1
|
Kainov DE, Ravlo E, Ianevski A. Seeking innovative concepts in development of antiviral drug combinations. Antiviral Res 2025; 234:106079. [PMID: 39798882 DOI: 10.1016/j.antiviral.2025.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Antiviral drugs are crucial for managing viral infections, but current treatment options remain limited, particularly for emerging viruses. These drugs can be classified based on their chemical composition, including neutralizing antibodies (nAbs), recombinant human receptors (rhRs), antiviral CRISPR/Cas systems, interferons, antiviral peptides (APs), antiviral nucleic acid polymers, and small molecules. Some of these agents target viral factors, host factors, or both. A major challenge for virus-targeted treatments is their narrow-spectrum effectiveness and the potential for drug resistance, while host-directed and virus/host-targeted therapies often suffer from significant side effects. The synergistic combination of multiple antiviral drugs holds promise for improving treatment outcomes by targeting different stages of the viral life cycle, reducing resistance, and minimizing side effects. However, developing such drug combinations presents its own set of challenges. Several drug combinations could be optimized, and new combinations developed by using AI, to more effectively treat both emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway; Institute for Molecular Medicine FIMM, Helsinki Institute for Life Science, University of Helsinki, 00014, Helsinki, Finland.
| | - Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028, Trondheim, Norway
| |
Collapse
|
2
|
Ong YC, Tejo BA, Yap WB. An Immunoinformatic Approach for Identifying and Designing Conserved Multi-Epitope Vaccines for Coronaviruses. Biomedicines 2024; 12:2530. [PMID: 39595095 PMCID: PMC11592158 DOI: 10.3390/biomedicines12112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has exposed the vulnerabilities and unpreparedness of the global healthcare system in dealing with emerging zoonoses. In the past two decades, coronaviruses (CoV) have been responsible for three major viral outbreaks, and the likelihood of future outbreaks caused by these viruses is high and nearly inevitable. Therefore, effective prophylactic universal vaccines targeting multiple circulating and emerging coronavirus strains are warranted. METHODS This study utilized an immunoinformatic approach to identify evolutionarily conserved CD4+ (HTL) and CD8+ (CTL) T cells, and B-cell epitopes in the coronaviral spike (S) glycoprotein. RESULTS A total of 132 epitopes were identified, with the majority of them found to be conserved across the bat CoVs, pangolin CoVs, endemic coronaviruses, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Their peptide sequences were then aligned and assembled to identify the overlapping regions. Eventually, two major peptide assemblies were derived based on their promising immune-stimulating properties. CONCLUSIONS In this light, they can serve as lead candidates for universal coronavirus vaccine development, particularly in the search for pan-coronavirus multi-epitope universal vaccines that can confer protection against current and novel coronaviruses.
Collapse
Affiliation(s)
- Yu Chuan Ong
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
3
|
Mercuri FA, White S, McQuilten HA, Lemech C, Mynhardt S, Hari R, Zhang P, Kruger N, McLachlan G, Miller BE, West NP, Tal-Singer R, Demaison C. Evaluation of intranasal TLR2/6 agonist INNA-051: safety, tolerability and proof of pharmacology. ERJ Open Res 2024; 10:00199-2024. [PMID: 39655168 PMCID: PMC11626610 DOI: 10.1183/23120541.00199-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/25/2024] [Indexed: 12/12/2024] Open
Abstract
Background Local priming of the innate immune system with a Toll-like receptor (TLR)2/6 agonist may reduce morbidity and mortality associated with viral respiratory tract infections, particularly for the elderly and those with chronic diseases. The objectives of the present study were to understand the potential of prophylactic treatment with a TLR2/6 agonist as an enhancer of innate immunity pathways leading to accelerated respiratory virus clearance from the upper airways. Methods Two randomised, double-blind, placebo-controlled clinical trials were conducted in healthy adult participants. The first dose-escalation study assessed safety, tolerability and mechanistic biomarkers following single and repeated intranasal administrations of INNA-051. The second was an influenza A viral challenge study assessing the impact of treatment on host defence biomarkers and viral load. Results INNA-051 was well tolerated in both studies, with no dose-limiting toxicities identified. Mechanistic biomarkers assessed in both studies demonstrated the expected engagement of pharmacology, including innate immune pathways. There were lower than anticipated rates of infection. Post hoc analysis conducted in laboratory-confirmed infected participants with low or no antibody titre against the challenge virus showed INNA-051 treatment led to a significantly shorter duration of infection and increased expression of genes and pathways associated with host defence responses against influenza. Conclusions The safety and pharmacology profile of INNA-051 confirms preclinical studies. INNA-051 increased expression of genes and pathways associated with host defence responses against influenza and was associated with a shorter duration of infection. These studies support further clinical assessment in the context of natural viral respiratory tract infections in individuals at increased risk of severe illness.
Collapse
Affiliation(s)
| | - Scott White
- ENA Respiratory, Melbourne, VIC, Australia
- These authors contributed equally
| | | | - Charlotte Lemech
- Scientia Clinical Research Ltd, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW, Sydney, NSW, Australia
| | | | - Rana Hari
- Scientia Clinical Research Ltd, Randwick, NSW, Australia
| | - Ping Zhang
- Griffith Biostatistics Unit, Griffith Health, Griffith University Gold Coast Campus, QLD, Australia
| | | | | | | | - Nicholas P. West
- School of Pharmacy and Medical Science and the Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | | | | |
Collapse
|
4
|
Kim HJ, Werth VP. Updates in Dermatomyositis: Newer Treatment Options and Outcome Measures From Dermatologic Perspectives. Ann Dermatol 2024; 36:257-265. [PMID: 39343752 PMCID: PMC11439981 DOI: 10.5021/ad.24.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024] Open
Abstract
Dermatomyositis (DM) is a rare autoimmune connective tissue disease with characteristic skin manifestations and possible muscle involvement. Recent advances in classification system to include skin-predominant subtypes, understanding underlying pathogenic mechanisms and the relationship between clinical phenotypes and myositis-specific autoantibodies have led to development of novel therapeutic options. This corresponds with efforts to develop better outcome measures to accurately catch the patients' current disease status and treatment-induced improvements. This report will review the updates in newer treatments and outcome measures of DM, specifically from a dermatologic point of view.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
| | - Victoria P Werth
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Kim M, Noh K, Kim P, Kim JH, Choi BW, Singh R, Choi JH, Han SB, Kim SS, Lee EY, Bae MA, Shin D, Kim M, Ahn JH. Design, Synthesis, and Biological Evaluation of New 2,6,7-Substituted Purine Derivatives as Toll-like Receptor 7 Agonists for Intranasal Vaccine Adjuvants. J Med Chem 2024; 67:9389-9405. [PMID: 38787938 DOI: 10.1021/acs.jmedchem.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
TLR7/8 agonists are versatile immune stimulators capable of treating various diseases such as viral infections, autoimmune, and cancer. Despite the structural similarity of TLR7/8, their immune stimulation mechanisms and time-course responses significantly differ. In this study, a new series of TLR7-selective agonists was synthesized utilizing the economical building block 2,6-dichloropurine. Compound 27b showed the most potent activity on hTLR7 with an EC50 of 17.53 nM and demonstrated high hTLR7 selectivity (224 folds against TLR8). 27b effectively stimulated the secretion of proinflammatory cytokines in mouse macrophages and enhanced intranasal vaccine efficacy against influenza A virus in vivo. Assessment of humoral and mucosal antibody titers confirmed that 27b elevates IgG and IgA levels, protecting against both homologous and heterologous influenza viral infections. These findings suggest that 27b is a promising candidate as a vaccine adjuvant to prevent viral infections or as a robust immunomodulator with prolonged activity for treating immune-suppressed diseases.
