1
|
Shukla AK, Misra S. Bispecific antibodies and its applications: a novel approach for targeting SARS-Cov-2. J Basic Clin Physiol Pharmacol 2023; 34:161-168. [PMID: 36607905 DOI: 10.1515/jbcpp-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic remains a severe global threat, with the world engulfed in the struggle against the disease's second or third waves, which are approaching frightening proportions in terms of cases and mortality in many nations. Despite the critical need for effective therapy, there is still uncertainty about the optimal practices for treating COVID-19 with various pharmaceutical approaches. This being third year, global immunity and eradication of SARS-CoV-2 is currently seems to be out of reach. Efforts to produce safe and effective vaccinations have shown promise, and progress is being made. Additional therapeutic modalities, as well as vaccine testing in children, are required for prophylaxis and treatment of high-risk individuals. As a result, neutralising antibodies and other comparable therapeutic options offer a lot of promise as immediate and direct antiviral medications. Bispecific antibodies offer a lot of potential in COVID-19 treatment because of their qualities including stability, small size and ease of manufacture. These can be used to control the virus's infection of the lungs because they are available in an inhalational form. To combat the COVID-19 pandemic, innovative approaches with effective nanobodies, high-expression yield and acceptable costs may be required.
Collapse
Affiliation(s)
- Ajay Kumar Shukla
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Bhopal, Bhopal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
2
|
Frigerio B, Montermini M, Canevari S, Figini M. Role of antibody engineering in generation of derivatives starting from MOv19 MAb: 40 years of biological/therapeutic tools against folate receptor alfa. Antib Ther 2022; 5:301-310. [PMID: 36518225 PMCID: PMC9743174 DOI: 10.1093/abt/tbac026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 10/15/2022] [Indexed: 05/18/2024] Open
Abstract
In the 1980s, we developed and characterized numerous murine monoclonal antibodies (MAbs) directed against human tumor-associated antigens. This mini review is focused on the generation of derivatives of an anti-folate receptor α (FRα) MAbs, named MOv19, exploiting the antibody-engineering progresses in the last 40 years. The FRα location on the luminal surface of proliferating epithelial cells, inaccessible to circulation, versus its over-expression in the entire surface of numerous carcinomas suggested a role for anti-FRα MAbs in the diagnosis and/or treatment of solid tumors. Presently, two MOv19 derivatives are in clinical trials: a chimeric resurfaced version in an antibody-drug conjugate format (SORAYA trial, 2022) and the murine scFv in a second generation chimeric antigen receptor, CAR-T (Phase Ia, 2021). MOv19 and its derivatives could be considered a relevant example that well-characterized anti-tumor murine Mabs and antibody engineering could be combined to generate useful therapeutic tools.
Collapse
Affiliation(s)
- Barbara Frigerio
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Matilde Montermini
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Silvana Canevari
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Mariangela Figini
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| |
Collapse
|
3
|
Validity of Anti-PSMA ScFvD2B as a Theranostic Tool: A Narrative-Focused Review. Biomedicines 2021; 9:biomedicines9121870. [PMID: 34944686 PMCID: PMC8698710 DOI: 10.3390/biomedicines9121870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer among men, and its diagnosis and adequate staging are fundamental. Among the biomarkers identified in recent years for PCa management, prostate-specific-membrane-antigen (PSMA), physiologically expressed at a low level on healthy prostate and in other normal tissues and highly overexpressed in PCa, represents a reliable marker ideal for imaging and therapy. The development of anti-PSMA antibodies, such as D2B, demonstrated slow clearance of intact antibodies compared with fragments resulting in low tumor-to-blood ratios; however, the modular structural and functional nature of antibodies allowed the generation of smaller fragments, such as scFvs. In this review of the anti-PSMA antibody fragment scFvD2B, we combined further characterization of its biomolecular and tissue cross-reactivity characteristics with a comprehensive summary of what has already been performed in preclinical models to evaluate imaging and therapeutic activities. A molecular dynamics study was performed, and ScFvD2B occupied a limited conformational space, characterized by low-energy conformational basins, confirming the high stability of the protein structure. In the cross-reactivity study, the weak/absent immunoreactivity in non-tumor tissues was comparable to the PSMA expression reported in the literature. Biodistribution studies and therapeutic treatments were conducted in different animal models obtained by subcutaneous or locoregional injection of PSMA-positive-versus-negative xenografts. The maximum tumor uptake was observed for 123I(SPECT), 124I(PET), and optical imaging, which avoids kidney accumulation (compared with radiometals) and leads to an optimal tumor-to-kidney and tumor-to-background ratios. Regarding its possible use in therapy, experimental data suggested a strong and specific antitumor activity, in vitro and in vivo, obtained using CAR-T or NK-92/CAR cells expressing scFvD2B. Based on presented/reviewed data, we consider that scFvD2B, due to its versatility and robustness, seems to: (i) overcome some problems observed in other studied scFvs, very often relatively unstable and prone to form aggregates; (ii) have sufficient tumor-to-background ratios for targeting and imaging PSMA-expressing cancer; (iii) significantly redirect immune killing cells to PSMA-positive tumors when inserted in second-generation CAR-T or NK-92/CAR cells. These data suggest that our product can be considered the right reagent to fill the gap that still exists in PCa diagnosis and treatment.
