1
|
Sha S, Ren L, Xing X, Guo W, Wang Y, Li Y, Cao Y, Qu L. Recent advances in immunotherapy targeting amyloid-beta and tauopathies in Alzheimer's disease. Neural Regen Res 2026; 21:577-587. [PMID: 39885674 DOI: 10.4103/nrr.nrr-d-24-00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/28/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease, a devastating neurodegenerative disorder, is characterized by progressive cognitive decline, primarily due to amyloid-beta protein deposition and tau protein phosphorylation. Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer's disease. Conventional drugs, such as donepezil, can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline. Currently, active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer's disease and other transgenic animal models, attracting considerable attention. However, the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab. This review first discusses the advancements in the pathogenesis of Alzheimer's disease and active and passive immunotherapies targeting amyloid-beta and tau proteins. Furthermore, it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects. Although some antibodies have shown promise in patients with mild Alzheimer's disease, substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer's disease.
Collapse
Affiliation(s)
- Sha Sha
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Ren
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Wanshu Guo
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Li
- Department of Geriatrics, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Le Qu
- Department of Dermatology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Balkhi S, Di Spirito A, Poggi A, Mortara L. Immune Modulation in Alzheimer's Disease: From Pathogenesis to Immunotherapy. Cells 2025; 14:264. [PMID: 39996737 PMCID: PMC11853524 DOI: 10.3390/cells14040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, affecting a significant proportion of the elderly population. AD is characterized by cognitive decline and functional impairments due to pathological hallmarks like amyloid β-peptide (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglial activation, chronic neuroinflammation, and disruptions in neuronal communication further exacerbate the disease. Emerging research suggests that immune modulation could play a key role in AD treatment given the significant involvement of neuroinflammatory processes. This review focuses on recent advancements in immunotherapy strategies aimed at modulating immune responses in AD, with a specific emphasis on microglial behavior, amyloid clearance, and tau pathology. By exploring these immunotherapeutic approaches, we aim to provide insights into their potential to alter disease progression and improve patient outcomes, contributing to the evolving landscape of AD treatment.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| |
Collapse
|
3
|
Toader C, Tataru CP, Munteanu O, Covache-Busuioc RA, Serban M, Ciurea AV, Enyedi M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int J Mol Sci 2024; 25:13614. [PMID: 39769374 PMCID: PMC11728275 DOI: 10.3390/ijms252413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors. Novel insights into microglial priming, astrocytic cytokine networks, and meningeal lymphatics challenge the conventional paradigms of immune privilege, offering fresh perspectives on disease mechanisms. This work introduces groundbreaking therapeutic innovations, from precision immunotherapies to the controlled modulation of the BBB using nanotechnology and focused ultrasound. Moreover, we explore the fusion of immune modulation with neuromodulatory technologies, underscoring new frontiers for personalized medicine in previously intractable diseases. By synthesizing these advancements, we propose a transformative framework that integrates cutting-edge research with clinical translation, charting a bold path toward redefining CNS disease management in the era of precision neuroimmunology.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
4
|
Cui W, Wang Y, Tang X, Liu S, Duan Y, Gu T, Mao J, Li W, Bao J, Wei Z. CRM 197-scaffolded vaccines designed by epitope grafting ameliorate cognitive decline in an Alzheimer's disease model. Int J Biol Macromol 2024; 281:136477. [PMID: 39401639 DOI: 10.1016/j.ijbiomac.2024.136477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Amyloid-beta (Aβ) plaque accumulation and tau neurofibrillary tangles (NFTs) formation in the brain are major neuropathological hallmarks of AD. Immunotherapies targeting Aβ and/or tau are deemed the most promising approaches for AD. Administrations with monoclonal antibodies against Aβ have yielded substantial breakthroughs clinically. Most vaccines tested clinically so far failed to prove efficacious in large part due to inappropriate design of vaccine antigens. In this study, a structure-guided approach was employed to design novel antigens targeting Aβ and/or tau by grafting multiple copies of Aβ and/or tau B-cell epitope peptide onto CRM197, which is the most widely used carrier protein in polysaccharide conjugate vaccines. The immunogenicity of the vaccines was evaluated in BALB/c mice and the efficacy was tested in a transgenic mouse model of human amyloidopathy. The antigens were highly immunogenic early vaccination substantially ameliorated cognitive decline in APP/PS1 mice and significantly reduced insoluble Aβ42/40 in the brains. These results demonstrate that the engineered antigens have protective effects on AD mice, offering a promising translatable strategy for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Yurong Duan
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Tiantian Gu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Junyuan Mao
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Wenjie Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Jinli Bao
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China
| | - Zhun Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266071, China; Keynova Biotech Co., Ltd., Weifang 261071, China.
| |
Collapse
|
5
|
Rahimi A, Sameei P, Mousavi S, Ghaderi K, Hassani A, Hassani S, Alipour S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer's Disease and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9416-9431. [PMID: 38639864 DOI: 10.1007/s12035-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.
Collapse
Affiliation(s)
- Araz Rahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sana Mousavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Kimia Ghaderi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Hassani
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Zhang Y, Yu W, Zhang L, Li P. Application of engineered antibodies (scFvs and nanobodies) targeting pathological protein aggregates in Alzheimer's disease. Expert Opin Investig Drugs 2024; 33:1047-1062. [PMID: 39177331 DOI: 10.1080/13543784.2024.2396911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The misfolding and aggregation of proteins are associated with various neurodegenerative diseases, such as Alzheimer's disease (AD). The small-molecule engineered antibodies, such as single-chain fragment variable (scFv) antibodies and nanobodies (Nbs), have gained attention in recent years due to their strong conformational specificity, ability to cross the blood-brain barrier (BBB), low immunogenicity, and enhanced proximity to active sites within aggregates. AREAS COVERED We have reviewed recent advances in therapies involving scFvs and Nbs that efficiently and specifically target pathological protein aggregates. Relevant publications were searched for in MEDLINE, GOOGLE SCHOLAR, Elsevier ScienceDirect and Wiley Online Library. EXPERT OPINION We reviewed the recent and specific targeting of pathological protein aggregates by scFvs and Nbs. These engineered antibodies can inhibit the aggregation or promote the disassembly of misfolded proteins by recognizing antigenic epitopes or through conformational specificity. Additionally, we discuss strategies for improving the effective application of engineered antibodies in treating AD. These technological strategies will lay the foundation for the clinical application of small-molecule antibody drugs in developing effective treatments for neurological diseases. Through rational application strategies, small-molecule engineered antibodies are expected to have significant potential in targeted therapy for neurological disorders.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Vroom MM, Dodart JC. Active Immunotherapy for the Prevention of Alzheimer's and Parkinson's Disease. Vaccines (Basel) 2024; 12:973. [PMID: 39340005 PMCID: PMC11435640 DOI: 10.3390/vaccines12090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (ND) give rise to significant declines in motor, autonomic, behavioral, and cognitive functions. Of these conditions, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent, impacting over 55 million people worldwide. Given the staggering financial toll on the global economy and their widespread manifestation, NDs represent a critical issue for healthcare systems worldwide. Current treatment options merely seek to provide symptomatic relief or slow the rate of functional decline and remain financially inaccessible to many patients. Indeed, no therapy has yet demonstrated the potential to halt the trajectory of NDs, let alone reverse them. It is now recognized that brain accumulation of pathological variants of AD- or PD-associated proteins (i.e., amyloid-β, Tau, α-synuclein) begins years to decades before the onset of clinical symptoms. Accordingly, there is an urgent need to pursue therapies that prevent the neurodegenerative processes associated with pathological protein aggregation long before a clinical diagnosis can be made. These therapies must be safe, convenient, and affordable to ensure broad coverage in at-risk populations. Based on the need to intervene long before clinical symptoms appear, in this review, we present a rationale for greater investment to support the development of active immunotherapy for the prevention of the two most common NDs based on their safety profile, ability to specifically target pathological proteins, as well as the significantly lower costs associated with manufacturing and distribution, which stands to expand accessibility to millions of people globally.