Collapse
Affiliation(s)
- Morgan Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyungseob Noh
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Pyeongkeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Ho Kim
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeong Wook Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seong Soon Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Eun-Young Lee
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Myung Ae Bae
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Daeho Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- JD Bioscience, 208 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Girkin JLN, Bryant NE, Loo SL, Hsu A, Kanwal A, Williams TC, Maltby S, Turville SG, Wark PAB, Bartlett NW. Upper Respiratory Tract OC43 Infection Model for Investigating Airway Immune-Modifying Therapies. Am J Respir Cell Mol Biol 2023; 69:614-622. [PMID: 37603788 DOI: 10.1165/rcmb.2023-0202ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
Respiratory virus infections initiate and transmit from the upper respiratory tract (URT). Coronaviruses, including OC43, are a major cause of respiratory infection and disease. Failure to mount an effective antiviral immune response in the nasal mucosa increases the risk of severe disease and person-to-person transmission, highlighting the need for URT infection models to support the development of nasal treatments that improve coronavirus antiviral immunity. We aimed to determine if OC43 productively infected the mouse URT and would therefore be a suitable model to assess the efficacy and mechanism of action of nasal-targeting immune-modifying treatments. We administered OC43 via intranasal inoculation to wild-type Balb/c mice and assessed virus airway tropism (by comparing total respiratory tract vs. URT-only virus exposure) and characterized infection-induced immunity by quantifying specific antiviral cytokines and performing gene array assessment of immune genes. We then assessed the effect of immune-modulating therapies, including an immune-stimulating TLR2/6 agonist (INNA-X) and the immune-suppressing corticosteroid fluticasone propionate (FP). OC43 replicated in nasal respiratory epithelial cells, with peak viral RNA observed 2 days after infection. Prophylactic treatment with INNA-X accelerated expression of virus-induced IFN-λ and IFN-stimulated genes. In contrast, intranasal FP treatment increased nasal viral load by 2.4 fold and inhibited virus-induced IFN and IFN-stimulated gene expression. Prior INNA-X treatment reduced the immune-suppressive effect of FP. We demonstrate that the mouse nasal epithelium is permissive to OC43 infection and strengthen the evidence that TLR2 activation is a β-coronavirus innate immune determinant and therapeutic target.
Collapse
Affiliation(s)
- Jason L N Girkin
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nathan E Bryant
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Su-Ling Loo
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan Hsu
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Amama Kanwal
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Teresa C Williams
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Steven Maltby
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Stuart G Turville
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Nathan W Bartlett
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
8
|
Divergent TLR2 and TLR4 Activation by Fungal Spores and Species Diversity in Dust from Waste Sorting Plants. Appl Environ Microbiol 2023; 89:e0173422. [PMID: 36856441 PMCID: PMC10056968 DOI: 10.1128/aem.01734-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
This manuscript presents the results of an exploratory study on the relationships between NF-κB response through Toll-like receptor (TLR) activation by dust characterized by fungal spore concentrations and species diversity. Personal total dust samples were collected from Norwegian waste sorting plants and then characterized for fungal spores and fungal species diversity, as well as for other bioaerosol components, including endotoxins and actinobacteria. The ability of the dust to induce an NF-κB response by activating TLR2 and TLR4 in vitro was evaluated, as well as the relationship between such responses and quantifiable bioaerosol components. The average concentrations of bioaerosols were 7.23 mg total dust m-3, 4.49 × 105 fungal spores m-3, 814 endotoxin units m-3, and 0.6 × 105 actinobacteria m-3. The mean diversity measurements were 326, 0.59, and 3.39 for fungal richness, evenness, and Shannon index, respectively. Overall, fungal operational taxonomic units (OTUs) belonging to the Ascomycota phylum were most abundant (55%), followed by Basidiomycota (33%) and Mucoromycota (3%). All samples induced significant NF-κB responses through TLR2 and TLR4 activation. While fungal spore levels were positively associated with TLR2 and TLR4 activation, there was a trend that fungal species richness was negatively associated with the activation of these receptors. This observation supports the existence of divergent immunological response relationships between TLR activation and fungal spore levels on one hand and between TLR activation and fungal species diversity on the other. Such relationships seem to be described for the first time for dust from waste facilities. IMPORTANCE This manuscript presents results on multifactorial characterization of bioaerosol exposure in Norwegian waste sorting plants and the potential of such airborne dust to induce NF-κB reactions through TLR2 and TLR4 activations in an in vitro reporter cell model system. Our data revealed that increasing fungal spore levels in the dust is associated with increased activation of TLR2 and TLR4, whereas increasing fungal OTU richness is associated with decreasing activation of these receptors. The NF-κB-induced responses by the collected dust represent, therefore, effective measures of potential key immunological effects induced by a complex mixture of hazardous components, including characterized factors such as endotoxins, fungal spores, bacteria, and many other uncharacterized components. The key immunological events reported here are suggested as holistic alternatives to today's bioaerosol exposure characterization approaches for epidemiological studies in the future.
Collapse
|
9
|
Chen SN, Nan FH, Liu MW, Yang MF, Chang YC, Chen S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods 2023; 12:659. [PMID: 36766186 PMCID: PMC9914031 DOI: 10.3390/foods12030659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fungi-derived β-glucan, a type of glucopolysaccharide, has been shown to possess immune-modulatory properties in clinical settings. Studies have indicated that β-glucan derived from Ganoderma lucidum (commonly known as Reishi) holds particular promise in this regard, both in laboratory and in vivo settings. To further investigate the efficacy and safety of Reishi β-glucan in human subjects, a randomized, double-blinded, placebo-controlled clinical trial was conducted among healthy adult volunteers aged 18 to 55. Participants were instructed to self-administer the interventions or placebos on a daily basis for 84 days, with bloodwork assessments conducted at the beginning and end of the study. The results of the trial showed that subjects in the intervention group, who received Reishi β-glucan, exhibited a significant enhancement in various immune cell populations, including CD3+, CD4+, CD8+ T-lymphocytes, as well as an improvement in the CD4/CD8 ratio and natural killer cell counts when compared to the placebo group. Additionally, a statistically significant difference was observed in serum immunoglobulin A levels and natural killer cell cytotoxicity between the intervention and placebo groups. Notably, the intervention was found to be safe and well tolerated, with no statistically significant changes observed in markers of kidney or liver function in either group. Overall, the study provides evidence for the ability of Reishi β-glucan to modulate immune responses in healthy adults, thereby potentially bolstering their defense against opportunistic infections.
Collapse
Affiliation(s)
- Shiu-Nan Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Fan-Hua Nan
- College of Life Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Wei Liu
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242062, Taiwan
| | - Min-Feng Yang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chih Chang
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Sherwin Chen
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Pal A, Pyne N, Paul S. In-Silico Designing of a Multi-Epitope Vaccine against SARS-CoV2 and Studying the Interaction of the Vaccine with Alpha, Beta, Delta and Omicron Variants of Concern. Curr Drug Discov Technol 2023; 20:67-88. [PMID: 36093818 DOI: 10.2174/1570163819666220909114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The sudden appearance of the SARS-CoV2 virus has almost changed the future of vaccine development. There have been many different approaches to vaccination; among them, computational vaccinology in the form of multi-epitope vaccines with excellent immunological properties and minimal contamination or other adverse reactions has emerged as a promising strategy with a lot of room for further study in this area. OBJECTIVE Designing a multi-epitope vaccine from the spike protein of SARS-CoV2 based on immunoinformatics and in-silico techniques. Evaluating the binding affinity of the constructed vaccine against the major variants of concern (alpha, beta, delta, and omicron) using docking studies. METHODS The potential antigenic, immunogenic, and non-allergic T-cell epitopes were thoroughly explored using IEDB, NetCTL1.2, and NetMHCII pan 3.2 servers. The best suitable linker was identified using the ExPASy Protparam tool and VERIFY 3D. The 3D model of the vaccine was developed by RaptorX and the model was validated using ERRAT, Z-score, and Ramachandran Plot. Docking studies of the vaccine with TLR-2, 3, 4, and 7 and alpha, beta, delta, and omicron variants were performed using HADDOCK 2.4. RESULTS The vaccine construct showed good antigenic and immunogenic scores and was non-allergic as well. The model was capable of binding to all four selected Toll-like receptors. Docking scores with variants were also promising. CONCLUSION All the variants showed good binding ability with the vaccine construct. Interaction with the alpha variant was found to be the most intense, followed by delta, beta, and omicron.
