1
|
Sanchez JM, Voltà-Durán E, Parladé E, Mangues R, Villaverde A, Vázquez E, Unzueta U. Surpassing protein specificity in biomimetics of bacterial amyloids. Int J Biol Macromol 2025; 296:139635. [PMID: 39788253 DOI: 10.1016/j.ijbiomac.2025.139635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn+2, that promotes protein-protein interactions. While stereospecificity is a main architectonic feature of natural amyloids, the potential for synthetic approaches to create hybrid protein materials remains unexplored. Such materials could enable the occurrence and synchronized local application of diverse proteins in predefined molar ratios, for coupled enzymatic reactions or delivery of synergistically acting polypeptides. Here, we report on the fabrication of artificial protein granules with amyloidal architecture formed by combining two structurally distinct polypeptides. Specifically, we tested co-aggregation of the pairs GFP/IRFP and GFP/β-galactosidase. The formation of hybrid microparticles was confirmed through FRET and complementary methodologies, demonstrating that the His-Zn clustering technology does not require sequential or structural homologies between aggregating polypeptides. This approach opens new avenues for the development of functional depots that capitalize on synergistic protein functionalities, paving the way for next-generation functional materials.
Collapse
Affiliation(s)
- Julieta M Sanchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón Mangues
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain.
| |
Collapse
|
2
|
López-Cano A, Ferrer-Miralles N, Sánchez J, Carratalá JV, Rodriguez XR, Ratera I, Guasch J, Pich OQ, Bierge P, Garcia-de-la-Maria C, Miro JM, Garcia-Fruitós E, Arís A. A Novel Generation of Tailored Antimicrobial Drugs Based on Recombinant Multidomain Proteins. Pharmaceutics 2023; 15:pharmaceutics15041068. [PMID: 37111554 PMCID: PMC10146347 DOI: 10.3390/pharmaceutics15041068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023] Open
Abstract
Antibiotic resistance has exponentially increased during the last years. It is necessary to develop new antimicrobial drugs to prevent and treat infectious diseases caused by multidrug- or extensively-drug resistant (MDR/XDR)-bacteria. Host Defense Peptides (HDPs) have a versatile role, acting as antimicrobial peptides and regulators of several innate immunity functions. The results shown by previous studies using synthetic HDPs are only the tip of the iceberg, since the synergistic potential of HDPs and their production as recombinant proteins are fields practically unexplored. The present study aims to move a step forward through the development of a new generation of tailored antimicrobials, using a rational design of recombinant multidomain proteins based on HDPs. This strategy is based on a two-phase process, starting with the construction of the first generation molecules using single HDPs and further selecting those HDPs with higher bactericidal efficiencies to be combined in the second generation of broad-spectrum antimicrobials. As a proof of concept, we have designed three new antimicrobials, named D5L37βD3, D5L37D5L37 and D5LAL37βD3. After an in-depth exploration, we found D5L37D5L37 to be the most promising one, since it was equally effective against four relevant pathogens in healthcare-associated infections, such as methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis (MRSE) and MDR Pseudomonas aeruginosa, being MRSA, MRSE and P. aeruginosa MDR strains. The low MIC values and versatile activity against planktonic and biofilm forms reinforce the use of this platform to isolate and produce unlimited HDP combinations as new antimicrobial drugs by effective means.
Collapse
Affiliation(s)
- Adrià López-Cano
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.L.-C.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (N.F.-M.); (J.S.); (J.V.C.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; (X.R.R.); (I.R.); (J.G.)
| | - Julieta Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (N.F.-M.); (J.S.); (J.V.C.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Jose Vicente Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (N.F.-M.); (J.S.); (J.V.C.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Xavier Rodriguez Rodriguez
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; (X.R.R.); (I.R.); (J.G.)
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Imma Ratera
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; (X.R.R.); (I.R.); (J.G.)
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Judith Guasch
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; (X.R.R.); (I.R.); (J.G.)
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Oscar Q. Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (O.Q.P.); (P.B.)
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (O.Q.P.); (P.B.)
| | - Cristina Garcia-de-la-Maria
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, 08007 Barcelona, Spain; (C.G.-d.-l.-M.); (J.M.M.)
| | - Jose M. Miro
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, 08007 Barcelona, Spain; (C.G.-d.-l.-M.); (J.M.M.)
- CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.L.-C.); (E.G.-F.)
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Food Research (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.L.-C.); (E.G.-F.)