Collapse
|
4
|
Pekar L, Busch M, Valldorf B, Hinz SC, Toleikis L, Krah S, Zielonka S. Biophysical and biochemical characterization of a VHH-based IgG-like bi- and trispecific antibody platform. MAbs 2021; 12:1812210. [PMID: 32887531 PMCID: PMC7531565 DOI: 10.1080/19420862.2020.1812210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we report the characterization of a VHH-derived IgG-like bi- and trispecific antibody platform that essentially relies on the replacement of the VH and VL regions of a conventional antibody by two independently functioning VHH domains. Consequently, a VHH is engrafted onto constant region CH1 while the other VHH-based paratope is engrafted on the constant region of the light chain, Cκ or Cλ, resulting in a tetravalent bispecific IgG-like molecule. Combined with a heavy chain heterodimerization technique, this platform allows facile engineering of bi- and trispecific antibodies with flexible valencies. We demonstrate the general applicability of this generic platform approach and elaborate on the limitations of specific formats.
Collapse
Affiliation(s)
- Lukas Pekar
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA , Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA , Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA , Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA , Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA , Darmstadt, Germany
| |
Collapse
|
5
|
Crespo J, Koh YT, Hu N, Moore PA, Bonvini E, Glasebrook AL, Martin AP, Benschop RJ. A humanized CD3ε-knock-in mouse model for pre-clinical testing of anti-human CD3 therapy. PLoS One 2021; 16:e0245917. [PMID: 33596227 PMCID: PMC7888618 DOI: 10.1371/journal.pone.0245917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
Pre-clinical murine models are critical for translating drug candidates from the bench to the bedside. There is interest in better understanding how anti-human CD3 therapy works based on recent longitudinal studies of short-term administration. Although several models have been created in this pursuit, each have their own advantages and disadvantages in Type-1 diabetes. In this study, we report a murine genetic knock-in model which expresses both a murine and a humanized-CD3ε-exon, rendering it sensitive to manipulation with anti-human CD3. These huCD3εHET mice are viable and display no gross abnormalities. Specifically, thymocyte development and T cell peripheral homeostasis is unaffected. We tested immune functionality of these mice by immunizing them with T cell-dependent antigens and no differences in antibody titers compared to wild type mice were recorded. Finally, we performed a graft-vs-host disease model that is driven by effector T cell responses and observed a wasting disease upon transfer of huCD3εHET T cells. Our results show a viable humanized CD3 murine model that develops normally, is functionally engaged by anti-human CD3 and can instruct on pre-clinical tests of anti-human CD3 antibodies.
Collapse
Affiliation(s)
- Joel Crespo
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Yi Ting Koh
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Ningjie Hu
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Paul A. Moore
- MacroGenics, Rockville, MD, United States of America
| | - Ezio Bonvini
- MacroGenics, Rockville, MD, United States of America
| | - Andrew L. Glasebrook
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Andrea P. Martin
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Robert J. Benschop
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
6
|
Gupta A, Kumar Y. Bispecific antibodies: a novel approach for targeting prominent biomarkers. Hum Vaccin Immunother 2020; 16:2831-2839. [PMID: 32614706 DOI: 10.1080/21645515.2020.1738167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many types of cancers are prevalent in India and worldwide. Monoclonal antibodies (MAbs) are one of the major types of cancer therapeutics, which have included MAbs of hybridoma, chimeric, humanized, or human origin. MAbs are mostly generated currently by direct cloning from B cells. Bispecific antibodies (BAbs), as the name suggests, have two different antigen-binding domains in a single molecule and thus have dual functionality/specificity combined in a single antibody. In addition to the detection of two different antigenic molecules, the dual functionality of BAbs can be utilized to mount T-cell-mediated killing of tumor cells wherein one Fv binds to the tumor-specific antigen and the another recruits T cells to the site of action. Breast cancer and prostate cancer are among the most prevalent cancers in women and men, respectively. Biomarkers such as HER2 and ER/PR are expressed in breast cancer, while overexpression of hepsin and prostate-specific membrane antigen is observed in prostate cancer. Developing BAbs against these biomarkers may be a potent therapeutic option to target breast and prostate cancer, respectively. Therefore, an efficient method using recombinant DNA technology and mammalian cell culture platform is required to generate BAbs against specific diseases as biomarkers as well as for the generation of antibody-based therapeutics.