Collapse
Affiliation(s)
- Aranya Pal
- Department of Botany, Laboratory of Cell and Molecular Biology, Centre of Advanced Study, University of Calcutta, Kolkata 700019, India
| | - Nibedita Pyne
- Department of Botany, Laboratory of Cell and Molecular Biology, Centre of Advanced Study, University of Calcutta, Kolkata 700019, India
| | - Santanu Paul
- Department of Botany, Laboratory of Cell and Molecular Biology, Centre of Advanced Study, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
11
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
12
|
Gorbunov SG, Mazankova LN, Os’kin AN. The role of TLR-3 in the course and outcomes of rotavirus infection in infants. CHILDREN INFECTIONS 2022. [DOI: 10.22627/2072-8107-2022-21-3-5-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
It was found that the clinical picture of rotavirus infection in infants with an initially low number of immunocompetent cells expressing TLR-3 does not differ significantly from that of patients with an initially large number of cells expressing TLR-3. When analyzing the treatment, it turned out that antibacterial therapy due to the activation of bacterial microflora was used only in children with an initially low number of immunocompetent cells expressing TLR-3. In the same group of patients, the development of atopic dermatitis and food allergies was noted during catamnestic observation for 6—12 months after rotavirus infection.
Collapse
Affiliation(s)
- S. G. Gorbunov
- Russian Medical Academy of Continuig Professional Education of the Ministry of Healthcare of the Russian Federation
| | - L. N. Mazankova
- Russian Medical Academy of Continuig Professional Education of the Ministry of Healthcare of the Russian Federation
| | - A. N. Os’kin
- Russian Medical Academy of Continuig Professional Education of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
13
|
Identification and immunological evaluation of novel TLR2 agonists through structural optimization of Diprovocim. Eur J Med Chem 2022; 243:114771. [PMID: 36174413 DOI: 10.1016/j.ejmech.2022.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022]
Abstract
As an important family member of Toll-like receptors (TLRs), TLR2 can recognize various pathogen-associated molecular patterns (PAMPs) such as bacteria and viral components. Accumulating evidence demonstrates that TLR2 agonists play a critical role in cancer immunotherapy and infectious diseases. Diprovocim is the most potent small molecule TLR2 agonist known, showing remarkably immune adjuvant activity in mice. However, the further clinical research and development of Diprovocim was hampered because of its structural complexity as well as high molecular weight. Here, we designed and synthesized 21 structurally simplified derivatives of Diprovocim, performed their TLR2 agonistic activities by HEK-Blue hTLR2 SEAP assay, and evaluated the toxicity in two human normal cell lines. Compounds B3-B4 and B9-B12 with excellent TLR2 agonistic activity were found through the structure-activity relationship study. Among them, diastereomer B10 and B12 substituted (S)-2-phenylcyclopropylamide side chain of Diprovocim with simple (R)- and (S)-n-butyl groups exhibited comparable TLR2 agonistic activities with EC50 values of 35 nM and 39 nM, respectively. ELISA and western blot experiments on THP-1 cells showed that B10 and B12 displayed remarkable immunostimulatory activity in the release of various inflammatory cytokines through activating MyD88-dependent NF-κB and MAPK signaling pathways. Importantly, B10 and B12 have less structural complexity and better safety compared to Diprovocim, and the chiral center of right pyrrolidine ring has negligible influence on TLR2 activition. Our study provides simplified Diprovocim derivatives with high agonistic activity, providing a clue to further optimize Diprovocim.
Collapse
|
14
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
15
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
16
|
In-Silico Design of a Multi‑epitope Construct Against Influenza A Based on Nucleoprotein Gene. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Toll-like Receptor Response to Hepatitis C Virus Infection: A Recent Overview. Int J Mol Sci 2022; 23:ijms23105475. [PMID: 35628287 PMCID: PMC9141274 DOI: 10.3390/ijms23105475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.
Collapse
|
18
|
Molecular dynamics simulations reveal the selectivity mechanism of structurally similar agonists to TLR7 and TLR8. PLoS One 2022; 17:e0260565. [PMID: 35452465 PMCID: PMC9032342 DOI: 10.1371/journal.pone.0260565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
TLR7 and TLR8 are key members of the Toll-like receptor family, playing crucial roles in the signaling pathways of innate immunity, and thus become attractive therapeutic targets of many diseases including infections and cancer. Although TLR7 and TLR8 show a high degree of sequence homology, their biological response to small molecule binding is very different. Aiming to understand the mechanism of selective profiles of small molecule modulators against TLR7 and TLR8, we carried out molecular dynamic simulations on three imidazoquinoline derivatives bound to the receptors separately. They are Resiquimod (R), Hybrid-2 (H), and Gardiquimod (G), selective agonists of TLR7 and TLR8. Our MD trajectories indicated that in the complex of TLR7-R and TLR7-G, the two chains forming the TLR7 dimer tended to remain “open” conformation, while the rest systems maintained in the closed format. The agonists R, H, and G developed conformational deviation mainly on the aliphatic tail. Furthermore, we attempted to quantify the selectivity between TLR7 and TLR8 by binding free energies via MM-GBSA method. It showed that the three selected modulators were more favorable for TLR7 than TLR8, and the ranking from the strongest to the weakest was H, R and G, aligning well with experimental data. In the TLR7, the flexible and hydrophobic aliphatic side chain of H has stronger van der Waals interactions with V381 and F351 but only pick up interaction with one amino acid residue i.e. Y353 of TLR8. Unsurprisingly, the positively charged side chain of G has less favorable interaction with I585 of TLR7 and V573 of TLR8 explaining G is weak agonist of both TLR7 and TLR8. All three imidazoquinoline derivatives can form stable hydrogen bonds with D555 of TLR7 and the corresponding D543 of TLR8. In brief, the set of total 400ns MD studies sheds light on the potential selectivity mechanisms of agonists towards TLR7 and TLR8, indicating the van der Waals interaction as the driving force for the agonists binding, thus provides us insights for designing more potent and selective modulators to cooperate with the hydrophobic nature of the binding pocket.
Collapse
|
19
|
Rafi MO, Al-Khafaji K, Sarker MT, Taskin-Tok T, Rana AS, Rahman MS. Design of a multi-epitope vaccine against SARS-CoV-2: immunoinformatic and computational methods. RSC Adv 2022; 12:4288-4310. [PMID: 35425433 PMCID: PMC8981096 DOI: 10.1039/d1ra06532g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/23/2022] [Indexed: 12/17/2022] Open
Abstract
A novel infectious agent, SARS-CoV-2, is responsible for causing the severe respiratory disease COVID-19 and death in humans. Spike glycoprotein plays a key role in viral particles entering host cells, mediating receptor recognition and membrane fusion, and are considered useful targets for antiviral vaccine candidates. Therefore, computational techniques can be used to design a safe, antigenic, immunogenic, and stable vaccine against this pathogen. Drawing upon the structure of the S glycoprotein, we are trying to develop a potent multi-epitope subunit vaccine against SARS-CoV-2. The vaccine was designed based on cytotoxic T-lymphocyte and helper T-lymphocyte epitopes with an N-terminal adjuvant via conducting immune filters and an extensive immunoinformatic investigation. The safety and immunogenicity of the designed vaccine were further evaluated via using various physicochemical, allergenic, and antigenic characteristics. Vaccine-target (toll-like receptors: TLR2 and TLR4) interactions, binding affinities, and dynamical stabilities were inspected through molecular docking and molecular dynamic (MD) simulation methods. Moreover, MD simulations for dimeric TLRs/vaccine in the membrane-aqueous environment were performed to understand the differential domain organization of TLRs/vaccine. Further, dynamical behaviors of vaccine/TLR systems were inspected via identifying the key residues (named HUB nodes) that control interaction stability and provide a clear molecular mechanism. The obtained results from molecular docking and MD simulation revealed a strong and stable interaction between vaccine and TLRs. The vaccine's ability to stimulate the immune response was assessed by using computational immune simulation. This predicted a significant level of cytotoxic T cell and helper T cell activation, as well as IgG, interleukin 2, and interferon-gamma production. This study shows that the designed vaccine is structurally and dynamically stable and can trigger an effective immune response against viral infections.
