1
|
Ye Z, van der Wildt B, Nurmohamed FRHA, van Duyvenbode JFFH, van Strijp J, Vogely HC, Lam MGEH, Dadachova E, Weinans H, van der Wal BCH, Poot AJ. Radioimmunotherapy combating biofilm-associated infection in vitro. Front Med (Lausanne) 2024; 11:1478636. [PMID: 39678029 PMCID: PMC11637858 DOI: 10.3389/fmed.2024.1478636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Background Addressing prosthetic joint infections poses a significant challenge within orthopedic surgery, marked by elevated morbidity and mortality rates. The presence of biofilms and infections attributed to Staphylococcus aureus (S. aureus) further complicates the scenario. Objective To investigate the potential of radioimmunotherapy as an innovative intervention to tackle biofilm-associated infections. Methods Our methodology involved employing specific monoclonal antibodies 4497-IgG1, designed for targeting wall teichoic acids found on S. aureus and its biofilm. These antibodies were linked with radionuclides actinium-225 (225Ac) and lutetium-177 (177Lu) using DOTA as a chelator. Following this, we evaluated the susceptibility of S. aureus and its biofilm to radioimmunotherapy in vitro, assessing bacterial viability and metabolic activity via colony-forming unit enumeration and xylenol tetrazolium assays. Results Both [225Ac]4497-IgG1 and [177Lu]4497-IgG1 exhibited a noteworthy dose-dependent reduction in S. aureus in planktonic cultures and biofilms over a 96-h exposure period, compared to non-specific antibody control groups. Specifically, doses of 7.4 kBq and 7.4 MBq of [225Ac]4497-IgG1 and [177Lu]4497-IgG1 resulted in a four-log reduction in planktonic bacterial counts. Within biofilms, 14.8 kBq of [225Ac]4497-IgG1 and 14.8 Mbq [177Lu]4497-IgG1 led to reductions of two and four logs, respectively. Conclusion Our findings underscore the effectiveness of [225Ac]4497-IgG1 and [177Lu]4497-IgG1 antibodies in exerting dose-dependent bactericidal effects against planktonic S. aureus and biofilms in vitro. This suggests that radioimmunotherapy might serve as a promising targeted treatment approach for combating S. aureus and its biofilm.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Berend van der Wildt
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Jos van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - H. Charles Vogely
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| | | | - Alex J. Poot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
2
|
Loh JT, Lam KP. Fungal infections: Immune defense, immunotherapies and vaccines. Adv Drug Deliv Rev 2023; 196:114775. [PMID: 36924530 DOI: 10.1016/j.addr.2023.114775] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Invasive fungal infection is an under recognized and emerging global health threat. Recently, the World Health Organization (WHO) released the first ever list of health-threatening fungi to guide research and public health interventions to strengthen global response to fungi infections and antifungal resistance. Currently, antifungal drugs only demonstrate partial success in improving prognosis of infected patients, and this is compounded by the rapid evolution of drug resistance among fungi species. The increased prevalence of fungal infections in individuals with underlying immunological deficiencies reflects the importance of an intact host immune system in controlling mycoses, and further highlights immunomodulation as a potential new avenue for the treatment of disseminated fungal diseases. In this review, we will summarize how host innate immune cells sense invading fungi through their pattern recognition receptors, and subsequently initiate a series of effector mechanisms and adaptive immune responses to mediate fungal clearance. In addition, we will discuss emerging preclinical and clinical data on antifungal immunotherapies and fungal vaccines which can potentially expand our antifungal armamentarium in future.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, S138648, Republic of Singapore.
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, S138648, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5, Science Drive 2, S117545, Republic of Singapore; School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, S637551, Republic of Singapore.
| |
Collapse
|
3
|
Emerging Preclinical and Clinical Applications of Theranostics for Nononcological Disorders. PET Clin 2021; 16:429-440. [PMID: 34053586 DOI: 10.1016/j.cpet.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies in nuclear medicine have shed light on molecular imaging and therapeutic approaches for oncological and nononcological conditions. Using the same radiopharmaceuticals for diagnosis and therapeutics of malignancies, the theranostics approach, has improved clinical management of patients. Theranostic approaches for nononcological conditions are recognized as emerging topics of research. This review focuses on preclinical and clinical studies of nononcological disorders that include theranostic strategies. Theranostic approaches are demonstrated as possible in the clinical management of infections and inflammations. There is an emerging need for randomized trials to specify the factors affecting validity and efficacy of theranostic approaches in nononcological diseases.