Collapse
Affiliation(s)
- Akshita Gupta
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology (NSUT) , New Delhi, India
| | - Yatender Kumar
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology (NSUT) , New Delhi, India
| |
Collapse
|
7
|
Martini S, Figini M, Croce A, Frigerio B, Pennati M, Gianni AM, De Marco C, Daidone MG, Argueta C, Landesman Y, Zaffaroni N, Satta A. Selinexor Sensitizes TRAIL-R2-Positive TNBC Cells to the Activity of TRAIL-R2xCD3 Bispecific Antibody. Cells 2020; 9:cells9102231. [PMID: 33023194 PMCID: PMC7599683 DOI: 10.3390/cells9102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with poor prognosis and limited therapeutic options. Recent advances in the immunotherapy field have enabled the development of new treatment strategies, among which the use of bispecific antibodies (BsAbs), able to redirect T cells against tumors, has shown promising results. In particular, a BsAb that uses TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) as a target was constructed and demonstrated good results in redirecting CD3+ T cells to kill TRAIL-R2-expressing TNBC cells. In the present study, we investigated whether treatment with selinexor, a selective inhibitor of nuclear export (SINE) targeting exportin-1/chromosome maintenance protein 1 (XPO1/CRM1), could potentiate the antitumor activity of this BsAb. In combination experiments, we found that selinexor-exposed TNBC cells exhibited greater growth inhibition when treated with the TRAIL-R2xCD3 BsAb than that expected by simple additivity. Similarly, the apoptosis rate in selinexor/TRAIL-R2xCD3 BsAb-treated TNBC cells was significantly higher than that observed after exposure to either single agent. Together, our results suggest that the combination of selinexor and TRAIL-R2xCD3 BsAb can be a viable anticancer strategy and indicate this treatment as a promising therapeutic option for TNBC patients.
Collapse
Affiliation(s)
- Silvia Martini
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
| | - Mariangela Figini
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | - Aurora Croce
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
| | - Barbara Frigerio
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
| | - Alessandro Massimo Gianni
- Medical Oncology C Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Cinzia De Marco
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | - Maria Grazia Daidone
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | | | - Yosef Landesman
- Karyopharm Therapeutics, Newton, MA 02459, USA; (C.A.); (Y.L.)
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
- Correspondence: (N.Z.); (A.S.); Tel.: +39-02-23903260 (N.Z.); +39-02-23905110 (A.S.)
| | - Alessandro Satta
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
- Correspondence: (N.Z.); (A.S.); Tel.: +39-02-23903260 (N.Z.); +39-02-23905110 (A.S.)
| |
Collapse
|
8
|
Satta A, Grazia G, Caroli F, Frigerio B, Di Nicola M, Raspagliesi F, Mezzanzanica D, Zaffaroni N, Gianni AM, Anichini A, Figini M. A Bispecific Antibody to Link a TRAIL-Based Antitumor Approach to Immunotherapy. Front Immunol 2019; 10:2514. [PMID: 31708930 PMCID: PMC6823250 DOI: 10.3389/fimmu.2019.02514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
T-cell-based immunotherapy strategies have profoundly improved the clinical management of several solid tumors and hematological malignancies. A recently developed and promising immunotherapy approach is to redirect polyclonal MHC-unrestricted T lymphocytes toward cancer cells by bispecific antibodies (bsAbs) that engage the CD3 complex and a tumor-associated antigen (TAA). The TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) is an attractive immunotherapy target, frequently expressed by neoplastic cells, that we decided to exploit as a TAA. We found that a TRAIL-R2xCD3 bsAb efficiently activates T cells and specifically redirect their cytotoxicity against cancer cells of different origins in vitro, thereby demonstrating its potential as a pan-carcinoma reagent. Moreover, to mimic in vivo conditions, we assessed its ability to retarget T-cell activity in an ex vivo model of ovarian cancer patients' ascitic fluids containing both effector and target cells—albeit with a suboptimal effector-to-target ratio—with remarkable results.