Collapse
Affiliation(s)
- Madeline M Vroom
- Vaxxinity, Inc., Space Life Sciences Lab, 505 Odyssey Way, Merritt Island, FL 32953, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Space Life Sciences Lab, 505 Odyssey Way, Merritt Island, FL 32953, USA
| |
Collapse
|
8
|
Dunning EE, Decourt B, Zawia NH, Shill HA, Sabbagh MN. Pharmacotherapies for the Treatment of Progressive Supranuclear Palsy: A Narrative Review. Neurol Ther 2024; 13:975-1013. [PMID: 38743312 PMCID: PMC11263316 DOI: 10.1007/s40120-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder resulting from the deposition of misfolded and neurotoxic forms of tau protein in specific areas of the midbrain, basal ganglia, and cortex. It is one of the most representative forms of tauopathy. PSP presents in several different phenotypic variations and is often accompanied by the development of concurrent neurodegenerative disorders. PSP is universally fatal, and effective disease-modifying therapies for PSP have not yet been identified. Several tau-targeting treatment modalities, including vaccines, monoclonal antibodies, and microtubule-stabilizing agents, have been investigated and have had no efficacy. The need to treat PSP and other tauopathies is critical, and many clinical trials investigating tau-targeted treatments are underway. In this review, the PubMed database was queried to collect information about preclinical and clinical research on PSP treatment. Additionally, the US National Library of Medicine's ClinicalTrials.gov website was queried to identify past and ongoing clinical trials relevant to PSP treatment. This narrative review summarizes our findings regarding these reports, which include potential disease-modifying drug trials, modifiable risk factor management, and symptom treatments.
Collapse
Affiliation(s)
- Elise E Dunning
- Creighton University School of Medicine - Phoenix, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Laboratory on Neurodegeneration and Translational Research, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Nasser H Zawia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- Department of Biomedical and Pharmaceutical Sciences, Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
9
|
Ma R, Mu Q, Xi Y, Liu G, Liu C. Nanotechnology for tau pathology in Alzheimer's disease. Mater Today Bio 2024; 27:101145. [PMID: 39070098 PMCID: PMC11283088 DOI: 10.1016/j.mtbio.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Tau protein aggregation is a defining characteristic of Alzheimer's disease (AD), leading to the formation of neurofibrillary tangles that disrupt neural communication and ultimately result in cognitive decline. Nanotechnology presents novel strategies for both diagnosing and treating Alzheimer's disease. Nanotechnology. It has become a revolutionary tool in the fight against Alzheimer's disease, particularly in addressing the pathological accumulation of tau protein. This review explores the relationship between tau-related neurophysiology and the utilization of nanotechnology for AD treatment, focusing on the application of nanomaterials to regulate tau phosphorylation, hinder tau aggregation and propagation, stabilize microtubules, eliminate pathological tau and emphasize the potential of nanotechnology in developing personalized therapies and monitoring treatment responses in AD patients. This review combines tau-related neurophysiology with nanotechnology to provide new insights for further understanding and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qianwen Mu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yue Xi
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
10
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
11
|
Tondo G, De Marchi F, Bonardi F, Menegon F, Verrini G, Aprile D, Anselmi M, Mazzini L, Comi C. Novel Therapeutic Strategies in Alzheimer's Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond. J Clin Med 2024; 13:3098. [PMID: 38892809 PMCID: PMC11172489 DOI: 10.3390/jcm13113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) causes a significant challenge to global healthcare systems, with limited effective treatments available. This review examines the landscape of novel therapeutic strategies for AD, focusing on the shortcomings of traditional therapies against amyloid-beta (Aβ) and exploring emerging alternatives. Despite decades of research emphasizing the role of Aβ accumulation in AD pathogenesis, clinical trials targeting Aβ have obtained disappointing results, highlighting the complexity of AD pathophysiology and the need for investigating other therapeutic approaches. In this manuscript, we first discuss the challenges associated with anti-Aβ therapies, including limited efficacy and potential adverse effects, underscoring the necessity of exploring alternative mechanisms and targets. Thereafter, we review promising non-Aβ-based strategies, such as tau-targeted therapies, neuroinflammation modulation, and gene and stem cell therapy. These approaches offer new avenues for AD treatment by addressing additional pathological hallmarks and downstream effects beyond Aβ deposition.
Collapse
Affiliation(s)
- Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Francesca Bonardi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Gaia Verrini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Letizia Mazzini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy;
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
12
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
13
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Maheshwari S. Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment. Curr Aging Sci 2024; 17:196-204. [PMID: 38083895 DOI: 10.2174/0118746098243327231117113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Vaseem A Ansari
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | |
Collapse
|
14
|
Nagar P, Sharma P, Dhapola R, Kumari S, Medhi B, HariKrishnaReddy D. Endoplasmic reticulum stress in Alzheimer's disease: Molecular mechanisms and therapeutic prospects. Life Sci 2023; 330:121983. [PMID: 37524162 DOI: 10.1016/j.lfs.2023.121983] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that leads to memory loss and cognitive impairment over time. It is characterized by protein misfolding as well as prolonged cellular stress, such as perturbing calcium homeostasis and redox management. Numerous investigations have proven that endoplasmic reticulum failure may exhibit exacerbation of AD pathogenesis in AD patients, in-vivo and in-vitro models. The endoplasmic reticulum (ER) participates in a variety of biological functions including folding of protein, quality control, cholesterol production, and maintenance of calcium balance. A diverse range of physiological, pathological and pharmacological substances can interfere with ER activity and thus lead to exaggeration of ER stress. The unfolded protein response (UPR), an intracellular signaling network is stimulated due to ER stress. Three stress sensors found in the endoplasmic reticulum, the PERK, ATF6, and IRE1 transducers detect protein misfolding in the ER and trigger UPR, a complex system to maintain homeostasis. ER stress is linked to many of the major pathological processes that are seen in AD, including presenilin1 and 2 (PS1 and PS2) gene mutation, tau phosphorylation and β-amyloid formation. The role of ER stress and UPR in the pathophysiology of AD implies that they can be employed as potent therapeutic target. This study shows the relationship between ER and AD and how the pathogenesis of AD is influenced by the impact of ER stress. An effective method for the prevention or treatment of AD may involve therapeutic strategies that modify ER stress pathways.
