1
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Rhodes KR, Tzeng SY, Iglesias M, Lee D, Storm K, Neshat SY, VanDyke D, Lowmaster SM, Spangler JB, Raimondi G, Green JJ. Bioengineered particles expand myelin-specific regulatory T cells and reverse autoreactivity in a mouse model of multiple sclerosis. SCIENCE ADVANCES 2023; 9:eadd8693. [PMID: 37267370 PMCID: PMC10413683 DOI: 10.1126/sciadv.add8693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by autoreactive immune cells damaging myelinated nerves, impairing brain function. Treatments aim for tolerance induction to reeducate the immune system to recognize myelin as "self" rather than "foreign." As peripheral immune tolerance is primarily mediated by regulatory T cells (Tregs), we developed a therapy to support Treg expansion and activity in vivo. To target, engage, and activate myelin-specific Tregs, we designed a biodegradable microparticle (MP) loaded with rapamycin and functionalized with a biased interleukin-2 (IL-2) fusion protein and a major histocompatibility complex (MHC) class II loaded with a myelin peptide. These tolerogenic MPs (Tol-MPs) were validated in vitro and then evaluated in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Tol-MPs promoted sustained disease reversal in 100% of mice and full recovery in 38% of mice with symptomatic EAE. Tol-MPs are a promising platform for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Kelly R. Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dongwoo Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kaitlyn Storm
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarah Y. Neshat
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shirley M. Lowmaster
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21231, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
CMV antiviral stewardship: navigating obstacles to facilitate target attainment. Curr Opin Organ Transplant 2023; 28:8-14. [PMID: 36579682 DOI: 10.1097/mot.0000000000001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Despite the availability of potent antivirals, consensus guidelines and decades of research, cytomegalovirus (CMV) continues to be associated with negative outcomes after solid organ transplant. This has been attributed to postprophylaxis CMV infection and a lack of development of CMV-specific cell mediated immunity (CMI). A shift from a focus on antiviral prevention to a focus on CMI target attainment is needed to improve CMV outcomes after transplantation. RECENT FINDINGS There are many obstacles to CMI target attainment. Antiviral stewardship programs (AVS) have been employed to improve patient outcomes through appropriate antiviral use, reduction of unnecessary exposure and resistance mitigation. By focusing on the patient's unique substrate of conglomerate risk factors and addressing these factors specifically with evidenced based methodology, the AVS can address these obstacles, increasing rates of CMI and subsequently reducing risk of future CMV infection and negative outcomes. SUMMARY With its multidisciplinary composition utilizing decades of experience from antimicrobial stewardship principles and practices, the AVS is uniquely poised to facilitate the shift from a focus on prevention to CMI target attainment and be the supporting pillar for the frontline transplant clinician caring for transplant patients with CMV.
Collapse
|
4
|
Jagannathan G, Weins A, Daniel E, Crew RJ, Swanson SJ, Markowitz GS, D'Agati VD, Andeen NK, Rennke HG, Batal I. The pathologic spectrum of adenovirus nephritis in the kidney allograft. Kidney Int 2023; 103:378-390. [PMID: 36436678 DOI: 10.1016/j.kint.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
Adenovirus nephritis (ADVN) is a rare and understudied complication of kidney transplantation. Unlike BK virus nephropathy (BKVN), our knowledge of clinicopathologic manifestations of ADVN remains rudimentary and essentially limited to case reports. To expand on this, we retrospectively studied 11 kidney transplant recipients with ADVN and compared their allograft biopsies to 33 kidney transplant recipients with BKVN using conventional microscopy and the 770 gene Nanostring Banff Human Organ Transplant Profiling Panel. Patients with ADVN had a median age of 44 years, were predominantly male, and developed ADVN at a median of 31 months post-transplantation. Eight patients presented with fever and ten had hematuria. The most common histologic manifestations included granulomas (82%), tubulocentric inflammation (73%), and tubular degenerative changes consistent with acute tubular necrosis (73%). During a median follow-up of 55 months after biopsy, three patients developed allograft failure from subsequent acute rejection. All seven patients with available follow-up PCR showed resolution of viremia at a median of 30 days after diagnosis. Compared to BKVN, ADVN demonstrated more granulomas and less tubulointerstitial scarring. On follow-up, patients with ADVN had more rapid clearance of viral DNA from plasma. Transcriptomic analyses showed that ADVN had increased expression of several pro-inflammatory transcriptomes, mainly related to innate immunity, was associated with increased expression of transcripts with inhibitory effects on inflammatory response and showed higher enrichment with neutrophils, which can cause aggressive but short-lasting damage. Thus, we demonstrate that, despite its association with aggressive neutrophil-rich inflammation, ADVN does not often lead to allograft failure. Hence, preventing subsequent acute rejection following resolution of ADVN may improve allograft survival.
Collapse
Affiliation(s)
- Geetha Jagannathan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Daniel
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Russel J Crew
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sidney J Swanson
- Department of Surgery, Christiana Hospital, Newark, Delaware, USA
| | - Glen S Markowitz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nicole K Andeen
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ibrahim Batal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
5
|
Barati M, Mirzavi F, Atabaki M, Bibak B, Mohammadi M, Jaafari MR. A review of PD-1/PD-L1 siRNA delivery systems in immune T cells and cancer cells. Int Immunopharmacol 2022; 111:109022. [PMID: 35987146 DOI: 10.1016/j.intimp.2022.109022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Programmed cell death 1 (PD-1) is a member of the CD28/CTLA-4 family of inhibitory immunological checkpoint receptors that's also widely produced by exhausted T lymphocytes in an immunosuppressive tumor microenvironment. PD-1 binds to programmed death ligand (PD-L1) and suppresses anti-cancer activity of T lymphocytes. We examined the current literature on how siRNA delivery systems can be used to target PD-1 and PD-L1, as well as the anti-cancer mechanisms and challenges associated with siRNA molecules. We look at studies that use program death 1 siRNA or program death 1 ligand siRNA to treat cancer. Several databases have been used for this purpose, including NCBI, Scopus, and Google Scholar. KEY FINDINGS This study looked at several methods for delivering siRNA to immune cells and cancer cells. According to these findings, suppressing PD-1 in T cells increases T lymphocyte activity. PD-L1 suppression in DCs improves antigen presentation and co-stimulatory signals on their surface, resulting in T cell activation. Chemotherapy resistance and cancer cell suppression of T cells are reduced when PD-L1/2 is suppressed in cancer cells. CONCLUSION The findings of this study indicated that several strategies for siRNA transfection to immune and cancer cells have been evaluated in recent decades, some of which effectively transfect siRNA to target cells, and defined PD-1 siRNA as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Atabaki
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bahram Bibak
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Iyer VS, Boddul SV, Johnsson AK, Raposo B, Sharma RK, Shen Y, Kasza Z, Lim KW, Chemin K, Nilsson G, Malmström V, Phan AT, Wermeling F. Modulating T-cell activation with antisense oligonucleotides targeting lymphocyte cytosolic protein 2. J Autoimmun 2022; 131:102857. [PMID: 35780036 DOI: 10.1016/j.jaut.2022.102857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.