Collapse
Affiliation(s)
- Alessandro Satta
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Grazia
- Human Tumor Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Caroli
- Chemical Clinical Analysis Area, Laboratory Medicine Department, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Barbara Frigerio
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Di Nicola
- Immunotherapy and Innovative Anticancer Therapeutics Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Oncological Gynecology Unit, Surgery Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Delia Mezzanzanica
- Molecular Therapies Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Massimo Gianni
- Medical Oncology C Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Human Tumor Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mariangela Figini
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
9
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Iwahori K, Shintani Y, Funaki S, Yamamoto Y, Matsumoto M, Yoshida T, Morimoto-Okazawa A, Kawashima A, Sato E, Gottschalk S, Okumura M, Kumanogoh A, Wada H. Peripheral T cell cytotoxicity predicts T cell function in the tumor microenvironment. Sci Rep 2019; 9:2636. [PMID: 30796310 PMCID: PMC6385254 DOI: 10.1038/s41598-019-39345-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy, including immune checkpoint inhibitors, exerts beneficial effects in cancer patients. However, immune checkpoint inhibitors are only advantageous for a limited population of cancer patients. Therefore, companion diagnostics are needed in order to identify patients for whom these therapies are effective. In the present study, we evaluated detailed immunological aspects in clinical specimens from non-small cell lung cancer (NSCLC) patients. We analyzed the immune profiles, T cell cytotoxicity, and TCR repertoire of peripheral blood, normal lung tissue, and tumor tissue from NSCLC patients. By using bispecific T-cell engager technology to assess the cytotoxicity of T cells, we found that the cytotoxicity of tumor-infiltrated T cells closely correlated with that of peripheral T cells. This correlation was supported by the immune profiles, cytokine production, and results of the TCR repertoire analysis from these specimens. We also found that the cytotoxicity of peripheral T cells has potential as a predictor of the effects of nivolumab in the tumor microenvironment. These results imply further applications to blood-based immune monitoring systems and predictive biomarkers for cancer immunotherapy.
Collapse
Affiliation(s)
- Kota Iwahori
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan. .,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoko Yamamoto
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mitsunobu Matsumoto
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Tetsuya Yoshida
- Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.,Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akiko Morimoto-Okazawa
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsunari Kawashima
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Sato
- Department of Pathology (Medical Research Center), Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
11
|
Jiang X, Chen X, Carpenter TJ, Wang J, Zhou R, Davis HM, Heald DL, Wang W. Development of a Target cell-Biologics-Effector cell (TBE) complex-based cell killing model to characterize target cell depletion by T cell redirecting bispecific agents. MAbs 2018; 10:876-889. [PMID: 29985776 PMCID: PMC6152432 DOI: 10.1080/19420862.2018.1480299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
T-cell redirecting bispecific antibodies (bsAbs) or antibody-derived agents that combine tumor antigen recognition with CD3-mediated T cell recruitment are highly potent tumor-killing molecules. Despite the tremendous progress achieved in the last decade, development of such bsAbs still faces many challenges. This work aimed to develop a mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) modeling framework that can be used to assist the development of T-cell redirecting bsAbs. A Target cell-Biologics-Effector cell (TBE) complex-based cell killing model was developed using in vitro and in vivo data, which incorporates information on binding affinities of bsAbs to CD3 and target receptors, expression levels of CD3 and target receptors, concentrations of effector and target cells, as well as respective physiological parameters. This TBE model can simultaneously evaluate the effect of multiple system-specific and drug-specific factors on the T-cell redirecting bsAb exposure-response relationship on a physiological basis; it reasonably captured multiple reported in vitro cytotoxicity data, and successfully predicted the effect of some key factors on in vitro cytotoxicity assays and the efficacious dose of blinatumomab in humans. The mechanistic nature of this model uniquely positions it as a knowledge-based platform that can be readily expanded to guide target selection, drug design, candidate selection and clinical dosing regimen projection, and thus support the overall discovery and development of T-cell redirecting bsAbs.
