1
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Gautam S, Mawari G, Daga MK, Kumar N, Singh H, Garg S, Kumar S, Gajendrakumar M, Golani M, Rohatgi I, Sarkar S, Kaushik S, Jha MK, Mehra S. Evaluation of the Efficacy and Safety of Intravenous Immunoglobulin (IVIG) in Moderate-to-Severe Hospitalized COVID-19 Patients: A Randomized, Open-Label Parallel-Group Study. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:7209380. [PMID: 38808260 PMCID: PMC11132825 DOI: 10.1155/2024/7209380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Purpose Since February 2020, the world has been overwhelmed by the SARS-CoV-2 outbreak, and several patients suffered interstitial pneumonia and respiratory failure requiring mechanical ventilation, threatening the capability of healthcare systems to handle this amount of critical cases. Intravenous immunoglobulins (IVIG) possess potential immunomodulatory properties beneficial for COVID-19 patients, yet evidence supporting IVIG as adjunctive therapy remains sparse. This study evaluated the outcomes of adjunctive IVIG with the standard of care (SoC) in moderate-to-severe COVID-19 patients. Methods This randomized study included 59 moderate-to-severe COVID-19 patients with known comorbidities. One arm (n = 33) received high-dose IVIG (400 mg/kg/day) within 48 hours for five days alongside SoC, while the other arm (n = 26) received SoC, comprising steroids, enoxaparin, and remdesivir. The primary endpoint was clinical improvement, as measured by the National Early Warning Score 2 (NEWS2) and discharged/death proportions. Secondary outcomes included IVIG safety, hospitalization duration, changes in oxygen saturation, inflammatory markers, IgG titer, CTSS (CT severity score), and radiological findings. Results There was an improvement in the NEWS2 at the end of treatment in the IVIG arm (5.67 vs. 5.96). A significant absolute effect improvement (Day 1 vs. Day 9) was seen in serum LDH, D-dimer, hs-CRP, IL-6, CTSS, procalcitonin, respiratory rate, and chest radiographic findings. SARS-CoV-2 IgG titer increased significantly in the IVIG arm. There was a statistically significant reduction in mortality in the IVIG group (5 vs. 10). Conclusion IVIG was a safe and effective adjunctive therapy to SoC treatment in moderate-to-severe COVID-19 patients needing ventilatory support. Furthermore, studies are required to validate our findings. This trial is registered with CTRI/2021/05/033622.
Collapse
Affiliation(s)
- Sachin Gautam
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Govind Mawari
- Centre for Occupational and Environmental Health (COEH), Maulana Azad Medical College, New Delhi, India
| | - Mradul Kumar Daga
- Department of Internal Medicine & Infectious Diseases, Institute of liver & Biliary Sciences, Vashant Kunj, New Delhi-110070, India
| | - Naresh Kumar
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Harpreet Singh
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Sandeep Garg
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Suresh Kumar
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Monika Gajendrakumar
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Mahak Golani
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Ishan Rohatgi
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Sayan Sarkar
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Shubham Kaushik
- Department of General Medicine, Maulana Azad Medical College & Associated Lok Nayak Hospital, New Delhi 110002, India
| | - Manish Kumar Jha
- Centre for Occupational and Environmental Health (COEH), Maulana Azad Medical College, New Delhi, India
| | - Sweety Mehra
- Centre for Occupational and Environmental Health (COEH), Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
3
|
EFE S, Demircan F, UÇAN A, İNAL V. The use of furosemide during Intravenous Immunoglobulin therapy should not always be considered contraindicated. MEDICINE IN DRUG DISCOVERY 2024; 21:100171. [DOI: 10.1016/j.medidd.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
|
4
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5:CD013600. [PMID: 37162745 PMCID: PMC10171886 DOI: 10.1002/14651858.cd013600.pub6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Manganotti P, Garascia G, Furlanis G, Buoite Stella A. Efficacy of intravenous immunoglobulin (IVIg) on COVID-19-related neurological disorders over the last 2 years: an up-to-date narrative review. Front Neurosci 2023; 17:1159929. [PMID: 37179564 PMCID: PMC10166837 DOI: 10.3389/fnins.2023.1159929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Among the clinical manifestations of SARS-CoV-2 infection, neurological features have been commonly reported and the state-of-the-art technique suggests several mechanisms of action providing a pathophysiological rationale for central and peripheral neurological system involvement. However, during the 1st months of the pandemic, clinicians were challenged to find the best therapeutic options to treat COVID-19-related neurological conditions. Methods We explored the indexed medical literature in order to answer the question of whether IVIg could be included as a valid weapon in the therapeutic arsenal against COVID-19-induced neurological disorders. Results Virtually, all reviewed studies were in agreement of detecting an acceptable to great efficacy upon IVIg employment in neurological diseases, with no or mild adverse effects. In the first part of this narrative review, the interaction of SARS-CoV-2 with the nervous system has been discussed and the IVIg mechanisms of action were reviewed. In the second part, we collected scientific literature data over the last 2 years to discuss the use of IVIg therapy in different neuro-COVID conditions, thus providing a summary of the treatment strategies and key findings. Discussion Intravenous immunoglobulin (IVIg) therapy is a versatile tool with multiple molecular targets and mechanisms of action that might respond to some of the suggested effects of infection through inflammatory and autoimmune responses. As such, IVIg therapy has been used in several COVID-19-related neurological diseases, including polyneuropathies, encephalitis, and status epilepticus, and results have often shown improvement of symptoms, thus suggesting IVIg treatment to be safe and effective.
Collapse
|
6
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 2:CD013600. [PMID: 36734509 PMCID: PMC9891348 DOI: 10.1002/14651858.cd013600.pub5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Focosi D, Franchini M. Polyclonal immunoglobulins for COVID-19 pre-exposure prophylaxis in immunocompromised patients. Transfus Apher Sci 2023:103648. [PMID: 36759280 PMCID: PMC9886389 DOI: 10.1016/j.transci.2023.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Immunocompromised patients remain at high risk of COVID-19 morbidity and mortality. After recent Omicron sublineages gained full resistance to Evusheld™, they are left without effective pre-exposure prophylaxis. We review here arguments to support the growing role of regular immunoglobulin (IG) infusions at protecting against COVID-19. Since there is evidence for neutralizing antibody titers approaching the ones seen in hyperimmune sera, and since some categories of patients at risk for COVID-19 progression are already under preexposure prophylaxis with IG, this cost-effective strategy should be urgently investigated in randomized clinical trials. Surveys of anti-Spike antibody levels in current plasma donations are urgent to forecast the potency of future IG batches.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy.
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy.
| |
Collapse
|
8
|
Wang G, He Z, Wu F, Ge Z, Zhu J, Chen Z. IgG response to spike protein of SARS-CoV-2 in healthy individuals and potential of intravenous IgG as treatment for COVID-19. Virol J 2022; 19:186. [PMCID: PMC9655819 DOI: 10.1186/s12985-022-01921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which is currently a worldwide pandemic. There are limited available treatments for severe COVID-19 patients. However, some evidence suggests that intravenous immunoglobulin (IVIg) provides clinical benefits for these patients.
Methods
We administered IVIg to 23 severe COVID-19 patients, and all of them survived. Four related coronaviruses can cause the common cold. We speculated that cross-reactivity of SARS-CoV-2 and other common coronaviruses might partially explain the clinical efficacy of IVIg therapy. Thus, we performed multiple alignment analysis of the spike (S), membrane (M), and nucleotide (N) proteins from SARS-CoV-2 and the common coronaviruses to identify conserved regions. Next, we synthesized 25 peptides that were conserved regions and tested their IVIg seropositivity.
Results
The results indicated four peptides had significant or nearly significant seropositivity, and all of them were associated with the S and M proteins. Examination of the immune responses of healthy volunteers to each synthetic peptide indicated high seropositivity to the two peptides from S protein. Blood samples from healthy individuals may have pre-existing anti-SARS-CoV-2 IgGs, and IVIg is a potentially effective therapy for severe COVID-19.
Conclusion
In conclusion, blood samples from many healthy individuals have pre-existing anti-SARS-CoV-2 IgGs, and IVIg may be an effective therapy for severe COVID-19.
Collapse
|
9
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Monteiro A, Chang AJ, Welliver RR, Baron S, Hicar MD. Humoral cross-coronavirus responses against the S2 region in children with Kawasaki disease. Virology 2022; 575:83-90. [PMID: 36088793 PMCID: PMC9437773 DOI: 10.1016/j.virol.2022.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022]
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C), a post infectious complication of SARS CoV-2 infection, shares enough features with Kawasaki Disease (KD) that some have hypothesized cross-coronavirus (CoV) immunity may explain the shared pathology. Recent studies have shown that humoral cross-reactivity of the CoVs, particularly of OC43, is focused on the S2 region of the Spike protein. Due to efforts utilizing CoV S2 regions to produce a cross-CoV vaccine, we wished to assess SARS-CoV-2 S2 reactivity in children with KD and assess if cardiac involvement in KD correlated with S2 CoV antibody targeting. The presence of cross-reactivity does not distinguish KD from febrile controls and does not correlate with cardiac involvement in KD. These findings support that, in relation to cardiac vascular inflammation, vaccines targeting the S2 region appear to be a safe approach, but there is disparity in the ability of CoV species to raise cross-reactive S2 targeted antibodies.