Collapse
Affiliation(s)
- Pushank Nagar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
15
|
Panza F, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Stallone R, Cirillo N, Damiani C, Altamura M, Bellomo A, Daniele A, Solfrizzi V, Lozupone M. Clinical development of passive tau-based immunotherapeutics for treating primary and secondary tauopathies. Expert Opin Investig Drugs 2023; 32:625-634. [PMID: 37405389 DOI: 10.1080/13543784.2023.2233892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Tauopathies are clinicopathological entities with increased and pathological deposition in glia and/or neurons of hyperphosphorylated aggregates of the microtubule-binding protein tau. In secondary tauopathies, i.e. Alzheimer's disease (AD), tau deposition can be observed, but tau coexists with another protein (amyloid-β). In the last 20 years, little progress has been made in developing disease-modifying drugs for primary and secondary tauopathies and available symptomatic drugs have limited efficacy. AREAS COVERED The present review summarized recent advances about the development and challenges in treatments for primary and secondary tauopathies, with a focus on passive tau-based immunotherapy. EXPERT OPINION Several tau-targeted passive immunotherapeutics are in development for treating tauopathies. At present, 14 anti-tau antibodies have entered clinical trials, and 9 of them are still in clinical testing for progressive supranuclear palsy syndrome and AD (semorinemab, bepranemab, E2814, JNJ-63733657, Lu AF87908, APNmAb005, MK-2214, PNT00, and PRX005). However, none of these nine agents have reached Phase III. The most advanced anti-tau monoclonal antibody for treating AD is semorinemab, while bepranemab is the only anti-tau monoclonal antibody still in clinical testing for treating progressive supranuclear palsy syndrome. Further evidence on passive immunotherapeutics for treating primary and secondary tauopathies will come from ongoing Phase I/II trials.
Collapse
Affiliation(s)
- Francesco Panza
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Vittorio Dibello
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
- Local Healthcare Authority of Taranto, Taranto, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Roberta Zupo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis" Research Hospital, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Nicoletta Cirillo
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Christian Damiani
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica E Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBrain", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
16
|
Singh A, Ansari VA, Ansari TM, Hasan SM, Ahsan F, Singh K, Wasim R, Maheshwari S, Ahmad A. Consequence of Dementia and Cognitive Impairment by Primary Nucleation Pathway. Horm Metab Res 2023; 55:304-314. [PMID: 37130536 DOI: 10.1055/a-2052-8462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | | | | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
17
|
Shah AJ, Mohi-Ud-Din R, Sabreen S, Wani TU, Jan R, Javed MN, Mir PA, Mir RH, Masoodi MH. Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:254-279. [PMID: 36056834 DOI: 10.2174/1874467215666220903095837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.
Collapse
Affiliation(s)
- Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar- 190011, Jammu and Kashmir, India
| | - Saba Sabreen
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, Pharmaceutics Lab, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir India
| | - Rafia Jan
- Defence Research and Development Organization (DRDO), Hospital, Khonmoh, Srinagar 190001, Jammu & Kashmir, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, KR Mangalam University, Gurugram, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Mohali, Punjab 140307, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| |
Collapse
|
18
|
Levin J, Vöglein J, Quiroz YT, Bateman RJ, Ghisays V, Lopera F, McDade E, Reiman E, Tariot PN, Morris JC. Testing the amyloid cascade hypothesis: Prevention trials in autosomal dominant Alzheimer disease. Alzheimers Dement 2022; 18:2687-2698. [PMID: 35212149 PMCID: PMC9399299 DOI: 10.1002/alz.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly challenged. Here, we aim to refocus the amyloid cascade hypothesis on its original premise that the accumulation of amyloid beta (Aβ) peptide is the primary and earliest event in AD pathogenesis as based on current evidence, initiating several pathological events and ultimately leading to AD dementia. BACKGROUND An ongoing debate about the validity of the amyloid cascade hypothesis for AD has been triggered by clinical trials with investigational disease-modifying drugs targeting Aβ that have not demonstrated consistent clinically meaningful benefits. UPDATED HYPOTHESIS It is an open question if monotherapy targeting Aβ pathology could be markedly beneficial at a stage when the brain has been irreversibly damaged by a cascade of pathological changes. Interventions in cognitively unimpaired individuals at risk for dementia, during amyloid-only and pre-amyloid stages, are more appropriate for proving or refuting the amyloid hypothesis. Our updated hypothesis states that anti-Aβ investigational therapies are likely to be most efficacious when initiated in the preclinical (asymptomatic) stages of AD and specifically when the disease is driven primarily by amyloid pathology. Given the young age at symptom onset and the deterministic nature of the mutations, autosomal dominant AD (ADAD) mutation carriers represent the ideal population to evaluate the efficacy of putative disease-modifying Aβ therapies. MAJOR CHALLENGES FOR THE HYPOTHESIS Key challenges of the amyloid hypothesis include the recognition that disrupted Aβ homeostasis alone is insufficient to produce the AD pathophysiologic process, poor correlation of Aβ with cognitive impairment, and inconclusive data regarding clinical efficacy of therapies targeting Aβ. Challenges of conducting ADAD research include the rarity of the disease and uncertainty of the generalizability of ADAD findings for the far more common "sporadic" late-onset AD. LINKAGE TO OTHER MAJOR THEORIES The amyloid cascade hypothesis, modified here to pertain to the preclinical stage of AD, still needs to be integrated with the development and effects of tauopathy and other co-pathologies, including neuroinflammation, vascular insults, synucleinopathy, and many others.