Collapse
Affiliation(s)
- Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, AL-Nisour University College Baghdad Iraq
| | - Md Takim Sarker
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Tugba Taskin-Tok
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University Gaziantep 27310 Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University Gaziantep Turkey
| | - Abdus Samad Rana
- School of Biotechnology, Jiangnan University Wuxi 214122 PR China
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
20
|
Yates AG, Weglinski CM, Ying Y, Dunstan IK, Strekalova T, Anthony DC. Nafamostat reduces systemic inflammation in TLR7-mediated virus-like illness. J Neuroinflammation 2022; 19:8. [PMID: 34991643 PMCID: PMC8734544 DOI: 10.1186/s12974-021-02357-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The serine protease inhibitor nafamostat has been proposed as a treatment for COVID-19, by inhibiting TMPRSS2-mediated viral cell entry. Nafamostat has been shown to have other, immunomodulatory effects, which may be beneficial for treatment, however animal models of ssRNA virus infection are lacking. In this study, we examined the potential of the dual TLR7/8 agonist R848 to mimic the host response to an ssRNA virus infection and the associated behavioural response. In addition, we evaluated the anti-inflammatory effects of nafamostat in this model. METHODS CD-1 mice received an intraperitoneal injection of R848 (200 μg, prepared in DMSO, diluted 1:10 in saline) or diluted DMSO alone, and an intravenous injection of either nafamostat (100 μL, 3 mg/kg in 5% dextrose) or 5% dextrose alone. Sickness behaviour was determined by temperature, food intake, sucrose preference test, open field and forced swim test. Blood and fresh liver, lung and brain were collected 6 h post-challenge to measure markers of peripheral and central inflammation by blood analysis, immunohistochemistry and qPCR. RESULTS R848 induced a robust inflammatory response, as evidenced by increased expression of TNF, IFN-γ, CXCL1 and CXCL10 in the liver, lung and brain, as well as a sickness behaviour phenotype. Exogenous administration of nafamostat suppressed the hepatic inflammatory response, significantly reducing TNF and IFN-γ expression, but had no effect on lung or brain cytokine production. R848 administration depleted circulating leukocytes, which was restored by nafamostat treatment. CONCLUSIONS Our data indicate that R848 administration provides a useful model of ssRNA virus infection, which induces inflammation in the periphery and CNS, and virus infection-like illness. In turn, we show that nafamostat has a systemic anti-inflammatory effect in the presence of the TLR7/8 agonist. Therefore, the results indicate that nafamostat has anti-inflammatory actions, beyond its ability to inhibit TMPRSS2, that might potentiate its anti-viral actions in pathologies such as COVID-19.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Caroline M Weglinski
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
| | - Yuxin Ying
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
| | - Isobel K Dunstan
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
| | - Tatyana Strekalova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Daniel C Anthony
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russia.
- University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
21
|
Mekonnen D, Mengist HM, Jin T. SARS-CoV-2 subunit vaccine adjuvants and their signaling pathways. Expert Rev Vaccines 2022; 21:69-81. [PMID: 34633259 PMCID: PMC8567292 DOI: 10.1080/14760584.2021.1991794] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Vaccines are the agreed upon weapon against the COVID-19 pandemic. This review discusses about COVID-19 subunit vaccines adjuvants and their signaling pathways, which could provide a glimpse into the selection of appropriate adjuvants for prospective vaccine development studies. AREAS COVERED In the introduction, a brief background about the SARS-CoV-2 pandemic, the vaccine development race and classes of vaccine adjuvants were provided. . The antigen, trial stage, and types of adjuvants were extracted from the included articles and thun assimilated. Finally, the pattern recognition receptors (PRRs), their classes, cognate adjuvants, and potential signaling pathways were comprehended. EXPERT OPINION Adjuvants are unsung heroes of subunit vaccines. The in silico studies are very vital in avoiding several costly trial errors and save much work times. The majority of the (pre)clinical studies are promising. It is encouraging that most of the selected adjuvants are novel. Much emphasis must be paid to the optimal paring of antigen-adjuvant-PRRs for obtaining the desired vaccine effect. A good subunit vaccine/adjuvant is one that has high efficacy, safety, dose sparing, and rapid seroconversion rate and broad spectrum of immune response. In the years to come, COVID-19 adjuvanted subunit vaccines are expected to have superior utility than any other vaccines for various reasons.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Cas Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Deb D, Basak S, Kar T, Narsaria U, Castiglione F, Paul A, Pandey A, Srivastava AP. Immunoinformatics based designing a multi-epitope vaccine against pathogenic Chandipura vesiculovirus. J Cell Biochem 2021; 123:322-346. [PMID: 34729821 DOI: 10.1002/jcb.30170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Chandipura vesiculovirus (CHPV) is a rapidly emerging pathogen responsible for causing acute encephalitis. Due to its widespread occurrence in Asian and African countries, this has become a global threat, and there is an urgent need to design an effective and nonallergenic vaccine against this pathogen. The present study aimed to develop a multi-epitope vaccine using an immunoinformatics approach. The conventional method of vaccine design involves large proteins or whole organism which leads to unnecessary antigenic load with increased chances of allergenic reactions. In addition, the process is also very time-consuming and labor-intensive. These limitations can be overcome by peptide-based vaccines comprising short immunogenic peptide fragments that can elicit highly targeted immune responses, avoiding the chances of allergenic reactions, in a relatively shorter time span. The multi-epitope vaccine constructed using CTL, HTL, and IFN-γ epitopes was able to elicit specific immune responses when exposed to the pathogen, in silico. Not only that, molecular docking and molecular dynamics simulation studies confirmed a stable interaction of the vaccine with the immune receptors. Several physicochemical analyses of the designed vaccine candidate confirmed it to be highly immunogenic and nonallergic. The computer-aided analysis performed in this study suggests that the designed multi-epitope vaccine can elicit specific immune responses and can be a potential candidate against CHPV.
Collapse
Affiliation(s)
- Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - Abhirup Paul
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Ashutosh Pandey
- Plant Metabolic Engineering, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| |
Collapse
|
23
|
Xu X, Zhang QY, Chu XY, Quan Y, Lv BM, Zhang HY. Facilitating Antiviral Drug Discovery Using Genetic and Evolutionary Knowledge. Viruses 2021; 13:v13112117. [PMID: 34834924 PMCID: PMC8626054 DOI: 10.3390/v13112117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Over the course of human history, billions of people worldwide have been infected by various viruses. Despite rapid progress in the development of biomedical techniques, it is still a significant challenge to find promising new antiviral targets and drugs. In the past, antiviral drugs mainly targeted viral proteins when they were used as part of treatment strategies. Since the virus mutation rate is much faster than that of the host, such drugs feature drug resistance and narrow-spectrum antiviral problems. Therefore, the targeting of host molecules has gradually become an important area of research for the development of antiviral drugs. In recent years, rapid advances in high-throughput sequencing techniques have enabled numerous genetic studies (such as genome-wide association studies (GWAS), clustered regularly interspersed short palindromic repeats (CRISPR) screening, etc.) for human diseases, providing valuable genetic and evolutionary resources. Furthermore, it has been revealed that successful drug targets exhibit similar genetic and evolutionary features, which are of great value in identifying promising drug targets and discovering new drugs. Considering these developments, in this article the authors propose a host-targeted antiviral drug discovery strategy based on knowledge of genetics and evolution. We first comprehensively summarized the genetic, subcellular location, and evolutionary features of the human genes that have been successfully used as antiviral targets. Next, the summarized features were used to screen novel druggable antiviral targets and to find potential antiviral drugs, in an attempt to promote the discovery of new antiviral drugs.