Collapse
Affiliation(s)
- Vaishnavi Srinivasan Iyer
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Sanjaykumar V Boddul
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Karin Johnsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bruno Raposo
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ravi K Sharma
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yunbing Shen
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Zsolt Kasza
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Karine Chemin
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Fredrik Wermeling
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Albert V, Piendl G, Yousseff D, Lammert H, Hummel M, Ortmann O, Jagla W, Gaumann A, Wege AK, Brockhoff G. Protein kinase C targeting of luminal (T-47D), luminal/HER2-positive (BT474), and triple negative (HCC1806) breast cancer cells in-vitro with AEB071 (Sotrastaurin) is efficient but mediated by subtype specific molecular effects. Arch Gynecol Obstet 2022; 306:1197-1210. [PMID: 35298675 PMCID: PMC9470618 DOI: 10.1007/s00404-022-06434-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Purpose Protein kinase C (PKC) plays a pivotal role in malignant cell proliferation, apoptosis, invasiveness and migration. However, its exploitation as therapeutic target in breast cancer has been merely explored. Here were evaluated the AEB071 (Sotrastaurin™) treatment efficiency of breast cancer cell lines derived from estrogen receptor positive (T-47D), estrogen/HER2 receptor positive (BT474), and triple negative (HCC1806) breast cancer cells under 2D (monolayer) and 3D (multicellular tumor spheroids) culture conditions. Additionally, spheroid cocultures of BC and N1 fibroblasts were analyzed. Methods We quantitatively assessed the proliferation capacity of breast cancer cells and fibroblasts as a function of AEB071 treatment using flow cytometry. The activities of PKC isoforms, substrates, and key molecules of the PKC signaling known to be involved in the regulation of tumor cell proliferation and cellular survival were additionally evaluated. Moreover, a multigene expression analysis (PanCancer Pathways assay) using the nanoString™ technology was applied. Results All breast cancer cell lines subjected to this study were sensitive to AEB071 treatment, whereby cell proliferation in 2D culture was considerably (BT474) or moderately (HCC1806) retarded in G0/G1 or in G2/M phase (T-47D) of the cell cycle. Regardless of the breast cancer subtype the efficiency of AEB071 treatment was significantly lower in the presence of N1 fibroblast cells. Subtype specific driver molecules, namely IL19, c-myb, and NGFR were mostly affected by the AEB071 treatment. Conclusion A combined targeting of PKC and a subtype specific driver molecule might complement specified breast cancer treatment.
Collapse
Affiliation(s)
- Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gerhard Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | - Hedwig Lammert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | | | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
8
|
Iglesias M, Khalifian S, Oh BC, Zhang Y, Miller D, Beck S, Brandacher G, Raimondi G. A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in the presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts. Am J Transplant 2021; 21:2675-2687. [PMID: 33331121 DOI: 10.1111/ajt.16456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Costimulation blockade-based regimens are a promising strategy for management of transplant recipients. However, maintenance immunosuppression via CTLA4-Ig monotherapy is characterized by high frequency of rejection episodes. Recent evidence suggests that inflammatory cytokines contribute to alloreactive T cell activation in a CD28-independent manner, a reasonable contributor to the limited efficacy of CTLA4-Ig. In this study, we investigated the possible synergism of a combined short-term inhibition of cytokine signaling and CD28 engagement on the modulation of rejection. Our results demonstrate that the JAK/STAT inhibitor tofacitinib restored the immunomodulatory effect of CTLA4-Ig on mouse alloreactive T cells in the presence of inflammatory cytokines. Tofacitinib exposure conferred dendritic cells with a tolerogenic phenotype reducing their cytokine secretion and costimulatory molecules expression. JAK inhibition also directly affected T cell activation. In vivo, the combination of CTLA4-Ig and tofacitinib induced long-term survival of heart allografts and, importantly, it was equally effective when using grafts subjected to prolonged ischemia. Transplant survival correlated with a reduction in effector T cells and intragraft accumulation of regulatory T cells. Collectively, our studies demonstrate a powerful synergism between CTLA4-Ig and tofacitinib and suggest their combined use is a promising strategy for improved management of transplanted patients.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saami Khalifian
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yichuan Zhang
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Devin Miller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Jorgenson MR, Marka N, Leverson GE, Smith JA, Odorico JS. Valganciclovir prophylaxis extension from 3 to 6 months in high-risk pancreas-transplant recipients does not impact incidence of cytomegalovirus infection at 12 months. Clin Transplant 2021; 35:e14379. [PMID: 34075624 DOI: 10.1111/ctr.14379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023]
Abstract
PROBLEM Incidence and impact of CMV infection in pancreas-transplant recipients (PTRs) in the valganciclovir prophylaxis era has not been completely elucidated. METHODS Adult D+/R- PTRs were divided into a current era (1/1/2011-12/31/17; 6-month PPX) and a historic era (1/1/2003-12/31/09; 3-month PPX). PRIMARY OBJECTIVE effect of prophylaxis extension on the incidence of CMV infection. SECONDARY OBJECTIVE impact of extension on valganciclovir-related toxicity (leukopenia) and transplant outcomes. RESULTS There were 177 D+/R- PTRs in the study period (historic:98, current:79). Prophylaxis extension resulted in significant reduction of CMV infection from 25.4% to 10.9% at 6 months, (57% reduction, p = .021). However, 1-year rates of CMV infection (historic:31% vs current:36%) and end-organ disease (historic:7.7% vs current:6.9%) were not different (p = .93). Prophylaxis extension significantly increased leukopenia (white blood cell count<3 K/uL) at 6 months (historic:9.5% vs current:28.6%, p = .018). On multivariable analysis prophylaxis extension was not associated with reduced rates of CMV infection (p = .99) or CMV end-organ disease (p = .3). Additionally, there was no significant difference in rejection (p = .2), graft survival (p = .08), death-censored graft survival(p = .07) or patient survival (p = .6). CONCLUSIONS Prophylaxis extension in D+/R- PTRs appears to delay time to first CMV but not reduce overall incidence. These findings suggest a hybrid approach, incorporating antiviral withdrawal and protocolized monitoring, may be needed to improve CMV-related outcomes.
Collapse
Affiliation(s)
- Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Nicholas Marka
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Glen E Leverson
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jeannina A Smith
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jon S Odorico
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
Recurrent squamous cell carcinoma in a post cardiac transplant patient. Int J Surg Case Rep 2021; 79:275-280. [PMID: 33757259 PMCID: PMC7889445 DOI: 10.1016/j.ijscr.2021.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 11/23/2022] Open
Abstract
Patient having recurrent carcinomas following heart transplant due to possible immunosuppression. Early Cancer surveillance in transplant patients is necessary to detect and treat malignancies early. Unique in having two recurrences post-transplant.