Collapse
Affiliation(s)
- Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Marchioninistr. 15, 81541 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Yakeel T. Quiroz
- Harvard Medical School and Massachusetts General Hospital, 39 1 Avenue, Suite 101, Charlestown, MA 02129, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Randall J. Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia, Colombia
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - Pierre N. Tariot
- Banner Alzheimer’s Institute, 901 E Willetta St, Phoenix, AZ 85006, USA
| | - John C. Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63110, USA
| |
Collapse
|
19
|
Zhang Y, Qian L, Kuang Y, Liu J, Wang D, Xie W, Zhang L, Fu L. An adeno-associated virus-mediated immunotherapy for Alzheimer’s disease. Mol Immunol 2022; 144:26-34. [DOI: 10.1016/j.molimm.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
|
20
|
Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, Zhang R, Wang H, Chen H. Immunotherapy for Alzheimer's disease: targeting β-amyloid and beyond. Transl Neurodegener 2022; 11:18. [PMID: 35300725 PMCID: PMC8932191 DOI: 10.1186/s40035-022-00292-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly worldwide. However, the complexity of AD pathogenesis leads to discrepancies in the understanding of this disease, and may be the main reason for the failure of AD drug development. Fortunately, many ongoing preclinical and clinical studies will continually open up avenues to unravel disease mechanisms and guide strategies for AD diagnosis and drug development. For example, immunotherapeutic strategies targeting amyloid-β (Aβ) and tau proteins were once deemed almost certainly effective in clinical treatment due to the excellent preclinical results. However, the repeated failures of clinical trials on vaccines and humanized anti-Aβ and anti-tau monoclonal antibodies have resulted in doubts on this strategy. Recently, a new anti-Aβ monoclonal antibody (Aducanumab) has been approved by the US Food and Drug Administration, which brings us back to the realization that immunotherapy strategies targeting Aβ may be still promising. Meanwhile, immunotherapies based on other targets such as tau, microglia and gut-brain axis are also under development. Further research is still needed to clarify the forms and epitopes of targeted proteins to improve the accuracy and effectiveness of immunotherapeutic drugs. In this review, we focus on the immunotherapies based on Aβ, tau and microglia and their mechanisms of action in AD. In addition, we present up-to-date advances and future perspectives on immunotherapeutic strategies for AD.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Clinical Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Valverde A, Gordón Pidal JM, Montero-Calle A, Arévalo B, Serafín V, Calero M, Moreno-Guzmán M, López MÁ, Escarpa A, Yáñez-Sedeño P, Barderas R, Campuzano S, Pingarrón JM. Paving the way for reliable Alzheimer's disease blood diagnosis by quadruple electrochemical immunosensing. ChemElectroChem 2022. [DOI: 10.1002/celc.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alejandro Valverde
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - José M. Gordón Pidal
- Universidad de Alcala Analytical Chemistry, Physical Chemistry and Chemical Engineering SPAIN
| | - Ana Montero-Calle
- Instituto de Salud Carlos III Chronic Disease Programme, UFIEC SPAIN
| | - Beatriz Arévalo
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - Verónica Serafín
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | | | | | - Miguel Ángel López
- Universidad de Alcala Analytical Chemsitry, Physical Chemistry and Chemical Engineering SPAIN
| | - Alberto Escarpa
- Universidad de Alcala Analytical Chemistry, Physical Chemistry and Chemical Engineering SPAIN
| | - Paloma Yáñez-Sedeño
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - Rodrigo Barderas
- Instituto de Salud Carlos III Chronic Disease Programme, UFIEC SPAIN
| | - Susana Campuzano
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas Analytical Chemistry SPAIN
| | - José Manuel Pingarrón
- Universidad Complutense de Madrid Química Analítica Av. Complutense s/n 28040 Madrid SPAIN
| |
Collapse
|
22
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
23
|
Sharma A, Anand JS, Kumar Y. Immunotherapeutics for AD: A Work in Progress. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:752-765. [PMID: 34477533 DOI: 10.2174/1871527320666210903101522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD), often called the 'Plague of the 21st Century,' is a progressive, irreversible neurodegenerative disorder that leads to the degeneration and death of neurons. Multiple factors, such as genetic defects, epigenetic regulations, environmental factors, or cerebrovascular damage, are a manifestation of the neurodegenerative process that begins to occur decades before the onset of disease. To date, no treatment or therapeutic strategy has proven to be potent in inhibiting its progress or reversing the effects of the disease. The ever-increasing numbers and lack of sufficient therapies that can control or reverse the effects of the disease have propelled research in the direction of devising efficient therapeutic strategies for AD. This review comprehensively discusses the active and passive immunotherapies against Amyloid-β and Tau protein, which remain the popular choice of targets for AD therapeutics. Some of the prospective immunotherapies against Aβ plaques have failed due to various reasons. Much of the research is focused on targeting Tau, specifically, targeting the mid-region of extracellular Tau due to their potential to prevent seeding and hence the spread of neurofibrillary tangles (NFTs). Thus, there is a need to thoroughly understand the disease onset mechanisms and discover effective therapeutic strategies.
Collapse
Affiliation(s)
- Anuja Sharma
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Jaspreet Singh Anand
- University College of Medical Sciences (UCMS), University of Delhi, New Delhi, 110095, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology, New Delhi, 110078, India
| |
Collapse
|
24
|
Bomasang-Layno E, Bronsther R. Diagnosis and Treatment of Alzheimer's Disease:: An Update. Dela J Public Health 2021; 7:74-85. [PMID: 34604768 PMCID: PMC8482985 DOI: 10.32481/djph.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Novel Electrochemical Molecularly Imprinted Polymer-Based Biosensor for Tau Protein Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel electrochemical biosensor based on a molecularly imprinted polymer (MIP) was developed for the impedimetric determination of Tau protein, a biomarker of Alzheimer’s disease (AD). Indeed, a recent correlation between AD symptoms and the presence of Tau proteins in their aggregated form made hyperphosphorylated Tau protein (Tangles) a promising biomarker for Alzheimer’s diagnosis. The MIP was directly assembled on a screen-printed carbon electrode (C-SPE) and prepared by electropolymerization of 3-aminophenol (AMP) in the presence of the protein template (p-Tau-441) using cyclic voltammetry. The p-Tau-441 protein bound to the polymeric backbone was digested by the action of the proteolytic activity of proteinase K in urea and then washed away to create vacant sites. The performances of the corresponding imprinted and non-imprinted electrodes were evaluated by electrochemical impedance spectroscopy. The detection limit of the MIP-based sensors was 0.02 pM in PBS buffer pH 5.6. Good selectivity and good results in serum samples were obtained with the developed platform. The biosensor described in this work is a potential tool for screening Tau protein on-site and an attractive complement to clinically established methodologies methods as it is easy to fabricate, has a short response time and is inexpensive.
Collapse
|
26
|
Wang D, Huang X, Yan L, Zhou L, Yan C, Wu J, Su Z, Huang Y. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 2021; 40:656-668. [PMID: 34401998 DOI: 10.1007/s10930-021-10017-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a series of neurodegenerative diseases including Alzheimer's disease. Thus, tau is widely accepted as an important therapeutic target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent progress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Xianlong Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Lu Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Luoqi Zhou
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Chang Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jinhu Wu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
27
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:8208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
28
|
Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D. Monoclonal Antibodies as Neurological Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14020092. [PMID: 33530460 PMCID: PMC7912592 DOI: 10.3390/ph14020092] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysiological mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these diseases. Untangling the molecular mechanisms of disease allows monoclonal antibodies to block disease pathways accurately and efficiently with exceptional target specificity, minimizing non-specific effects. On the other hand, accumulating experience shows that monoclonal antibodies may carry class-specific and target-associated risks. This article provides an overview of different types of monoclonal antibodies and their characteristics and reviews monoclonal antibodies currently in use or under development for neurological disease.