Collapse
Affiliation(s)
- Ajit Monteiro
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Arthur J Chang
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R Ross Welliver
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
Farhangnia P, Dehrouyeh S, Safdarian AR, Farahani SV, Gorgani M, Rezaei N, Akbarpour M, Delbandi AA. Recent advances in passive immunotherapies for COVID-19: The Evidence-Based approaches and clinical trials. Int Immunopharmacol 2022; 109:108786. [PMID: 35483235 PMCID: PMC9021130 DOI: 10.1016/j.intimp.2022.108786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing a global pandemic called COVID-19. Currently, there is no definitive treatment for this emerging disease. Global efforts resulted in developing multiple platforms of COVID-19 vaccines, but their efficacy in humans should be wholly investigated in the long-term clinical and epidemiological follow-ups. Despite the international efforts, COVID-19 vaccination accompanies challenges, including financial and political obstacles, serious adverse effects (AEs), the impossibility of using vaccines in certain groups of people in the community, and viral evasion due to emerging novel variants of SARS-CoV-2 in many countries. For these reasons, passive immunotherapy has been considered a complementary remedy and a promising way to manage COVID-19. These approaches arebased on reduced inflammation due to inhibiting cytokine storm phenomena, immunomodulation,preventing acute respiratory distress syndrome (ARDS), viral neutralization, anddecreased viral load. This article highlights passive immunotherapy and immunomodulation approaches in managing and treating COVID-19 patients and discusses relevant clinical trials (CTs).
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Shiva Dehrouyeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Amir Reza Safdarian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Soheila Vasheghani Farahani
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, United States.
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chavda VP, Prajapati R, Lathigara D, Nagar B, Kukadiya J, Redwan EM, Uversky VN, Kher MN, Rajvi P. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther 2022; 22:763-780. [PMID: 35604379 DOI: 10.1080/14712598.2022.2078160] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral disease in the world was announced on 31st December 2019 in Wuhan, China. Since then, this virus has affected more than 440 million people, and today the world is facing different mutant strains of the virus, leading to increased morbidity rates, fatality rates, and surfacing re-infections. Various therapies, such as prophylactic treatments, repurposed drug treatments, convalescent plasma, and polyclonal antibody therapy have been developed to help combat the coronavirus disease 2019 (COVID-19). AREA COVERED This review article provides insights into the basic aspects of monoclonal antibodies (mAbs) for the therapy of COVID-19, as well as its advancement in terms of clinical trial and current approval status. EXPERT OPINION Monoclonal antibodies represents the most effective and viable therapy and/or prophylaxis option against COVID-19, and have shown a reduction of the viral load, as well as lowering hospitalizations and death rates. In different countries, various mAbs are undergoing different phases of clinical trials, with a few of them having entered phases III and IV. Due to the soaring number of cases worldwide, the FDA has given emergency approval for the mAb combinations bamlanivimab with etesevimab and casirivimab with imdevimab.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Riddhi Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Disha Lathigara
- Biocharecterization Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| | - Bhumi Nagar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Jay Kukadiya
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Mukesh N Kher
- Department of Quality Assurance, L. M. College of Pharmacy, Ahmedabad, India
| | - Patel Rajvi
- Drug Product Development Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| |
Collapse
|
13
|
Aggarwal R, Dewan A, Pandey A, Trehan N, Majid MA. Efficacy of high-dose intravenous immunoglobulin in severe and critical COVID-19: A retrospective cohort study. Int Immunopharmacol 2022; 106:108615. [PMID: 35168081 PMCID: PMC8825318 DOI: 10.1016/j.intimp.2022.108615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Ritesh Aggarwal
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India.
| | - Arun Dewan
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Ankita Pandey
- Department of Internal Medicine, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Nikita Trehan
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Muhammad Aamir Majid
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
14
|
Scarpa R, Dell'Edera A, Felice C, Buso R, Muscianisi F, Finco Gambier R, Toffolo S, Grossi U, Giobbia M, Barberio G, Landini N, Facchini C, Agostini C, Rattazzi M, Cinetto F. Impact of Hypogammaglobulinemia on the Course of COVID-19 in a Non-Intensive Care Setting: A Single-Center Retrospective Cohort Study. Front Immunol 2022; 13:842643. [PMID: 35359947 PMCID: PMC8960988 DOI: 10.3389/fimmu.2022.842643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background Severity and mortality of COVID-19 largely depends on the ability of the immune system to clear the virus. Among various comorbidities potentially impacting on this process, the weight and the consequences of an antibody deficiency have not yet been clarified. Methods We used serum protein electrophoresis to screen for hypogammaglobulinemia in a cohort of consecutive adult patients with COVID-19 pneumonia, hospitalized in non-intensive care setting between December 2020 and January 2021. The disease severity, measured by a validated score and by the need for semi intensive (sICU) or intensive care unit (ICU) admission, and the 30-day mortality was compared between patients presenting hypogammaglobulinemia (HYPO) and without hypogammaglobulinemia (no-HYPO). Demographics, comorbidities, COVID-19 specific treatment during the hospital stay, disease duration, complications and laboratory parameters were also evaluated in both groups. Results We enrolled 374 patients, of which 39 represented the HYPO cohort (10.4%). In 10/39 the condition was previously neglected, while in the other 29/39 hematologic malignancies were common (61.5%); 2/39 were on regular immunoglobulin replacement therapy (IgRT). Patients belonging to the HYPO group more frequently developed a severe COVID-19 and more often required sICU/ICU admission than no-HYPO patients. IgRT were administered in 8/39 during hospitalization; none of them died or needed sICU/ICU. Among HYPO cohort, we observed a significantly higher prevalence of neoplastic affections, of active oncologic treatment and bronchiectasis, together with higher prevalence of viral and bacterial superinfections, mechanical ventilation, convalescent plasma and SARS-CoV-2 monoclonal antibodies administration during hospital stay, and longer disease duration. Multivariate logistic regression analysis and Cox proportional hazard regression confirmed the impact of hypogammaglobulinemia on the COVID-19 severity and the probability of sICU/ICU admission. The analysis of the mortality rate in the whole cohort showed no significant difference between HYPO and no-HYPO. Conclusions Hypogammaglobulinemia, regardless of its cause, in COVID-19 patients hospitalized in a non-intensive care setting was associated to a more severe disease course and more frequent admission to s-ICU/ICU, particularly in absence of IgRT. Our findings emphasize the add-value of routine serum protein electrophoresis evaluation in patients admitted with COVID-19 to support clinicians in patient care and to consider IgRT initiation during hospitalization.
Collapse
Affiliation(s)
- Riccardo Scarpa
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Alessandro Dell'Edera
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Carla Felice
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Roberta Buso
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy
| | - Francesco Muscianisi
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Renato Finco Gambier
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Sara Toffolo
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Ugo Grossi
- Department of Surgery, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy
| | - Mario Giobbia
- Infectious Diseases Unit, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy
| | - Giuseppina Barberio
- Laboratory Medicine, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy
| | - Nicholas Landini
- Radiology Unit, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy
| | - Cesarina Facchini
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy
| | - Carlo Agostini
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Marcello Rattazzi
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Cinetto
- Internal Medicine I, Ca' Foncello Hospital, Azienda Unità Locale Socio Sanitaria n. 2 (AULSS2) Marca Trevigiana, Treviso, Italy.,Department of Medicine, University of Padova, Padua, Italy
| |
Collapse
|
15
|
Focosi D, Franchini M. Passive immunotherapies for COVID-19: The subtle line between standard and hyperimmune immunoglobulins is getting invisible. Rev Med Virol 2022; 32:e2341. [PMID: 35275607 DOI: 10.1002/rmv.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| |
Collapse
|
16
|
Gatti E, Piotto M, Lelii M, Pensabene M, Madini B, Cerrato L, Hassan V, Aliberti S, Bosis S, Marchisio P, Patria MF. Therapeutic Strategies for COVID-19 Lung Disease in Children. Front Pediatr 2022; 10:829521. [PMID: 35321012 PMCID: PMC8936419 DOI: 10.3389/fped.2022.829521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has milder presentation in children than in adults, mostly requiring only supportive therapy. The immunopathogenic course of COVID-19 can be divided in two distinct but overlapping phases: the first triggered by the virus itself and the second one by the host immune response (cytokine storm). Respiratory failure or systemic involvement as Multisystem Inflammatory Syndrome in Children (MIS-C) requiring intensive care are described only in a small portion of infected children. Less severe lung injury in children could be explained by qualitative and quantitative differences in age-related immune response. Evidence on the best therapeutic approach for COVID-19 lung disease in children is lacking. Currently, the approach is mainly conservative and based on supportive therapy. However, in hospitalized children with critical illness and worsening lung function, antiviral therapy with remdesivir and immunomodulant treatment could be considered the "therapeutic pillars."
