antibiotic-associated CDI suggesting that brief NSAID exposure prior to CDI increases the severity of the infectious colitis. These data shed new light on potential mechanisms linking NSAID use to worsened CDI, including drug-induced disturbances to the gut microbiome and colonic epithelial integrity. Studies were limited to a single NSAID (indomethacin), so future studies are needed to assess the generalizability of our findings and to establish a direct link to the human condition.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joseph P Zackular
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruno Trindade
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Leslie Kirk
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Lisa M Rogers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mary K Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Liping Du
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatsuki Koyama
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Leslie J Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|