- Correspondence: ; Tel.: +34-93-467-40-40
| |
Collapse
|
3
|
Ahmad A, Khan JM. pH-sensitive endosomolytic peptides in gene and drug delivery: Endosomal escape and current challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Kokotidou C, Tsitouroudi F, Nistikakis G, Vasila M, Papanikolopoulou K, Kretsovali A, Mitraki A. Adenovirus Fibers as Ultra-Stable Vehicles for Intracellular Nanoparticle and Protein Delivery. Biomolecules 2022; 12:biom12020308. [PMID: 35204809 PMCID: PMC8869412 DOI: 10.3390/biom12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Protein-based carriers are promising vehicles for the intracellular delivery of therapeutics. In this study, we designed and studied adenovirus protein fiber constructs with potential applications as carriers for the delivery of protein and nanoparticle cargoes. We used as a basic structural framework the fibrous shaft segment of the adenovirus fiber protein comprising of residues 61–392, connected to the fibritin foldon trimerization motif at the C-terminal end. A fourteen-amino-acid biotinylation sequence was inserted immediately after the N-terminal, His-tagged end of the construct in order to enable the attachment of a biotin moiety in vivo. We report herein that this His-tag biotinylated construct folds into thermally and protease-stable fibrous nanorods that can be internalized into cells and are not cytotoxic. Moreover, they can bind to proteins and nanoparticles through the biotin–streptavidin interaction and mediate their delivery to cells. We demonstrate that streptavidin-conjugated gold nanoparticles can be transported into NIH3T3 fibroblast and HeLa cancer cell lines. Furthermore, two streptavidin-conjugated model proteins, alkaline phosphatase and horseradish peroxidase can be delivered into the cell cytoplasm in their enzymatically active form. This work is aimed at establishing the proof-of-principle for the rational engineering of diverse functionalities onto the initial protein structural framework and the use of adenovirus fiber-based proteins as nanorods for the delivery of nanoparticles and model proteins. These constructs could constitute a stepping stone for the development of multifunctional and modular fibrous nanorod platforms that can be tailored to applications at the sequence level.
Collapse
Affiliation(s)
- Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
| | - Fani Tsitouroudi
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
| | - Georgios Nistikakis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
| | - Marita Vasila
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
| | - Katerina Papanikolopoulou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology (IMBB), FORTH, 70013 Heraklion, Crete, Greece;
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Crete, Greece; (C.K.); (G.N.); (M.V.); (K.P.)
- Institute of Electronic Structure and Laser (IESL), FORTH, 70013 Heraklion, Crete, Greece;
- Correspondence:
| |
Collapse
|
5
|
Wang Y, Sun R, Xu X, Du M, Zhu B, Wu C. Mechanism of enhancing the water-solubility and stability of curcumin by using self-assembled cod protein nanoparticles at an alkaline pH. Food Funct 2021; 12:12696-12705. [PMID: 34842883 DOI: 10.1039/d1fo02833b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin (Cur) is a bioactive phytochemical which is claimed to have several health-promoting benefits, whose applications are challenging due to its poor water-solubility, chemical instability, and low bioavailability. In this research, Cur was encapsulated in the cod protein (CP) using a pH-driven method to enhance its solubility and stability. The physicochemical and structural properties of cod protein-curcumin nanoparticles (CP-Cur) formed were characterized. Fluorescence spectroscopy (FL), ultraviolet spectroscopy (UV), circular dichroism (CD), and dynamic light scattering (DLS) results collectively suggest that the protein originally with a molten-globule state refolded into a more ordered structure after neutralization, during which Cur was incorporated. Fluorescence quenching and isothermal titration calorimetry (ITC) further showed that the CP/Cur binding was mainly driven by hydrophobic interactions, resulting in static fluorescence quenching and energy release. Up to 99.50% of Cur was loaded in the CP delivery system. Furthermore, the thermal stability and photostability of Cur were greatly improved due to the protection of the protein. The present study proved that cod protein could be a great potential edible carrier for encapsulating curcumin.
Collapse
Affiliation(s)
- Yuying Wang
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China. .,College of Food Science, Jilin University, Changchun 130015, China
| | - Ruitong Sun
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| | - Xianbing Xu
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China. .,College of Food Science, Jilin University, Changchun 130015, China
| | - Chao Wu
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Serna N, Carratalá JV, Conchillo-Solé O, Martínez-Torró C, Unzueta U, Mangues R, Ferrer-Miralles N, Daura X, Vázquez E, Villaverde A. Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4. Pharmaceutics 2021; 13:1922. [PMID: 34834337 PMCID: PMC8621837 DOI: 10.3390/pharmaceutics13111922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
CXCR4 is a cytokine receptor used by HIV during cell attachment and infection. Overexpressed in the cancer stem cells of more than 20 human neoplasias, CXCR4 is a convenient antitumoral drug target. T22 is a polyphemusin-derived peptide and an effective CXCR4 ligand. Its highly selective CXCR4 binding can be exploited as an agent for the cell-targeted delivery and internalization of associated antitumor drugs. Sharing chemical and structural traits with antimicrobial peptides (AMPs), the capability of T22 as an antibacterial agent remains unexplored. Here, we have detected T22-associated antimicrobial activity and biofilm formation inhibition over Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, in a spectrum broader than the reference AMP GWH1. In contrast to GWH1, T22 shows neither cytotoxicity over mammalian cells nor hemolytic activity and is active when displayed on protein-only nanoparticles through genetic fusion. Under the pushing need for novel antimicrobial agents, the discovery of T22 as an AMP is particularly appealing, not only as its mere addition to the expanding catalogue of antibacterial drugs. The recognized clinical uses of T22 might allow its combined and multivalent application in complex clinical conditions, such as colorectal cancer, that might benefit from the synchronous destruction of cancer stem cells and local bacterial biofilms.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, 08916 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, 08916 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.S.); (J.V.C.); (O.C.-S.); (C.M.-T.); (N.F.-M.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| |
Collapse
|
7
|
Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles. Colloids Surf B Biointerfaces 2021; 208:112123. [PMID: 34571468 DOI: 10.1016/j.colsurfb.2021.112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022]
Abstract
The capability of HeLa cells to internalize large spherical microparticles has been evaluated by using inorganic, magnetic microparticles of 1 and 2.8 µm of diameter. In both absence but especially under the action of a magnet, both types of particles were uptaken, in absence of cytotoxicity, by a significant percentage of cells, in a non-endosomal process clearly favored by the magnetic field. The engulfed particles efficiently drive inside the cells chemically associated proteins such as GFP and human alpha-galactosidase A, without any apparent loss of protein functionalities. While 1 µm particles are completely engulfed, at least a fraction of 2.8 µm particles remain embedded into the cell membrane, with only a fraction of their surface in cytoplasmic contact. The detected tolerance to endosomal-independent cell penetration of microscale objects is not then restricted to organic, soft materials (such as bacterial inclusion bodies) as previously described, but it is a more general phenomenon also applicable to inorganic materials. In this scenario, the use of magnetic particles in combination with external magnetic fields can represent a significant improvement in the internalization efficiency of such agents optimized as drug carriers. This fact offers a wide potential in the design and engineering of novel particulate vehicles for therapeutic, diagnostic and theragnostic applications.