Collapse
Affiliation(s)
| | | | - Mara Lelii
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Milan, Italy
| | - Samantha Bosis
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Marchisio
- Università Degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
17
|
Focosi D, Franchini M, Tuccori M, Cruciani M. Efficacy of High-Dose Polyclonal Intravenous Immunoglobulin in COVID-19: A Systematic Review. Vaccines (Basel) 2022; 10:94. [PMID: 35062755 PMCID: PMC8779789 DOI: 10.3390/vaccines10010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although several therapeutic strategies have been investigated, the optimal treatment approach for patients with coronavirus disease (COVID-19) remains to be elucidated. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of polyclonal intravenous immunoglobulin (IVIG) therapy in COVID-19. METHODS A systematic literature search using appropriate medical subject heading (MeSH) terms was performed through Medline (PubMed), EMBASE, SCOPUS, OVID and Cochrane Library electronic databases. The main outcomes considered were mortality and safety of IVIG versus placebo/standard of care. This review was carried out in accordance with Cochrane methodology including the risk bias assessment and grading of the quality of evidence. Measures of treatment effect were mean differences (MD) together with 95% confidence intervals (CIs) for continuous outcome measures and risk ratio (RR) or MD for binary outcomes. Two reviewers independently extracted data from individual studies, and disagreements were resolved by a third reviewer. RESULTS A total of 2401 COVID-19 patients from 10 studies (four randomized controlled trials (RCT) and six non-randomized controlled trials (non-RCTs)) were included in the analysis. Participants received IVIG or placebo/standard of care. The use of IVIG was not associated with a significantly reduced risk of death (RR 0.50, 95% CIs 0.18-1.36, p = 0.17 for RCTs; RR 0.95, 95% CIs 0.61-1.58, p = 0.94 for non-RCTs; low certainty of evidence). IVIG significantly reduced the length of hospital stay (MD -2.24, 95% CIs -3.20/-1.27; p = 0.00001; low certainty of evidence), although this difference was significant only for studies evaluating moderate COVID-19 patients. No significant difference was observed in the incidence of overall and serious adverse events between IVIG recipients and controls (very low certainty of evidence). CONCLUSIONS The current evidence from the literature does not support the use of IVIG in COVID-19 patients.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Marco Tuccori
- Division of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy;
- Unit of Adverse Drug Reaction Monitoring, Pisa University Hospital, 56124 Pisa, Italy
| | - Mario Cruciani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| |
Collapse
|
18
|
Romero C, Díez JM, Gajardo R. Anti-SARS-CoV-2 antibodies in healthy donor plasma pools and IVIG products—an update. THE LANCET INFECTIOUS DISEASES 2022; 22:19. [PMID: 34953544 PMCID: PMC8694747 DOI: 10.1016/s1473-3099(21)00755-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Carolina Romero
- Immunotherapies Unit, Global Research & Development, Bioscience R&D Scientific Innovation Office, Grifols, Barcelona 08150, Spain.
| | - José-María Díez
- Immunotherapies Unit, Global Research & Development, Bioscience R&D Scientific Innovation Office, Grifols, Barcelona 08150, Spain
| | - Rodrigo Gajardo
- Immunotherapies Unit, Global Research & Development, Bioscience R&D Scientific Innovation Office, Grifols, Barcelona 08150, Spain
| |
Collapse
|
19
|
Díez JM, Romero C, Gajardo R. Effective presence of antibodies against common human coronavirus in IgG immunoglobulin medicinal products.: Antibodies to common coronaviruses in IgG medicinal products. Int J Infect Dis 2021; 116:68-73. [PMID: 34929360 PMCID: PMC8679496 DOI: 10.1016/j.ijid.2021.12.329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In these studies, immunoglobulin (IgG) products (IV, IM, SC) prepared from geographically diverse plasma pools were tested for activity against common human coronaviruses (HCoV). Products from plasma obtained from Germany, Czech Republic, Slovak Republic, USA, and Spain were tested for antibodies to common HCoV: 229E, OC43, NL63, and HKU1. Since these products are manufactured from pooled plasma from thousands of donors, the antibodies therein are representative of HCoV exposure in the population at large. METHODS IgG products were tested for antibodies to four common HCoV by ELISA. Neutralization assays were conducted using HCoV-229E cultured onto MRC5 cells. RESULTS The ELISA assays showed that when expressed as specific activity (anti-HCoV activity/mg IgG) similar activity against the four common HCoV was seen across the IgG products regardless of concentration or geographic origin. Highest anti-HCoV activity was seen against HCoV-229E, followed by HCoV-OC43, and then HCoV-NL63 and HCoV-HKU1. The neutralization assays showed similar potency for two preparations of IgG prepared by different processes. CONCLUSIONS This is the first demonstration of antibodies to common HCoV in IgG products. These results may explain the cross-reactivity seen with pre-pandemic IgG products and SARS-CoV-2 and contribute to the variability in disease course in different patients.
Collapse
Affiliation(s)
- José María Díez
- Immunotherapies Unit, Bioscience Research & Development, Scientific Innovation Office, Grifols, Carrer Palou, 3 - Polígon Industrial Llevant, 08150 Parets del Vallès, Barcelona, Spain.
| | - Carolina Romero
- Immunotherapies Unit, Bioscience Research & Development, Scientific Innovation Office, Grifols, Carrer Palou, 3 - Polígon Industrial Llevant, 08150 Parets del Vallès, Barcelona, Spain
| | - Rodrigo Gajardo
- Immunotherapies Unit, Bioscience Research & Development, Scientific Innovation Office, Grifols, Carrer Palou, 3 - Polígon Industrial Llevant, 08150 Parets del Vallès, Barcelona, Spain
| |
Collapse
|
20
|
Danieli MG, Piga MA, Paladini A, Longhi E, Mezzanotte C, Moroncini G, Shoenfeld Y. Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol 2021; 94:e13101. [PMID: 34940980 PMCID: PMC8646640 DOI: 10.1111/sji.13101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenged globally with its morbidity and mortality. A small percentage of affected patients (20%) progress into the second stage of the disease clinically presenting with severe or fatal involvement of lung, heart and vascular system, all contributing to multiple-organ failure. The so-called 'cytokines storm' is considered the pathogenic basis of severe disease and it is a target for treatment with corticosteroids, immunotherapies and intravenous immunoglobulin (IVIg). We provide an overview of the role of IVIg in the therapy of adult patients with COVID-19 disease. After discussing the possible underlying mechanisms of IVIg immunomodulation in COVID-19 disease, we review the studies in which IVIg was employed. Considering the latest evidence that show a link between new coronavirus and autoimmunity, we also discuss the use of IVIg in COVID-19 and anti-SARS-CoV-2 vaccination related autoimmune diseases and the post-COVID-19 syndrome. The benefit of high-dose IVIg is evident in almost all studies with a rapid response, a reduction in mortality and improved pulmonary function in critically ill COVID-19 patients. It seems that an early administration of IVIg is crucial for a successful outcome. Studies' limitations are represented by the small number of patients, the lack of control groups in some and the heterogeneity of included patients. IVIg treatment can reduce the stay in ICU and the demand for mechanical ventilation, thus contributing to attenuate the burden of the disease.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Mario Andrea Piga
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Alberto Paladini
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Eleonora Longhi
- Scuola di Medicina e ChirurgiaAlma Mater StudiorumUniversità degli Studi di BolognaBolognaItaly
| | - Cristina Mezzanotte
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Gianluca Moroncini
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Yehuda Shoenfeld
- Ariel UniversityArielIsrael
- The Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterRamat GanIsrael
- Saint Petersburg State UniversitySt. PetersburgRussia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)MoscowRussia
| |
Collapse
|
21
|
Kolahchi Z, Sohrabi H, Ekrami Nasab S, Jelodari Mamaghani H, Keyfari Alamdari M, Rezaei N. Potential therapeutic approach of intravenous immunoglobulin against COVID-19. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:105. [PMID: 34627384 PMCID: PMC8501925 DOI: 10.1186/s13223-021-00609-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Since the outbreak of the novel coronavirus disease (COVID-19), the therapeutic and management options to reduce the burden of the COVID-19 disease are under investigation. IVIG therapy is used as an effective treatment for immunodeficient patients and patients with inflammatory or autoimmune conditions. The therapeutic effect of IVIG in COVID-19 patients has been investigated. But, the results are controversial and some studies reported no benefit of IVIG therapy. More clinical trials on the effect of IVIG therapy in COVID-19 patients should be performed to establish a certain conclusion about IVIG effectiveness.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanye Sohrabi
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ekrami Nasab
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesan Jelodari Mamaghani
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Keyfari Alamdari
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194 Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
22
|
Esmaeilzadeh A, Rostami S, Yeganeh PM, Tahmasebi S, Ahmadi M. Recent advances in antibody-based immunotherapy strategies for COVID-19. J Cell Biochem 2021; 122:1389-1412. [PMID: 34160093 PMCID: PMC8427040 DOI: 10.1002/jcb.30017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
The emergence of a new acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the cause of the 2019-nCOV disease (COVID-19), has caused a pandemic and a global health crisis. Rapid human-to-human transmission, even from asymptomatic individuals, has led to the quick spread of the virus worldwide, causing a wide range of clinical manifestations from cold-like symptoms to severe pneumonia, acute respiratory distress syndrome (ARDS), multiorgan injury, and even death. Therefore, using rapid and accurate diagnostic methods to identify the virus and subsequently select appropriate and effective treatments can help improvement of patients and control the pandemic. So far, various treatment regimens along with prophylactic vaccines have been developed to manage COVID-19-infected patients. Among these, antibody-based therapies, including neutralizing antibodies (against different parts of the virus), polyclonal and monoclonal antibodies, plasma therapy, and high-dose intravenous immunoglobulin (IVIG) have shown promising outcomes in accelerating and improving the treatment process of patients, avoiding the viral spreading widely, and managing the pandemic. In the current review paper, different types and applications of therapeutic antibodies in the COVID-19 treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of MedicineZanjan University of Medical SciencesZanjanIran
- Immunotherapy Research and Technology GroupZanjan University of Medical SciencesZanjanIran
| | - Samaneh Rostami
- Department of immunology, School of medicineZanjan University of Medical SciencesZanjanIran
| | - Pegah M. Yeganeh
- Department of immunology, School of medicineZanjan University of Medical SciencesZanjanIran
| | - Safa Tahmasebi
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Majid Ahmadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
23
|
Pattanaik D, Ritter S, Fahhoum J. Common variable immunodeficiency (CVID) with granulomatous interstitial lung disease (GLILD) and SARS COVID-19 infection: case report and review of literature. Allergy Asthma Clin Immunol 2021; 17:98. [PMID: 34565453 PMCID: PMC8474734 DOI: 10.1186/s13223-021-00600-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background We present a case of CVID complicated by granulomatous interstitial lung disease (GLILD). This patient clinical course was further complicated by COVID-19 infection. This is only the 2nd known case report of COVID 19 in CVID with GLILD. The clinical course and outcome of COVID 19 infection with common variable immunodeficiency (CVID) and GLILD is not well known. Case presentation Our patient met the clinical features of CVID secondary to low IgG/IgA, recurrent infections, and failure to respond to pneumococcal vaccination. He was treated with monthly maintenance IVIG therapy. Our patient also was diagnosed with co-existing GLILD that despite IVIG treatment was progressing. The patient needed to be started on Rituxan and Mycophenolate mofetil to achieve control but unfortunately became infected with COVID19 delaying his treatment for GLILD. Our patient only suffered from mild COVID 19 infection and was able to make antibodies to this. We believe severe infection was avoided as his CVID was well controlled with IVIG therapy despite progression of his granulomatous interstitial lung disease. Conclusion In conclusion, our patient with CVID with co-existing biopsy proven granulomatous interstitial lung disease despite being very high risk for severe COVID 19 infections only had mild infection. This was believed to be due to well controlled CVID with IVIG therapy.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Division of Rheumatology and Immunology, Department of Medicine, University of Tennessee Health Sciences Center, Room G326, 956 Court Ave, TN 38163, Memphis, United States.
