1
|
Yin Z, Zhang H, Zhang K, Yue J, Tang R, Wang Y, Deng Q, Yu Q. Impacts of combining PD-L1 inhibitor and radiotherapy on the tumour immune microenvironment in a mouse model of esophageal squamous cell carcinoma. BMC Cancer 2025; 25:474. [PMID: 40087599 PMCID: PMC11909915 DOI: 10.1186/s12885-025-13801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The combination of radiation with immune checkpoint inhibitors (ICIs) has been demonstrated to display synergistic effects in solid cancers. Nevertheless, the anti-tumor effect of combining radiation with programmed cell death 1 ligand 1 (PD-L1) inhibitor in esophageal squamous cell carcinoma (ESCC) has remained unclear. Therefore, the objectives of our study were to evaluate the anti-tumor effects of PD-L1 inhibitors combined with radiotherapy in a mouse model of ESCC and to depict the immune landscape within the tumor microenvironment (TME). METHODS Murine ESCC cells (mEC25) were injected subcutaneously into the right flanks of C57BL/6 mice. Tumor-bearing mice were exposed to different treatments: IgG antibody (control), anti-PD-L1 antibody, radiation, or radiation + anti-PD-L1 antibody. Tumor growth and survival time of mice were monitored. Tumour immune microenvironment was assessed by flow cytometry, including CD4+T cells, CD8+T cells, regulatory T cells (Tregs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and the activation and exhaustion of CD8+T cell. In addition, transcriptomic analysis was used to examine the changes in immune gene expression in the TME. RESULTS Radiotherapy combined with anti-PD-L1 inhibitors (radioimmunotherapy) synergistically enhanced anti-tumor immune response, leading to decreased tumor growth and prolonged survival of tumor-bearing mice. The radioimmunotherapy increased the infiltration of CD8+ T cells, the ratio of CD8+ T cells to Tregs, the population of central memory CD8+ T cells (TCM), interferon-gamma (IFN-γ) secretion of tumor-infiltrating CD8+ T cells, and reduced the accumulation of M2-type TAMs and Tregs in the TME in mouse model. In addition, the radioimmunotherapy induced anti-tumor immune response in the spleen and tumor-draining lymph node (TDLN). Moreover, transcriptomic analysis suggested that the radioimmunotherapy promoted the activation of immune regulatory pathways and increased the expression of cytokines such as CXCL9 and CXCL10, thus creating an immunoinflammatory tumor microenvironment. CONCLUSIONS Our research revealed that anti-PD-L1 inhibitors combined with radiotherapy caused systemic anti-tumor immunity by reshaping the immune microenvironment in a mouse model of ESCC.
Collapse
Affiliation(s)
- Zihao Yin
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Rongjun Tang
- Hyperthermia Center, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Yaping Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Qinghua Deng
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| | - Qingqing Yu
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
2
|
Xia WY, Shen YJ, Zhang CC, Qian LQ, Wang H, Wang K, Jin HZ, Zhu XR, Ding ZP, Zhang Q, Yu W, Feng W, Fu XL. Combination of radiotherapy and PD-L1 blockade induces abscopal responses in EGFR-mutated lung cancer through activating CD8 + T cells. Transl Oncol 2024; 48:102074. [PMID: 39106551 PMCID: PMC11357862 DOI: 10.1016/j.tranon.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
Patients with EGFR-mutated non-small cell lung cancer (NSCLC) respond poorly to immune checkpoint inhibitors (ICIs). It has been reported that the number of CD8+T cells is reduced in EGFR-mutated NSCLC. However, the extent of heterogeneity and effector function of distinct populations of CD8+T cells has not been investigated intensively. In addition, studies investigating whether a combination of radiotherapy and ICIs can improve the efficacy of ICIs in EGFR-mutated lung cancer are lacking. Single-cell RNA sequencing (scRNA-seq) was used to investigate the heterogeneity of CD8+T cell populations in EGFR-mutated NSCLC. The STING pathway was explored after hypofractionated radiation of EGFR-mutated and wild-type cells. Mice bearing LLC-19del and LLC-EGFR tumors were treated with radiotherapy plus anti-PD-L1. The scRNA-seq data showed the percentage of progenitor exhausted CD8+T cells was lower in EGFR-mutated NSCLC. In addition, CD8+T cells in EGFR-mutated NSCLC were enriched in oxidative phosphorylation. In EGFR-mutated and wild-type cells, 8 Gy × 3 increased the expression of chemokines that recruit T cells and activate the cGAS-STING pathway. In the LLC-19del and LLC-EGFR mouse model, the combination of radiation and anti-PD-L1 significantly inhibited the growth of abscopal tumors. The enhanced abscopal effect was associated with systemic CD8+T cell infiltration. This study provided an intensive understanding of the heterogeneity and effector functions of CD8+T cells in EGFR-mutated NSCLC. We showed that the combination of hypofractionated radiation and anti-PD-L1 significantly enhanced the abscopal responses in both EGFR-mutated and wild-type lung cancer by activating CD8+T cells in mice.