Collapse
|
8
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
9
|
Sánchez-García L, Voltà-Durán E, Parladé E, Mazzega E, Sánchez-Chardi A, Serna N, López-Laguna H, Mitstorfer M, Unzueta U, Vázquez E, Villaverde A, de Marco A. Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29406-29415. [PMID: 34129336 PMCID: PMC9262252 DOI: 10.1021/acsami.1c08092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanobodies represent valuable tools in advanced therapeutic strategies but their small size (∼2.5 × ∼ 4 nm) and limited valence for interactions might pose restrictions for in vivo applications, especially regarding their modest capacity for multivalent and cooperative interaction. In this work, modular protein constructs have been designed, in which nanobodies are fused to protein domains to provide further functionalities and to favor oligomerization into stable self-assembled nanoparticles. The nanobody specificity for their targets is maintained in such supramolecular complexes. Also, their diameter around 70 nm and multivalent interactivity should favor binding and penetrability into target cells via solvent-exposed receptor. These concepts have been supported by unrelated nanobodies directed against the ricin toxin (A3C8) and the Her2 receptor (EM1), respectively, that were modified with the addition of a reporter protein and a hexa-histidine tag at the C-terminus that promotes self-assembling. The A3C8-based nanoparticles neutralize the ricin toxin efficiently, whereas the EM1-based nanoparticles enable to selective imaging Her2-positive cells. These findings support the excellent extracellular and intracellular functionality of nanobodies organized in form of oligomeric nanoscale assemblies.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Elisa Mazzega
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica Nova Gorica 5000, Slovenia
| | - Alejandro Sánchez-Chardi
- Servei
de Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Mara Mitstorfer
- University
of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, 1190 Vienna, Austria
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma̲ Claret 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica Nova Gorica 5000, Slovenia
| |
Collapse
|
10
|
Cano-Garrido O, Álamo P, Sánchez-García L, Falgàs A, Sánchez-Chardi A, Serna N, Parladé E, Unzueta U, Roldán M, Voltà-Durán E, Casanova I, Villaverde A, Mangues R, Vázquez E. Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4 + Cancers. Cancers (Basel) 2021; 13:2929. [PMID: 34208189 PMCID: PMC8230831 DOI: 10.3390/cancers13122929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
The accumulated molecular knowledge about human cancer enables the identification of multiple cell surface markers as highly specific therapeutic targets. A proper tumor targeting could significantly avoid drug exposure of healthy cells, minimizing side effects, but it is also expected to increase the therapeutic index. Specifically, colorectal cancer has a particularly poor prognosis in late stages, being drug targeting an appropriate strategy to substantially improve the therapeutic efficacy. In this study, we have explored the potential of the human albumin-derived peptide, EPI-X4, as a suitable ligand to target colorectal cancer via the cell surface protein CXCR4, a chemokine receptor overexpressed in cancer stem cells. To explore the potential use of this ligand, self-assembling protein nanoparticles have been generated displaying an engineered EPI-X4 version, which conferred a modest CXCR4 targeting and fast and high level of cell apoptosis in tumor CXCR4+ cells, in vitro and in vivo. In addition, when EPI-X4-based building blocks are combined with biologically inert polypeptides containing the CXCR4 ligand T22, the resulting biparatopic nanoparticles show a dramatically improved biodistribution in mouse models of CXCR4+ human cancer, faster cell internalization and enhanced target cell death when compared to the version based on a single ligand. The generation of biparatopic materials opens exciting possibilities in oncotherapies based on high precision drug delivery based on the receptor CXCR4.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, 08025 Barcelona, Spain
- Instituto de Investigación Contra la Leucemia Josep Carreras, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Favaro MTP, Rodrigues-Jesus MJ, Venceslau-Carvalho AA, Alves RPDS, Pereira LR, Pereira SS, Andreata-Santos R, de Souza Ferreira LC. Nanovaccine based on self-assembling nonstructural protein 1 boosts antibody responses to Zika virus. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102334. [PMID: 33188909 DOI: 10.1016/j.nano.2020.102334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022]
Abstract
Self-assembling proteins may be generated after the addition of short specific amino acid sequences at both the N- and C-terminal ends. To date, this approach has not been evaluated regarding the impact of self-assembled proteins on the induction of immune responses. In the present study, we report the application of this experimental approach to the immunogenicity of protein antigens by measuring the antibody responses in mice immunized with nanoparticles made with a recombinant form of Zika virus nonstructural protein 1 (∆NS1). The results clearly indicated that ∆NS1-derived nanoparticles (NP-∆NS1) are assembled into a 3-dimensional structure with a high degree of multimerization. While ∆NS1 proved to be a weak immunogen, immunization with NP-∆NS1 enhanced subunit vaccines' immunogenicity with improved longevity in vaccinated mice. Thus, immunization with self-assembled antigens (nanovaccines) represents a new and promising strategy to enhance NS1-specific antibodies' induction based on purified recombinant proteins.