Collapse
Affiliation(s)
- Xiling Jiang
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Xi Chen
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Thomas J. Carpenter
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Jun Wang
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Rebecca Zhou
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | - Hugh M. Davis
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Donald L. Heald
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Weirong Wang
- Biologics Development Sciences, Janssen Biotherapeutics, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
12
|
Satta A, Mezzanzanica D, Caroli F, Frigerio B, Di Nicola M, Kontermann RE, Iacovelli F, Desideri A, Anichini A, Canevari S, Gianni AM, Figini M. Design, selection and optimization of an anti-TRAIL-R2/anti-CD3 bispecific antibody able to educate T cells to recognize and destroy cancer cells. MAbs 2018; 10:1084-1097. [PMID: 29993310 DOI: 10.1080/19420862.2018.1494105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or TRAIL-receptor agonistic monoclonal antibodies promote apoptosis in most cancer cells, and the differential expression of TRAIL-R2 between tumor and normal tissues allows its exploitation as a tumor-associated antigen. The use of these antibodies as anticancer agents has been extensively studied, but the results of clinical trials were disappointing. The observed lack of anticancer activity could be attributed to intrinsic or acquired resistance of tumor cells to this type of treatment. A possible strategy to circumvent drug resistance would be to strike tumor cells with a second modality based on a different mechanism of action. We therefore set out to generate and optimize a bispecific antibody targeting TRAIL-R2 and CD3. After the construction of different bispecific antibodies in tandem-scFv or single-chain diabody formats to reduce possible immunogenicity, we selected a humanized bispecific antibody with very low aggregates and long-term high stability and functionality. This antibody triggered TRAIL-R2 in an agonistic manner and its anticancer activity proved dramatically potentiated by the redirection of cytotoxic T cells against both sensitive and resistant melanoma cells. The results of our study show that combining the TRAIL-based antitumor strategy with an immunotherapeutic approach in a single molecule could be an effective addition to the anticancer armamentarium.
Collapse
Affiliation(s)
- Alessandro Satta
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Delia Mezzanzanica
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Francesco Caroli
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Barbara Frigerio
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Massimo Di Nicola
- b Medical Oncology C Unit, Department of Medical Oncology and Hematology , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Roland E Kontermann
- c Institut for Zellbiologie und Immunologie, Universität Stuttgart , Stuttgart , Germany
| | | | | | - Andrea Anichini
- e Human Tumor Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Silvana Canevari
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Alessandro Massimo Gianni
- b Medical Oncology C Unit, Department of Medical Oncology and Hematology , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy.,f Department of Pathophysiology and Transplantation , University of Milan , Milan , Italy
| | - Mariangela Figini
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
13
|
Abstract
As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.
Collapse
|
14
|
Li B, Xu L, Pi C, Yin Y, Xie K, Tao F, Li R, Gu H, Fang J. CD89-mediated recruitment of macrophages via a bispecific antibody enhances anti-tumor efficacy. Oncoimmunology 2017; 7:e1380142. [PMID: 29296544 DOI: 10.1080/2162402x.2017.1380142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 02/05/2023] Open
Abstract
Since tumors are often infiltrated by macrophages, it would be advantageous to turn these types of cells into cytotoxic effector cells. Here, we have designed a novel bispecific antibody (BsAb) that targets both tumor antigen (CD20) and the FcαRI receptor (CD89). This antibody could be used to lyse tumors by connecting tumor cells to CD89-expressing immune effector cells such as macrophages and neutrophils. Previously there were very limited attempts to exploit FcαRI-expressing cells as effector cells for tumor cell-killing, largely due to the lack of an appropriate in vivo model, since mice do not express a human CD89 homolog. In this study, we used a transgenic mouse strain with specific expression of CD89 on macrophages and monocytes. In this transgenic mouse model, the CD89 bispecific antibody showed significant anti-tumor activities, demonstrating that bispecific antibodies can redirect macrophages, including M2 macrophages, to mediate additional effector function in the tumor microenvironment. This approach realized the full potential of the innate immune system and could be applied to other tumor-associated antigens especially the solid tumors, thus has potential to translate into clinical benefits in human cancers.
Collapse
Affiliation(s)
- Bingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,College of Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chenyu Pi
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Yin
- Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, China
| | - Kun Xie
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Tao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hua Gu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Tongji Hospital, Tongji University, Shanghai, China.,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Ueda O, Wada NA, Kinoshita Y, Hino H, Kakefuda M, Ito T, Fujii E, Noguchi M, Sato K, Morita M, Tateishi H, Matsumoto K, Goto C, Kawase Y, Kato A, Hattori K, Nezu J, Ishiguro T, Jishage KI. Entire CD3ε, δ, and γ humanized mouse to evaluate human CD3-mediated therapeutics. Sci Rep 2017; 7:45839. [PMID: 28368009 PMCID: PMC5377452 DOI: 10.1038/srep45839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
T cell–mediated immunotherapy is an attractive strategy for treatment in various disease areas. In this therapeutic approach, the CD3 complex is one of the key molecules to modulate T cell functions; however, in many cases, we cannot evaluate the drug candidates in animal experiments because the therapeutics, usually monoclonal antibodies specific to human CD3, cannot react to mouse endogenous Cd3. Although immunodeficient mice transfused with human hematopoietic stem or precursor cells, known as humanized mice, are available for these studies, mice humanized in this manner are not completely immune competent. In this study we have succeeded in establishing a novel mouse strain in which all the three components of the Cd3 complex — Cd3ε, Cd3δ, and Cd3γ — are replaced by their human counterparts, CD3E, CD3D, and CD3G. Basic immunological assessments have confirmed that this strain of human CD3 EDG–replaced mice are entirely immune competent, and we have also demonstrated that a bispecific antibody that simultaneously binds to human CD3 and a tumor-associated antigen (e.g. ERBB2 or GPC3) can be evaluated in human CD3 EDG–replaced mice engrafted with tumors. Our mouse model provides a novel means to evaluate the in vivo efficacy of human CD3–mediated therapy.