Introduction and importance Solid organ transplantation has evolved along with dramatic advancements in definitive treatment for irreversible and uncompensated organ failure. Transplanted organ survival has improved as a result of reduced allograft rejection. However, negative long-term outcomes which were largely due to the adverse effects of rapidly evolving immunosuppressive regimens are still evident. The emergence of malignancies following prolonged exposure to immunosuppression treatment has affected the quality of life in transplant recipients. They are approximately one hundred times more likely to develop squamous cell carcinoma (SCC) compared to the general population and the incidence of malignant melanomas, basal cell carcinomas, and Kaposi’s sarcomas are also on the rise. The incidence of de novo malignancies ranges from 9 to 21% and is commonly seen in the skin and the lymphoreticular system in these patients. Case presentation A 78-year-old male presented with a lump in the right axilla, which had grown in size over a 4-week period. Patient had received a cardiac transplant 9 years prior and was on a regimen of Tacrolimus and Mycophenolate Mofetil since then. Clinical discussion Following 4 years of immunosuppression therapy, the patient developed a non-healing ulcer on his right forearm and the biopsy confirmed SCC. The recent biopsy performed on the new axillary lump also confirmed SCC. Iatrogenic immune suppressive treatment is associated with the occurrence of de novo, non-melanoma skin cancers in the solid organ transplant recipients and this necessitates early and comprehensive cancer surveillance models to be included in the pre and post-transplant assessment. Conclusion Advances in immunology suggest that peripheral blood mononuclear cell sequencing and immune profiling to identify immune phenotypes associated with keratinocyte cancers allow us to recognize patients who are more susceptible for SCC following organ transplantation and immunosuppression.
Collapse
|
11
|
Rieder SA, Wang J, White N, Qadri A, Menard C, Stephens G, Karnell JL, Rudd CE, Kolbeck R. B7-H7 (HHLA2) inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling. Cell Mol Immunol 2020; 18:1503-1511. [PMID: 32005952 PMCID: PMC8166953 DOI: 10.1038/s41423-020-0361-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Modulation of T-cell responses has played a key role in treating cancers and autoimmune diseases. Therefore, understanding how different receptors on T cells impact functional outcomes is crucial. The influence of B7-H7 (HHLA2) and CD28H (TMIGD2) on T-cell activation remains controversial. Here we examined global transcriptomic changes in human T cells induced by B7-H7. Stimulation through TCR with OKT3 and B7-H7 resulted in modest fold changes in the expression of select genes; however, these fold changes were significantly lower than those induced by OKT3 and B7-1 stimulation. The transcriptional changes induced by OKT3 and B7-H7 were insufficient to provide functional stimulation as measured by evaluating T-cell proliferation and cytokine production. Interestingly, B7-H7 was coinhibitory when simultaneously combined with TCR and CD28 stimulation. This inhibitory activity was comparable to that observed with PD-L1. Finally, in physiological assays using T cells and APCs, blockade of B7-H7 enhanced T-cell activation and proliferation, demonstrating that this ligand acts as a break signal. Our work defines that the transcriptomic changes induced by B7-H7 are insufficient to support full costimulation with TCR signaling and, instead, B7-H7 inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling.
Collapse
Affiliation(s)
- Sadiye Amcaoglu Rieder
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA. .,Viela Bio, Gaithersburg, MD, USA.
| | - Jingya Wang
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA
| | - Natalie White
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA
| | - Ariful Qadri
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA
| | | | - Geoffrey Stephens
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA.,Geneius Biotechnologies, Natick, MA, USA
| | - Jodi L Karnell
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA.,Viela Bio, Gaithersburg, MD, USA
| | | | | |
Collapse
|
12
|
Wang J, Rieder SA, Wu J, Hayes S, Halpin RA, de Los Reyes M, Shrestha Y, Kolbeck R, Raja R. Evaluation of ultra-low input RNA sequencing for the study of human T cell transcriptome. Sci Rep 2019; 9:8445. [PMID: 31186477 PMCID: PMC6559993 DOI: 10.1038/s41598-019-44902-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Deeper understanding of T cell biology is crucial for the development of new therapeutics. Human naïve T cells have low RNA content and their numbers can be limiting; therefore we set out to determine the parameters for robust ultra-low input RNA sequencing. We performed transcriptome profiling at different cell inputs and compared three protocols: Switching Mechanism at 5' End of RNA Template technology (SMART) with two different library preparation methods (Nextera and Clontech), and AmpliSeq technology. As the cell input decreased the number of detected coding genes decreased with SMART, while stayed constant with AmpliSeq. However, SMART enables detection of non-coding genes, which is not feasible for AmpliSeq. The detection is dependent on gene abundance, but not transcript length. The consistency between technical replicates and cell inputs was comparable across methods above 1 K but highly variable at 100 cell input. Sensitivity of detection for differentially expressed genes decreased dramatically with decreased cell inputs in all protocols, support that additional approaches, such as pathway enrichment, are important for data interpretation at ultra-low input. Finally, T cell activation signature was detected at 1 K cell input and above in all protocols, with AmpliSeq showing better detection at 100 cells.
Collapse
Affiliation(s)
- Jingya Wang
- Translational Science and Experimental Medicine, Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gaithersburg, USA.
| | - Sadiye Amcaoglu Rieder
- Biosciences, Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gaithersburg, USA
| | - Jincheng Wu
- Research Bioinformatics, MedImmune AstraZeneca, Gaithersburg, USA.,Novartis Institutes for BioMedical Research, Cambridge, USA
| | - Susana Hayes
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, USA
| | - Rebecca A Halpin
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, USA
| | | | - Yashaswi Shrestha
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, USA
| | - Roland Kolbeck
- Respiratory, Inflammation and Autoimmunity, MedImmune AstraZeneca, Gaithersburg, USA
| | - Rajiv Raja
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
13
|
Arasaratnam RJ, Tzannou I, Gray T, Aguayo-Hiraldo PI, Kuvalekar M, Naik S, Gaikwad A, Liu H, Miloh T, Vera JF, Himes RW, Munoz FM, Leen AM. Dynamics of virus-specific T cell immunity in pediatric liver transplant recipients. Am J Transplant 2018; 18:2238-2249. [PMID: 29900673 PMCID: PMC6117219 DOI: 10.1111/ajt.14967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 01/25/2023]
Abstract
Immunosuppression following solid organ transplantation (SOT) has a deleterious effect on cellular immunity leading to frequent and prolonged viral infections. To better understand the relationship between posttransplant immunosuppression and circulating virus-specific T cells, we prospectively monitored the frequency and function of T cells directed to a range of latent (CMV, EBV, HHV6, BK) and lytic (AdV) viruses in 16 children undergoing liver transplantation for up to 1 year posttransplant. Following transplant, there was an immediate decline in circulating virus-specific T cells, which recovered posttransplant, coincident with the introduction and subsequent routine tapering of immunosuppression. Furthermore, 12 of 14 infections/reactivations that occurred posttransplant were successfully controlled with immunosuppression reduction (and/or antiviral use) and in all cases we detected a temporal increase in the circulating frequency of virus-specific T cells directed against the infecting virus, which was absent in 2 cases where infections remained uncontrolled by the end of follow-up. Our study illustrates the dynamic changes in virus-specific T cells that occur in children following liver transplantation, driven both by active viral replication and modulation of immunosuppression.