Collapse
Affiliation(s)
- Marianna Teixeira Pinho Favaro
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Monica Josiane Rodrigues-Jesus
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rúbens Prince Dos Santos Alves
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Santos Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Robert Andreata-Santos
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Serna N, Carratalá JV, Parladé E, Sánchez-Chardi A, Aviñó A, Unzueta U, Mangues R, Eritja R, Ferrer-Miralles N, Vazquez E, Villaverde A. Developing Protein-Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57746-57756. [PMID: 33325705 DOI: 10.1021/acsami.0c18317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel concept about bifunctional antimicrobial drugs, based on self-assembling protein nanoparticles, has been evaluated here over two biofilm-forming pathogens, namely Pseudomonas aeruginosa and Staphylococcus aureus. Two structurally different antimicrobial peptides (GWH1 and PaDBS1R1) were engineered to form regular nanoparticles of around 35 nm, to which the small molecular weight drug Floxuridine was covalently conjugated. Both the assembled peptides and the chemical, a conventional cytotoxic drug used in oncotherapy, showed potent antimicrobial activities that were enhanced by the combination of both molecules in single pharmacological entities. Therefore, the resulting prototypes show promises as innovative nanomedicines, being potential alternatives to conventional antibiotics. The biological performance and easy fabrication of these materials fully support the design of protein-based hybrid constructs for combined molecular therapies, expected to have broad applicability beyond antimicrobial medicines. In addition, the approach taken here validates the functional exploration and repurposing of antitumoral drugs, which at low concentrations perform well as unexpected biofilm-inhibiting agents.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, 08034 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
13
|
Serna N, Cano-Garrido O, Sánchez JM, Sánchez-Chardi A, Sánchez-García L, López-Laguna H, Fernández E, Vázquez E, Villaverde A. Release of functional fibroblast growth factor-2 from artificial inclusion bodies. J Control Release 2020; 327:61-69. [DOI: 10.1016/j.jconrel.2020.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
|
14
|
Colarusso A, Lauro C, Calvanese M, Parrilli E, Tutino ML. Improvement of Pseudoalteromonas haloplanktis TAC125 as a Cell Factory: IPTG-Inducible Plasmid Construction and Strain Engineering. Microorganisms 2020; 8:microorganisms8101466. [PMID: 32987756 PMCID: PMC7598627 DOI: 10.3390/microorganisms8101466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Our group has used the marine bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) as a platform for the successful recombinant production of “difficult” proteins, including eukaryotic proteins, at low temperatures. However, there is still room for improvement both in the refinement of PhTAC125 expression plasmids and in the bacterium’s intrinsic ability to accumulate and handle heterologous products. Here, we present an integrated approach of plasmid design and strain engineering finalized to increment the recombinant expression and optimize the inducer uptake in PhTAC125. To this aim, we developed the IPTG-inducible plasmid pP79 and an engineered PhTAC125 strain called KrPL LacY+. This mutant was designed to express the E. coli lactose permease and to produce only a truncated version of the endogenous Lon protease through an integration-deletion strategy. In the wild-type strain, pP79 assured a significantly better production of two reporters in comparison to the most recent expression vector employed in PhTAC125. Nevertheless, the use of KrPL LacY+ was crucial to achieving satisfying production levels using reasonable IPTG concentrations, even at 0 °C. Both the wild-type and the mutant recombinant strains are characterized by an average graded response upon IPTG induction and they will find different future applications depending on the desired levels of expression.
Collapse
|
15
|
Lu Y, Jiang W, Wu X, Huang S, Huang Z, Shi Y, Dai Q, Chen J, Ren F, Gao S. Peptide T7-modified polypeptide with disulfide bonds for targeted delivery of plasmid DNA for gene therapy of prostate cancer. Int J Nanomedicine 2018; 13:6913-6927. [PMID: 30464450 PMCID: PMC6214593 DOI: 10.2147/ijn.s180957] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vectors are essential for successful gene delivery. In the present study, a tumor-targeting cationic gene vector, known as the disulfide cross-linked arginine-aspartic acid peptide modified by HAIYPRH (T7) peptide (CRD-PEG-T7), was designed for targeted delivery of plasmid DNA (pDNA) for gene therapy of prostate cancer (PCa). Methods The structure of CRD-PEG-T7 was determined and the cellular uptake efficacy, gene transfection efficacy, cytotoxicity, and the targeting effect of the CRD-PEG-T7–plasmid DNA complex were examined. Results The results demonstrated that the CRD-PEG-T7–plasmid DNA complex was nanosized and had a positively charged surface, good cellular uptake efficacy, minimal cytotoxicity, and a dual-targeting effect as compared with the CRD-PEG–plasmid DNA complex. The peptide T7-modifed new delivery system was able to target the highly expressed transferrin receptor (TfR) on tumor cells with an efficiency four-fold higher than that of the non-modified system. Conclusion The results above indicatd that the CRD-PEG-T7–plasmid DNA complex may prove to be a promising gene delivery system targeting bone-metastatic tumor.