Collapse
Affiliation(s)
| | - Qing-Ye Zhang
- Correspondence: (Q.-Y.Z.); (H.-Y.Z.); Tel.: +86-27-8728-0877 (H.-Y.Z.)
| | | | | | | | - Hong-Yu Zhang
- Correspondence: (Q.-Y.Z.); (H.-Y.Z.); Tel.: +86-27-8728-0877 (H.-Y.Z.)
| |
Collapse
|
24
|
Farooq M, Batool M, Kim MS, Choi S. Toll-Like Receptors as a Therapeutic Target in the Era of Immunotherapies. Front Cell Dev Biol 2021; 9:756315. [PMID: 34671606 PMCID: PMC8522911 DOI: 10.3389/fcell.2021.756315] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors, which are activated by foreign and host molecules in order to initiate the immune response. They play a crucial role in the regulation of innate immunity, and several studies have shown their importance in bacterial, viral, and fungal infections, autoimmune diseases, and cancers. The consensus view from an immunological perspective is that TLR agonists can serve either as a possible therapeutic agent or as a vaccine adjuvant toward cancers or infectious diseases and that TLR inhibitors may be a promising approach to the treatment of autoimmune diseases, some cancers, bacterial, and viral infections. These notions are based on the fact that TLR agonists stimulate the secretion of proinflammatory cytokines and in general, the development of proinflammatory responses. Some of the TLR-based inhibitory agents have shown to be efficacious in preclinical models and have now entered clinical trials. Therefore, TLRs seem to hold the potential to serve as a perfect target in the era of immunotherapies. We offer a perspective on TLR-based therapeutics that sheds light on their usefulness and on combination therapies. We also highlight various therapeutics that are in the discovery phase or in clinical trials.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Suwon, South Korea
| |
Collapse
|
25
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
26
|
Dyavar SR, Singh R, Emani R, Pawar GP, Chaudhari VD, Podany AT, Avedissian SN, Fletcher CV, Salunke DB. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed Pharmacother 2021; 141:111794. [PMID: 34153851 PMCID: PMC8189763 DOI: 10.1016/j.biopha.2021.111794] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is the causative agent of Corona Virus Disease 2019 (COVID-19). Lower production of type I and III interferons and higher levels of inflammatory mediators upon SARS-CoV2 infection contribute to COVID-19 pathogenesis. Optimal interferon production and controlled inflammation are essential to limit COVID-19 pathogenesis. However, the aggravated inflammatory response observed in COVID-19 patients causes severe damage to the host and frequently advances to acute respiratory distress syndrome (ARDS). Toll-like receptor 7 and 8 (TLR7/8) signaling pathways play a central role in regulating induction of interferons (IFNs) and inflammatory mediators in dendritic cells. Controlled inflammation is possible through regulation of TLR mediated response without influencing interferon production to reduce COVID-19 pathogenesis. This review focuses on inflammatory mediators that contribute to pathogenic effects and the role of TLR pathways in the induction of interferon and inflammatory mediators and their contribution to COVID-19 pathogenesis. We conclude that potential TLR7/8 agonists inducing antiviral interferon response and controlling inflammation are important therapeutic options to effectively eliminate SARS-CoV2 induced pathogenesis. Ongoing and future studies may provide additional evidence on their safety and efficacy to treat COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Shetty Ravi Dyavar
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA.
| | - Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Rohini Emani
- Buck Institute for Research on Ageing, Novato, CA, USA
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, CSIR-Institute of Microbiology Technology Chandigarh, Sector-39A, Chandigarh,160036, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, CSIR-Institute of Microbiology Technology Chandigarh, Sector-39A, Chandigarh,160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anthony T Podany
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Sean N Avedissian
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Courtney V Fletcher
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
27
|
Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: From antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev 2021; 175:113803. [PMID: 34058283 PMCID: PMC9003539 DOI: 10.1016/j.addr.2021.05.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.
Collapse
Affiliation(s)
- Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Bhattacharjee C, Singh M, Das D, Chaudhuri S, Mukhopadhyay A. Current therapeutics against HCV. Virusdisease 2021; 32:228-243. [PMID: 34307769 PMCID: PMC8279913 DOI: 10.1007/s13337-021-00697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C is a positive stranded enveloped RNA virus belonging to the Flaviviridae family. HCV infection leads to severe liver diseases, cirrhosis and hepatocellular carcinoma worldwide. Although treatments have been available for a while, due to its complexity and genetic diversity, only few are reported to be effective against all HCV genotypes. Here, we review the HCV life cycle and its immunogenic potential and various mechanisms via which the virus interferes in the signalling process. A comprehensive overview of current anti-HCV therapeutics, such as, Direct Acting Antiviral (DAA) as well as Host Targeting Agents (HTA), along with their scope, known mechanism of action and limitations are presented. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00697-0.
Collapse
Affiliation(s)
- Chayan Bhattacharjee
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Maitri Singh
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Debisukti Das
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | | | - Aparna Mukhopadhyay
- Department of Life Science, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
29
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
30
|
Umetsu H, Watanabe S, Imaizumi T, Aizawa T, Tsugawa K, Kawaguchi S, Seya K, Matsumiya T, Tanaka H. Interleukin-6 via Toll-Like Receptor 3 Signaling Attenuates the Expression of Proinflammatory Chemokines in Human Podocytes. Kidney Blood Press Res 2021; 46:207-218. [PMID: 33827102 DOI: 10.1159/000514589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although toll-like receptor 3 (TLR3) signaling is involved in the development of certain chronic kidney diseases, the specific molecular mechanisms underlying inflammatory reactions via activation of TLR3 signaling in human podocytes remain unclear. Interleukin (IL)-6 is a pleiotropic cytokine associated with innate and adaptive immune responses; however, little is known about the implication of IL-6 via the activation of regional TLR3 signaling in the inflammatory reactions in human podocytes. METHODS We treated immortalized human podocytes with polyinosinic-polycytidylic acid (poly IC), an authentic viral double-stranded RNA, and assessed the expression of IL-6, monocyte chemoattractant protein-1 (MCP-1), and C-C motif chemokine ligand 5 (CCL5) using quantitative real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against IFN-β and IL-6. RESULTS We found that the activation of TLR3 induced expression of IL-6, MCP-1, CCL5, and IFN-β in human podocytes. RNA interference experiments revealed that IFN-β was involved in the poly IC-induced expression of IL-6, MCP-1, and CCL5. Interestingly, IL-6 knockdown markedly increased the poly IC-induced expression of MCP-1 and CCL5. Further, treatment of cells with IL-6 attenuated the expression of CCL5 and MCP-1 mRNA and proteins. CONCLUSION IL-6 induced by TLR3 signaling negatively regulates the expression of representative TLR3 signaling-dependent proinflammatory chemokines in human podocytes.