| | - Shaunah Ritter
- Division of Allergy and Clinical Immunology, Le Bonheur Children's Hospital, University of Tennessee Health Sciences Center, TN 38163, Memphis, United States
| | - Joseph Fahhoum
- Division of Allergy and Clinical Immunology, Le Bonheur Children's Hospital, University of Tennessee Health Sciences Center, TN 38163, Memphis, United States
| |
Collapse
|
24
|
O'Kelly B, McLaughlin R, O'Doherty R, Carroll H, Murray R, Dilworth R, Corkery L, Cotter AG, McGinty T, Muldoon EG, Cullen W, Avramovic G, Sheehan G, Sadlier D, Higgins M, O'Gorman P, Doran P, Inzitari R, Holden S, O'Meara Y, Ennis S, Lambert JS. Rapid and Laboratory SARS-CoV-2 Antibody Testing in High-Risk Hospital Associated Cohorts of Unknown COVID-19 Exposure, a Validation and Epidemiological Study After the First Wave of the Pandemic. Front Med (Lausanne) 2021; 8:642318. [PMID: 34513853 PMCID: PMC8427142 DOI: 10.3389/fmed.2021.642318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: We aimed to use SARS-CoV-2 antibody tests to assess the asymptomatic seroprevalence of individuals in high-risk hospital cohorts who's previous COVID-19 exposure is unknown; staff, and patients requiring haemodialysis or chemotherapy after the first wave. Methods: In a single Center, study participants had five SARS-CoV-2 antibody tests done simultaneously; one rapid diagnostic test (RDT) (Superbio Colloidal Gold IgM/IgG), and four laboratory tests (Roche Elecsys® Anti-SARS-CoV-2 IgG [RE], Abbott Architect i2000SR IgG [AAr], Abbott Alinity IgG [AAl], and Abbott Architect IgM CMIA). To determine seroprevalence, only positive test results on laboratory assay were considered true positives. Results: There were 157 participants, of whom 103 (65.6%) were female with a median age of 50 years (range 19–90). The IgG component of the RDT showed a high number of false positives (n = 18), was inferior to the laboratory assays (p < 0.001 RDT vs. AAl/AAr, p < 0.001 RDT vs. RE), and had reduced specificity (85.5% vs. AAl/AAr, 87.2% vs. RE). Sero-concordance was 97.5% between IgG laboratory assays (RE vs. AAl/AAr). Specificity of the IgM component of the RDT compared to Abbott IgM CMIA was 95.4%. Ten participants had positivity in at least one laboratory assay, seven (9.9%) of which were seen in HCWs. Two (4.1%) hematology/oncology (H/O) patients and a single (2.7%) haemodialysis (HD) were asymptomatically seropositive. Asymptomatic seroprevalence of HCWs compared to patients was not significant (p = 0.105). Conclusion: HCWs (9.9%) had higher, although non-significant asymptomatic seroprevalence of SARS-CoV-2 antibodies compared to high-risk patients (H/O 4.1%, HD 2.7%). An IgM/IgG rapid diagnostic test was inferior to laboratory assays. Sero-concordance of 97.5% was found between IgG laboratory assays, RE vs. AAl/AAr.
Collapse
Affiliation(s)
- Brendan O'Kelly
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ronan McLaughlin
- Oncology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Roseann O'Doherty
- Haematology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Hailey Carroll
- Oncology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Roisin Murray
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Rachel Dilworth
- Nephrology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Laura Corkery
- Nephrology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Aoife G Cotter
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland.,Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Tara McGinty
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland.,Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Eavan G Muldoon
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Walter Cullen
- School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Gerard Sheehan
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Denise Sadlier
- Nephrology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michaela Higgins
- Oncology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter O'Gorman
- Haematology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter Doran
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Rosanna Inzitari
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Sinead Holden
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Yvonne O'Meara
- Nephrology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sean Ennis
- School of Medicine, University College Dublin, Dublin, Ireland
| | - John S Lambert
- Infectious Diseases Department, Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
D’Amelio R, Asero R, Cassatella MA, Laganà B, Lunardi C, Migliorini P, Nisini R, Parronchi P, Quinti I, Racanelli V, Senna G, Vacca A, Maggi E. Anti-COVID-19 Vaccination in Patients with Autoimmune-Autoinflammatory Disorders and Primary/Secondary Immunodeficiencies: The Position of the Task Force on Behalf of the Italian Immunological Societies. Biomedicines 2021; 9:1163. [PMID: 34572349 PMCID: PMC8465958 DOI: 10.3390/biomedicines9091163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has represented an unprecedented challenge for humankind from health, economic, and social viewpoints. In February 2020, Italy was the first western country to be deeply hit by the pandemic and suffered the highest case/fatality rate among western countries. Brand new anti-COVID-19 vaccines have been developed and made available in <1-year from the viral sequence publication. Patients with compromised immune systems, such as autoimmune-autoinflammatory disorders (AIAIDs), primary (PIDs) and secondary (SIDs) immunodeficiencies, have received careful attention for a long time regarding their capacity to safely respond to traditional vaccines. The Italian Immunological Societies, therefore, have promptly faced the issues of safety, immunogenicity, and efficacy/effectiveness of the innovative COVID-19 vaccines, as well as priority to vaccine access, in patients with AIADs, PIDs, and SIDs, by organizing an ad-hoc Task Force. Patients with AIADs, PIDs, and SIDs: (1) Do not present contraindications to COVID-19 vaccines if a mRNA vaccine is used and administered in a stabilized disease phase without active infection. (2) Should usually not discontinue immunosuppressive therapy, which may be modulated depending on the patient's clinical condition. (3) When eligible, should have a priority access to vaccination. In fact, immunizing these patients may have relevant social/health consequences, since these patients, if infected, may develop chronic infection, which prolongs viral spread and facilitates the emergence of viral variants.