Collapse
Affiliation(s)
- Wu-Yan Xia
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Jia Shen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Chen Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Qiang Qian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Zhen Jin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Ru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Ping Ding
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhang B, Hu M, Ma Q, Li K, Li X, He X, Shu P, Chen Y, Gao G, Qin D, Guo F, Zhao J, Liu N, Zhou K, Feng M, Liao W, Li D, Wang X, Wang Y. Optimized CAR-T therapy based on spatiotemporal changes and chemotactic mechanisms of MDSCs induced by hypofractionated radiotherapy. Mol Ther 2023; 31:2105-2119. [PMID: 37073129 PMCID: PMC10362417 DOI: 10.1016/j.ymthe.2023.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
Poor intratumoral infiltration is the major challenge for chimeric antigen receptor (CAR)-T cell therapy in solid tumors. Hypofractionated radiotherapy (HFRT) has been reported to induce immune cell infiltration and reshape the tumor immune microenvironment. Here, we showed that HFRT (5 × 5 Gy) mediated an early accumulation of intratumoral myeloid-derived suppressor cells (MDSCs) and decreased infiltration of T cells in the tumor microenvironment (TME) of immunocompetent mice bearing triple-negative breast cancer (TNBC) or colon cancer, which was further confirmed in tumors from patients. RNA sequencing (RNA-seq) and cytokine profiling analysis revealed that HFRT induced the activation and proliferation of tumor-infiltrated MDSCs, which was mediated by the interactions of multiple chemokines and chemokine receptors. Further investigation showed that when combined with HFRT, CXCR2 blockade significantly inhibited MDSCs trafficking to tumors and effectively enhanced the intratumoral infiltration and treatment efficacy of CAR-T cells. Our study demonstrates that MDSCs blockade combined with HFRT is promising for CAR-T cell therapy optimization in solid tumors.
Collapse
Affiliation(s)
- Benxia Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qizhi Ma
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia He
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Shu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Diyuan Qin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zhao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexun Zhou
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - MingYang Feng
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiting Liao
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, and Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Liu S, Liao Y, Chen Y, Yang H, Hu Y, Chen Z, Fu S, Wu J. Effect of triple therapy with low-dose total body irradiation and hypo-fractionated radiation plus anti-programmed cell death protein 1 blockade on abscopal antitumor immune responses in breast cancer. Int Immunopharmacol 2023; 117:110026. [PMID: 36934673 DOI: 10.1016/j.intimp.2023.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Immunostimulatory effects of radiotherapy can be synergistically augmented with immune checkpoint blockade to act both on irradiated tumor lesions and distant, non-irradiated tumor sites. Our hypothesis was that low-dose total body irradiation (L-TBI) combined with hypo-fractionated radiotherapy (H-RT) and anti-programmed cell death protein 1 (aPD-1) checkpoint blockade would enhance the systemic immune response. We tested the efficacy of this triple therapy (L-TBI + H-RT + aPD-1) in BALB/c mice with bilateral breast cancer xenografts. The L-TBI dose was 0.1 Gy. The primary tumor was treated with H-RT (8 Gy × 3). The PD-1 monoclonal antibody was injected intraperitoneally, and the secondary tumors not receiving H-RT were monitored for response. The triple therapy significantly delayed both primary and secondary tumor growths, improved survival rates, and reduced the number of lung metastasis lesions. It increased the activated dendritic and CD8+ T cell populations and reduced the infiltration of myeloid-derived suppressor cells in the secondary tumor microenvironment relative to other groups. Thus, L-TBI could be a potential therapeutic modality, and when combined with H-RT and aPD-1, the therapeutic effect could be enhanced significantly.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hanshan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuru Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Labiano S, Serrano-Mendioroz I, Rodriguez-Ruiz ME. Flow cytometry-assisted quantification of immune cells infiltrating irradiated tumors in mice. Methods Cell Biol 2023; 174:1-16. [PMID: 36710044 DOI: 10.1016/bs.mcb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
The immunomodulatory properties of local hypofractionated radiotherapy are known to promote the generation of anti-tumor immune responses. Such responses are largely due to the infiltration of cytotoxic lymphocytes (TILs) into the tumors that are able to destroy malignant lesions. In this context, characterizing the tumor immune microenvironment following radiotherapy is crucial for the study of its mechanism of action. Flow cytometry-based analyses are frequently used to elucidate changes in the tumor immune microenvironment. The use of a fluorochrome-conjugated antibody panel is currently a standard technique to assess the number and phenotype of immune cell populations infiltrating the tumors. Here, we describe a method to isolate and quantify TILs based on flow-cytometry in mammary carcinoma-bearing mice that undergo a local hypofractionated radiotherapy regimen consisting of 3 consecutive doses of 8 Gy. With some adaptations, this protocol can be successfully applied to a diverse range of transplantable and inducible solid mouse tumors of different origins.
