1
|
Ramesh AK, Sivaccumar JP, Ye X, Yang L, Guo H, Chin CN, Ha S, Shiver JW, Strohl WR, Xu Y, Du H, Zhou T, Zhang N, Xu K, Liu X, Fu TM, An Z. An intranasally administered IgM protects against antigenically distinct subtypes of influenza A viruses. Nat Commun 2025; 16:4025. [PMID: 40301359 PMCID: PMC12041195 DOI: 10.1038/s41467-025-59294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Engineering broadly neutralizing monoclonal antibodies (mAbs) targeting the hemagglutinin (HA) of Influenza A virus (IAV) is a promising approach for intervention of seasonal flu. However, HA plasticity often leads to resistant strains that compromise mAb potency as bivalent IgGs. Here we hypothesize that multimerization of anti-IAV antibodies as IgMs can enhance coverage and neutralization potency. Here, we construct 18 IgM antibodies from known broadly neutralizing IgGs targeting different IAV HA epitopes and evaluate their breadth and potency of neutralization against distinct H1N1 and H3N2 IAVs. The IgM version of receptor binding site-specific IgG F045-092 shows increased breadth and antiviral potency compared to its parental IgG. Engineered IgM molecules overcome IAV strain resistance by expanded avidity, providing potent neutralization in vitro at sub-nanomolar ranges while retaining parental IgG specificity. Intranasal delivery of engineered IgM-F045-092 in female mice demonstrates efficient bio-retention in nasal cavities and lungs, offering protection against lethal doses of H1N1 and H3N2 IAV when administered prophylactically. Optimal epitope selection, trans-crosslinking, decavalent avidity, and intranasal administration contribute to the broader protection and potency of engineered IgM antibodies against diverse IAV subtypes.
Collapse
MESH Headings
- Animals
- Immunoglobulin M/immunology
- Immunoglobulin M/administration & dosage
- Immunoglobulin M/genetics
- Administration, Intranasal
- Female
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Influenza A Virus, H3N2 Subtype/immunology
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Mice, Inbred BALB C
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/administration & dosage
- Epitopes/immunology
- Immunoglobulin G/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/administration & dosage
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza A virus/immunology
- Dogs
- Madin Darby Canine Kidney Cells
Collapse
Affiliation(s)
- Ashwin Kumar Ramesh
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jwala Priyadarsini Sivaccumar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
| | - Luona Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Hailong Guo
- IGM Biosciences Inc., Mountain View, CA, USA
| | | | - Sha Ha
- IGM Biosciences Inc., Mountain View, CA, USA
| | | | | | - Yan Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Microbial Infection and Immunity & Veterinary Biosciences, Ohio State University, Columbus, OH, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Martinez-Sobrido L, Blanco-Lobo P, Rodriguez L, Fitzgerald T, Zhang H, Nguyen P, Anderson CS, Holden-Wiltse J, Bandyopadhyay S, Nogales A, DeDiego ML, Wasik BR, Miller BL, Henry C, Wilson PC, Sangster MY, Treanor JJ, Topham DJ, Byrd-Leotis L, Steinhauer DA, Cummings RD, Luczo JM, Tompkins SM, Sakamoto K, Jones CA, Steel J, Lowen AC, Danzy S, Tao H, Fink AL, Klein SL, Wohlgemuth N, Fenstermacher KJ, el Najjar F, Pekosz A, Sauer L, Lewis MK, Shaw-Saliba K, Rothman RE, Liu ZY, Chen KF, Parrish CR, Voorhees IEH, Kawaoka Y, Neumann G, Chiba S, Fan S, Hatta M, Kong H, Zhong G, Wang G, Uccellini MB, García-Sastre A, Perez DR, Ferreri LM, Herfst S, Richard M, Fouchier R, Burke D, Pattinson D, Smith DJ, Meliopoulos V, Freiden P, Livingston B, Sharp B, Cherry S, Dib JC, Yang G, Russell CJ, Barman S, Webby RJ, Krauss S, Danner A, Woodard K, Peiris M, Perera RAPM, Chan MCW, Govorkova EA, Marathe BM, Pascua PNQ, Smith G, Li YT, Thomas PG, Schultz-Cherry S. Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathog 2020; 16:e1008409. [PMID: 32287326 PMCID: PMC7182277 DOI: 10.1371/journal.ppat.1008409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/24/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.