Collapse
Affiliation(s)
- R J Arasaratnam
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - I Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - T Gray
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - P I Aguayo-Hiraldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - M Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - S Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - A Gaikwad
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - H Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - T Miloh
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - J F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - R W Himes
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - F M Munoz
- Departments of Pediatrics, Infectious Diseases Section, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - A M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
Dekita M, Wu Z, Ni J, Zhang X, Liu Y, Yan X, Nakanishi H, Takahashi I. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis. Front Pharmacol 2017; 8:470. [PMID: 28769800 PMCID: PMC5511830 DOI: 10.3389/fphar.2017.00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC) response to CD4+ T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS) is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS). The population of CD11c+ DCs was significantly increased in the splenic marginal zone (MZ) locally of wild-type (DBA/2) mice with splenomegaly but not in that of CatS deficient (CatS-/-) mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal). Similarly, the population of Th17+CD4+ T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS-/- mice after PgLPS exposure. Furthermore, the increase in the Th17+ CD4+ T cell population paralleled increases in the levels of CatS and IL-6 in CD11c+ cells in the splenic MZ. In isolated primary splenic CD11c+ cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS-/- mice after direct stimulation with PgLPS (1 μg/ml), and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL), the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR) 2 in the isolated splenic CD11c+ cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS-induced increase in the IL-6 production by splenic CD11c+ cells was completely abolished by pre-treatment with FSLLRY-NH2, a PAR2 antagonist, as well as Akti, a specific inhibitor of Akt. These findings indicate that CatS plays a critical role in driving splenic DC-dependent Th17 differentiation through the upregulation of IL-6 by activating PAR2 after exposure to components of periodontal bacteria. Therefore, CatS-specific inhibitors may be effective in alleviating periodontitis-related immune/inflammation.
Collapse
Affiliation(s)
- Masato Dekita
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu UniversityFukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xinwen Zhang
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan.,Center of Implant Dentistry, School of Stomatology, China Medical UniversityShenyang, China
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Xu Yan
- The VIP Department, School of Stomatology, China Medical UniversityShenyang, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu UniversityFukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Kyushu UniversityFukuoka, Japan
| |
Collapse
|
15
|
Abstract
Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- From the Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Göran K Hansson
- From the Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 2016; 113:3960-5. [PMID: 27035952 DOI: 10.1073/pnas.1519960113] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2-dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders.
Collapse
|
17
|
The pharmacokinetics and pharmacodynamics of TOL101, a murine IgM anti-human αβ T cell receptor antibody, in renal transplant patients. Clin Pharmacokinet 2016; 53:649-57. [PMID: 24668001 DOI: 10.1007/s40262-014-0138-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES TOL101 is a highly selective murine anti-αβ T cell receptor (TCR) IgM antibody and has recently completed phase II testing in primary renal transplant patients. This study was undertaken to determine the pharmacokinetic, pharmacodynamic, and immunogenic profile of TOL101. METHODS Nine cohorts of two to six patients received at least five daily doses (of, or combination of, 0.28, 1.4, 7, 14, 28, or 42 mg) of TOL-101 administered at successively higher doses. Semi-logarithmic graphs of serum TOL101 concentration versus time supported the use of a one-compartment intravenous infusion pharmacokinetic model. The model was parameterized in terms of serum clearance (CL) and volume of distribution (V d). RESULTS There was a trend toward a decrease in serum CL as the dose increased from 1.4 to 28 mg. However, the mean values for CL and V d were consistent across the cohorts that received 28, 32, and 42 mg. The mean ± standard deviation half-lives for these five cohorts ranged from 15.1 ± 7.35 to 28.6 ± 8.46 h, with an overall mean of 23.8 h, supporting both daily as well as fixed (i.e., not based on weight) dosing. Using CD3+ ≤25 cells/mm(3) as the primary pharmacodynamic marker, all non-responders were in the 0.28, 1.4, or 7 mg cohorts, suggesting that starting doses above 14 mg are required. Finally, one patient out of 36 was found to have anti-drug antibody. CONCLUSIONS Together, the data show that while TOL101 is a highly potent anti-TCR antibody, its pharmacological profile is somewhat versatile, allowing for daily dosing without immunogenicity concerns.
Collapse
|
18
|
Reading JL, Vaes B, Hull C, Sabbah S, Hayday T, Wang NS, DiPiero A, Lehman NA, Taggart JM, Carty F, English K, Pinxteren J, Deans R, Ting AE, Tree TIM. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2. Mol Ther 2015. [PMID: 26216515 DOI: 10.1038/mt.2015.131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients.
Collapse
Affiliation(s)
- James L Reading
- Department of Immunobiology, King's College London, London, UK.
| | | | - Caroline Hull
- Department of Immunobiology, King's College London, London, UK
| | - Shereen Sabbah
- Department of Immunobiology, King's College London, London, UK
| | - Thomas Hayday
- Department of Immunobiology, King's College London, London, UK
| | | | | | | | | | - Fiona Carty
- Department of Biology, Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | - Karen English
- Department of Biology, Institute of Immunology, National University of Ireland, Maynooth, Ireland
| | | | | | | | - Timothy I M Tree
- Department of Immunobiology, King's College London, London, UK; NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
19
|
Steinmetz M, Ponnuswamy P, Laurans L, Esposito B, Tedgui A, Mallat Z. The intravenous injection of oxidized LDL- or Apolipoprotein B100--Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E--Deficient mice. Biochem Biophys Res Commun 2015; 464:306-11. [PMID: 26116775 DOI: 10.1016/j.bbrc.2015.06.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. METHODS AND RESULTS OTII-transgenic mice that were treated with a single dose of 5 × 10(7) OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, "atherosclerosis-associated" antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E - deficient (ApoE-/-) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE-/- mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE-/- mice. CONCLUSION Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen-coupled splenocytes in its present form already impacts the immune responses and deserves further exploration.