Collapse
Affiliation(s)
- Sara Labiano
- Department of Pediatrics, University Clinic of Navarra, Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - María Esperanza Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Departments of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Zhang A, Yang F, Gao L, Shi X, Yang J. Research Progress on Radiotherapy Combined with Immunotherapy for Associated Pneumonitis During Treatment of Non-Small Cell Lung Cancer. Cancer Manag Res 2022; 14:2469-2483. [PMID: 35991677 PMCID: PMC9386171 DOI: 10.2147/cmar.s374648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation pneumonitis is a common and serious complication of radiotherapy for thoracic tumours. Although radiotherapy technology is constantly improving, the incidence of radiation pneumonitis is still not low, and severe cases can be life-threatening. Once radiation pneumonitis develops into radiation fibrosis (RF), it will have irreversible consequences, so it is particularly important to prevent the occurrence and development of radiation pneumonitis. Immune checkpoint inhibitors (ICIs) have rapidly altered the treatment landscape for multiple tumour types, providing unprecedented survival in some patients, especially for the treatment of non-small cell lung cancer (NSCLC). However, in addition to its remarkable curative effect, ICls may cause immune-related adverse events. The incidence of checkpoint inhibitor pneumonitis (CIP) is 3% to 5%, and its mortality rate is 10% to 17%. In addition, the incidence of CIP in NSCLC is higher than in other tumour types, reaching 7%–13%. With the increasing use of immune checkpoint inhibitors (ICls) and thoracic radiotherapy in the treatment of patients with NSCLC, ICIs may induce delayed radiation pneumonitis in patients previously treated with radiation therapy, or radiation activation of the systemic immune system increases the toxicity of adverse reactions, which may lead to increased pulmonary toxicity and the incidence of pneumonitis. In this paper, the data about the occurrence of radiation pneumonitis, immune pneumonitis, and combined treatment and the latest related research results will be reviewed.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Fuyuan Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Lei Gao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Xiaoyan Shi
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| | - Jiyuan Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
7
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
9
|
Ai X, Cai Y, Chu Q, Han C, Lu Y, Qin S, Wu L, Xie C, Yuan Z, Zhong W, Zhu X, Chang JY, Zhu Z. [Combination of Radiation Therapy and Immunotherapy for Non-small Cell Lung Cancer: Peer Exchange on Frontier Academic Topics]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:532-540. [PMID: 32517461 PMCID: PMC7309548 DOI: 10.3779/j.issn.1009-3419.2020.102.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
肺癌是目前导致全球和中国癌症患者死亡的主要瘤种。多年来,常规的肿瘤治疗方法,如手术、化疗和放疗一直主导着非小细胞肺癌(non-small cell lung cancer, NSCLC)治疗领域。临床实践中引入免疫疗法使肺癌的治疗与其他实体瘤一样发生了根本性转变。最新临床前和临床数据表明,放疗可以通过诱导免疫原性细胞死亡和重新编程肿瘤微环境促进抗肿瘤免疫反应。研究者开始重新审视放疗作为免疫治疗的联合疗法,导致研究其潜在协同作用的临床试验数量呈指数级增长。放疗联合免疫治疗的临床试验引起了医疗界的广泛关注,会议邀请专家交流前沿及争议学术问题:①放疗联合免疫检查点抑制剂治疗NSCLC最新进展;②放疗联合免疫治疗是否显著增加毒性;③免疫检查点抑制剂治疗后出现的混合反应及局部治疗的干预价值;④放疗联合免疫治疗脑转移瘤的机制和进展。
Collapse
Affiliation(s)
| | - Xinghao Ai
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qian Chu
- Department of Radiation Oncology, Tongji Hospital, Tongji Medical College, Wuhan 430030, China
| | - Chengbo Han
- Department of Clinical Oncology, Shengjing Hospital, China Medical University, Shenyang 110022, China
| | - You Lu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Suzhou University, Suzhou 215006, China
| | - Lin Wu
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Conghua Xie
- Department of Cancer Radiotherapy and Chemotherapy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Wenzhao Zhong
- Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou 510080, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston TX 77030, USA
| | - Zhengfei Zhu
- Department of Radiotherapy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
10
|