Collapse
Affiliation(s)
- Hidenori Umetsu
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki, Japan
| |
Collapse
|
31
|
Jahan H, Choudhary MI. Gliclazide alters macrophages polarization state in diabetic atherosclerosis in vitro via blocking AGE-RAGE/TLR4-reactive oxygen species-activated NF-kβ nexus. Eur J Pharmacol 2021; 894:173874. [PMID: 33460615 DOI: 10.1016/j.ejphar.2021.173874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Hyperglycemic milieu in diabetes mellitus stimulates macrophages for exaggerated pro-inflammatory cytokine response, particularly IL-1β, IL-6, and TNF-α. Although hyperglycemia causes macrophages to produce pro-inflammatory cytokines, AGEs (advanced glycation end products) active inflammation, produced as a result of chronic hyperglycemia, inducers cause polarization of macrophages into pro-inflammatory M1 phenotype. AGEs in diabetes accelerate atherosclerotic plaque initiation and progression via promoting macrophages polarization towards pro-inflammatory state. Gliclazide (Glz) is a well known antidiabetic drug with excellent safety profile. Its repurposing in the management of diabetes-associated late complications has tremendous merit. The present study demonstrated that Glz retards diabetic atherosclerotic progression, and cytokines storm in a concentration dependent manner over a concentration range of 1-100 μM than those of AGEs (200 μg/ml)-treated cells through a mechanism that alters macrophage M1 polarization state. Glz exerted these beneficial effects, independent of its antidiabetic effect. Glz pretreatment significantly (P < 0.05) inhibited the AGEs-induced pro-inflammatory mediators (NO•, reactive oxygen species, i-NOS), and production of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. It also significantly (P < 0.05) promoted the production of anti-inflammatory cytokines (IL-10 and TGF-β) in RAW 264.7 mouse macrophages. Glz pretreatment also effectively abated the AGEs-induced RAGE (~2-fold decrease), and CD86 surface marker expressions (P < 0.001 at 100 μM) on macrophages by inhibiting the NF-kβ activation in a concentration dependent manner (1-100 μM) (P < 0.001). In conclusion, our data demonstrates that Glz alleviates the diabetic atherosclerosis progression by ameliorating the AGEs-mediated M1 pro-inflammatory phenotype via blocking AGE-RAGE/TLR4-reactive oxygen species -activated NF-kβ nexus in macrophages.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, JI. Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
32
|
Proud PC, Tsitoura D, Watson RJ, Chua BY, Aram MJ, Bewley KR, Cavell BE, Cobb R, Dowall S, Fotheringham SA, Ho CMK, Lucas V, Ngabo D, Rayner E, Ryan KA, Slack GS, Thomas S, Wand NI, Yeates P, Demaison C, Zeng W, Holmes I, Jackson DC, Bartlett NW, Mercuri F, Carroll MW. Prophylactic intranasal administration of a TLR2/6 agonist reduces upper respiratory tract viral shedding in a SARS-CoV-2 challenge ferret model. EBioMedicine 2021; 63:103153. [PMID: 33279857 PMCID: PMC7711201 DOI: 10.1016/j.ebiom.2020.103153] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING This work was funded by Ena Respiratory, Melbourne, Australia.
Collapse
Affiliation(s)
- Pamela C Proud
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Daphne Tsitoura
- Ena Respiratory, Level 9, 31 Queen St, Melbourne, Victoria, 3000, Australia
| | - Robert J Watson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Marilyn J Aram
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Kevin R Bewley
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Breeze E Cavell
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Rebecca Cobb
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Stuart Dowall
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Susan A Fotheringham
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Catherine M K Ho
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Vanessa Lucas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Didier Ngabo
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Emma Rayner
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Kathryn A Ryan
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Gillian S Slack
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Stephen Thomas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Nadina I Wand
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | - Paul Yeates
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG
| | | | - Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Ian Holmes
- Ena Respiratory, Level 9, 31 Queen St, Melbourne, Victoria, 3000, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease group and Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Francesca Mercuri
- Ena Respiratory, Level 9, 31 Queen St, Melbourne, Victoria, 3000, Australia.
| | - Miles W Carroll
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom SP4 0JG; Nuffield Dept of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
33
|
Pourseif MM, Parvizpour S, Jafari B, Dehghani J, Naghili B, Omidi Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. BIOIMPACTS : BI 2020; 11:65-84. [PMID: 33469510 PMCID: PMC7803919 DOI: 10.34172/bi.2021.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) is undoubtedly the most challenging pandemic in the current century with more than 293,241 deaths worldwide since its emergence in late 2019 (updated May 13, 2020). COVID-19 is caused by a novel emerged coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Today, the world needs crucially to develop a prophylactic vaccine scheme for such emerged and emerging infectious pathogens. Methods: In this study, we have targeted spike (S) glycoprotein, as an important surface antigen to identify its B- and T-cell immunodominant regions. We have conducted a multi-method B-cell epitope (BCE) prediction approach using different predictor algorithms to discover the most potential BCEs. Besides, we sought among a pool of MHC class I and II-associated peptide binders provided by the IEDB server through the strict cut-off values. To design a broad-coverage vaccine, we carried out a population coverage analysis for a set of candidate T-cell epitopes and based on the HLA allele frequency in the top most-affected countries by COVID-19 (update 02 April 2020). Results: The final determined B- and T-cell epitopes were mapped on the S glycoprotein sequence, and three potential hub regions covering the largest number of overlapping epitopes were identified for the vaccine designing (I531-N711; T717-C877; and V883-E973). Here, we have designed two domain-based constructs to be produced and delivered through the recombinant protein- and gene-based approaches, including (i) an adjuvanted domain-based protein vaccine construct (DPVC), and (ii) a self-amplifying mRNA vaccine (SAMV) construct. The safety, stability, and immunogenicity of the DPVC were validated using the integrated sequential (i.e. allergenicity, autoimmunity, and physicochemical features) and structural (i.e. molecular docking between the vaccine and human Toll-like receptors (TLRs) 4 and 5) analysis. The stability of the docked complexes was evaluated using the molecular dynamics (MD) simulations. Conclusion: These rigorous in silico validations supported the potential of the DPVC and SAMV to promote both innate and specific immune responses in preclinical studies.
Collapse
Affiliation(s)
- Mohammad Mostafa Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Naghili
- Research Center for Infectious and Tropical Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Nova Southeastern University, College of Pharmacy, Florida, USA
| |
Collapse
|
34
|
Xu Q, Tang Y, Huang G. Innate immune responses in RNA viral infection. Front Med 2020; 15:333-346. [PMID: 33263837 PMCID: PMC7862985 DOI: 10.1007/s11684-020-0776-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/14/2020] [Indexed: 12/17/2022]
Abstract
RNA viruses cause a multitude of human diseases, including several pandemic events in the past century. Upon viral invasion, the innate immune system responds rapidly and plays a key role in activating the adaptive immune system. In the innate immune system, the interactions between pathogen-associated molecular patterns and host pattern recognition receptors activate multiple signaling pathways in immune cells and induce the production of pro-inflammatory cytokines and interferons to elicit antiviral responses. Macrophages, dendritic cells, and natural killer cells are the principal innate immune components that exert antiviral activities. In this review, the current understanding of innate immunity contributing to the restriction of RNA viral infections was briefly summarized. Besides the main role of immune cells in combating viral infection, the intercellular transfer of pathogen and host-derived materials and their epigenetic and metabolic interactions associated with innate immunity was discussed. This knowledge provides an enhanced understanding of the innate immune response to RNA viral infections in general and aids in the preparation for the existing and next emerging viral infections.
Collapse
Affiliation(s)
- Qian Xu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuting Tang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
35
|
Soraya H. Prophylactic Use of Chloroquine May Impair Innate Immune System Response against SARS-Cov-2. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hamid Soraya
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
36
|
Carty M, Guy C, Bowie AG. Detection of Viral Infections by Innate Immunity. Biochem Pharmacol 2020; 183:114316. [PMID: 33152343 DOI: 10.1016/j.bcp.2020.114316] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors (PRRs) and inflammasomes are a key part of the anti-viral innate immune system as they detect conserved viral pathogen-associated molecular patterns (PAMPs). A successful host response to viral infections critically depend on the initial activation of PRRs by viruses, mainly by viral DNA and RNA. The signalling pathways activated by PRRs leads to the expression of pro-inflammatory cytokines, to recruit immune cells, and type I and type III interferons which leads to the induction of interferon stimulated genes (ISG), powerful virus restriction factors that establish the "antiviral state". Inflammasomes contribute to anti-viral responses through the maturation of interleukin (IL)-1 and IL-18 and through triggering pyroptotic cell death. The activity of the innate immune system along with the adaptive immune response normally leads to successful virus elimination, although disproportionate innate responses contribute to viral pathology. In this review we will discuss recent insights into the influence of PRR activation and inflammasomes on viral infections and what this means for the mammalian host. We will also comment on how specific PRRs and inflammasomes may be relevant to how SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, interacts with host innate immunity.