Collapse
Affiliation(s)
- Yue Lu
- Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Wenjun Jiang
- Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Xin Wu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Saixu Huang
- Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Zhiyong Huang
- Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Yamin Shi
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Qi Dai
- Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Jianming Chen
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Fuzheng Ren
- Shanghai Key Lab New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China,
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China,
| |
Collapse
|
16
|
Sánchez JM, Sánchez-García L, Pesarrodona M, Serna N, Sánchez-Chardi A, Unzueta U, Mangues R, Vázquez E, Villaverde A. Conformational Conversion during Controlled Oligomerization into Nonamylogenic Protein Nanoparticles. Biomacromolecules 2018; 19:3788-3797. [PMID: 30052033 DOI: 10.1021/acs.biomac.8b00924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein materials are rapidly gaining interest in materials sciences and nanomedicine because of their intrinsic biocompatibility and full biodegradability. The controlled construction of supramolecular entities relies on the controlled oligomerization of individual polypeptides, achievable through different strategies. Because of the potential toxicity of amyloids, those based on alternative molecular organizations are particularly appealing, but the structural bases on nonamylogenic oligomerization remain poorly studied. We have applied spectrofluorimetry and spectropolarimetry to identify the conformational conversion during the oligomerization of His-tagged cationic stretches into regular nanoparticles ranging around 11 nm, useful for tumor-targeted drug delivery. We demonstrate that the novel conformation acquired by the proteins, as building blocks of these supramolecular assemblies, shows different extents of compactness and results in a beta structure enrichment that enhances their structural stability. The conformational profiling presented here offers clear clues for understanding and tailoring the process of nanoparticle formation through the use of cationic and histidine rich stretches in the context of protein materials usable in advanced nanomedical strategies.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina, CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Córdoba, Argentina , Av. Velez Sarsfield 1611 , X5016GCA Córdoba , Argentina
| | - Laura Sánchez-García
- Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | | | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau , 08025 Barcelona , Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain.,Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau , 08025 Barcelona , Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina , Universitat Autònoma de Barcelona , Bellaterra 08193 Barcelona , Spain.,Departament de Genètica i de Microbiologia , Universitat Autònoma de Barcelona , Bellaterra, 08193 Barcelona , Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Bellaterra, 08193 Barcelona , Spain
| |
Collapse
|
17
|
Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1777-1786. [DOI: 10.1016/j.nano.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
|
18
|
Unzueta U, Cespedes MV, Sala R, Alamo P, Sánchez-Chardi A, Pesarrodona M, Sánchez-García L, Cano-Garrido O, Villaverde A, Vázquez E, Mangues R, Seras-Franzoso J. Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. J Control Release 2018; 279:29-39. [PMID: 29641987 DOI: 10.1016/j.jconrel.2018.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/07/2023]
Abstract
Sustained release of drug delivery systems (DDS) has the capacity to increase cancer treatment efficiency in terms of drug dosage reduction and subsequent decrease of deleterious side effects. In this regard, many biomaterials are being investigated but none offers morphometric and functional plasticity and versatility comparable to protein-based nanoparticles (pNPs). Here we describe a new DDS by which pNPs are fabricated as bacterial inclusion bodies (IB), that can be easily isolated, subcutaneously injected and used as reservoirs for the sustained release of targeted pNPs. Our approach combines the high performance of pNP, regarding specific cell targeting and biodistribution with the IB supramolecular organization, stability and cost effectiveness. This renders a platform able to provide a sustained source of CXCR4-targeted pNPs that selectively accumulate in tumor cells in a CXCR4+ colorectal cancer xenograft model. In addition, the proposed system could be potentially adapted to any other protein construct offering a plethora of possible new therapeutic applications in nanomedicine.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Cespedes
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Rita Sala
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Patricia Alamo
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | | | - Mireia Pesarrodona
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Laura Sánchez-García
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Olivia Cano-Garrido
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Vázquez
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.