Yin X, Luo J, Xu C, Meng C, Zhang J, Yu H, Liu N, Yuan Z, Wang P, Sun Y, Zhao L. Is a higher estimated dose of radiation to immune cells predictive of survival in patients with locally advanced non-small cell lung cancer treated with thoracic radiotherapy? Radiother Oncol 2021; 159:218-223. [PMID: 33798612 DOI: 10.1016/j.radonc.2021.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE In previous studies, the estimated dose of radiation to immune cells (EDRIC) showed a correlation with overall survival (OS) of patients with locally advanced non-small cell lung cancer (LA-NSCLC) who received thoracic radiotherapy. However, several factors such as gross tumor volume (GTV) and lymph node (N) stage may impact EDRIC. The purpose of this study was to identify the factors influencing EDRIC and to further assess the prognostic relevance of EDRIC. MATERIALS AND METHODS We retrospectively analyzed 201 patients with LA-NSCLC who received radiotherapy between 2012 and 2017. EDRIC was calculated based on the model developed by Jin et al. Kaplan-Meier method and Cox proportional hazards regression were used to analyze the correlation of potential factors with OS, local progression-free survival (LPFS), and distant metastasis-free survival (DMFS). Spearman's rank correlation was used to assess the correlation between variables. RESULTS Both GTV and N stage showed a positive correlation with EDRIC (r = 0.347, P < 0.001 and r = 0.249, P < 0.001, respectively). EDRIC was independently associated with DMFS (HR 1.185, P < 0.001). GTV was associated with OS (HR 1.006, P < 0.001), LPFS (HR 1.003, P = 0.017), and DMFS (HR 1.003, P = 0.032). While using GTV as a stratification factor in Kaplan-Meier analysis, EDRIC showed a trend of negative correlation with OS in GTV ≤ 66.6 cm3 group (P = 0.061). CONCLUSION EDRIC was an independent prognostic factor for metastasis and it was affected by GTV and N stage. However, the effect of EDRIC on OS was influenced by GTV.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, China
| | - Jing Luo
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Cai Xu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Chunliu Meng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Jiaqi Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Hao Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Yunchuan Sun
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, China.
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China.
| |
Collapse
|
11
|
Vanneste BG, Van Limbergen EJ, Dubois L, Samarska IV, Wieten L, Aarts MJ, Marcelissen T, De Ruysscher D. Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology 2020; 9:1832760. [PMID: 33194319 PMCID: PMC7605354 DOI: 10.1080/2162402x.2020.1832760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of this report was to systematically review the radiation enhancement factor (REF) effects of immunotherapy on radiotherapy (RT) to the local tumor in comparison with other traditional radiation sensitizers such as cisplatin. PubMed and Medline databases were searched until February 2019. Reports with abscopal effect in the results were excluded. Graphs of the selected papers were digitized using Plot Digitizer (Sourceforge.net) in order to calculate the tumor growth delay (TGD) caused by immunotherapy. To enable comparison between different studies,the TGD were used to define the REF between RT versus the RT/immunotherapy combination. Thirty-two preclinical papers, and nine clinical series were selected. Different mouse models were exposed to RT doses ranging from 1 to 10 fractions of 1.8 to 20 Gray (Gy) per fraction. Endpoints were heterogeneous, ranging from regression to complete local response. No randomized clinical studies were identified. The median preclinical REF effect of different immunotherapy was varying from 1.7 to 9.1. There was no relationship observed either with subclasses of immunotherapy orRT doses. In the clinical studies, RT doses ranged from 1 to 37 fractions of 1.8 to 24 Gy per fraction. Most clinical trials used ipilimumab and interleukin-2. Local control rate in the clinical series ranged from 66% to 100%. A strong REF of immunotherapy (1.7 to 9.1) was observed, this being higher than traditionally sensitizers such as cisplatin (1.1). This result implies that for the same RT dose, a higher local control was achieved with a combination of immunotherapy and RT in preclinical settings. This study therefore supports the use of combined RT and immunotherapy to improve local tumor control in clinical settings without exacerbation of toxicities.