Collapse
Affiliation(s)
- Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica S. Carlo di Paderno Dugnano, Via Ospedale 21, 20037 Milano, Italy;
| | - Marco Antonio Cassatella
- Sezione di Patologia Generale, Dipartimento di Medicina, Università di Verona, Strada Le Grazie 4, 37134 Verona, Italy;
| | - Bruno Laganà
- UOC Medicina Interna, Dipartimento di Medicina Clinica e Molecolare, AOU S. Andrea, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Rome, Italy;
| | - Claudio Lunardi
- Responsabile Unità di Malattie Autoimmunitarie, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Paola Migliorini
- Direttore Unità Operativa di Immunoallergologia Clinica, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliero Universitaria Pisana, Università di Pisa, Via Roma 67, 56126 Pisa, Italy;
| | - Roberto Nisini
- Direttore Reparto Immunologia, Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Parronchi
- Direttore SOD Immunologia e Terapie Cellulari, Dipartimento di Medicina Sperimentale e Clinica, AOU Careggi, Università di Firenze, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Isabella Quinti
- Responsabile UOD Centro di Riferimento Regionale per le Immunodeficienze, Dipartimento di Medicina Molecolare, AOU Policlinico Umberto I, Sapienza Università di Roma, Viale dell’Università 37, 00161 Rome, Italy;
| | - Vito Racanelli
- UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Gianenrico Senna
- Direttore USD Allergologia, Dipartimento di Medicina, AOU Policlinico G.B. Rossi, Borgo Roma, Università di Verona, Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Angelo Vacca
- Direttore UOC Medicina Interna “Guido Baccelli”, Dipartimento di Scienze Biomediche ed Oncologia Umana, AOU Policlinico, Università di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Enrico Maggi
- Unità di Immunità Traslazionale, Dipartimento di Immunologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di S. Paolo 15, 00146 Rome, Italy
| |
Collapse
|
26
|
Ochoa‐Grullón J, Peña Cortijo A, Guevara‐Hoyer K, Jiménez García C, de la Fuente E, de la Peña AR, Fernández‐Arquero M, González Fernández A, Sánchez‐Ramón S. B-cell haematological malignancies and SARS-CoV-2 infection: Could immunological interventions influence the outcome? EJHAEM 2021; 2:503-507. [PMID: 34518828 PMCID: PMC8426868 DOI: 10.1002/jha2.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
B cell haematological malignancies (HMs) have been described as the worst cancer type for concomitant COVID-19 in terms of mortality, with rates up to 65%. This risk factor for COVID-19 cannot only be explained by comorbidities and advanced age of patients, but aggravated by secondary immunodeficiency (SID). We aimed at evaluating the impact of COVID-19 on 86 HM patients with concomitant SID from a single centre. Only 14 HM patients of 86 (16.28%) patients suffered COVID-19, with mortality rate of 7%. When we considered patients according to B-cell defect only or multiple immune defect overlap (B-T-cell/NK cells/complement), patients with immune defect overlap presented 5.30-fold higher risk of COVID-19 than only B cell defect (95% CI, 1.67-17.0) (p = 0.004). Seven (50%) patients were on active IgRT; while five (36%) had received prior mucosal vaccines for respiratory infections. Our results show that modelling SID in HM may contribute to better prediction of infectious risk and to prompt more targeted and timely preventive therapies.
Collapse
Affiliation(s)
- Juliana Ochoa‐Grullón
- Department of Clinical Immunology and IdISSCHospital Clínico San CarlosMadridSpain
- Department of ImmunologyOphthalmology and Otorhinolaryngology (IOO)Complutense University School of MedicineMadridSpain
| | | | - Kissy Guevara‐Hoyer
- Department of Clinical Immunology and IdISSCHospital Clínico San CarlosMadridSpain
- Department of ImmunologyOphthalmology and Otorhinolaryngology (IOO)Complutense University School of MedicineMadridSpain
| | | | - Eduardo de la Fuente
- Department of Clinical Immunology and IdISSCHospital Clínico San CarlosMadridSpain
- Department of ImmunologyOphthalmology and Otorhinolaryngology (IOO)Complutense University School of MedicineMadridSpain
| | | | - Miguel Fernández‐Arquero
- Department of Clinical Immunology and IdISSCHospital Clínico San CarlosMadridSpain
- Department of ImmunologyOphthalmology and Otorhinolaryngology (IOO)Complutense University School of MedicineMadridSpain
| | | | - Silvia Sánchez‐Ramón
- Department of Clinical Immunology and IdISSCHospital Clínico San CarlosMadridSpain
- Department of ImmunologyOphthalmology and Otorhinolaryngology (IOO)Complutense University School of MedicineMadridSpain
| |
Collapse
|
27
|
Flores-Oria CA, Saturno E, Ramanathan S, Martinez Castillo DJ, Kumar R, Ferrer N, Mossaad A, Tellez ME, Jon C, Waters SC, Mosquera RA. Intravenous immunoglobulin as adjuvant therapy for COVID-19: A case report and literature review. SAGE Open Med Case Rep 2021; 9:2050313X211029699. [PMID: 34262773 PMCID: PMC8252403 DOI: 10.1177/2050313x211029699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 has infected and caused the death of an alarming number of individuals worldwide. No specific treatment has been internationally standardized for coronavirus disease 2019 (COVID-19); however, in some cases, intravenous immunoglobulin (IVIG) has been used as adjuvant treatment in critically ill patients with COVID-19 pneumonia. We report a case of a 50-year-old man with severe COVID-19 pneumonia who received 5 days course of IVIG as adjuvant therapy. Invasive respiratory support was avoided. The patient had a successful recovery and was discharged without supplemental oxygen. A high dose of IVIG may improve survival in patients with severe COVID-19 pneumonia. In the current report, we reviewed literature on how IVIG use may improve the early stages of the disease.
Collapse
Affiliation(s)
- Carlos A Flores-Oria
- Division of Pulmonology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Supriya Ramanathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Diana J Martinez Castillo
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | - Afnan Mossaad
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria E Tellez
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cindy Jon
- Division of Pulmonology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara C Waters
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ricardo A Mosquera
- Division of Pulmonology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
28
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
29
|
Piechotta V, Iannizzi C, Chai KL, Valk SJ, Kimber C, Dorando E, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2021; 5:CD013600. [PMID: 34013969 PMCID: PMC8135693 DOI: 10.1002/14651858.cd013600.pub4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are being investigated as potential therapies for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of these interventions is required. OBJECTIVES: Using a living systematic review approach, to assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19; and to maintain the currency of the evidence. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform, and trial registries. Searches were done on 17 March 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma or hyperimmune immunoglobulin for COVID-19, irrespective of disease severity, age, gender or ethnicity. For safety assessments, we also included non-controlled non-randomised studies of interventions (NRSIs) if 500 or more participants were included. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of Bias 2' tool for RCTs, and for NRSIs, the assessment criteria for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), development of severe clinical COVID-19 symptoms (for individuals with asymptomatic or mild disease), quality of life (including fatigue and functional independence), grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS We included 13 studies (12 RCTs, 1 NRSI) with 48,509 participants, of whom 41,880 received convalescent plasma. We did not identify any completed studies evaluating hyperimmune immunoglobulin. We identified a further 100 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, and 33 studies reporting as being completed or terminated. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease Eleven RCTs and one NRSI investigated the use of convalescent plasma for 48,349 participants with moderate to severe disease. Nine RCTs compared convalescent plasma to placebo treatment or standard care alone, and two compared convalescent plasma to standard plasma (results not included in abstract). Effectiveness of convalescent plasma We included data on nine RCTs (12,875 participants) to assess the effectiveness of convalescent plasma compared to placebo or standard care alone. Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.05; 7 RCTs, 12,646 participants; high-certainty evidence). It has little to no impact on clinical improvement for all participants when assessed by liberation from respiratory support (RR not estimable; 8 RCTs, 12,682 participants; high-certainty evidence). It has little to no impact on the chance of being weaned or liberated from invasive mechanical ventilation for the subgroup of participants requiring invasive mechanical ventilation at baseline (RR 1.04, 95% CI 0.57 to 1.93; 2 RCTs, 630 participants; low-certainty evidence). It does not reduce the need for invasive mechanical ventilation (RR 0.98, 95% CI 0.89 to 1.08; 4 RCTs, 11,765 participants; high-certainty evidence). We did not identify any subgroup differences. We did not identify any studies reporting quality of life, and therefore, do not know whether convalescent plasma has any impact on quality of life. One RCT assessed resolution of fatigue on day 7, but we are very uncertain about the effect (RR 1.21, 95% CI 1.02 to 1.42; 309 participants; very low-certainty evidence). Safety of convalescent plasma We included results from eight RCTs, and one NRSI, to assess the safety of convalescent plasma. Some of the RCTs reported on safety data only for the convalescent plasma group. We are uncertain whether convalescent plasma increases or reduces the risk of grade 3 and 4 adverse events (RR 0.90, 95% CI 0.58 to 1.41; 4 RCTs, 905 participants; low-certainty evidence), and serious adverse events (RR 1.24, 95% CI 0.81 to 1.90; 2 RCTs, 414 participants; low-certainty evidence). A summary of reported events of the NRSI (reporting safety data for 20,000 of 35,322 transfused participants), and four RCTs reporting safety data only for transfused participants (6125 participants) are included in the full text. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and asymptomatic or mild disease We identified one RCT reporting on 160 participants, comparing convalescent plasma to placebo treatment (saline). Effectiveness of convalescent plasma We are very uncertain about the effect of convalescent plasma on all-cause mortality (RR 0.50, 95% CI 0.09 to 2.65; very low-certainty evidence). We are uncertain about the effect of convalescent plasma on developing severe clinical COVID-19 symptoms (RR not estimable; low-certainty evidence). We identified no study reporting quality of life. Safety of convalescent plasma We do not know whether convalescent plasma is associated with a higher risk of grade 3 or 4 adverse events (very low-certainty evidence), or serious adverse events (very low-certainty evidence). This is a living systematic review. We search weekly for new evidence and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review. AUTHORS' CONCLUSIONS We have high certainty in the evidence that convalescent plasma for the treatment of individuals with moderate to severe disease does not reduce mortality and has little to no impact on measures of clinical improvement. We are uncertain about the adverse effects of convalescent plasma. While major efforts to conduct research on COVID-19 are being made, heterogeneous reporting of outcomes is still problematic. There are 100 ongoing studies and 33 studies reporting in a study registry as being completed or terminated. Publication of ongoing studies might resolve some of the uncertainties around hyperimmune immunoglobulin therapy for people with any disease severity, and convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Elena Dorando
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Fung M, Otani I, Pham M, Babik J. Zoonotic coronavirus epidemics: Severe acute respiratory syndrome, Middle East respiratory syndrome, and coronavirus disease 2019. Ann Allergy Asthma Immunol 2021; 126:321-337. [PMID: 33310180 PMCID: PMC7834857 DOI: 10.1016/j.anai.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To review the virology, immunology, epidemiology, clinical manifestations, and treatment of the following 3 major zoonotic coronavirus epidemics: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19). DATA SOURCES Published literature obtained through PubMed database searches and reports from national and international public health agencies. STUDY SELECTIONS Studies relevant to the basic science, epidemiology, clinical characteristics, and treatment of SARS, MERS, and COVID-19, with a focus on patients with asthma, allergy, and primary immunodeficiency. RESULTS Although SARS and MERS each caused less than a thousand deaths, COVID-19 has caused a worldwide pandemic with nearly 1 million deaths. Diagnosing COVID-19 relies on nucleic acid amplification tests, and infection has broad clinical manifestations that can affect almost every organ system. Asthma and atopy do not seem to predispose patients to COVID-19 infection, but their effects on COVID-19 clinical outcomes remain mixed and inconclusive. It is recommended that effective therapies, including inhaled corticosteroids and biologic therapy, be continued to maintain disease control. There are no reports of COVID-19 among patients with primary innate and T-cell deficiencies. The presentation of COVID-19 among patients with primary antibody deficiencies is variable, with some experiencing mild clinical courses, whereas others experiencing a fatal disease. The landscape of treatment for COVID-19 is rapidly evolving, with both antivirals and immunomodulators demonstrating efficacy. CONCLUSION Further data are needed to better understand the role of asthma, allergy, and primary immunodeficiency on COVID-19 infection and outcomes.