Collapse
Affiliation(s)
- Panagiotis Gklinos
- Department of Neurology, KAT General Hospital of Attica, 14561 Athens, Greece;
| | - Miranta Papadopoulou
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Vid Stanulovic
- Global Pharmacovigilance, R&D Sanofi, 91385 Chilly-Mazarin, France;
| | - Dimos D. Mitsikostas
- 1st Neurology Department, Aeginition Hospital, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 129 Vasilissis Sophias Avenue, 11521 Athens, Greece
- Salpetriere Neuropsychiatric Clinic, 149 Papandreou Street, Metamorphosi, 14452 Athens, Greece
- Correspondence:
| |
Collapse
|
29
|
Leszek J, Mikhaylenko EV, Belousov DM, Koutsouraki E, Szczechowiak K, Kobusiak-Prokopowicz M, Mysiak A, Diniz BS, Somasundaram SG, Kirkland CE, Aliev G. The Links between Cardiovascular Diseases and Alzheimer's Disease. Curr Neuropharmacol 2021; 19:152-169. [PMID: 32727331 PMCID: PMC8033981 DOI: 10.2174/1570159x18666200729093724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The root cause of non-inherited Alzheimer's disease (AD) remains unknown despite hundreds of research studies performed to attempt to solve this problem. Since proper prophylaxis remains the best strategy, many scientists have studied the risk factors that may affect AD development. There is robust evidence supporting the hypothesis that cardiovascular diseases (CVD) may contribute to AD progression, as the diseases often coexist. Therefore, a lack of well-defined diagnostic criteria makes studying the relationship between AD and CVD complicated. Additionally, inflammation accompanies the pathogenesis of AD and CVD, and is not only a consequence but also implicated as a significant contributor to the course of the diseases. Of note, АроЕε4 is found to be one of the major risk factors affecting both the cardiovascular and nervous systems. According to genome wide association and epidemiological studies, numerous common risk factors have been associated with the development of AD-related pathology. Furthermore, the risk of developing AD and CVDs appears to be increased by a wide range of conditions and lifestyle factors: hypertension, dyslipidemia, hypercholesterolemia, hyperhomocysteinemia, gut/oral microbiota, physical activity, and diet. This review summarizes the literature and provides possible mechanistic links between CVDs and AD.
Collapse
Affiliation(s)
- Jerzy Leszek
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| |
Collapse
|
30
|
Payoux P, Ranjeva JP. Contributions of PET and MRI imaging in the evaluation of CNS drugs in human neurodegenerative diseases. Therapie 2020; 76:121-126. [PMID: 33563477 DOI: 10.1016/j.therap.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022]
Abstract
This manuscript reviews the contributions of the neuroimaging methods including PET, conventional and advanced MRI methods to monitor the effect of new disease modifying drugs in neurodegenerative diseases. It now seems obvious that in many pathologies these two techniques are more and more complementary.
Collapse
Affiliation(s)
- Pierre Payoux
- Inserm, UPS, ToNIC, Nuclear Medicine Department, Toulouse NeuroImaging Center, University Hospital of Toulouse France, Université de Toulouse, 31000 Toulouse, France.
| | - Jean-Philippe Ranjeva
- CNRS, CRMBM, Aix-Marseille University, 13385 Marseille, France; CEMEREM, AP-HM, University Hospital Timone, 13385 Marseille, France
| |
Collapse
|
31
|
Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol 2020; 887:173554. [DOI: 10.1016/j.ejphar.2020.173554] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
32
|
Zhou Y, Yang D, Chen H, Zheng C, Jiang H, Liu X, Huang X, Ye S, Song S, Jiang N, Zhao Z, Ma S, Ma J, Huang K, Chen C, Fan X, Gong Y, Wang X, Fan J, Liu R, Shentu Y. Polyphyllin I attenuates cognitive impairments and reduces AD-like pathology through CIP2A-PP2A signaling pathway in 3XTg-AD mice. FASEB J 2020; 34:16414-16431. [PMID: 33070372 DOI: 10.1096/fj.202001499r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Polyphyllin I (PPI) is a natural phytochemical drug isolated from plants which can inhibit the proliferation of cancer cells. One of the PPI tumor-inhibitory effects is through downregulating the expression of Cancerous Inhibitor of PP2A (CIP2A), the latter, is found upregulated in Alzheimer's disease (AD) brains and participates in the development of AD. In this study, we explored the application of PPI in experimental AD treatment in CIP2A-overexpressed cells and 3XTg-AD mice. In CIP2A-overexpressed HEK293 cells or primary neurons, PPI effectively reduced CIP2A level, activated PP2A, and decreased the phosphorylation of tau/APP and the level of Aβ. Furthermore, synaptic protein levels were restored by PPI in primary neurons overexpressing CIP2A. Animal experiments in 3XTg-AD mice revealed that PPI treatment resulted in decreased CIP2A expression and PP2A re-activation. With the modification of CIP2A-PP2A signaling, the hyperphosphorylation of tau/APP and Aβ overproduction were prevented, and the cognitive impairments of 3XTg-AD mice were rescued. In summary, PPI ameliorated AD-like pathology and cognitive impairment through modulating CIP2A-PP2A signaling pathway. It may be a potential drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Hao Chen
- Wenzhou Medical University, Wenzhou, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | - Xingzhou Huang
- Central laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Simin Ye
- Wenzhou Medical University, Wenzhou, China
| | | | - Nan Jiang
- Wenzhou Medical University, Wenzhou, China
| | | | - Shuqing Ma
- Wenzhou Medical University, Wenzhou, China
| | - Jun Ma
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangping Shentu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Goswami S, Kareem O, Goyal RK, Mumtaz SM, Tonk RK, Gupta R, Pottoo FH. Role of Forkhead Transcription Factors of the O Class (FoxO) in Development and Progression of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:709-721. [PMID: 33001019 DOI: 10.2174/1871527319666201001105553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer's Disease (AD), Huntington's disease, Parkinson's disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the "cognitive centers" of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.
Collapse
Affiliation(s)
- Shikha Goswami
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, JK, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Sayed M Mumtaz
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rahul Gupta
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
34
|
Pandey G, Ramakrishnan V. Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophys Rev 2020; 12:1175-1186. [PMID: 32930962 PMCID: PMC7575678 DOI: 10.1007/s12551-020-00752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Advancements in medical science have facilitated in extending human lives. The increased life expectancy, though, has come at a cost. The cases of an aging population suffering from degenerative diseases like Alzheimer's disease (AD) are presently at its all-time high. Amyloidosis disorders such as AD are triggered by an abnormal transition of soluble proteins into their highly ordered aggregated forms. The landscape of amyloidosis treatment remains unchanged, and there is no cure for such disorders. However, an increased understanding of the mechanism of amyloid self-assembly has given hope for a possible therapeutic solution. In this review, we will discuss the current state of molecular and non-molecular options for therapeutic intervention of amyloidosis. We highlight the efficacy of non-invasive physical therapies as possible alternatives to their molecular counterparts. Graphical abstract.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
35
|
Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 2020; 15:e0224952. [PMID: 32692785 PMCID: PMC7373298 DOI: 10.1371/journal.pone.0224952] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposition of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibrillary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperphosphorylation and oligomerization as a cell-based tauopathy model. Following the treatments, the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Yadikar
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Isabel Torres
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gabrielle Aiello
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Milin Kurup
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Richard Yost
- Department of Chemistry, Chemistry Laboratory Building, University of Florida, Gainesville, FL, United States of America
| | - Kevin K. Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States of America
| |
Collapse
|
36
|
Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256:117996. [PMID: 32585249 DOI: 10.1016/j.lfs.2020.117996] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and is identified as the most common cause for dementia. Despite huge global economic burden and the impact on the close family of the patients, there is no definitive cure and thus, improved treatment methods are of need. While memory and cognition are severely affected in AD, exact etiology is yet unknown. The β-Amyloid plaque formation and aggregation hypothesis is among the well-known hypotheses used to explain disease pathogenesis. Currently there are five Food and Drug Administration (FDA) approved drugs as treatment options. All these drugs are used for symptomatic treatment of AD. Thus, disease modifying therapies which can directly address the pathological changes in AD, are needed. Such therapies could be designed based on inhibiting key steps of pathogenesis. Currently there are novel AD drug candidates with various therapeutic mechanisms, undergoing different stages of drug development. Extensive research is being done globally to broaden understanding of the exact mechanisms involved in AD and to develop therapeutic agents that can successfully hinder the occurrence and progression of the disease. In this review, a comprehensive approach to understanding AD and suggestions to be considered in the development of therapeutics for it are presented.