| | - Ramón Mangues
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB-SantPau), Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
| | - Joaquin Seras-Franzoso
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
19
|
de Pinho Favaro MT, Sánchez-García L, Sánchez-Chardi A, Roldán M, Unzueta U, Serna N, Cano-Garrido O, Azzoni AR, Ferrer-Miralles N, Villaverde A, Vázquez E. Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine (Lond) 2018; 13:255-268. [DOI: 10.2217/nnm-2017-0294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Nanoparticle–cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. Results: By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. Conclusion: The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av Candido Rondon, 400, 13083–875 Campinas, SP, Brazil
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | | | - Mónica Roldán
- Unitat de Microscòpia Confocal, IPER, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Adriano Rodrigues Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, No. 380, 05508-900, São Paulo, SP, Brazil
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
20
|
Rejinold NS, Han Y, Yoo J, Seok HY, Park JH, Kim YC. Evaluation of cell penetrating peptide coated Mn:ZnS nanoparticles for paclitaxel delivery to cancer cells. Sci Rep 2018; 8:1899. [PMID: 29382898 PMCID: PMC5789852 DOI: 10.1038/s41598-018-20255-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
This work aimed at formulating paclitaxel (PTX) loaded cell penetrating peptide (CPP) coated Mn doped ZnS nanoparticles (Mn:ZnS NPs) for improved anti-cancer efficacy in vitro and in vivo. The developed PTX loaded Mn:ZnS NPs with different CPPs (PEN, pVEC and R9) showed enhanced anti-cancer effect compared to bare PTX, which has been validated by MTT assay followed by apoptosis assay and DNA fragmentation analysis. The in vivo bio-distribution and anti-cancer efficacy was studied on breast cancer xenograft model showing maximum tumor localization and enhanced therapeutic efficacy with R9 coated Mn:ZnS NPs (R9:Mn:ZnS NPs) and was confirmed by H/E staining. Thus, R9:Mn:ZnS NPs could be an ideal theranostic nano-carrier for PTX with enhanced the rapeutic efficacy toward cancer cells, where penetration and sustainability of therapeutics are essential.
Collapse
Affiliation(s)
- N Sanoj Rejinold
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yunho Han
- Department of Brain and Bioengineering, Institute of Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jisang Yoo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hae Yong Seok
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Ho Park
- Department of Brain and Bioengineering, Institute of Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Unzueta U, Serna N, Sánchez-García L, Roldán M, Sánchez-Chardi A, Mangues R, Villaverde A, Vázquez E. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks. NANOTECHNOLOGY 2017; 28:505102. [PMID: 29072576 DOI: 10.1088/1361-6528/aa963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Núñez-Toldrà R, Dosta P, Montori S, Ramos V, Atari M, Borrós S. Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(β-amino ester)s. Acta Biomater 2017; 53:152-164. [PMID: 28159719 DOI: 10.1016/j.actbio.2017.01.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/14/2017] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
Controlling pluripotent stem cell differentiation via genetic manipulation is a promising technique in regenerative medicine. However, the lack of safe and efficient delivery vehicles limits this application. Recently, a new family of poly(β-amino ester)s (pBAEs) with oligopeptide-modified termini showing high transfection efficiency of both siRNA and DNA plasmid has been developed. In this study, oligopeptide-modified pBAEs were used to simultaneously deliver anti-OCT3/4 siRNA, anti-NANOG siRNA, and RUNX2 plasmid to cells from the dental pulp with pluripotent-like characteristics (DPPSC) in order to promote their osteogenic differentiation. Results indicate that transient inhibition of the pluripotency marker OCT3/4 and the overexpression of RUNX2 at day 7 of differentiation markedly increased and accelerated the expression of osteogenic markers. Furthermore, terminally-differentiated cells exhibited higher matrix mineralization and alkaline phosphatase activity. Finally, cell viability and genetic stability assays indicate that this co-delivery system has high chromosomal stability and minimal cytotoxicity. Therefore, we conclude that such co-delivery strategy is a safe and a quick option for the improvement of DPPSC osteogenic differentiation. STATEMENT OF SIGNIFICANCE Controlling pluripotent stem cell differentiation via genetic manipulation is a promising technique in regenerative medicine. However, the lack of safe and efficient delivery vehicles limits this application. In this study, we propose the use of a new family of oligopeptide-modified pBAEs developed in our group to control the differentiation of dental pulp pluripotential stem cells (DPPSC). In order to promote their osteogenic differentiation. The strategy proposed markedly increased and accelerated the expression of osteogenic markers, cell mineralization and alkaline phosphatase activity. Finally, cell viability and genetic stability assays indicated that this co-delivery system has high chromosomal stability and minimal cytotoxicity. These findings open a new interesting path in the usage of non-viral gene delivery systems for the control of pluripotential stem cell differentiation.
Collapse
|
23
|
Unzueta U, Seras-Franzoso J, Céspedes MV, Saccardo P, Cortés F, Rueda F, Garcia-Fruitós E, Ferrer-Miralles N, Mangues R, Vázquez E, Villaverde A. Engineering tumor cell targeting in nanoscale amyloidal materials. NANOTECHNOLOGY 2017; 28:015102. [PMID: 27893441 DOI: 10.1088/0957-4484/28/1/015102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zeng Q, Gammon JM, Tostanoski LH, Chiu YC, Jewell CM. In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers. ACS Biomater Sci Eng 2016; 3:195-205. [PMID: 28286864 PMCID: PMC5338335 DOI: 10.1021/acsbiomaterials.6b00414] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
![]()
Microneedles
(MNs) are micron-scale polymeric or metallic structures
that offer distinct advantages for vaccines by efficiently targeting
skin-resident immune cells, eliminating injection-associated pain,
and improving patient compliance. These advantages, along with recent
studies showing therapeutic benefits achieved using traditional intradermal
injections in human cancer patients, suggest MN delivery might enhance
cancer vaccines and immunotherapies. We recently developed a new class
of polyelectrolyte multilayers based on the self-assembly of model
peptide antigens and molecular toll-like receptor agonists (TLRa)
into ultrathin, conformal coatings. Here, we reasoned that these immune
polyelectrolyte multilayers (iPEMs) might be a useful platform for
assembling cancer vaccine components on MN arrays for intradermal
delivery from these substrates. Using conserved human melanoma antigens
and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be
assembled on MNs in an automated fashion. These films, prepared with
up to 128 layers, are approximately 200 nm thick but provide cancer
vaccine cargo loading >225 μg/cm2. In cell culture,
iPEM cargo released from MNs is internalized by primary dendritic
cells, promotes activation of these cells, and expands T cells during
coculture. In mice, application of iPEM-coated MNs results in the
codelivery of tumor antigen and CpG through the skin, expanding tumor-specific
T cells during initial MN applications and resulting in larger memory
recall responses during a subsequent booster MN application. This
study support MNs coated with PEMs built from tumor vaccine components
as a well-defined, modular system for generating tumor-specific immune
responses, enabling new approaches that can be explored in combination
with checkpoint blockade or other combination cancer therapies.