Collapse
Affiliation(s)
- Ben G.L. Vanneste
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Iryna V. Samarska
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L. Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M. J.B. Aarts
- Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - T. Marcelissen
- Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
12
|
Effect of Low-Dose Radiation Therapy on Abscopal Responses to Hypofractionated Radiation Therapy and Anti-PD1 in Mice and Patients With Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2020; 108:212-224. [PMID: 32417411 DOI: 10.1016/j.ijrobp.2020.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Hypofractionated radiation therapy (HFRT) can induce antitumor T cell responses, particularly in combination with immune checkpoint inhibitors (ICI), but abscopal effects are often precluded by insufficient T cell infiltration of distant, nonirradiated tumors. Additional noncytotoxic, low-dose radiation therapy (LDRT) of distant tumors may enhance the abscopal response, but clinical evidence and preclinical studies for this scenario are lacking. METHODS AND MATERIALS We investigated whether triple treatment consisting of HFRT, ICI, and LDRT could achieve better systemic antitumor response in bilateral mouse tumor models and in patients with stage IV non-small cell lung cancer. RESULTS Our analyses of bilateral mouse tumor models show that HFRT treatment of the primary tumor combined with LDRT treatment of the abscopal tumor and anti-PD1 therapy enhances the abscopal response compared with HFRT/anti-PD1, HFRT/LDRT, or LDRT/anti-PD1 double treatments; complete cure was observed in more than half of the mice treated with triple therapy. The enhanced abscopal effect was associated with increased infiltration of CD8+ effector T cells and upregulated expression of T cell-attracting chemokines. Of 9 patients with metastatic non-small cell lung cancer who were treated with this triple therapy, 3 and 2 patients showed partial responses and stable disease, respectively. Among 9 relatively large (175.7 ± 42.3 cm3) LDRT lesions, 6 lesions decreased by 28% in size, on average. CONCLUSIONS Our study demonstrates preclinically that LDRT of established metastases significantly enhances the abscopal response to HFRT plus ICI. It also shows that additional LDRT was well tolerated by patients and that this treatment profile is effective and worth further study.
Collapse
|
13
|
Ellerin BE, Demandante CGN, Martins JT. Pure abscopal effect of radiotherapy in a salivary gland carcinoma: Case report, literature review, and a search for new approaches. Cancer Radiother 2020; 24:226-246. [PMID: 32192840 DOI: 10.1016/j.canrad.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
We report the case of an 84-year-old woman with poorly differentiated non-small cell carcinoma of the right parotid who presented with headache, was found to have a primary right parotid gland cancer as well as metastatic disease, and underwent palliative radiotherapy to the primary site. The patient received no chemotherapy or immunotherapy, but both the primary site and several non-irradiated foci in the lungs regressed or completely resolved. The patient remained free of disease for about one year before progression. The case is a rare instance of abscopal regression of metastatic disease in the absence of pharmacologic immunomodulation. A literature review surveys the history of the abscopal effect of radiation therapy, attempts to understand the mechanisms of its successes and failures, and points to new approaches that can inform and improve the outcomes of radioimmunotherapy.
Collapse
Affiliation(s)
| | | | - J T Martins
- UT Health HOPE Cancer Center, Tyler, TX 75701, USA
| |
Collapse
|
14
|
Gregg M. Immunotherapy: a 10-year anniversary issue. Immunotherapy 2019; 11:61-62. [PMID: 30730267 DOI: 10.2217/imt-2018-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mike Gregg
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| |
Collapse
|
15
|
Rodriguez-Ruiz ME, Yamazaki T, Buqué A, Bloy N, Silva VAO, Stafford L, Sato A, Galluzzi L. Monitoring abscopal responses to radiation in mice. Methods Enzymol 2019; 635:111-125. [PMID: 32122540 DOI: 10.1016/bs.mie.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Focal radiation therapy has the potential to generate systemic tumor-targeting immune responses so potent as to eradicate anatomically distant, non-irradiated malignant lesions, a phenomenon commonly referred to as "the abscopal response." In cancer patients, bona fide abscopal responses are rare, although the recent introduction of immune checkpoint blockers into the clinical practice has significantly increased their incidence. In rodents, abscopal responses can be conveniently modeled by establishing two, slightly asynchronous and anatomically distant subcutaneous tumors in syngeneic immunocompetent hosts, provided that the therapeutic partners of radiation potentially included in the regimen of choice do not mediate systemic anticancer effects per se. Here, we describe such method to monitor abscopal responses based on mammary carcinoma TSA cells implanted in syngeneic immunocompetent BALB/c mice. With minor variations, the same technique can be conveniently applied to a variety of transplantable mouse tumors.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Department of Radiation Oncology, University of Navarra Clinic and CIMA, Pamplona, Spain
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Viviane A O Silva
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Lena Stafford
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|