Collapse
|
4
|
van Dijk B, Allen KJH, Helal M, Vogely HC, Lam MGEH, de Klerk JMH, Weinans H, van der Wal BCH, Dadachova E. Radioimmunotherapy of methicillin-resistant Staphylococcus aureus in planktonic state and biofilms. PLoS One 2020; 15:e0233086. [PMID: 32407350 PMCID: PMC7224548 DOI: 10.1371/journal.pone.0233086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Implant associated infections such as periprosthetic joint infections are difficult to treat as the bacteria form a biofilm on the prosthetic material. This biofilm complicates surgical and antibiotic treatment. With rising antibiotic resistance, alternative treatment options are needed to treat these infections in the future. The aim of this article is to provide proof-of-principle data required for further development of radioimmunotherapy for non-invasive treatment of implant associated infections. Methods Planktonic cells and biofilms of Methicillin-resistant staphylococcus aureus are grown and treated with radioimmunotherapy. The monoclonal antibodies used, target wall teichoic acids that are cell and biofilm specific. Three different radionuclides in different doses were used. Viability and metabolic activity of the bacterial cells and biofilms were measured by CFU dilution and XTT reduction. Results Alpha-RIT with Bismuth-213 showed significant and dose dependent killing in both planktonic MRSA and biofilm. When planktonic bacteria were treated with 370 kBq of 213Bi-RIT 99% of the bacteria were killed. Complete killing of the bacteria in the biofilm was seen at 185 kBq. Beta-RIT with Lutetium-177 and Actinium-225 showed little to no significant killing. Conclusion Our results demonstrate the ability of specific antibodies loaded with an alpha-emitter Bismuth-213 to selectively kill staphylococcus aureus cells in vitro in both planktonic and biofilm state. RIT could therefore be a potentially alternative treatment modality against planktonic and biofilm-related microbial infections.
Collapse
Affiliation(s)
- B. van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K. J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - M. Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - H. C. Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. M. H. de Klerk
- Department of Nuclear Medicine, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical engineering, TU Delft, Delft, The Netherlands
| | - B. C. H. van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
5
|
Helal M, Allen KJH, van Dijk B, Nosanchuk JD, Snead E, Dadachova E. Radioimmunotherapy of Blastomycosis in a Mouse Model With a (1→3)-β-Glucans Targeting Antibody. Front Microbiol 2020; 11:147. [PMID: 32117166 PMCID: PMC7019017 DOI: 10.3389/fmicb.2020.00147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections (IFI) cause devastating morbidity and mortality, with the number of IFIs more than tripling since 1979. Our laboratories were the first to demonstrate that radiolabeled microorganism-specific monoclonal antibodies are highly effective for treatment of experimental fungal, bacterial and viral infections. Later we proposed to utilize surface expressed pan-antigens shared by major IFI-causing pathogens such as beta-glucans as RIT targets. Here we evaluated in vivo RIT targeting beta-glucan in Blastomyces dermatitidis which causes serious infections in immunocompromised and immunocompetent individuals and in companion dogs. B. dermatitidis cells were treated with the 400-2 antibody to (1→3)-β-glucans radiolabeled with the beta-emitter 177Lutetium (177Lu) and alpha-emitter 213Bismuth (213Bi) and the efficacy of cell kill was determined by colony forming units (CFUs). To determine the antigen-specific localization of the 400-2 antibody in vivo, C57BL6 mice were infected intratracheally with 2 × 105B. dermatitidis cells and given 111In-400-2 antibody 24 h later. To evaluate the killing of B. dermatitidis cells with RIT, intratracheally infected mice were treated with 150 μCi 213Bi-400-2 and their lungs analyzed for CFUs 96 h post-infection. 213Bi-400-2 proved to be more effective in killing B. dermatitidis cells in vitro than 177Lu-400-2. Three times more 111In-400-2 accumulated in the lungs of infected mice, than in the non-infected ones. 213Bi-400-2 lowered the fungal burden in the lungs of infected mice more than 2 logs in comparison with non-treated infected controls. In conclusion, our results demonstrate the ability of an anti-(1-3)-beta-D-glucan antibody armed with an alpha-emitter 213Bi to selectively kill B. dermatitidis cells in vitro and in vivo. These first in vivo results of the effectiveness of RIT targeting pan-antigens on fungal pathogens warrant further investigation.