Collapse
Affiliation(s)
- Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Yu-Chieh Chiu
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, Maryland 21201, United States; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, Maryland 21201, United States
| |
Collapse
|
25
|
Yang L, Liu A, Cao S, Putri RM, Jonkheijm P, Cornelissen JJLM. Self-Assembly of Proteins: Towards Supramolecular Materials. Chemistry 2016; 22:15570-15582. [DOI: 10.1002/chem.201601943] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Liulin Yang
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Aijie Liu
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Shuqin Cao
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Rindia M. Putri
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Laboratory for Biomolecular Nanotechnology; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
26
|
Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1241-51. [DOI: 10.1016/j.nano.2016.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/14/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
|
27
|
Guan X, Li C, Wang D, Sun W, Gai X. A tumor-targeting protein nanoparticle based on Tat peptide and enhanced green fluorescent protein. RSC Adv 2016. [DOI: 10.1039/c5ra27411g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A protein-based nanoparticle containing cell penetrating peptides (CPPs) and enhanced green fluorescent protein (EGFP) was developed through a genetic engineering method.
Collapse
Affiliation(s)
- Xingang Guan
- Life Science Research Center
- Beihua University
- Jilin 132013
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Chun Li
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| | - Dan Wang
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| | - Weiqi Sun
- School of Public Health
- Beihua University
- Jilin 132013
- P. R. China
| | - Xiaodong Gai
- School of Basic Medical Sciences
- Beihua University
- Jilin 132013
- P. R. China
| |
Collapse
|
28
|
Guan X, Hu X, Cui F, Li Y, Jing X, Xie Z. EGFP-Based Protein Nanoparticles with Cell-Penetrating Peptide for Efficient siRNA Delivery. Macromol Biosci 2015; 15:1484-9. [DOI: 10.1002/mabi.201500163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Xingang Guan
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- Life Science Research Center; Beihua University; Jilin 132013 P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Fengchao Cui
- Key Laboratory of Synthetic Rubber; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xiabing Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
29
|
Yao C, Tai Z, Wang X, Liu J, Zhu Q, Wu X, Zhang L, Zhang W, Tian J, Gao Y, Gao S. Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA. Int J Nanomedicine 2015; 10:3403-16. [PMID: 26056440 PMCID: PMC4431505 DOI: 10.2147/ijn.s82413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low efficiency and significant toxicity are the main obstacles to successful gene delivery. We have developed a cationic reduction-responsive vector based on a disulfide cross-linked stearylated polyarginine peptide modified with histidine (C-SHR) for DNA delivery. The structure of the C-SHR was characterized, and the in vitro and in vivo transfection efficiency and cytotoxicity of C-SHR/plasmid DNA complexes were examined. Compared with non-cross-linked stearylated polyarginine peptide (SHR), C-SHR increased the intracellular uptake and dissociation behavior of the complexes. In addition, the gene transfection efficiency of C-SHR/plasmid DNA complexes in HEK293 and HeLa cells was improved and was comparable with that of bPEI-25K/plasmid DNA complexes, and the cytotoxicity of C-SHR was significantly less than that of bPEI-25K. Importantly, the in vivo gene transfection efficiency of C-SHR/plasmid DNA complexes was five fold higher than that of SHR/plasmid DNA complexes, suggesting that C-SHR is an efficient non-viral vector for DNA delivery.