Collapse
Affiliation(s)
- Martin Steinmetz
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France; Internal Medicine II, University Hospital Bonn, 53105 Bonn, Germany.
| | | | - Ludivine Laurans
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Bruno Esposito
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Alain Tedgui
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Ziad Mallat
- INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| |
Collapse
|
20
|
Ketelhuth DFJ, Hansson GK. Modulation of autoimmunity and atherosclerosis - common targets and promising translational approaches against disease. Circ J 2015; 79:924-33. [PMID: 25766275 DOI: 10.1253/circj.cj-15-0167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall that is influenced by several risk factors, including hyperlipidemia and hypertension. Autoimmune diseases substantially increase the risk for cardiovascular disease (CVD). Although atherosclerotic CVD, such as myocardial and stroke, is much more prevalent than classical autoimmune conditions such as rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, these types of pathology have many similarities, raising the possibility that therapies against autoimmune disease can have beneficial effects on CVD. Substantial clinical and experimental data support the potential for immunomodulatory approaches to combating both autoimmune and cardiovascular diseases, including classical immunosuppressants, anticytokine therapy, the targeting of T and B cells and their responses, and vaccination. In this review, we discuss experimental and clinical studies that have used immunomodulatory approaches to mitigate autoimmune reactions and examine their potential to prevent and treat atherosclerotic CVD.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital
| | | |
Collapse
|
21
|
Khalifian S, Raimondi G, Lee WA, Brandacher G. Taming inflammation by targeting cytokine signaling: new perspectives in the induction of transplantation tolerance. Immunotherapy 2015; 6:637-53. [PMID: 24896631 DOI: 10.2217/imt.14.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transplantation tolerance remains an elusive goal, partly due to limitations in our understanding of the interplay between inflammatory mediators and their role in the activation and regulation of T lymphocytes. Although multiple mechanisms acting both centrally and peripherally are responsible for tolerance induction, the signaling pathways leading to activation or regulation of adaptive immunity are often complex, branched, redundant and modulated by the microenvironment's inflammatory milieu. Accumulating evidence clearly indicates that inflammatory cytokines limit the tolerogenic potential of immunomodulatory protocols by supporting priming of the immune system and counteracting regulatory mechanisms, ultimately promoting rejection. In this review, we summarize recent progress in the development of novel therapeutics to manipulate this inflammatory environment and achievements in targeted inhibition of inflammatory cytokine signaling. Ultimately, robust transplant tolerance induction will probably require a multifaceted, holistic approach that integrates the various mechanisms of tolerance induction, incorporates the dynamic alterations in costimulatory requirements of alloreactive T cells, while maintaining endogenous mechanisms of immune regulation.
Collapse
Affiliation(s)
- Saami Khalifian
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
22
|
von Knethen A, Sha LK, Knape T, Kuchler L, Giegerich AK, Schulz M, Hauser IA, Brüne B. Activation of the peroxisome proliferator-activated receptor γ counteracts sepsis-induced T cell cytotoxicity toward alloantigenic target cells. J Mol Med (Berl) 2015; 93:633-44. [PMID: 25559266 DOI: 10.1007/s00109-014-1249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 01/14/2023]
Abstract
UNLABELLED Sepsis still emerges as a major cause of patient death in intensive care units. Therefore, new therapeutic approaches are mandatory. Because during sepsis progression cytotoxic T lymphocytes (CTLs) can be activated in an autoimmune fashion contributing to multiorgan damage, it remains unclear whether CTLs are activated toward alloantigenic cells. This is important for patients receiving an immunosuppressive therapy to permit organ transplantation and, thus, known to be at high risk for developing sepsis. Therefore, we analyzed whether sepsis activates CTL toward alloantigenic target cells and whether this can be inhibited by PPARγ activation, known to block T helper cell responses. To mimic septic conditions, CTLs were isolated from cecal ligation and puncture-operated mice. CTL cytotoxicity was analyzed following a direct alloantigenic activation regime or following classical ex vivo splenocyte-driven activation in a cytotoxicity assay. With this readout, we found that CTL derived from septic mice enhanced cytotoxicity toward alloantigenic target cells, which was lowered by in vivo and ex vivo PPARγ activation. With CTL derived from T cell-specific PPARγ knockout mice, PPARγ activation was ineffective, pointing to a PPARγ-dependent mechanism. In vivo and ex vivo PPARγ activation reduced Fas and granzyme B expression in activated CTL. KEY MESSAGE In the sepsis CLP mouse model, CTLs are activated toward alloantigenic target cells. Sepsis-mediated alloantigenic CTL activation is blocked in vivo by PPARγ activation. PPARγ deletion or antagonization restored rosiglitazone-dependent inhibition of CTL cytotoxicity. PPARγ inhibits the expression of Fas and granzyme B in CTLs.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ramos MIP, Karpus ON, Broekstra P, Aarrass S, Jacobsen SE, Tak PP, Lebre MC. Absence of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling protects against collagen-induced arthritis. Ann Rheum Dis 2015; 74:211-9. [PMID: 24064002 DOI: 10.1136/annrheumdis-2013-203371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Comprehending the mechanisms that regulate activation of autoreactive T cells and B cell antibody production is fundamental for understanding the breakdown in self-tolerance and development of autoimmunity. Here we studied the role of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling in the pathogenesis of collagen-induced arthritis (CIA). METHODS CIA was induced in mice lacking Flt3L (Flt3L(-/-)) and wild-type (WT) littermates (C57/BL6, 8-10 weeks old). Mice were killed in the initial phase (acute phase: experiment 1) and late phase (chronic phase: experiment 2) of the disease. Arthritis severity was assessed using a semiquantitative scoring system (0-4), and histological analysis of cellular infiltration, cartilage destruction and peptidoglycan loss was performed. Phenotypic and functional analysis of T and B cells, FoxP3 expression, activation and lymphocyte costimulatory markers, and cytokine production were performed ex vivo by flow cytometry in lymph nodes. Serum collagen type II (CII)-specific antibodies were measured by ELISA. RESULTS Flt3L(-/-) mice showed a marked decrease in clinical arthritis scores and incidence of arthritis in both acute and chronic phases of CIA compared with WT mice. Moreover, decreased synovial inflammation and joint destruction was observed. Both the magnitude and quality of T cell responses were altered in Flt3L(-/-). In the acute phase, the amount of CII-specific IgG2a antibodies was lower in Flt3L(-/-) than WT mice. CONCLUSIONS These results strongly suggest a role for Flt3L signalling in the development of arthritis.