Collapse
Affiliation(s)
- Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
37
|
Hirono K, Imaizumi T, Aizawa T, Watanabe S, Tsugawa K, Shiratori T, Kawaguchi S, Seya K, Matsumiya T, Ito E, Tanaka H. Endothelial expression of fractalkine (CX3CL1) is induced by Toll-like receptor 3 signaling in cultured human glomerular endothelial cells. Mod Rheumatol 2020; 30:1074-1081. [PMID: 31625434 DOI: 10.1080/14397595.2019.1682768] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
Abstract
Background: Endothelial expression of membrane-bound fractalkine/CX3CL1 (Fkn) reportedly acts as a strong mediator of inflammation. Toll-like receptor 3 (TLR3) axes are thought to play some roles in the development of chronic glomerulonephritis (CGN) including lupus nephritis (LN). However, detailed mechanism of TLR3-mediated Fkn expression in glomerular endothelial cells (GECs) remains to be elucidated.Methods: We examined the effect of polyinosinic-polycytidylic acid (poly IC) on Fkn expression in cultured human GECs. Fkn mRNA and protein levels were quantified by real-time PCR and enzyme-linked immunosorbent assay, respectively. To further elucidate the effects of poly IC on this signaling pathway, we used small-interfering RNA (siRNA) to knockdown expression of TLR3, nuclear factor (NF)-κB p65, interferon (IFN)-β, and IFN regulatory factor 3 (IRF3). We then analyzed whether pretreatment of chloroquine or dexamethasone (DEX) inhibits poly IC-induced Fkn expression.Results: We found that poly IC-induced Fkn expression in GECs, and that this involved NF-κB, IFN-β, and IRF3. Pretreating cells with chloroquine, but not DEX attenuated poly IC-induced Fkn expression in GECs.Conclusion: Since the activation of TLR3/NF-κB/IFN-β/Fkn and TLR3/IRF3/Fkn axes is involved in inflammatory reactions in GECs, intervention of glomerular TLR3 signaling may be a suitable therapeutic strategy for treating CGN especially LN.
Collapse
Affiliation(s)
- Koji Hirono
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | | | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
- Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
38
|
Asiri YI, Alsayari A, Muhsinah AB, Mabkhot YN, Hassan MZ. Benzothiazoles as potential antiviral agents. J Pharm Pharmacol 2020; 72:1459-1480. [PMID: 32705690 PMCID: PMC7405065 DOI: 10.1111/jphp.13331] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The recent viral pandemic poses a unique challenge for healthcare providers. Despite the remarkable progress, the number of novel antiviral agents in the pipeline is woefully inadequate against the evolving virulence and drug resistance of current viruses. This highlights the urgent need for new and improved vaccines, diagnostics and therapeutic agents to obviate the viral pandemic. KEY FINDINGS Benzothiazole plays a pivotal role in the design and development of antiviral drugs. This is evident from the fact that it comprises many clinically useful agents. The current review is aimed to provide an insight into the recent development of benzothiazole-based antiviral agents, with a special focus on their structure-activity relationships and lead optimisation. One hundred and five articles were initially identified, and from these studies, 64 potential novel lead molecules and main findings were highlighted in this review. SUMMARY We hope this review will provide a logical perspective on the importance of improving the future designs of novel broad-spectrum benzothiazole-based antiviral agents to be used against emerging viral diseases.
Collapse
Affiliation(s)
- Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdullatif B Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohd Z Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
39
|
Lee SN, Jin SM, Shin HS, Lim YT. Chemical Strategies to Enhance the Therapeutic Efficacy of Toll-like Receptor Agonist Based Cancer Immunotherapy. Acc Chem Res 2020; 53:2081-2093. [PMID: 32966047 DOI: 10.1021/acs.accounts.0c00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent developments in the fields of biomedical chemistry and immune bioengineering have enabled innovative therapeutic approaches that can enhance the efficacy, accuracy, and safety of cancer immunotherapy. Among the numerous strategies utilized in cancer immunotherapy, Toll-like receptor (TLR) agonist-based approaches have been studied for a long time since they trigger the innate immune system and generate antigen-specific T cell responses to fight against tumors. In addition to these immunostimulatory functions, TLR agonists also contribute to the reprogramming of immune suppressive tumor microenvironments. Although TLR agonists are now being intensively studied in clinical trials due to their substantial immunomodulatory properties, they still show a low therapeutic index. Nonspecific and random stimulation of various immune cells produces excess levels of proinflammatory cytokines, resulting in cytokine storms and chronic diseases. Therefore, the development of chemical strategies to enhance the therapeutic efficacy as well as the safety of TLR agonist-based immunotherapy is essential and in high demand.In this Account, we summarize and discuss recent developments in biomedical chemistry and bioengineering techniques for the immunomodulation of TLR agonists that have addressed the limitations in current cancer immunotherapy. Immunomodulation of TLR agonists can be classified into two different approaches: (1) molecular modulation via chemical structure modification and (2) macroscopic modulation via an engineered drug delivery system. In molecular modulation, based on prodrug and antedrug principles, activity is modulated (active or inactive) through immolative chemical linkers that can respond to extrinsic or intrinsic biological stimulation and the plasmatic environment, respectively. To increase the effectiveness of TLR agonists as immunostimulatory agents, researchers have conjugated TLR agonists with other immunotherapeutic moieties (antigen, antibody, other TLR agonist, etc.). For macroscopic modulation, bioengineering of delivery carriers differing in size or with albumin hitchhiking moieties has been utilized to increase the efficiency of the targeting of these carriers to secondary lymphoid organs (lymph nodes (LNs) and spleen). The conjugation of specific targeting ligands and incorporation of stimulus-triggering moieties can promote the delivery of TLR agonists into specific cells or intracellular compartments. Implantable porous scaffolds for specific immune cell recruitment and in situ depot-forming gel systems for controlled release of immunomodulatory drugs can increase the therapeutic efficacy of TLR agonists while reducing systemic toxicity. Taken together, these findings show that well-designed and precisely controlled chemical strategies for the immunomodulation of TLR agonists at both the molecular and macroscopic levels are expected to play key roles in improving the therapeutic efficacy of cancer immunotherapy while minimizing immune-related toxicity.
Collapse
Affiliation(s)
- Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Biomedical Institute for Convergence at SKKU and School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
40
|
Kieffer ME, Patel AM, Hollingsworth SA, Seganish WM. Small molecule agonists of toll-like receptors 7 and 8: a patent review 2014 - 2020. Expert Opin Ther Pat 2020; 30:825-845. [PMID: 33052748 DOI: 10.1080/13543776.2020.1825687] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Toll-like receptors 7 and 8 (TLR7 and TLR8) are endosomal immune receptors that initiate an innate immune response and can facilitate activation of the adaptive immune system. Both preclinical and clinical studies have shown the downstream inflammatory response from TLR7 and TLR8 agonism results in preliminary efficacy for the treatment of cancer, viral infections, and for use as a vaccine adjuvant. AREAS COVERED This patent review covers recent developments in small molecule TLR7 and TLR8 agonists published between January 2014 - February 2020. We summarize relevant chemical scaffolds, observed structure-activity relationships, and where available, preliminary animal models, and clinical data. EXPERT OPINION In the last 6 years, there has been significant progress in the optimization of novel TLR7 and TLR8 small molecule agonists. These novel compounds are currently being evaluated in the clinic for multiple antiviral and oncology indications. Clinical data from these trials will provide a clearer outlook on 1) the TLR7/8 engagement necessary to obtain the desired immune response, 2) safety margin improvement using directed delivery, and 3) potential synergistic effects with checkpoint inhibitor combination therapies.