Collapse
MESH Headings
- Animals
- Communicable Diseases, Emerging/transmission
- Communicable Diseases, Emerging/veterinary
- Communicable Diseases, Emerging/virology
- Dog Diseases/transmission
- Dog Diseases/virology
- Dogs
- Ferrets
- Guinea Pigs
- Humans
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N8 Subtype/classification
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/isolation & purification
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza, Human/transmission
- Influenza, Human/virology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- United States
- Zoonoses/transmission
- Zoonoses/virology
Collapse
Affiliation(s)
- Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Pilar Blanco-Lobo
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Theresa Fitzgerald
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Hanyuan Zhang
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Materials Science Program, University of Rochester, Rochester, New York, United States of America
| | - Phuong Nguyen
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Christopher S. Anderson
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology and Clinical and Translational Science Institute, University of Rochester, Rochester, New York, United States of America
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology and Clinical and Translational Science Institute, University of Rochester, Rochester, New York, United States of America
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Marta L. DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Brian R. Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Materials Science Program, University of Rochester, Rochester, New York, United States of America
| | - Carole Henry
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Patrick C. Wilson
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - John J. Treanor
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D. Cummings
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jasmina M. Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Cheryl A. Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hui Tao
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine J. Fenstermacher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Farah el Najjar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lauren Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitra K. Lewis
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhen-Ying Liu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ian E. H. Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melissa B. Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel R. Perez
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Lucas M. Ferreri
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ron Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - David Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David Pattinson
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Juan Carlos Dib
- Tropical Health Foundation, Santa Marta, Magdalena, Colombia
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Karlie Woodard
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - R. A. P. M. Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - M. C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Philippe N. Q. Pascua
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gavin Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
6
|
Aliev TK, Dement’yeva IG, Toporova VA, Argentova VV, Pozdnyakova LP, Bokov MN, Votchitseva YA, Dolgikh DA, Varfolomeyev SD, Sveshnikov PG, Kirpichnikov MP. The Development and Study of Recombinant Immunoglobulin A to Hemagglutinins of the Influenza Virus. Acta Naturae 2018; 10:30-36. [PMID: 30116613 PMCID: PMC6087826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 12/03/2022] Open
Abstract
We obtained recombinant variants of human antibody FI6 broadly specific to hemagglutinins of the influenza A virus. On the basis of a bi-promoter (CMV, hEF1-HTLV) vector, we developed genetic constructs for the expression of the heavy and light chains of the immunoglobulins of IgA1-, IgA2m1-, and IgG-isotypes. Following transfection and selection, stable Chinese hamster ovary (CHO) cell lines were produced. The antibodies of IgA1-, IgA2m1-, and IgG-isotypes were purified from culture media. We performed an immunochemical characterization and studied their interactions with influenza A strains of the H1N1- and H3N2-subtypes. It was shown that recombinant FI6 variants of the IgA-isotype retain the properties of the parental IgG antibody to demonstrate specificity to all the strains tested. The strongest binding was observed for the H1N1 subtype, which belongs to hemagglutinins of phylogenetic group I.
Collapse
Affiliation(s)
- T. K. Aliev
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1, bldg. 3, Moscow, 119991, Russia
| | - I. G. Dement’yeva
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd. 8, Moscow, 117149 , Russia
| | - V. A. Toporova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - V. V. Argentova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| | - L. P. Pozdnyakova
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd. 8, Moscow, 117149 , Russia
| | - M. N. Bokov
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd. 8, Moscow, 117149 , Russia
| | - Yu. A. Votchitseva
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| | - D. A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| | - S. D. Varfolomeyev
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1, bldg. 3, Moscow, 119991, Russia
| | - P. G. Sveshnikov
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd. 8, Moscow, 117149 , Russia
| | - M. P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| |
Collapse
|
13
|
Stevens NE, Fraser CK, Alsharifi M, Brown MP, Diener KR, Hayball JD. An empirical approach towards the efficient and optimal production of influenza-neutralizing ovine polyclonal antibodies demonstrates that the novel adjuvant CoVaccine HT™ is functionally superior to Freund's adjuvant. PLoS One 2013; 8:e68895. [PMID: 23894371 PMCID: PMC3720891 DOI: 10.1371/journal.pone.0068895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/01/2013] [Indexed: 11/18/2022] Open
Abstract
Passive immunotherapies utilising polyclonal antibodies could have a valuable role in preventing and treating infectious diseases such as influenza, particularly in pandemic situations but also in immunocompromised populations such as the elderly, the chronically immunosuppressed, pregnant women, infants and those with chronic diseases. The aim of this study was to optimise current methods used to generate ovine polyclonal antibodies. Polyclonal antibodies to baculovirus-expressed recombinant influenza haemagglutinin from A/Puerto Rico/8/1934 H1N1 (PR8) were elicited in sheep using various immunisation regimens designed to investigate the priming immunisation route, adjuvant formulation, sheep age, and antigen dose, and to empirically ascertain which combination maximised antibody output. The novel adjuvant CoVaccine HT™ was compared to Freund’s adjuvant which is currently the adjuvant of choice for commercial production of ovine polyclonal Fab therapies. CoVaccine HT™ induced significantly higher titres of functional ovine anti-haemagglutinin IgG than Freund’s adjuvant but with fewer side effects, including reduced site reactions. Polyclonal hyperimmune sheep sera effectively neutralised influenza virus in vitro and, when given before or after influenza virus challenge, prevented the death of infected mice. Neither the age of the sheep nor the route of antigen administration appeared to influence antibody titre. Moreover, reducing the administrated dose of haemagglutinin antigen minimally affected antibody titre. Together, these results suggest a cost effective way of producing high and sustained yields of functional ovine polyclonal antibodies specifically for the prevention and treatment of globally significant diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Aging/immunology
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Dose-Response Relationship, Immunologic
- Female
- Freund's Adjuvant/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Sheep
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Natalie E. Stevens
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
| | - Cara K. Fraser
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, SA, Australia
| | - Mohammed Alsharifi
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Michael P. Brown
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Kerrilyn R. Diener
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (KRD); (JDH)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
- Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
- * E-mail: (KRD); (JDH)
| |
Collapse
|