Collapse
Affiliation(s)
- Monica Fung
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California.
| | - Iris Otani
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Michele Pham
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jennifer Babik
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
31
|
Cagdas D. Convalescent plasma and hyperimmune globulin therapy in COVID-19. Expert Rev Clin Immunol 2021; 17:309-316. [PMID: 33620014 DOI: 10.1080/1744666x.2021.1894927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Introduction: Severe acute respiratory syndrome causing coronavirus SARS-CoV-2 (coronavirus disease 2019 (COVID-19)) has recently resulted in the recent global pandemic. As convalescent plasma (CP) therapy has been used with success in several viral infections before, it has become a treatment of choice. Medical literature is reviewed for randomized controlled studies using convalescent plasma therapy.Areas covered: More than one type of neutralizing antibody against a specific microorganism may be found in both CP and hyperimmune globulins. To give a standard titer of a specific neutralizing antibody to a patient, a reliable antibody titration assay should be developed. It is challenging to test the efficacy of the CP and HIG therapies with double-blind studies. There is a difficulty in the standardization of the CP and HIG study groups, as patients use various additional therapies. Different amounts and titers of CP and HIG and different titers of CP are used in patients. This review discusses the current knowledge on CP and HIG therapies used in COVID-19 disease.Expert opinion: The immune response to COVID-19 have diverse characteristics. The antibody produced after COVID-19 disease and vaccination is short-lived. Thus, CP should be an alternative especially in patients with lymphopenia and primary/secondary antibody deficiency.
Collapse
Affiliation(s)
- Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Hacettepe, Turkey
| |
Collapse
|
32
|
Esen F, Özcan PE, Orhun G, Polat Ö, Anaklı İ, Alay G, Tuna V, Çeliksoy E, Kılıç M, Mercan M, Tukek T. Effects of adjunct treatment with intravenous immunoglobulins on the course of severe COVID-19: results from a retrospective cohort study. Curr Med Res Opin 2021; 37:543-548. [PMID: 33236646 DOI: 10.1080/03007995.2020.1856058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the effect of adjunct treatment with Octagam, an intravenous immunoglobulin (IVIG) product, on clinical outcomes and biomarkers in critically ill COVID-19 patients. METHODS Data from a single center was analyzed retrospectively. Patients had received preliminary standard intensive care (SIC) according to a local treatment algorithm, either alone or along with IVIG 5% at 30 g/day for 5 days. The two groups were compared regarding baseline characteristics, survival and changes in inflammation markers. Imbalance in baseline APACHE II scores was addressed by propensity score matching. Otherwise, Kaplan-Meier and multiple logistic regression models were used. RESULTS Out of 93 patients, 51 had received IVIG and 42 had not. About 75% of patients were male and both groups had comparable body mass index and AB0 blood type distribution. IVIG-treated patients were younger (mean 65 ± 15 versus 71 ± 15 years, p = .066) and had slightly lower baseline disease scores (APACHE II: 20.6 versus 22.4, p = .281; SOFA: 5.0 versus 7.0, p = .006). Overall survival was 61% in the SIC + IVIG and 38% in the SIC only group (odds ratio: 2.2, 95% confidence interval: 0.9-5.4, p = .091 after controlling for baseline imbalances). IVIG significantly prolonged median survival time (68 versus 18 days, p = .014) and significantly reduced plasma levels of C-reactive protein (median change from baseline -71.5 versus -0.3 mg/L, p = .049). CONCLUSION Clinically relevant benefits through adjunct IVIG treatment in COVID-19 need to be confirmed in a randomized, controlled trial.
Collapse
Affiliation(s)
- Figen Esen
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Perihan E Özcan
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Günseli Orhun
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Özlem Polat
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İlkay Anaklı
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gülçin Alay
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Verda Tuna
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Emre Çeliksoy
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Kılıç
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mutlu Mercan
- Department of Anesthesiology and Intensive Care, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tufan Tukek
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
33
|
Leelayuwatanakul N, Kongpolprom N, Sriprasart T, Phoophiboon V, Thanthitaweewat V, Thawanaphong S, Sirichana W, Chirakalwasan N, Kawkitinarong K, Sittipunt C, Putcharoen O, Paitoonpong L, Suwanpimolkul G, Jantarabenjakul W, Srisawat N, Pachinburavan M. Multimodality treatment in immunocompromised patients with severe COVID-19: the role of IL-6 inhibitor, intravenous immunoglobulin, and haemoperfusion. Respirol Case Rep 2021; 9:e0733. [PMID: 33732466 PMCID: PMC7938208 DOI: 10.1002/rcr2.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine release syndrome (CRS) is known to be associated with severe coronavirus disease 2019 (COVID-19). Multiple anti-inflammatory therapies such as tocilizumab, corticosteroids, intravenous immunoglobulin (IVIG), and haemoadsorption or haemoperfusion have been used to combat this life-threatening condition. However, immunocompromised hosts are often omitted from research studies, and knowledge on the clinical efficacy of these therapies in immunocompromised patients is therefore limited. We report two cases of immunocompromised patients with severe COVID-19-related CRS requiring mechanical ventilation who were treated with multimodality treatment consisting of tocilizumab, IVIG, and haemoperfusion. Within 48 h, both patients showed clinical improvement with PaO2:FiO2 ratio and haemodynamic stability. Both survived to discharge. There were no adverse events following these therapies. In conclusion, combined therapeutic modalities, possibly tailored to individual inflammatory profiles, are promising treatment for severe COVID-19 infection in the immunocompromised host. Timely administration of adjunctive therapies that alleviate overwhelming inflammation may provide the best outcome.
Collapse
Affiliation(s)
- Nophol Leelayuwatanakul
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Napplika Kongpolprom
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Thitiwat Sriprasart
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Vorakamol Phoophiboon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Vorawut Thanthitaweewat
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Sarita Thawanaphong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Worawan Sirichana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Naricha Chirakalwasan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Kamon Kawkitinarong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Chanchai Sittipunt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Opass Putcharoen
- Division of Infectious Diseases, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
- Thai Red Cross Emerging Infectious Diseases Clinical CenterKing Chulalongkorn Memorial HospitalBangkokThailand
| | - Leilani Paitoonpong
- Division of Infectious Diseases, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
- Thai Red Cross Emerging Infectious Diseases Clinical CenterKing Chulalongkorn Memorial HospitalBangkokThailand
| | - Gompol Suwanpimolkul
- Division of Infectious Diseases, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
- Thai Red Cross Emerging Infectious Diseases Clinical CenterKing Chulalongkorn Memorial HospitalBangkokThailand
| | - Watsamon Jantarabenjakul
- Thai Red Cross Emerging Infectious Diseases Clinical CenterKing Chulalongkorn Memorial HospitalBangkokThailand
- Department of Paediatrics, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Nattachai Srisawat
- Division of Nephrology, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Monvasi Pachinburavan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
34
|
Serra A, Marzo N, Pons B, Maduell P, López M, Grancha S. Characterization of antibodies in human immunoglobulin products from different regions worldwide. Int J Infect Dis 2021; 104:610-616. [PMID: 33524620 PMCID: PMC7844383 DOI: 10.1016/j.ijid.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
AIM The antibody levels against a broad spectrum of pathogens were assessed in commercial intravenous immunoglobulin (IVIG) manufactured from pooled plasma obtained from different global regions. METHODS Twenty-four IVIG commercial lots from eight manufacturers corresponding to 12 brands were analyzed. The plasma was collected in 10 countries/regions. Depending on each pathogen, antibody levels were measured using specific commercial IgG-specific enzyme immunoassay kits or by cell culture neutralization test and guinea pig skin neutralization test. A principal component analysis was performed. RESULTS For polio and diphtheria (reference markers of the US authorities), all IVIGs had relevant titers in accordance with reference levels. IVIGs from Canada, Australia, and the USA were positive for titers against globally distributed pathogens or those under vaccination programs in the developed world (parainfluenza, Epstein-Barr, varicella-zoster, influenza B, parvovirus B19, and measles viruses). IVIG from Taiwan and Hong Kong showed low antibody titers for these pathogens but high titers for Pseudomonas aeruginosa. IVIG from India had high titers for pathogens frequently found in developing countries (West Nile, dengue, chikungunya, and hepatitis E viruses and Streptococcus pneumoniae). IVIGs from Argentina, Spain, Israel, and Czechia showed intermediate antibody concentrations. CONCLUSION The antibody profile in IVIG was greatly influenced by regional characteristics including climate, vaccination programs, and the prevalence of pathogens in the different countries and regions.