Collapse
Affiliation(s)
- Madeleine E Kieffer
- Department of Discovery Chemistry, Merck & Co., Inc , South San Francisco, California, USA
| | - Akash M Patel
- Department of Discovery Chemistry, Merck & Co., Inc , South San Francisco, California, USA
| | - Scott A Hollingsworth
- Department of Discovery Chemistry, Merck & Co., Inc , South San Francisco, California, USA
| | - W Michael Seganish
- Department of Discovery Chemistry, Merck & Co., Inc , South San Francisco, California, USA
| |
Collapse
|
41
|
Safaei S, Karimi-Googheri M. Letter to the Editor: Toll-Like Receptor Antagonists as a Potential Therapeutic Strategy Against Cytokine Storm in COVID-19-Infected Patients. Viral Immunol 2020; 34:361-362. [PMID: 33012270 DOI: 10.1089/vim.2020.0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Karimi-Googheri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Clinical Laboratory, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
42
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
43
|
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, Srivastava AP. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 2020; 10:10895. [PMID: 32616763 PMCID: PMC7331818 DOI: 10.1038/s41598-020-67749-1] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. In this study, we have computationally designed a multi-epitope vaccine using spike glycoprotein of SARS-CoV-2. The overall quality of the candidate vaccine was validated in silico and Molecular Dynamics Simulation confirmed the stability of the designed vaccine. Docking studies revealed stable interactions of the vaccine with Toll-Like Receptors and MHC Receptors. The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tamalika Kar
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Utkarsh Narsaria
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Srijita Basak
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Debashrito Deb
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Via dei Taurini, Rome, Italy
| | - David M Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| |
Collapse
|
44
|
Market M, Angka L, Martel AB, Bastin D, Olanubi O, Tennakoon G, Boucher DM, Ng J, Ardolino M, Auer RC. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front Immunol 2020; 11:1512. [PMID: 32655581 PMCID: PMC7324763 DOI: 10.3389/fimmu.2020.01512] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Natural Killer (NK) cells are innate immune responders critical for viral clearance and immunomodulation. Despite their vital role in viral infection, the contribution of NK cells in fighting SARS-CoV-2 has not yet been directly investigated. Insights into pathophysiology and therapeutic opportunities can therefore be inferred from studies assessing NK cell phenotype and function during SARS, MERS, and COVID-19. These studies suggest a reduction in circulating NK cell numbers and/or an exhausted phenotype following infection and hint toward the dampening of NK cell responses by coronaviruses. Reduced circulating NK cell levels and exhaustion may be directly responsible for the progression and severity of COVID-19. Conversely, in light of data linking inflammation with coronavirus disease severity, it is necessary to examine NK cell potential in mediating immunopathology. A common feature of coronavirus infections is that significant morbidity and mortality is associated with lung injury and acute respiratory distress syndrome resulting from an exaggerated immune response, of which NK cells are an important component. In this review, we summarize the current understanding of how NK cells respond in both early and late coronavirus infections, and the implication for ongoing COVID-19 clinical trials. Using this immunological lens, we outline recommendations for therapeutic strategies against COVID-19 in clearing the virus while preventing the harm of immunopathological responses.
Collapse
Affiliation(s)
- Marisa Market
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Leonard Angka
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andre B. Martel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | - Donald Bastin
- Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Oladunni Olanubi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Gayashan Tennakoon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dominique M. Boucher
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Juliana Ng
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca C. Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
45
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
46
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|
47
|
Czerwiński M, Gilligan K, Westland K, Ogilvie BW. Effects of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and interferon-α2a on P450 enzymes in human hepatocytes in vitro. Pharmacol Res Perspect 2019; 7:e00551. [PMID: 31857909 PMCID: PMC6902742 DOI: 10.1002/prp2.551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/24/2022] Open
Abstract
Some immunomodulatory agents stimulate the release of cytokines capable of suppressing P450 enzymes and potentially affecting pharmacokinetics of coadministered medications. Cytokines released in response to an immunomodulator in the blood ex vivo can be used to screen for the potential for drug-drug interactions. Tilsotolimod, an investigational agonist of Toll-like receptor 9, stimulated the release of macrophage chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), and interferon-α2a (INF-α2a) in blood obtained from healthy donors. Although tilsotolimod did not directly affect CYP1A2, CYP2B6, or CYP3A4 expression or activity, the cytokines stimulated by the drug reduced CYP1A2 and CYP2B6 enzyme activities in cultured human hepatocytes. This study sought to identify which cytokines were responsible for tilsotolimod's indirect effects on P450 enzymes in vitro. A 72-h treatment with recombinant human chemokines MCP-1 and MIP-1α did not alter CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP3A4, or signal transducer and activator of transcription 1 (STAT1) mRNA expression or CYP1A2, CYP2B6, or CYP3A4/5 enzyme activity in cocultures of human hepatocytes and Kupffer cells. INF-α2a, at 2.5 ng/mL but not at the lower concentrations applied to the cells, increased CYP1A2 and STAT1 mRNA by 2.4- and 5.2-fold, respectively, and reduced CYP2B6 enzyme activity to 46% of control. This study established that INF-α2a, but not MCP-1 or MIP-1α, mediated tilsotolimod effects on CYP1A2 and CYP2B6 expression in human hepatocytes.
Collapse
|
48
|
Selective Toll-like receptor 7 agonists with novel chromeno[3,4-d]imidazol-4(1H)-one and 2-(trifluoromethyl)quinoline/ quinazoline-4-amine scaffolds. Eur J Med Chem 2019; 179:109-122. [DOI: 10.1016/j.ejmech.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
|
49
|
Azagra-Boronat I, Massot-Cladera M, Knipping K, Van't Land B, Tims S, Stahl B, Knol J, Garssen J, Franch À, Castell M, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Oligosaccharides Modulate Rotavirus-Associated Dysbiosis and TLR Gene Expression in Neonatal Rats. Cells 2019; 8:E876. [PMID: 31405262 PMCID: PMC6721706 DOI: 10.3390/cells8080876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Colonization of the gut in early life can be altered through multiple environmental factors. The present study aimed to investigate the effects of 2'-fucosyllactose (2'-FL), a mixture of short-chain galactooligosaccharides/long-chain fructooligosaccharides (scGOS/lcFOS) 9:1 and their combination (scGOS/lcFOS/2'-FL) on dysbiosis induced during rotavirus (RV) diarrhea in neonatal rats, elucidating crosstalk between bacteria and the immune system. The dietary interventions were administered daily by oral gavage at days 2-8 of life in neonatal Lewis rats. On day 5, RV SA11 was intragastrically delivered to induce infection and diarrhea assessment, microbiota composition, and gene expression of Toll-like receptors (TLRs) in the small intestine were studied. All dietary interventions showed reduction in clinical variables of RV-induced diarrhea. RV infection increased TLR2 expression, whereas 2'-FL boosted TLR5 and TLR7 expressions and scGOS/lcFOS increased that of TLR9. RV-infected rats displayed an intestinal dysbiosis that was effectively prevented by the dietary interventions, and consequently, their microbiota was more similar to microbiota of the noninfected groups. The preventive effect of 2'-FL, scGOS/lcFOS, and their combination on dysbiosis associated to RV diarrhea in rats could be due to changes in the crosstalk between gut microbiota and the innate immune system.
Collapse
Affiliation(s)
- Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Karen Knipping
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Belinda Van't Land
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- University Medical Centre Utrecht/Wilhelmina Children's Hospital, Department of Pediatric Immunology, 3584 EA Utrecht, The Netherlands
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Maria J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
50
|
Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol 2019; 77:4-22. [DOI: 10.1016/j.matbio.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|