Collapse
Affiliation(s)
- Muath Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kevin J H Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Elisabeth Snead
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Sam QH, Yew WS, Seneviratne CJ, Chang MW, Chai LYA. Immunomodulation as Therapy for Fungal Infection: Are We Closer? Front Microbiol 2018; 9:1612. [PMID: 30090091 PMCID: PMC6068232 DOI: 10.3389/fmicb.2018.01612] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal disease (IFD) causes significant morbidity in immunocompromised patients due to their weakened immune system. Immunomodulatory therapy, in synergy with existing antifungal therapy, is an attractive option to enhance their immune system and aid clearance of these opportunistic pathogens. From a scientific and clinical perspective, we explore the immunotherapeutic options to augment standard antifungal drugs for patients with an IFD. We discuss the range of immunomodulatory therapies being considered in IFD - from cytokines, including G-CSF, GM-CSF, M-CSF, IFN-γ, and cytokine agonists, to cellular therapies, consisting of granulocyte transfusion, adoptive T-cell, CAR T-cell, natural killer cell therapies, and monoclonal antibodies. Adjunct pharmaceutical agents which augment the immunity are also being considered. Lastly, we explore the likelihood of the use of probiotics and manipulation of the microbiome/mycobiome to enhance IFD treatment outcomes.
Collapse
Affiliation(s)
- Qi Hui Sam
- Division of Infectious Diseases, University Medicine Cluster – National University Health System, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster – National University Health System, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
7
|
Mourad A, Perfect JR. Present and Future Therapy of Cryptococcus Infections. J Fungi (Basel) 2018; 4:jof4030079. [PMID: 29970809 PMCID: PMC6162641 DOI: 10.3390/jof4030079] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Cryptococcal infections burden the immunocompromised population with unacceptably high morbidity and mortality. This population includes HIV-infected individuals and those undergoing organ transplants, as well as seemingly immunocompetent patients (non-HIV, non-transplant). These groups are difficult to manage with the current therapeutic options and strategies, particularly in resource-limited settings. New trials aimed at providing the best treatment strategies for resource-limited countries that will reduce costs and adverse reactions have focused on decreasing the length of therapy and using more readily accessible antifungal agents such as fluconazole. Furthermore, the emergence of antifungal resistance poses another challenge for successful treatment and may require the development of new agents for improved management. This review will discuss the principles of management, current and future antifungal agents, as well as emerging techniques and future directions of care for this deadly infection.
Collapse
Affiliation(s)
- Ahmad Mourad
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Bowen A, Wear MP, Cordero RJB, Oscarson S, Casadevall A. A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. J Biol Chem 2016; 292:417-434. [PMID: 27872188 DOI: 10.1074/jbc.m116.767582] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/06/2022] Open
Abstract
Studies in the 1980s first showed that some natural antibodies were "catalytic" and able to hydrolyze peptide or phosphodiester bonds in antigens. Many naturally occurring catalytic antibodies have since been isolated from human sera and associated with positive and negative outcomes in autoimmune disease and infection. The function and prevalence of these antibodies, however, remain unclear. A previous study suggested that the 18B7 monoclonal antibody against glucuronoxylomannan (GXM), the major component of the Cryptococcus neoformans polysaccharide capsule, hydrolyzed a peptide antigen mimetic. Using mass spectrometry and Förster resonance energy transfer techniques, we confirm and characterize the hydrolytic activity of 18B7 against peptide mimetics and show that 18B7 is able to hydrolyze an oligosaccharide substrate, providing the first example of a naturally occurring catalytic antibody for polysaccharides. Additionally, we show that the catalytic 18B7 antibody increases release of capsular polysaccharide from fungal cells. A serine protease inhibitor blocked peptide and oligosaccharide hydrolysis by 18B7, and a putative serine protease-like active site was identified in the light chain variable region of the antibody. An algorithm was developed to detect similar sites present in unique antibody structures in the Protein Data Bank. The putative site was found in 14 of 63 (22.2%) catalytic antibody structures and 119 of 1602 (7.4%) antibodies with no annotation of catalytic activity. The ability of many antibodies to cleave antigen, albeit slowly, supports the notion that this activity is an important immunoglobulin function in host defense. The discovery of GXM hydrolytic activity suggests new therapeutic possibilities for polysaccharide-binding antibodies.