Collapse
Affiliation(s)
| | - Núria Marzo
- Grifols, Research and Development, Barcelona, Spain.
| | - Berta Pons
- Grifols, Research and Development, Barcelona, Spain
| | - Pau Maduell
- Grifols, Research and Development, Barcelona, Spain
| | - Maite López
- Grifols, Research and Development, Barcelona, Spain
| | | |
Collapse
|
35
|
Khan T, Rahman M, Ali FA, Huang SSY, Ata M, Zhang Q, Bastard P, Liu Z, Jouanguy E, Béziat V, Cobat A, Nasrallah GK, Yassine HM, Smatti MK, Saeed A, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Meyts I, Abel L, Casanova JL, Hasan MR, Marr N. Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight 2021; 6:144499. [PMID: 33497357 PMCID: PMC7934927 DOI: 10.1172/jci.insight.144499] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these “common cold” viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage immunoprecipitation sequencing. Seroprevalence of antibodies against endemic HCoVs ranged between approximately 4% and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid, and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2′ cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and nonhuman coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.
Collapse
Affiliation(s)
| | | | | | | | - Manar Ata
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Gheyath K Nasrallah
- College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Amira Saeed
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | | | | | | | - Isabelle Migeotte
- Fonds de la Recherche Scientifique (FNRS) and Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology, Department of Pediatrics and Internal Medicine, Center for Primary Immunodeficiencies Ghent, Jeffrey Modell Foundation Diagnostic and Research Center, Ghent University Hospital, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, and Department of Pediatrics, University Hospitals Leuven, KU Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, KU Leuven, Belgium
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, New York, USA
| | - Mohammad R Hasan
- Department of Pathology, Sidra Medicine, Doha, Qatar.,Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
36
|
Romero C, Díez JM, Gajardo R. Anti-SARS-CoV-2 antibodies in healthy donor plasma pools and IVIG products. THE LANCET. INFECTIOUS DISEASES 2021; 21:765-766. [PMID: 33606999 PMCID: PMC7906732 DOI: 10.1016/s1473-3099(21)00059-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Carolina Romero
- Immunotherapies Unit, Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain.
| | - José María Díez
- Immunotherapies Unit, Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Rodrigo Gajardo
- Immunotherapies Unit, Bioscience Research & Development, Scientific Innovation Office, Grifols, Barcelona, Spain
| |
Collapse
|
37
|
Focosi D, Tuccori M, Franchini M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life (Basel) 2021; 11:144. [PMID: 33671893 PMCID: PMC7918959 DOI: 10.3390/life11020144] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Effective treatments specific for COVID-19 are still lacking. In the setting of passive immunotherapies based on neutralizing antibodies (nAbs), randomized controlled trials of COVID-19 convalescent plasma (CCP) anti-SARS-CoV-2 Spike protein monoclonal antibodies (mAb), which have been granted emergency use authorization, have suggested benefit in early disease course (less than 72 hours from symptoms and seronegative). Meanwhile, polyclonal immunoglobulins (i.e., hyperimmune serum), derived either from CCP donations or from animals immunized with SARS-CoV-2 antigens, are likely to become the next nAb-derived candidate. We here discuss the pros and cons of hyperimmune serum versus CCP and mAb, and summarize the ongoing clinical trials of COVID-19 hyperimmune sera.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Marco Tuccori
- Division of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy;
- Unit of Adverse Drug reaction Monitoring, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| |
Collapse
|
38
|
Manian DV, Jensen C, Theel ES, Mills JR, Joshi A. Non-neutralizing antibodies and limitations of serologic testing for severe acute respiratory syndrome coronavirus 2 in patients receiving immunoglobulin replacement products. Ann Allergy Asthma Immunol 2021; 126:206-207. [PMID: 33232829 PMCID: PMC7834008 DOI: 10.1016/j.anai.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Elitza S Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Avni Joshi
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
39
|
Sajna KV, Kamat S. Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cytotherapy 2021; 23:101-110. [PMID: 32988772 PMCID: PMC7458058 DOI: 10.1016/j.jcyt.2020.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
In view of devastating effects of COVID-19 on human life, there is an urgent need for the licened vaccines or therapeutics for the SARS-CoV-2 infection. Age-old passive immunization with protective antibodies to neutralize the virus is one of the strategies for emergency prophylaxis and therapy for coronavirus disease 2019 (COVID-19). In this review, the authors discuss up-to-date advances in immune-based therapy for COVID-19. The use of convalescent plasma therapy as the first line of defense to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been established, with encouraging results. Monoclonal antibodies (mAbs) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein or block the interaction between SARS-CoV-2 RBD and the human angiotensin-converting enzyme 2 receptor have been found to be very promising as a countermeasure for tackling the SARS-CoV-2 infection, and clinical trials are underway. Considering the counterproductive antibody-dependent enhancement of the virus, mAbs therapy that is safe and efficacious, even in people with underlying conditions, will be a significant breakthrough. In addition, emerging immunotherapeutic interventions using nanobodies and cellular immunotherapy are promising avenues for tackling the COVID-19 pandemic. The authors also discuss the implication of mAbs as mediators of cytokine storm syndrome to modify the immune response of COVID-19 patients, thus reducing the fatality rate of COVID-19 infection.
Collapse
Affiliation(s)
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
40
|
Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, Gerli R, Perricone R. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms 2021; 9:121. [PMID: 33430200 PMCID: PMC7825648 DOI: 10.3390/microorganisms9010121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Intravenous immunoglobulins (IVIG) are blood preparations pooled from the plasma of donors that have been first employed as replacement therapy in immunodeficiency. IVIG interact at multiple levels with the different components of the immune system and exert their activity against infections. Passive immunotherapy includes convalescent plasma from subjects who have recovered from infection, hyperimmune globulin formulations with a high titer of neutralizing antibodies, and monoclonal antibodies (mAbs). IVIG are used for the prevention and treatment of several infections, especially in immunocompromised patients, or in case of a poorly responsive immune system. The evolution of IVIG from a source of passive immunity to a powerful immunomodulatory/anti-inflammatory agent results in extensive applications in autoimmune diseases. IVIG composition depends on the antibodies of the donor population and the alterations of protein structure due to the processing of plasma. The anti-viral and anti-inflammatory activity of IVIG has led us to think that they may represent a useful therapeutic tool even in COVID-19. The human origin of IVIG carries specific criticalities including risks of blood products, supply, and elevated costs. IVIG can be useful in critically ill patients, as well as early empirical treatment. To date, the need for further well-designed studies stating protocols and the efficacy/tolerability profile of IVIG and convalescent plasma in selected situations are awaited.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| |
Collapse
|
41
|
Mullur J, Wang A, Feldweg A. A fatal case of coronavirus disease 2019 in a patient with common variable immunodeficiency. Ann Allergy Asthma Immunol 2021; 126:90-92. [PMID: 32818593 PMCID: PMC7431323 DOI: 10.1016/j.anai.2020.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jyotsna Mullur
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Alberta Wang
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Feldweg
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Focosi D, Farrugia A. The art of the possible in approaching efficacy trials for COVID19 convalescent plasma. Int J Infect Dis 2021; 102:244-246. [PMID: 33130197 PMCID: PMC7836915 DOI: 10.1016/j.ijid.2020.10.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
COVID-19 convalescent plasma (CCP) is widely used as a treatment. While safety data are enough, high-level evidences of efficacy are still missing. We summarize here the results from randomized controlled trials (RCT) published to date and analyze their flaws and biases. We then provide suggestions for next round of CCP RCTs, discussing specification of CCP, therapeutic dose, timing, control arm, disease stage, and outcome measures.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Albert Farrugia
- Faculty of Medicine and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
43
|
El-Goly AMM. Lines of Treatment of COVID-19 Infection. COVID-19 INFECTIONS AND PREGNANCY 2021. [PMCID: PMC8298380 DOI: 10.1016/b978-0-323-90595-4.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Dulek DE, Fuhlbrigge RC, Tribble AC, Connelly JA, Loi MM, El Chebib H, Chandrakasan S, Otto WR, Diorio C, Keim G, Walkovich K, Jaggi P, Girotto JE, Yarbrough A, Behrens EM, Cron RQ, Bassiri H. Multidisciplinary Guidance Regarding the Use of Immunomodulatory Therapies for Acute Coronavirus Disease 2019 in Pediatric Patients. J Pediatric Infect Dis Soc 2020; 9:716-737. [PMID: 32808988 PMCID: PMC7454742 DOI: 10.1093/jpids/piaa098] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immune-mediated lung injury and systemic hyperinflammation are characteristic of severe and critical coronavirus disease 2019 (COVID-19) in adults. Although the majority of severe acute respiratory syndrome coronavirus 2 infections in pediatric populations result in minimal or mild COVID-19 in the acute phase of infection, a small subset of children develop severe and even critical disease in this phase with concomitant inflammation that may benefit from immunomodulation. Therefore, guidance is needed regarding immunomodulatory therapies in the setting of acute pediatric COVID-19. This document does not provide guidance regarding the recently emergent multisystem inflammatory syndrome in children (MIS-C). METHODS A multidisciplinary panel of pediatric subspecialty physicians and pharmacists with expertise in infectious diseases, rheumatology, hematology/oncology, and critical care medicine was convened. Guidance statements were developed based on best available evidence and expert opinion. RESULTS The panel devised a framework for considering the use of immunomodulatory therapy based on an assessment of clinical disease severity and degree of multiorgan involvement combined with evidence of hyperinflammation. Additionally, the known rationale for consideration of each immunomodulatory approach and the associated risks and benefits was summarized. CONCLUSIONS Immunomodulatory therapy is not recommended for the majority of pediatric patients, who typically develop mild or moderate COVID-19. For children with severe or critical illness, the use of immunomodulatory agents may be beneficial. The risks and benefits of such therapies are variable and should be evaluated on a case-by-case basis with input from appropriate specialty services. When available, the panel strongly favors immunomodulatory agent use within the context of clinical trials. The framework presented herein offers an approach to decision-making regarding immunomodulatory therapy for severe or critical pediatric COVID-19 and is informed by currently available data, while awaiting results of placebo-controlled randomized clinical trials.