Collapse
|
37
|
Corsetti V, Borreca A, Latina V, Giacovazzo G, Pignataro A, Krashia P, Natale F, Cocco S, Rinaudo M, Malerba F, Florio R, Ciarapica R, Coccurello R, D’Amelio M, Ammassari-Teule M, Grassi C, Calissano P, Amadoro G. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer's disease models. Brain Commun 2020; 2:fcaa039. [PMID: 32954296 PMCID: PMC7425324 DOI: 10.1093/braincomms/fcaa039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidβ-dependent and independent neuropathological and cognitive alterations in affected subjects.
Collapse
Affiliation(s)
| | - Antonella Borreca
- Humanitas University Laboratory of Pharmacology and Brain Pathology, Neuro Center, 20089 Milan, Italy
- Institute of Neuroscience, 20129 Milan, Italy
| | | | | | | | - Paraskevi Krashia
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | - Francesca Natale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Rita Florio
- European Brain Research Institute (EBRI), 00161 Rome, Italy
| | | | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy
| | - Marcello D’Amelio
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT)–National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
38
|
Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. NPJ Vaccines 2020; 5:28. [PMID: 32219000 PMCID: PMC7096417 DOI: 10.1038/s41541-020-0172-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/20/2020] [Indexed: 01/23/2023] Open
Abstract
Pathological aggregates of tau proteins accumulate in the brains of neurodegenerative tauopathies including Alzheimer’s disease and frontotemporal lobar degeneration (FTLD-tau). Although immunotherapies of these disorders against tau are emerging, it is unknown whether nasal delivery, which offers many benefits over traditional approaches to vaccine administration, is effective or not for tauopathy. Here, we developed vaccination against a secreted form of pathological tau linked to FTLD-tau using a Sendai virus (SeV) vector infectious to host nasal mucosa, a key part of the immune system. Tau vaccines given as nasal drops induced tissue tau-immunoreactive antibody production and ameliorated cognitive impairment in FTLD-tau model mice. In vivo imaging and postmortem neuropathological assays demonstrated the suppression of phosphorylated tau accumulation, neurotoxic gliosis, and neuronal loss in the hippocampus of immunized mice. These findings suggest that nasal vaccine delivery may provide a therapeutic opportunity for a broad range of populations with human tauopathy.
Collapse
|
39
|
Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 2020; 16:213-228. [PMID: 32203398 DOI: 10.1038/s41582-020-0330-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Frontotemporal dementia (FTD) encompasses a spectrum of clinical syndromes characterized by progressive executive, behavioural and language dysfunction. The various FTD spectrum disorders are associated with brain accumulation of different proteins: tau, the transactive response DNA binding protein of 43 kDa (TDP43), or fused in sarcoma (FUS) protein, Ewing sarcoma protein and TATA-binding protein-associated factor 15 (TAF15) (collectively known as FET proteins). Approximately 60% of patients with FTD have autosomal dominant mutations in C9orf72, GRN or MAPT genes. Currently available treatments are symptomatic and provide limited benefit. However, the increased understanding of FTD pathogenesis is driving the development of potential disease-modifying therapies. Most of these drugs target pathological tau - this category includes tau phosphorylation inhibitors, tau aggregation inhibitors, active and passive anti-tau immunotherapies, and MAPT-targeted antisense oligonucleotides. Some of these therapeutic approaches are being tested in phase II clinical trials. Pharmacological approaches that target the effects of GRN and C9orf72 mutations are also in development. Key results of large clinical trials will be available in a few years. However, clinical trials in FTD pose several challenges, and the development of specific brain imaging and molecular biomarkers could facilitate the recruitment of clinically homogenous groups to improve the chances of positive clinical trial results.
Collapse
|
40
|
Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov Today 2020; 25:793-799. [PMID: 31981482 DOI: 10.1016/j.drudis.2020.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Vascular dementia (VaD) is a progressive neurocognitive clinical syndrome that is caused by a decrease in cerebral blood flow and damage to the neurovascular unit. Given increasing life expectancy, VaD is emerging as one of the leading health problems in society. Despite the high global prevalence of cognitive impairment associated with VaD, diagnosis and treatment still remain limited because of the complexity of mechanisms of neuronal loss. Therefore, advances in our understanding of the pathophysiological mechanisms involved is crucial for the development of new therapeutic strategies. In this review, we highlight the pathophysiology, current pharmacology-based primary and secondary prevention strategies and emerging treatment options for VaD.
Collapse
|
41
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
42
|
Zeng Q, Li L, Jin Y, Chen Z, Duan L, Cao M, Ma M, Wu Z. A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Paeonia lactiflora Pall. On the Treatment of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8706589. [PMID: 31827565 PMCID: PMC6885190 DOI: 10.1155/2019/8706589] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the potential active compounds and underlying mechanisms of Paeonia lactiflora Pall. (PLP) on the treatment of Alzheimer's disease (AD) based on network pharmacology. METHODS The active components of PLP were collected from Traditional Chinese Medicine System Pharmacology (TCMSP) database, and their possible target proteins were predicted using TCMSP, SwissTargetPrediction, and STITCH databases. The putative AD-related target proteins were identified from Therapeutic Target Database (TTD), GeneCards, and MalaCards database. The compound-target-disease network interactions were established to obtain the key targets about PLP acting on AD by network topology analysis. Then, the function annotation and signaling pathways of key targets were performed by GO and KEGG enrichment analysis using DAVID tools. Finally, the binding capacity between active ingredients and key targets was validated by molecular docking using SystemsDock tools. RESULTS There were 7 active compounds involving in 151 predicted targets identified in PLP. Besides, a total of 160 AD-related targets were identified. Among these targets, 30 shared targets of PLP and AD were acquired. After topological analysis of the PLP potential target-AD target network, 33 key targets that were highly responsible for the therapeutic effects of PLP on AD were obtained. Further GO and KEGG enrichment analysis showed that these key targets were significantly involved in multiple biological processes and pathways which participated in cell apoptosis and inflammatory response and maintained the function of neurons to accomplish the anti-AD activity. The molecular docking analysis verified that the 7 active compounds had definite affinity with the key targets. CONCLUSIONS The ameliorative effects of PLP on AD were predicted to be associated with regulating neural cell apoptosis, inflammatory response, and neurotrophy via various pathways such as PI3K-Akt signaling pathway, MAPK signaling pathway, and neurotrophin signaling pathway.