Collapse
Affiliation(s)
- Anthony Bowen
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maggie P Wear
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| | - Radames J B Cordero
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| | - Stefan Oscarson
- the Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Arturo Casadevall
- the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| |
Collapse
|
9
|
Abstract
Fungal organisms are ubiquitous in the environment. Pathogenic fungi, although relatively few in the whole gamut of microbial pathogens, are able to cause disease with varying degrees of severity in individuals with normal or impaired immunity. The disease state is an outcome of the fungal pathogen's interactions with the host immunity, and therefore, it stands to reason that deep/invasive fungal diseases be amenable to immunotherapy. Therefore, antifungal immunotherapy continues to be attractive as an adjunct to the currently available antifungal chemotherapy options for a number of reasons, including the fact that existing antifungal drugs, albeit largely effective, are not without limitations, and that morbidity and mortality associated with invasive mycoses are still unacceptably high. For several decades, intense basic research efforts have been directed at development of fungal immunotherapies. Nevertheless, this approach suffers from a severe bench-bedside disconnect owing to several reasons: the chemical and biological peculiarities of the fungal antigens, the complexities of host-pathogen interactions, an under-appreciation of the fungal disease landscape, the requirement of considerable financial investment to bring these therapies to clinical use, as well as practical problems associated with immunizations. In this general, non-exhaustive review, we summarize the features of ongoing research efforts directed towards devising safe and effective immunotherapeutic options for mycotic diseases, encompassing work on antifungal vaccines, adoptive cell transfers, cytokines, antimicrobial peptides (AMPs), monoclonal antibodies (mAbs), and other agents.
Collapse
Affiliation(s)
- Kausik Datta
- a Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD , USA , and
| | - Mawieh Hamad
- b Department of Medical Laboratory Sciences and the Sharjah Institute for Medical Research , University of Sharjah , Sharjah , UAE
| |
Collapse
|
10
|
Shuryak I, Bryan RA, Broitman J, Marino SA, Morgenstern A, Apostolidis C, Dadachova E. Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans. Nucl Med Biol 2015; 42:515-23. [PMID: 25800676 DOI: 10.1016/j.nucmedbio.2015.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. METHODS We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by (213)Bi-labeled monoclonal antibodies), and sparsely-ionizing (137)Cs γ-rays, on Cryptococcus neoformans. RESULTS The best-fit linear-quadratic parameters for clonogenic survival were the following: α = 0.24 × 10(-2) Gy(-1) for γ-rays and 1.07 × 10(-2) Gy(-1) for external-beam α-particles, and β = 1.44 × 10(-5) Gy(-2) for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs. γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. CONCLUSIONS These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Medical Center, New York, New York
| | - Ruth A Bryan
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Jack Broitman
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Stephen A Marino
- Radiological Research Accelerator Facility, Nevis Laboratories, Irvington, New York
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Christos Apostolidis
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Ekaterina Dadachova
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
11
|
Effect of naive and radiolabeled rhTRAIL on the cervical cancer xenografts in mice. Ther Deliv 2014; 5:139-47. [PMID: 24483193 DOI: 10.4155/tde.13.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is a need for novel treatments of advanced cervical cancer. We investigated the utility of recombinant human TNF-related apoptosis-inducing ligand (rhTRAIL), a molecule capable of inducing apoptosis in cancer cells, for the therapy of CasKi cervical cancer xenografts in nude mice. RESULTS CasKi cells proved to be sensitive in vitro to rhTRAIL with an IC50 of 120 ng/ml. (125)I-tagged rhTRAIL specifically accumulated in CasKi tumors in mice with the highest uptake of 9.4% ID/g at 2 h post-injection. Both naive and 200 µCi (188)Re-tagged rhTRAIL administered in the amount of 0.35 mg/kg body weight significantly retarded CasKi tumor growth to the same extent in mice without the side effects of cisplatin chemotherapeutic control. CONCLUSION rhTRAIL is a promising novel agent for treatment of advanced cervical cancer.
Collapse
|
12
|
Microbicidal power of alpha radiation in sterilizing germinating Bacillus anthracis spores. Antimicrob Agents Chemother 2013; 58:1813-5. [PMID: 24379209 DOI: 10.1128/aac.01266-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Radioimmunotherapy (RIT) takes advantage of the specificity and affinity of the antigen-antibody interaction to deliver microbicidal radioactive nuclides to a site of infection. In this study, we investigated the microbicidal properties of an alpha particle-emitting 213Bi-labeled monoclonal antibody (MAb), EA2-1 (213Bi-EA2-1), that binds to the immunodominant antigen on Bacillus anthracis spores. Our results showed that dormant spores were resistant to 213Bi-EA2-1. Significant spore killing was observed following treatment with EA2-1 labeled with 300 μCi 213Bi; however, this effect was not dependent on the MAb. In contrast, when spores were germinating, 213Bi-EA2-1 mediated MAb-specific killing in a dose-dependent manner. Dormant spores are very resistant to RIT, and RIT should focus on targeting vegetative cells and germinating spores.
Collapse
|