Collapse
Affiliation(s)
- Otoya Ueda
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Naoko A Wada
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Yasuko Kinoshita
- Chugai Pharmaceutical Co., Ltd., Research Division, Kamakura Research Labs., 200, Kajiwara, Kamakura, Kanagawa, Japan
| | - Hiroshi Hino
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Mami Kakefuda
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Tsuneo Ito
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Etsuko Fujii
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Mizuho Noguchi
- Chugai Pharmaceutical Co., Ltd., Research Division, Kamakura Research Labs., 200, Kajiwara, Kamakura, Kanagawa, Japan
| | - Kiyoharu Sato
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Masahiro Morita
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Hiromi Tateishi
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Kaoru Matsumoto
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Chisato Goto
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Yosuke Kawase
- Chugai Research Institute for Medical Science, Inc. 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| | - Kunihiro Hattori
- Chugai Pharmaceutical Co., Ltd., Research Division, Kamakura Research Labs., 200, Kajiwara, Kamakura, Kanagawa, Japan
| | - Junichi Nezu
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07 - 11 to 16, Synapse, 138623, Singapore
| | - Takahiro Ishiguro
- Chugai Pharmaceutical Co., Ltd., Translational Clinical Research Division, 1-1 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo, Japan
| | - Kou-Ichi Jishage
- Chugai Pharmaceutical Co., Ltd., Research Division, Fuji Gotemba Research Labs., 1-135, Komakado, Gotemba, Shizuoka, Japan
| |
Collapse
|
16
|
An N, Tao Z, Li S, Xing H, Tang K, Tian Z, Rao Q, Wang M, Wang J. Construction of a new anti-CD19 chimeric antigen receptor and the anti-leukemia function study of the transduced T cells. Oncotarget 2016; 7:10638-49. [PMID: 26840021 PMCID: PMC4891147 DOI: 10.18632/oncotarget.7079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/23/2016] [Indexed: 01/22/2023] Open
Abstract
Chimeric antigen receptor (CAR) transduced T cells have been used to efficiently kill the target tumor cells depending on the single chain variable fragment (scFv) against the specific tumor associated antigen. Here we show the high specific cytotoxicity of the CAR-T cells with very low effector to target cell (E:T) ratio owing to the CD19-scFv, which was constructed in our laboratory and proved to be highly effective in our previous study. Four plasmids containing three generation of CAR were constructed by cloning the CD19-CAR fragment into the lentiviral vector pCDH. CD3 positive T cells were successfully transduced and the CAR protein expression was confirmed by flow cytometry and Western blot. When cocultured with CD19 positive leukemia cell line Nalm-6 cells, CAR-T cells showed specific cytotoxicity: the percentage of target cells decreased to 0 in 24 hours; IL-2, IFN-γ and TNF-α produced in cocultured supernatants increased obviously; and the cytotoxicity reached more than 80%, still remarkable even when the E:T ratio was as low as 1:4. Dynamic change of cell interaction between CAR-T and leukemia cells was visually tracked by using living cells workstation for the first time. A NOD/SCID B-ALL murine model was established using Nalm-6 cells inoculation with a morbidity rate of 100%, and the survival time was prolonged statistically with CAR-T cell treatment. These data demonstrate that the CAR-T cells we prepared could be a promising treatment strategy for CD19 positive tumor diseases.
Collapse
Affiliation(s)
- Na An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongfei Tao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Saisai Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
17
|
Abken H. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy 2016; 7:535-44. [PMID: 26065478 DOI: 10.2217/imt.15.15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent spectacular success in the adoptive cell therapy of leukemia and lymphoma with chimeric antigen receptor (CAR)-modified T cells raised the expectations that this therapy may be efficacious in a wide range of cancer entities. The expectations are based on the predefined specificity of CAR T cells by an antibody-derived binding domain that acts independently of the natural T-cell receptor, recognizes targets independently of presentation by the major histocompatibility complex and allows targeting toward virtually any cell surface antigen. We here discuss that targeting CAR T cells toward solid tumors faces certain circumstances critical for the therapeutic success. Targeting tumor stroma and taking advantage of TRUCK cells, in other words, CAR T cells with inducible release of a transgenic payload, are some strategies envisaged to overcome current limitations in the near future.