Collapse
Affiliation(s)
- Qiang Zeng
- Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Longfei Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Zongzheng Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Lihong Duan
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Meiqun Cao
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Min Ma
- Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| |
Collapse
|
43
|
Öhrfelt A, Brinkmalm A, Dumurgier J, Zetterberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer’s Disease. Neuroscience 2019; 420:136-144. [DOI: 10.1016/j.neuroscience.2018.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
|
44
|
Vandermeeren M, Borgers M, Van Kolen K, Theunis C, Vasconcelos B, Bottelbergs A, Wintmolders C, Daneels G, Willems R, Dockx K, Delbroek L, Marreiro A, Ver Donck L, Sousa C, Nanjunda R, Lacy E, Van De Casteele T, Van Dam D, De Deyn PP, Kemp JA, Malia TJ, Mercken MH. Anti-Tau Monoclonal Antibodies Derived from Soluble and Filamentous Tau Show Diverse Functional Properties in vitro and in vivo. J Alzheimers Dis 2019; 65:265-281. [PMID: 30040731 DOI: 10.3233/jad-180404] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils. In this communication, we describe and characterize a set of these anti-tau antibodies for their biochemical and biophysical properties, including binding, tissue staining by immunohistochemistry, and epitope. The antibodies bound to different domains of the tau protein and some were demonstrated to be isoform-selective (PT18 and hTau56) or phospho-selective (PT84). Evaluation of the antibodies in cellular- and in vivo seeding assays revealed clear differences in maximal efficacy. Limited proteolysis experiments support the hypothesis that some epitopes are more exposed than others in the tau seeds. Moreover, antibody efficacy seems to depend on the structural properties of fibrils purified from tau Tg mice- and postmortem human AD brain.
Collapse
Affiliation(s)
- Marc Vandermeeren
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Marianne Borgers
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Clara Theunis
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Bruno Vasconcelos
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Cindy Wintmolders
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Guy Daneels
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Roland Willems
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Koen Dockx
- Discovery Sciences, Janssen Research and Development, Beerse, Belgium
| | - Lore Delbroek
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - André Marreiro
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Luc Ver Donck
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Cristiano Sousa
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Rupesh Nanjunda
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Eilyn Lacy
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | | | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - John A Kemp
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium.,Syndesi therapeutics, Belgium
| | - Thomas J Malia
- Biologics Research, Janssen Research and Development, Spring House, PA, USA
| | - Marc H Mercken
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
45
|
Hoskin JL, Sabbagh MN, Al-Hasan Y, Decourt B. Tau immunotherapies for Alzheimer's disease. Expert Opin Investig Drugs 2019; 28:545-554. [PMID: 31094578 PMCID: PMC7169377 DOI: 10.1080/13543784.2019.1619694] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Alzheimer's dementia (AD) is the most common form of dementia in the World. Pathologically, it is characterized by extracellular β-amyloid plaques and intraneuronal neurofibrillary tangles (NFTs). The latter is composed of irregular, pathological forms of the tau protein. Currently, FDA-approved symptomatic treatments are limited to the targeting of cholinergic deficits and glutamatergic dysfunctions. However, as understanding of β-amyloid plaques and NFTs expands, these dysfunctional proteins represent potential therapeutic interventions. The present review article evaluates active and passive immunotherapies in clinical development for AD to date and their potential to significantly improve the treatment of AD going forward. AREAS COVERED All clinical trials that have targeted β-amyloid to date have produced somewhat disappointing results, leading to a shift in intervention focus to targeting tau protein. A key component in understanding the value of targeting tau in therapeutic paradigms has come from the conceptualization of prion-like pathological spread of tau isoforms from neuron to neuron, and referred to as 'tauons'. Immunotherapies currently under investigation include approaches aiming at preventing pathological tau aggregation, stabilizing microtubules, and blocking of tauons. EXPERT OPINION A multi-targeted approach that would use biologics targeting tau offers great promise to the development of effective AD therapeutic interventions.
Collapse
Affiliation(s)
- Justin L. Hoskin
- Department of Neurology, Lou Ruvo Center for Brain HealthCleveland Clinic Nevada, Phoenix, AZ, USA
| | - Marwan Noel Sabbagh
- Department of Neurology, Lou Ruvo Center for Brain HealthCleveland Clinic Nevada, Phoenix, AZ, USA
- Camille and Larry Ruvo Endowed Chair for Brain Health, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Yazan Al-Hasan
- Department of Neurology, Lou Ruvo Center for Brain HealthCleveland Clinic Nevada, Phoenix, AZ, USA
| | - Boris Decourt
- Camille and Larry Ruvo Endowed Chair for Brain Health, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
46
|
Affiliation(s)
- Helen M Blau
- From the Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA (H.M.B.); and the Department of Medicine, Harvard Medical School, Boston (G.Q.D.)
| | - George Q Daley
- From the Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA (H.M.B.); and the Department of Medicine, Harvard Medical School, Boston (G.Q.D.)