Collapse
Affiliation(s)
- M I P Ramos
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - O N Karpus
- Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - P Broekstra
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S Aarrass
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S E Jacobsen
- Haematopoietic Stem Cell Laboratory and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - P P Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands University of Cambridge, UK and GlaxoSmithKline, Stevenage, UK
| | - M C Lebre
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Shimabukuro-Vornhagen A, Zoghi S, Liebig TM, Wennhold K, Chemitz J, Draube A, Kochanek M, Blaschke F, Pallasch C, Holtick U, Scheid C, Theurich S, Hallek M, von Bergwelt-Baildon MS. Inhibition of protein geranylgeranylation specifically interferes with CD40-dependent B cell activation, resulting in a reduced capacity to induce T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5294-305. [PMID: 25311809 DOI: 10.4049/jimmunol.1203436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ab-independent effector functions of B cells, such as Ag presentation and cytokine production, have been shown to play an important role in a variety of immune-mediated conditions such as autoimmune diseases, transplant rejection, and graft-versus-host disease. Most current immunosuppressive treatments target T cells, are relatively unspecific, and result in profound immunosuppression that places patients at an increased risk of developing severe infections and cancer. Therapeutic strategies, which interfere with B cell activation, could therefore be a useful addition to the current immunosuppressive armamentarium. Using a transcriptomic approach, we identified upregulation of genes that belong to the mevalonate pathway as a key molecular event following CD40-mediated activation of B cells. Inhibition of 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme of the mevalonate pathway, by lipophilic statins such as simvastatin and atorvastatin resulted in a specific inhibition of B cell activation via CD40 and impaired their ability to act as stimulatory APCs for allospecific T cells. Mechanistically, the inhibitory effect resulted from the inhibition of protein geranylgeranylation subsequent to the depletion of mevalonate, the metabolic precursor for geranylgeranyl. Thus, inhibition of geranylgeranylation either directly through geranylgeranyl transferase inhibitors or indirectly through statins represents a promising therapeutic approach for the treatment of diseases in which Ag presentation by B cells plays a role.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany;
| | - Shahram Zoghi
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Tanja M Liebig
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Jens Chemitz
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Andreas Draube
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany
| | - Matthias Kochanek
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| | - Florian Blaschke
- Department of Cardiology, Charité Campus Virchow-Klinikum, 13353 Berlin, Germany; and Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Christian Pallasch
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Udo Holtick
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Christof Scheid
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany
| | - Michael Hallek
- Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University Hospital of Cologne, 50924 Cologne, Germany; Stem Cell Transplantation Program, University Hospital of Cologne, 50924 Cologne, Germany; Intensive Care Unit and Laboratory for Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany
| |
Collapse
|
25
|
Abstract
T cells are required for significant blood pressure elevation in mouse models of hypertension. Recent evidence suggests that the treatments that raise blood pressure in these animal models also cause oxidation within DCs, resulting in formation of isoketal adducts of self-proteins, which activate antigen-presenting functions of these cells and serve as a source of modified self-antigens. T cells specific for these modified self-antigens then produce cytokines that promote blood pressure elevation, consistent with the idea that hypertension is an autoimmune response to altered self. Here, I will review the new evidence for this idea put forth by Kirabo and colleagues in this issue of the JCI, identify a number of as yet unanswered questions, and discuss some of the therapeutic implications.
Collapse
|
26
|
Ilinskaya AN, Dobrovolskaia MA. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 2014; 171:3988-4000. [PMID: 24724793 PMCID: PMC4243973 DOI: 10.1111/bph.12722] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse.
Collapse
Affiliation(s)
- A N Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| | - M A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederick, MD, USA
| |
Collapse
|
27
|
Gracon ASA, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75:887-94. [PMID: 24979671 PMCID: PMC4357397 DOI: 10.1016/j.humimm.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.
Collapse
Affiliation(s)
- Adam S A Gracon
- Department of Surgery and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Wilkes
- Departments of Medicine, Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Flechner SM, Mulgoankar S, Melton LB, Waid TH, Agarwal A, Miller SD, Fokta F, Getts MT, Frederick TJ, Herrman JJ, Puisis JP, O’Toole L, Sung R, Shihab F, Wiseman AC, Getts DR. First-in-human study of the safety and efficacy of TOL101 induction to prevent kidney transplant rejection. Am J Transplant 2014; 14:1346-55. [PMID: 24751150 PMCID: PMC4404309 DOI: 10.1111/ajt.12698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 02/06/2023]
Abstract
TOL101 is a murine IgM mAb targeting the αβ TCR. Unlike other T cell targets, the αβ TCR has no known intracellular signaling domains and may provide a nonmitogenic target for T cell inactivation. We report the 6-month Phase 2 trial data testing TOL101 in kidney transplantation. The study was designed to identify a dose that resulted in significant CD3 T cell modulation (<25 T cell/mm(3) ), to examine the safety and tolerability of TOL101 and to obtain preliminary efficacy information. Thirty-six patients were enrolled and given 5-10 daily doses of TOL101; 33 patients completed dosing, while three discontinued after two doses due to a self-limiting urticarial rash. Infusion adjustments, antihistamines, steroids and dose escalation of TOL101 reduced the incidence of the rash. Doses of TOL101 above 28 mg resulted in prolonged CD3 modulation, with rapid recovery observed 7 days after therapy cessation. There were no cases of patient or graft loss. Few significant adverse events were reported, with one nosocomial pneumonia. There were five biopsy-confirmed acute cellular rejections (13.9%); however, no donor-specific antibodies were detected. Overall TOL101 was well-tolerated, supporting continued clinical development using the dose escalating 21-28-42-42-42 mg regimen.
Collapse
Affiliation(s)
- S. M. Flechner
- Glickman Urology and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH,Corresponding author: Stuart M. Flechner,
| | - S. Mulgoankar
- Department of Nephrology, St. Barnabus Medical Center, Livingston, NJ
| | - L. B. Melton
- Department of Nephrology, Baylor University Medical Center, Dallas, TX
| | - T. H. Waid
- Department of Nephrology, University of Kentucky, Lexington, KY
| | - A. Agarwal
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - S. D. Miller
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL
| | - F. Fokta
- Tolera Therapeutics, Inc., Kalamazoo, MI
| | | | | | | | | | - L. O’Toole
- Tolera Therapeutics, Inc., Kalamazoo, MI
| | - R. Sung
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - F. Shihab
- Department of Nephrology, University of Utah, Salt Lake City, UT
| | - A. C. Wiseman
- Department of Nephrology, University of Colorado, Denver, CO
| | - D. R. Getts
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL,Tolera Therapeutics, Inc., Kalamazoo, MI
| |
Collapse
|
29
|
Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation. Proc Natl Acad Sci U S A 2014; 111:7735-40. [PMID: 24821788 DOI: 10.1073/pnas.1406218111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major goal for immunotherapy is to tolerize the immune cells that coordinate tissue damage in autoimmune and alloantigen responses. CD4 T cells play a central role in many of these conditions and improved antigen-specific regulation or removal of these cells could revolutionize current treatments. A confounding factor is that little is known about whether and how tolerance is induced in memory CD4 T cells. We used MHC class II tetramers to track and analyze a population of endogenous antigen-specific memory CD4 T cells exposed to soluble peptide in the absence of adjuvant. We found that such memory T cells proliferated and reentered the memory pool apparently unperturbed by the incomplete activation signals provided by the peptide. Upon further restimulation in vivo, CD4 memory T cells that had been previously exposed to peptide proliferated, provided help to primary responding B cells, and migrated to inflamed sites. However, these reactivated memory cells failed to survive. The reduction in T-cell number was marked by low expression of the antiapoptotic molecule B cell lymphoma 2 (Bcl2) and increased expression of activated caspase molecules. Consequently, these cells failed to sustain a delayed-type hypersensitivity response. Moreover, following two separate exposures to soluble antigen, no T-cell recall response and no helper activity for B cells could be detected. These results suggest that the induction of tolerance in memory CD4 T cells is possible but that deletion and permanent removal of the antigen-specific T cells requires reactivation following exposure to the tolerogenic antigen.