Collapse
Affiliation(s)
- Hinrich Abken
- Clinic I Internal Medicine, Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Robert-Koch-Str. 21, D-50931 Cologne, Germany
| |
Collapse
|
18
|
Abstract
Bispecific antibodies (BsAbs) recognize two different epitopes. This dual specificity opens up a wide range of applications, including redirecting T cells to tumor cells, blocking two different signaling pathways simultaneously, dual targeting of different disease mediators, and delivering payloads to targeted sites. The approval of catumaxomab (anti-EpCAM and anti-CD3) and blinatumomab (anti-CD19 and anti-CD3) has become a major milestone in the development of bsAbs. Currently, more than 60 different bsAb formats exist, some of them making their way into the clinical pipeline. This review summarizes diverse formats of bsAbs and their clinical applications and sheds light on strategies to optimize the design of bsAbs.
Collapse
Affiliation(s)
- Gaowei Fan
- National Center for Clinical Laboratories, Beijing Hospital, No 1 Dahua Road, Dongdan, Beijing, 100730, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Zujian Wang
- Shunyi District Maternal and Child Health Hospital of Beijing City, Beijing, 101300, China.
| | - Mingju Hao
- National Center for Clinical Laboratories, Beijing Hospital, No 1 Dahua Road, Dongdan, Beijing, 100730, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, No 1 Dahua Road, Dongdan, Beijing, 100730, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
19
|
Suzuki M, Curran KJ, Cheung NKV. Chimeric antigen receptors and bispecific antibodies to retarget T cells in pediatric oncology. Pediatr Blood Cancer 2015; 62:1326-36. [PMID: 25832831 PMCID: PMC4976492 DOI: 10.1002/pbc.25513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy using antigen-specific T cells has broad therapeutic potential. Chimeric antigen receptors and bispecific antibodies can redirect T cells to kill tumors without human leukocyte antigens (HLA) restriction. Key determinants of clinical potential include the choice of target antigen, antibody specificity, antibody affinity, tumor accessibility, T cell persistence, and tumor immune evasion. For pediatric cancers, additional constraints include their propensity for bulky metastatic disease and the concern for late toxicities from treatment. Nonetheless, the recent preclinical and clinical developments of these T cell based therapies are highly encouraging.
Collapse
Affiliation(s)
- Maya Suzuki
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center; 1275 York Avenue, New York 10065 NY
| | - Kevin J. Curran
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center; 1275 York Avenue, New York 10065 NY
| | - Nai-Kong V. Cheung
- Department of Pediatrics; Memorial Sloan Kettering Cancer Center; 1275 York Avenue, New York 10065 NY
| |
Collapse
|
20
|
Li K, Zhang Q, Zhang Y, Yang J, Zheng J. T-cell-associated cellular immunotherapy for lung cancer. J Cancer Res Clin Oncol 2015; 141:1249-58. [PMID: 25381064 DOI: 10.1007/s00432-014-1867-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of the present study was to discuss recent findings on the role of T cells in lung cancer to provide information on their potential application, especially in cellular immunotherapy. METHODS Data on the different types of T cells that are currently used for the treatment of lung cancer were obtained by searching the PUBMED database. RESULTS Cytotoxic T lymphocytes, natural killer T cells, γδ T cells, lymphokine-activated killer cells, tumor-infiltrating lymphocytes, cytokine-induced killer cells and gene-modified T cells were analyzed to determine the benefits and drawbacks of their application in the treatment of lung cancer. Advances in the study of their antitumor mechanisms and directions for future research were discussed. CONCLUSIONS T cells are critical for tumorigenesis and therefore important targets for the treatment of lung cancer. T-cell-associated cellular immunotherapy opens up a window of opportunity for the development of complementary methods to traditional lung cancer treatments, which warrants further investigation to improve the clinical outcomes of lung cancer patients.