| |
Collapse
|
47
|
Areche C, Zapata F, González M, Díaz E, Montecinos R, Hernández M, Melo F, Cornejo A. Anthraquinone Derivative Reduces Tau Oligomer Progression by Inhibiting Cysteine-Cysteine Interaction. ChemistryOpen 2019; 8:554-559. [PMID: 31065505 PMCID: PMC6496470 DOI: 10.1002/open.201800222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 01/05/2023] Open
Abstract
Tau protein is a natively unfolded protein whose primary role is to participate in axonal transport closely associated with microtubules. Neurodegenerative disorders including Alzheimer's disease and Tauopathies involved tau protein that is found hyperphosphorylated in vivo; then, tau is detached from microtubules to form toxic aggregates or oligomers, which have a deleterious effect on membranes, triggering an inflammatory response. Considering finding tau inhibitors, we isolated two compounds in the ethyl acetate extract from Xanthoria ectaneoides (Nyl.) Zahlbr; ergosterol peroxide (1) and a new anthraquinone (2). We established the structure through spectroscopic data and biogenic considerations, and we named it "2-hydroxy-3-((8-hydroxy-3-methoxy-6-methylanthraquinonyl)oxy)propanoic acid". This new anthraquinone was evaluated as a tau inhibitor by ThT fluorescence, dot blot assays and total internal reflection fluorescence microscopy. Our results strongly suggest that this anthraquinone remodels soluble oligomers and diminishes β-sheet content. Moreover, through the fluorescence labeling of cysteine inside of the microtubule-binding domain (4R), we showed that this anthraquinone could reduce the oligomers progression by inhibiting cysteine interactions.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de CienciasUniversidad de ChileLas Palmeras 34257800003Santiago-Chile
| | - Francisca Zapata
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| | - Mathias González
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| | - Esteban Díaz
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| | | | - Marcos Hernández
- Departamento de Química, Facultad de CienciasUniversidad de ChileLas Palmeras 34257800003Santiago-Chile
| | - Francisco Melo
- Departamento de FísicaAvenida Ecuador 34939170124Santiago-Chile
| | - Alberto Cornejo
- Escuela Tecnología MédicaFacultad de MedicinaSazie 23158370092Santiago-Chile
| |
Collapse
|
48
|
Panza F, Imbimbo BP, Lozupone M, Greco A, Seripa D, Logroscino G, Daniele A, Colosimo C. Disease-modifying therapies for tauopathies: agents in the pipeline. Expert Rev Neurother 2019; 19:397-408. [PMID: 30973276 DOI: 10.1080/14737175.2019.1606715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Tauopathies are heterogeneous clinicopathological entities characterized by abnormal neuronal and/or glial inclusions of the microtubule-binding protein tau. Primary tauopathies considered to be diseases correspond to a major class of frontotemporal lobar degeneration (FTLD) neuropathology (FTLD-Tau), including several forms of frontotemporal dementia (FTD) clinical syndromes. Little progress has been made in the past 20 years in developing effective disease-modifying drugs for primary tauopathies and available symptomatic treatments have limited efficacy. Areas covered: Potential disease-modifying drugs in clinical development to slow neuropathological progression of primary tauopathies. Expert opinion: Since the underlying pathology of primary tauopathies consists of abnormal tau protein aggregates, treatments are being developed to interfere with the aggregation process or to promote the clearance of this protein. Unfortunately, disease-modifying treatments remain years away as demonstrated by the recent negative Phase III findings of a tau aggregation inhibitor (LMTM) for treating the behavioral variant of FTD. Further evidence will come from ongoing Phase I/II trials on novel drugs and immunotherapeutics with various targets - prevention of deposition or removal of tau aggregates, inhibition of tau phosphorylation/acetylation, modulation of O-GlcNAcylation, activation of autophagy or ubiquitin-proteasome system pathways, and rescue of selected tau loss of function or suppression of tau gene expression.
Collapse
Affiliation(s)
- Francesco Panza
- a Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,b Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain , University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico" , Lecce , Italy.,c Geriatric Unit, Fondazione IRCCS , "Casa Sollievo della Sofferenza" , Foggia , Italy
| | - Bruno P Imbimbo
- d Department of Research and Development , Chiesi Farmaceutici , Parma , Italy
| | - Madia Lozupone
- a Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy
| | - Antonio Greco
- c Geriatric Unit, Fondazione IRCCS , "Casa Sollievo della Sofferenza" , Foggia , Italy
| | - Davide Seripa
- c Geriatric Unit, Fondazione IRCCS , "Casa Sollievo della Sofferenza" , Foggia , Italy
| | - Giancarlo Logroscino
- a Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,b Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain , University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico" , Lecce , Italy
| | - Antonio Daniele
- e Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy.,f Institute of Neurology , Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome , Italy
| | - Carlo Colosimo
- g Department of Neurological Sciences , Santa Maria University Hospital , Terni , Italy
| |
Collapse
|
49
|
Logroscino G, Imbimbo BP, Lozupone M, Sardone R, Capozzo R, Battista P, Zecca C, Dibello V, Giannelli G, Bellomo A, Greco A, Daniele A, Seripa D, Panza F. Promising therapies for the treatment of frontotemporal dementia clinical phenotypes: from symptomatic to disease-modifying drugs. Expert Opin Pharmacother 2019; 20:1091-1107. [PMID: 31002267 DOI: 10.1080/14656566.2019.1598377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a heterogeneous clinical entity that includes several disorders characterized by different cellular mechanisms. Distinctive clinical features in FTD include behavioral, affective, and cognitive symptoms. Unfortunately, little progress has been made over the past 20 years in terms of the development of effective disease-modifying drugs with the currently available symptomatic treatments having limited clinical utility. AREAS COVERED This article reviews the principal pharmacological intervention studies for FTD. These are predominantly randomized clinical trials and include symptomatic treatments and potential disease-modifying drugs. EXPERT OPINION There is insufficient evidence on effective treatments for FTD and studies with better methodological backgrounds are needed. Most studies reporting therapeutic benefits were conducted with selective serotonin reuptake inhibitors, while anti-dementia drugs have been ineffective in FTD. Since the underlying pathology of FTD mostly consists of abnormal tau protein or TDP-43 aggregates, treatments are being developed to interfere with their aggregation process or with the clearance of these proteins. Furthermore, disease-modifying treatments remain years away as demonstrated by the recent negative Phase III findings of a tau aggregation inhibitor (LMTM) for treating the behavioral variant of FTD. The results from current ongoing Phase I/II trials will hopefully give light to future treatment options.
Collapse
Affiliation(s)
- Giancarlo Logroscino
- a Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,b Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain , University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico" , Lecce , Italy
| | - Bruno P Imbimbo
- c Department of Research and Development , Chiesi Farmaceutici , Parma , Italy
| | - Madia Lozupone
- a Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy
| | - Rodolfo Sardone
- d National Institute of Gastroenterology "Saverio de Bellis" , Research Hospital , Castellana Grotte Bari , Italy
| | - Rosa Capozzo
- b Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain , University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico" , Lecce , Italy
| | - Petronilla Battista
- e Istituti Clinici Scientifici Maugeri SPA SB, IRCCS , Institute of Cassano Murge , Bari , Italy
| | - Chiara Zecca
- b Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain , University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico" , Lecce , Italy
| | - Vittorio Dibello
- d National Institute of Gastroenterology "Saverio de Bellis" , Research Hospital , Castellana Grotte Bari , Italy.,f Interdisciplinary Department of Medicine (DIM), Section of Dentistry , University of Bari AldoMoro , Bari , Italy
| | - Gianluigi Giannelli
- d National Institute of Gastroenterology "Saverio de Bellis" , Research Hospital , Castellana Grotte Bari , Italy
| | - Antonello Bellomo
- g Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Antonio Greco
- h Geriatric Unit , Fondazione IRCCS "Casa Sollievo della Sofferenza" , Foggia , Italy
| | - Antonio Daniele
- i Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy.,j Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome , Italy
| | - Davide Seripa
- h Geriatric Unit , Fondazione IRCCS "Casa Sollievo della Sofferenza" , Foggia , Italy
| | - Francesco Panza
- a Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,b Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain , University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico" , Lecce , Italy.,d National Institute of Gastroenterology "Saverio de Bellis" , Research Hospital , Castellana Grotte Bari , Italy.,h Geriatric Unit , Fondazione IRCCS "Casa Sollievo della Sofferenza" , Foggia , Italy
| |
Collapse
|
50
|
Abstract
Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|