Collapse
Affiliation(s)
- Daniel E Dulek
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert C Fuhlbrigge
- Section of Rheumatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alison C Tribble
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James A Connelly
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michele M Loi
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Hassan El Chebib
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Connecticut Children's, Hartford, Connecticut, USA
| | - Shanmuganathan Chandrakasan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William R Otto
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Garrett Keim
- Division of Critical Care Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelly Walkovich
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Preeti Jaggi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jennifer E Girotto
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Connecticut Children's, Hartford, Connecticut, USA.,University of Connecticut School of Pharmacy, Storrs, Connecticut, USA
| | - April Yarbrough
- Department of Pharmacy, Children's of Alabama, Birmingham, Alabama, USA
| | - Edward M Behrens
- Division of Pediatric Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Randy Q Cron
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Hamid Bassiri
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Ahn TS, Han B, Krogstad P, Bun C, Kohn LA, Garcia-Lloret MI, Damoiseaux R, Butte MJ. Commercial immunoglobulin products contain cross-reactive but not neutralizing antibodies against SARS-CoV-2. J Allergy Clin Immunol 2020; 147:876-877. [PMID: 33358557 PMCID: PMC7833834 DOI: 10.1016/j.jaci.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Terrie S Ahn
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Brandon Han
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, Calif; California NanoSystems Institute, University of California Los Angeles, Los Angeles, Calif
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, Calif; Division of Infectious Diseases, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Chantana Bun
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Lisa A Kohn
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Maria I Garcia-Lloret
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, Calif; California NanoSystems Institute, University of California Los Angeles, Los Angeles, Calif; Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, Calif
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif.
| |
Collapse
|
46
|
Torrington E. Welcome to the 13th Volume of Immunotherapy. Immunotherapy 2020; 13:1-3. [PMID: 33280421 DOI: 10.2217/imt-2020-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ebony Torrington
- Future Science Group, Unitec House, 2 Albert Place, Finchley, London N3 1QB, UK
| |
Collapse
|
47
|
Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. MOLECULAR BIOMEDICINE 2020; 1:16. [PMID: 34765999 PMCID: PMC7711057 DOI: 10.1186/s43556-020-00017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hanyue Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wen Guo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuling Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Ming Wang
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiyan Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Deng
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, 10465 USA
| | - Fushen Sha
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
48
|
Tandon S, Aggarwal A, Jain S, Shukla S, Chaudhary S. Perspective on the Role of Antibodies and Potential Therapeutic Drugs to Combat COVID-19. Protein J 2020; 39:631-643. [PMID: 33034824 PMCID: PMC7544555 DOI: 10.1007/s10930-020-09921-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
The sudden emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease of 2019 (COVID-19) has brought the world to a standstill. Thousands of people across the globe are biting the dust with every passing day and yet more are being tested positive for the SARS-CoV-2 infection. In order to dispense this current crisis, numerous treatment options have been tried and tested and many more are still under scrutiny. The development of vaccines may help in the prevention of the global pandemic, however, there is still a need for the development of alternate approaches to combat the disease. In this review we highlight the new discoveries and furtherance in the antibody based therapeutic options and the potent drugs, with special emphasis on the development of the monoclonal and polyclonal antibodies and the repurposed drugs, which may prove to be of significant importance for the treatment of COVID-19, in the days to come. It is an attempt to evaluate the currently presented challenges so as to provide a scope for the ongoing research and assistance in the development of the effective therapeutic options against SARS-CoV-2.
Collapse
Affiliation(s)
- Siddhi Tandon
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India
| | - Anchal Aggarwal
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India
| | - Shubhra Jain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India
| | - Sanjay Shukla
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
49
|
Actualización de la Declaración de consenso en medicina critica para la atención multidisciplinaria del paciente con sospecha o confirmación diagnóstica de COVID-19. ACTA COLOMBIANA DE CUIDADO INTENSIVO 2020; 20:1-112. [PMCID: PMC7538086 DOI: 10.1016/j.acci.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Antecedentes y objetivos La enfermedad por coronavirus de 2019 (COVID-19) es una enfermedad ocasionada por el nuevo coronavirus del síndrome respiratorio agudo grave (SARS-CoV-2). Se identificó por primera vez en diciembre de 2019 en la ciudad de Wuhan, en los meses siguientes se expandió rápidamente a todos los continentes y la Organización Mundial de la Salud (OMS) la reconoció como una pandemia global el 11 de marzo de 2020. La mayoría de los individuos son asintomáticos pero una baja proporción ingresan a cuidados intensivos con una alta morbimortalidad. Este consenso tiene como objetivo actualizar la declaratoria inicial emitida por la Asociación Colombiana de Medicina Crítica (AMCI) para el manejo del paciente críticamente enfermo con COVID-19, dentro de las áreas críticas de las instituciones de salud. Métodos Este estudio utilizó dos técnicas de consenso formal para construir las recomendaciones finales: Delphi modificada y grupos nominales. Se construyeron preguntas por la estrategia PICO. 10 grupos nominales desarrollaron recomendaciones para cada unidad temática. El producto del consenso fue evaluado y calificado en una ronda Delphi y se discutió de forma virtual por los relatores de cada núcleo y los representantes de sociedades médicas científicas afines al manejo del paciente con COVID-19. Resultados 80 expertos nacionales participaron en la actualización del consenso AMCI, especialistas en Medicina Critica y Cuidados Intensivos, Nefrología, Neurología, Neumología, bioeticistas, Medicina interna, Anestesia, Cirugía General, Cirugía de cabeza y cuello, Cuidados Paliativos, Enfermeras Especialistas en Medicina crítica, Terapeutas respiratorias especialistas en medicina crítica y Fisioterapia, con experiencia clínica en la atención del paciente críticamente enfermo. La declaratoria emite recomendaciones en los ámbitos más relevantes para la atención en salud de los casos de COVID-19, al interior de las unidades de cuidados intensivos, en el contexto nacional de Colombia. Conclusiones Un grupo significativo multidisciplinario de profesionales expertos en medicina crítica emiten, mediante técnicas de consenso formal, recomendaciones sobre la mejor práctica para la atención del paciente críticamente enfermo con COVID-19. Las recomendaciones deben ser adaptadas a las condiciones específicas, administrativas y estructurales de las distintas unidades de cuidados intensivos del país.
Collapse
|
50
|
Díez JM, Romero C, Vergara-Alert J, Belló-Perez M, Rodon J, Honrubia JM, Segalés J, Sola I, Enjuanes L, Gajardo R. Cross-neutralization activity against SARS-CoV-2 is present in currently available intravenous immunoglobulins. Immunotherapy 2020; 12:1247-1255. [PMID: 32900263 PMCID: PMC7480323 DOI: 10.2217/imt-2020-0220] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Cross-reactivity against human coronaviruses with Flebogamma® DIF and Gamunex®-C, two available intravenous immunoglobulins (IVIG), has been reported. In this study, these IVIG were tested for neutralization activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Materials & methods: Neutralization capacity of lots of IVIG manufactured prior to COVID-19 pandemic was assessed against these viruses in cell culture. Infectivity neutralization was quantified by percent reduction in plaque-forming units and/or cytopathic/cytotoxic methods. Results: All IVIG preparations showed neutralization of SARS-CoV-2 isolates. All IVIG lots produced neutralization of SARS-CoV. No IVIG preparation showed significant neutralizing activity against MERS-CoV. Conclusion: The tested IVIG contain antibodies with significant in vitro cross-neutralization capacity against SARS-CoV-2 and SARS-CoV, but not MERS-CoV. These preparations are currently under evaluation as potential therapies for COVID-19.
Collapse
Affiliation(s)
- José María Díez
- Bioscience Research & Development, Grifols, Barcelona, Spain
| | - Carolina Romero
- Bioscience Research & Development, Grifols, Barcelona, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Melissa Belló-Perez
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - José Manuel Honrubia
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Isabel Sola
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Luis Enjuanes
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Rodrigo Gajardo
- Bioscience Research & Development, Grifols, Barcelona, Spain
| |
Collapse
|