Collapse
|
30
|
Lin R, Kim H, Hong J, Li QJ. Biological evaluation of subglutinol a as a novel immunosuppressive agent for inflammation intervention. ACS Med Chem Lett 2014; 5:485-90. [PMID: 24900866 DOI: 10.1021/ml4004809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/10/2014] [Indexed: 12/31/2022] Open
Abstract
Subglutinol A (1) is an immunosuppressive natural product isolated from Fusarium subglutinans, an endophytic fungus from the vine Tripterygium wilfordii. We show that 1 exerts multimodal immune-suppressive effects on activated T cells in vitro: subglutinol A (1) effectively blocks T cell proliferation and survival while profoundly inhibiting pro-inflammatory IFNγ and IL-17 production by fully differentiated effector Th1 and Th17 cells. Our data further reveal that 1 may exert its anti-inflammatory effects by exacerbating mitochondrial damage in T cells. Additionally, we demonstrate that 1 significantly reduces lymphocytic infiltration into the footpad and ameliorates footpad swelling in the mouse model of Th1-driven delayed-type hypersensitivity. These results suggest the potential of 1 as a novel therapeutic for inflammatory diseases.
Collapse
Affiliation(s)
- Regina Lin
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Hyoungsu Kim
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jiyong Hong
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
31
|
Vascularized composite allograft transplant survival in miniature swine: is MHC tolerance sufficient for acceptance of epidermis? Transplantation 2014; 96:966-74. [PMID: 24056624 DOI: 10.1097/tp.0b013e3182a579d0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND We have previously reported that Massachusetts General Hospital miniature swine, which had accepted class I-mismatched kidneys long-term after 12 days of high-dose cyclosporine A, uniformly accepted donor-major histocompatibility complex (MHC)-matched kidneys without immunosuppression but rejected donor MHC-matched split-thickness skin grafts by day 25, without changes in renal graft function or antidonor in vitro responses. We have now tested whether this "split tolerance" would also be observed for the primarily vascularized skin of vascularized composite allografts (VCAs). METHODS Group 1 animals (n=3) received donor MHC-matched VCAs less than 70 days after primary kidney transplant (KTx). Group 2 animals (n=3) received a second donor-matched kidney transplant followed by a donor-matched VCA more than 200 days after primary KTx. RESULTS Animals in Group 1 lost the epidermis on days 28, 30, and 40, with all other components of the VCAs remaining viable. Histology showed cellular infiltration localized to dermal-epidermal junction. One of three recipients of VCAs in Group 2, accepted all components of the VCA, including epidermis (>200 days). The other two recipients lost only the epidermis on days 45 and 85, with survival of the remainder of the VCA long-term. CONCLUSIONS All tissues of a VCA are accepted long-term on animals tolerant of class I-mismatched kidneys, with the exception of epidermis, the survival of which is markedly prolonged compared with split-thickness skin grafts but not indefinite. Exposure of tolerant animals to second donor-matched kidneys before VCA increases the longevity of the VCA epidermis, suggesting an increase in the immunomodulatory mechanisms associated with tolerance of the kidney.
Collapse
|
32
|
Tools and methods for identification and analysis of rare antigen-specific T lymphocytes. EXPERIENTIA SUPPLEMENTUM (2012) 2014; 104:73-88. [PMID: 24214619 DOI: 10.1007/978-3-0348-0726-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T lymphocytes are essential as effector and memory cells for immune defense against infections and as regulatory T cells in the establishment and maintenance of immune tolerance. However, they are also involved in immune pathology being effectors in autoimmune and allergic diseases or suppressors of immunity in cancer, and they often cause problems in transplantation. Therefore, strategies are being developed that allow the in vivo amplification or isolation, in vitro expansion and genetic manipulation of beneficial T cells for adoptive cell therapies or for the tolerization, or elimination of pathogenic T cells. The major goal is to make use of the exquisite antigen specificity of T cells to develop targeted strategies and to develop techniques that allow for the identification and depletion or enrichment of very often rare antigen-specific naïve as well as effector and memory T cells. Such techniques are very useful for immune monitoring of T cell responses in diagnostics and vaccination and for the development of T cell-based assays for the replacement of animal testing in immunotoxicology to identify contact allergens and drugs that cause adverse reactions.
Collapse
|
33
|
A yeast chemical genetics approach identifies the compound 3,4,5-trimethoxybenzyl isothiocyanate as a calcineurin inhibitor. FEBS Lett 2013; 588:455-8. [DOI: 10.1016/j.febslet.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
|
34
|
The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol Immunol 2013; 11:14-6. [PMID: 24336164 DOI: 10.1038/cmi.2013.60] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023] Open
Abstract
With their ability to undergo unlimited self-renewal in culture and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great potential for the treatment of currently incurable diseases. Two hESC-based cell therapies for spinal cord injury and macular degeneration have been advanced into human clinical trials. Despite this rapid progress, one key challenge of hESC-based cell therapy is the allogeneic immune rejection of hESC-derived cells by recipients. This problem could be mitigated by a recent breakthrough in the technology of induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient-specific somatic cells with defined factors, which could become a renewable source of autologous cells for cell therapy. However, recent studies revealing the abnormal epigenetics, genomic stability and immunogenicity of iPSCs have raised safety concerns over iPSC-based therapy. Recent findings related to the immunogenicity of iPSC derivatives will be summarized in this review.
Collapse
|
35
|
Thell K, Hellinger R, Schabbauer G, Gruber CW. Immunosuppressive peptides and their therapeutic applications. Drug Discov Today 2013; 19:645-53. [PMID: 24333193 PMCID: PMC4042018 DOI: 10.1016/j.drudis.2013.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022]
Abstract
T cell signaling has a pivotal role in autoimmunity and immunosuppression. Immunosuppressive pharmaceuticals often exhibit severe side-effects in patients. Gene-encoded peptides have potential as immunosuppressive drug candidates. Cyclotides are stable peptides that offer enhanced oral administration properties.
The immune system is vital for detecting and evading endogenous and exogenous threats to the body. Failure to regulate this homeostasis leads to autoimmunity, which is often associated with malfunctioning T cell signaling. Several medications are available to suppress over-reactive T lymphocytes, but many of the currently marketed drugs produce severe and life-threatening side-effects. Ribosomally synthesized peptides are gaining recognition from the pharmaceutical industry for their enhanced selectivity and decreased toxicity compared with small molecules; in particular, circular peptides exhibit remarkable stability and increased oral administration properties. For example, plant cyclotides effectively inhibit T lymphocyte proliferation. They are composed of a head-to-tail cyclized backbone and a cystine-knot motif, which confers them with remarkable stability, thus making them attractive pharmaceutical tools.