Collapse
MESH Headings
- Cytokine-Induced Killer Cells/immunology
- Cytokine-Induced Killer Cells/transplantation
- Cytotoxicity, Immunologic/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Lymphokine-Activated/transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/transplantation
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
Collapse
Affiliation(s)
- Ke Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, West Huaihai Road 84#, Xuzhou, 221002, Jiangsu, China
| | | | | | | | | |
Collapse
|
21
|
Abstract
Targeted treatment of cancer with monoclonal antibodies has added to the beneficial outcome of patients. In an attempt to improve anti-tumor activity of monoclonal antibodies, multi-specific antibodies have entered the research arena. To date, only a few multi-specific constructs have entered phase III clinical trials, in contrast to classical monoclonal antibodies, which are the standard first-line therapy in several tumor entities. In this review, we will assess selected multi-specific antibodies in pre-clinical and clinical development that may be new treatment options for cancer patients in the very near future. We will further evaluate therapy modalities including the timely distribution or the combination of various therapeutic approaches and assess the potential role of multi-specific antibodies in cancer treatment.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- Department I of Internal Medicine, Innate Immunity Group, University Hospital Cologne, Joseph Stelzmann Str. 9, 50937, Cologne, Germany,
| | | | | |
Collapse
|
22
|
AntiCD3Fv fused to human interleukin-3 deletion variant redirected T cells against human acute myeloid leukemic stem cells. J Hematol Oncol 2015; 8:18. [PMID: 25879549 PMCID: PMC4389834 DOI: 10.1186/s13045-015-0109-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
Background Leukemic stem cells (LSCs) are frequently seen as a cause of treatment failure and relapse in patients with acute myeloid leukemia (AML). Thus, successful new therapeutic strategies for the treatment of AML should aim at eradicating LSCs. The identification of targets on the cell surface of LSCs is getting more and more attention. Among these, CD123, also known as the interleukin-3 (IL3)-receptor α chain, has been identified as a potential immunotherapeutic target due to its overexpression on LSCs in AML as well as on AML blasts, rather than normal hematopoietic stem cells. Methods We constructed a CD123-targeted fusion protein antiCD3Fv-⊿IL3, with one binding site for T cell antigen receptor (TCRCD3) and the other for CD123, by recombinant gene-engineering technology. Cysteine residues were introduced into the V domains of the antiCD3Fv segment to enhance its stability by locking the two chains of Fv together with disulfide covalent bonds. The stability and cytotoxicity of the two fusion proteins were detected in vitro and in vivo. Results Both fusion proteins were produced and purified from Escherichia coli 16C9 cells with excellent yields in fully active forms. High-binding capability was observed between these two fusion proteins and human IL3R, leading to the specific lysis of CD123-expressing cell lines KG1a; also, mononuclear cells from primary AML patients were inhibited in a colony forming assay in vitro, presumably by redirecting T lymphocytes in vitro. In addition, they displayed an antileukemic activity against KG1a xenografts in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice, especially disulfide-stabilized (ds)-antiCD3Fv-⊿IL3 for its improved stability. Conclusions These results suggest that both fusion proteins display the antileukemic activity against CD123-expressing cell lines as well as leukemic progenitors in vitro and in vivo, especially ds-antiCD3Fv-⊿IL3. They could be the promising candidates for future immunotherapy of AML. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0109-5) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Igawa T, Mimoto F, Hattori K. pH-dependent antigen-binding antibodies as a novel therapeutic modality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1943-1950. [DOI: 10.1016/j.bbapap.2014.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022]
|
24
|
Al-Hussaini M, DiPersio JF. Small molecule inhibitors in acute myeloid leukemia: from the bench to the clinic. Expert Rev Hematol 2014; 7:439-64. [PMID: 25025370 PMCID: PMC4283573 DOI: 10.1586/17474086.2014.932687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many patients with acute myeloid leukemia will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in acute myeloid leukemia. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials.
Collapse
Affiliation(s)
- Muneera Al-Hussaini
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
| | - John F. DiPersio
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis Missouri
- Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis Missouri
| |
Collapse
|
25
|
Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 2013; 172:1020-34. [PMID: 24140748 DOI: 10.1016/j.jconrel.2013.10.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/20/2023]
Abstract
Nanoparticles (NPs) have been extensively investigated for applications in both experimental and clinical settings to improve delivery efficiency of therapeutic and diagnostic agents. Most recently, novel multifunctional nanoparticles have attracted much attention because of their ability to carry diverse functionalities to achieve effective synergistic therapeutic treatments. Multifunctional NPs have been designed to co-deliver multiple components, target the delivery of drugs by surface functionalization, and realize therapy and diagnosis simultaneously. In this review, various materials of diverse chemistries for fabricating multifunctional NPs with distinctive architectures are discussed and compared. Recent progress involving multifunctional NPs for immune activation, anticancer drug delivery, and synergistic theranostics is the focus of this review. Overall, this comprehensive review demonstrates that multifunctional NPs have distinctive properties that make them highly suitable for targeted therapeutic delivery in these areas.
Collapse
|