Collapse
Affiliation(s)
- Kathrin Thell
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Gernot Schabbauer
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria.
| |
Collapse
|
36
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
37
|
Thude H, Schipler AD, Treszl A, Peine S, Koch M, Sterneck M, Nashan B. Lack of association between CTLA-4 and PDCD1 polymorphisms and acute rejection in German liver transplant recipients. Hum Immunol 2013; 74:1041-5. [DOI: 10.1016/j.humimm.2013.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 11/28/2022]
|
38
|
Martin A, Tisch RM, Getts DR. Manipulating T cell-mediated pathology: Targets and functions of monoclonal antibody immunotherapy. Clin Immunol 2013; 148:136-47. [DOI: 10.1016/j.clim.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/16/2022]
|
39
|
Su Y, Rossi R, De Groot AS, Scott DW. Regulatory T cell epitopes (Tregitopes) in IgG induce tolerance in vivo and lack immunogenicity per se. J Leukoc Biol 2013; 94:377-83. [PMID: 23729499 DOI: 10.1189/jlb.0912441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tregitopes are a set of epitopes, derived from IgG, that bind to MHCII, activate nTregs, and promote tolerance. We have now confirmed that coadministration of Tregitopes with a range of proteins (autoantigens and nominal antigens, such as OVA) in vitro and in vivo leads to suppression of T cell and antibody responses to the test antigens. In this study, we demonstrate that Tregitopes are not immunogenic in vivo even when emulsified with strong adjuvants, such as IFA or CFA. Moreover, in vivo administration of Tregitopes with IFA or CFA does not induce Th1 or Th2 cytokine expression under restimulation conditions in vitro. We investigated tolerance induction by codelivering Tregitopes with OVA using B cells. When B cells were pulsed with OVA plus Tregitopes and transferred into naïve mice, we found that cellular and humoral immune responses to the OVA were suppressed. As a result of their ability to induce Tregs and the absence of immunogenicity in the context of strong adjuvants, Tregitopes might be considered a novel immunomodulatory approach for the suppression of immune responses to protein therapeutics (such as FVIII and mAb), as well as for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yan Su
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
40
|
Doria A, Niewczas MA, Fiorina P. Can existing drugs approved for other indications retard renal function decline in patients with type 1 diabetes and nephropathy? Semin Nephrol 2012; 32:437-44. [PMID: 23062984 PMCID: PMC3474984 DOI: 10.1016/j.semnephrol.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting evidence from human, animal, and in vitro studies indicates that existing drugs, developed to treat other disorders, also might be effective in preventing or slowing the progression of diabetic nephropathy to end-stage renal disease. Examples of such drugs include the urate-lowering agent allopurinol, the anti-tumor necrosis factor agents etanercept and infliximab, and the immunomodulating drug abatacept. Because some of these medications are already on the market and have been used for a number of years for other indications, they can be tested immediately in human beings for a beneficial effect on renal function in diabetes. Special emphasis should be placed on evaluating the use of these drugs early in the course of diabetic nephropathy when renal damage is most likely to be reversible and interventions can yield the greatest delay to end-stage renal disease.
Collapse
Affiliation(s)
- Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston
- Harvard Medical School, Boston, USA
| | - Monika A. Niewczas
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston
- Harvard Medical School, Boston, USA
| | - Paolo Fiorina
- Harvard Medical School, Boston, USA
- Transplantation Research Center (TRC), Nephrology Division, Children’s Hospital and Brigham and Women's Hospital
- San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
del Rio ML, Jones ND, Buhler L, Norris P, Shintani Y, Ware CF, Rodriguez-Barbosa JI. Selective blockade of herpesvirus entry mediator-B and T lymphocyte attenuator pathway ameliorates acute graft-versus-host reaction. THE JOURNAL OF IMMUNOLOGY 2012; 188:4885-96. [PMID: 22490863 DOI: 10.4049/jimmunol.1103698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cosignaling network mediated by the herpesvirus entry mediator (HVEM; TNFRSF14) functions as a dual directional system that involves proinflammatory ligand, lymphotoxin that exhibits inducible expression and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT; TNFSF14), and the inhibitory Ig family member B and T lymphocyte attenuator (BTLA). To dissect the differential contributions of HVEM/BTLA and HVEM/LIGHT interactions, topographically-specific, competitive, and nonblocking anti-HVEM Abs that inhibit BTLA binding, but not LIGHT, were developed. We demonstrate that a BTLA-specific competitor attenuated the course of acute graft-versus-host reaction in a murine F(1) transfer semiallogeneic model. Selective HVEM/BTLA blockade did not inhibit donor T cell infiltration into graft-versus-host reaction target organs, but decreased the functional activity of the alloreactive T cells. These results highlight the critical role of HVEM/BTLA pathway in the control of the allogeneic immune response and identify a new therapeutic target for transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Immunobiology Section, Institute of Biomedicine, University of Leon, 24007 Leon, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Jun S, Ochoa-Repáraz J, Zlotkowska D, Hoyt T, Pascual DW. Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β. J Neuroimmunol 2012; 245:39-47. [PMID: 22418032 DOI: 10.1016/j.jneuroim.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 01/03/2023]
Abstract
To assess the potency of regulatory T (Treg) cells induced against an irrelevant Ag, mice were orally vaccinated with Salmonella expressing Escherichia coli colonization factor antigen I fimbriae. Isolated CD25⁺ and CD25⁻CD4⁺ T cells were adoptively transferred to naive mice, and Treg cells effectively protected against experimental autoimmune encephalomyelitis (EAE), unlike Treg cells from Salmonella vector-immunized mice. This protection was abrogated upon in vivo neutralization of TGF-β, resulting in elevated IL-17 and loss of IL-4 and IL-10 production. Thus, Treg cells induced to irrelevant Ags offer a novel approach to treat autoimmune diseases independent of auto-Ag.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Bystander Effect/immunology
- Disease Models, Animal
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Epitopes, T-Lymphocyte/immunology
- Female
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-17/physiology
- Interleukin-4/antagonists & inhibitors
- Interleukin-4/biosynthesis
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/immunology
- Primary Cell Culture
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Sangmu Jun
- Department of Immunology and Infectious Diseases, Montana State University, P.O. Box 173610, Bozeman, MT 59717-3610, USA
| | | | | | | | | |
Collapse
|
43
|
Mendieta-Zerón H. Developing immunologic tolerance for transplantation at the fetal stage. Immunotherapy 2012; 3:1499-512. [PMID: 22091685 DOI: 10.2217/imt.11.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the shortage of human organs for transplantation, the waiting lists are increasing annually and consequently so is the time and deaths during the wait. As most immune suppression therapy is not antigen specific and the risk of infection tends to increase, scientists are looking for new options for immunosuppression or immunotolerance. Tolerance induction would avoid the complications caused by immunosupressive drugs. As such, taking into account the experience with autoimmune diseases, one strategy could be immune modulation-induced changes in T-cell cytokine secretion or antigen therapy; however, most clinical trials have failed. Gene transfer of MHC genes across species may be used to induce tolerance to xenogenic solid organs. Other options are induction of central tolerance by the establishment of mixed chimerism through hematopoietic stem cell transplantation and the induction of 'operational tolerance' through immunodeviation involving dendritic or Tregs. I propose that, as the recognition and tolerance of proteins takes place in the thymus, this organ should be the main target for immunotolerance research protocols even as early as during the fetal development.
Collapse
|