Collapse
Affiliation(s)
- Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoyu Wang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiyong Liu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Quangang Zhu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China ; Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lijuan Zhang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai, People's Republic of China
| | - Jing Tian
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Unzueta U, Céspedes MV, Vázquez E, Ferrer-Miralles N, Mangues R, Villaverde A. Towards protein-based viral mimetics for cancer therapies. Trends Biotechnol 2015; 33:253-8. [DOI: 10.1016/j.tibtech.2015.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 01/22/2023]
|
31
|
Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 2015; 33:277-87. [PMID: 25698504 DOI: 10.1016/j.biotechadv.2015.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Luciana Negro-Demontel
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Zhikun Xu
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Váquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
32
|
Cano-Garrido O, Rueda FL, Sànchez-García L, Ruiz-Ávila L, Bosser R, Villaverde A, García-Fruitós E. Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Fact 2014; 13:167. [PMID: 25471301 PMCID: PMC4308903 DOI: 10.1186/s12934-014-0167-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/15/2014] [Indexed: 12/12/2022] Open
Abstract
Background Escherichia coli has been a main host for the production of recombinant proteins of biomedical interest, but conformational stress responses impose severe bottlenecks that impair the production of soluble, proteolytically stable versions of many protein species. In this context, emerging Generally Recognized As Safe (GRAS) bacterial hosts provide alternatives as cell factories for recombinant protein production, in which limitations associated to the use of Gram-negative microorganisms might result minimized. Among them, Lactic Acid Bacteria and specially Lactococcus lactis are Gram-positive GRAS organisms in which recombinant protein solubility is generically higher and downstream facilitated, when compared to E. coli. However, deep analyses of recombinant protein quality in this system are still required to completely evaluate its performance and potential for improvement. Results We have explored here the conformational quality (through specific fluorescence emission) and solubility of an aggregation-prone GFP variant (VP1GFP) produced in L. lactis. In this context, our results show that parameters such as production time, culture conditions and growth temperature have a dramatic impact not only on protein yield, but also on protein solubility and conformational quality, that are particularly favored under fermentative metabolism. Conclusions Metabolic regime and cultivation temperature greatly influence solubility and conformational quality of an aggregation-prone protein in L. lactis. Specifically, the present study proves that anaerobic growth is the optimal condition for recombinant protein production purposes. Besides, growth temperature plays an important role regulating both protein solubility and conformational quality. Additionally, our results also prove the great versatility for the manipulation of this bacterial system regarding the improvement of functionality, yield and quality of recombinant proteins in this species. These findings not only confirm L. lactis as an excellent producer of recombinant proteins but also reveal room for significant improvement by the exploitation of external protein quality modulators.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Fabian L Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Laura Sànchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Luis Ruiz-Ávila
- Spherium Biomed S.L., Avda. Joan XXIII, 10, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Ramon Bosser
- Spherium Biomed S.L., Avda. Joan XXIII, 10, 08950, Esplugues de Llobregat, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
33
|
Negro-Demontel ML, Saccardo P, Giacomini C, Yáñez-Muñoz RJ, Ferrer-Miralles N, Vazquez E, Villaverde A, Peluffo H. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14047. [PMID: 26015985 PMCID: PMC4362363 DOI: 10.1038/mtm.2014.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector. Moreover, the lack of detailed comparative studies between different vectors under similar conditions hampers the selection of an ideal vector for a given pathological condition. The potential use of lentiviral vectors versus several modular protein-based nanovectors was compared using a controlled cortical impact model of TBI under the same gene therapy conditions. We show that variables such as protein/DNA ratio, incubation volume, and presence of serum or chloroquine in the transfection medium impact on both nanovector formation and transfection efficiency in vitro. While lentiviral vectors showed GFP protein 1 day after TBI and increased expression at 14 days, nanovectors showed stable and lower GFP transgene expression from 1 to 14 days. No toxicity after TBI by any of the vectors was observed as determined by resulting levels of IL-1β or using neurological sticky tape test. In fact, both vector types induced functional improvement per se.
Collapse
Affiliation(s)
- María Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay ; Departmento de Histología y Embriología, Facultad de Medicina, UDELAR , Montevideo, Uruguay
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Cecilia Giacomini
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, UDELAR , Montevideo, Uruguay
| | | | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay ; Departmento de Histología y Embriología, Facultad de Medicina, UDELAR , Montevideo, Uruguay
| |
Collapse
|
34
|
Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. Int J Pharm 2014; 473:286-95. [DOI: 10.1016/j.ijpharm.2014.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
35
|
Rueda F, Cano-Garrido O, Mamat U, Wilke K, Seras-Franzoso J, García-Fruitós E, Villaverde A. Production of functional inclusion bodies in endotoxin-free Escherichia coli. Appl Microbiol Biotechnol 2014; 98:9229-38. [PMID: 25129611 DOI: 10.1007/s00253-014-6008-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022]
Abstract
Escherichia coli is the workhorse for gene cloning and production of soluble recombinant proteins in both biotechnological and biomedical industries. The bacterium is also a good producer of several classes of protein-based self-assembling materials such as inclusion bodies (IBs). Apart from being a relatively pure source of protein for in vitro refolding, IBs are under exploration as functional, protein-releasing materials in regenerative medicine and protein replacement therapies. Endotoxin removal is a critical step for downstream applications of therapeutic proteins. The same holds true for IBs as they are often highly contaminated with cell-wall components of the host cells. Here, we have investigated the production of IBs in a recently developed endotoxin-free E. coli strain. The characterization of IBs revealed this mutant as a very useful cell factory for the production of functional endotoxin-free IBs that are suitable for the use at biological interfaces without inducing endotoxic responses in human immune cells.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Céspedes MV, Unzueta U, Tatkiewicz W, Sánchez-Chardi A, Conchillo-Solé O, Álamo P, Xu Z, Casanova I, Corchero JL, Pesarrodona M, Cedano J, Daura X, Ratera I, Veciana J, Ferrer-Miralles N, Vazquez E, Villaverde A, Mangues R. In vivo architectonic stability of fully de novo designed protein-only nanoparticles. ACS NANO 2014; 8:4166-76. [PMID: 24708510 DOI: 10.1021/nn4055732] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.
Collapse
Affiliation(s)
- María Virtudes Céspedes
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-SantPau) , Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nair BG, Nakano Y, Ito Y, Abe H. Transmembrane molecular transport through nanopores formed by protein nanotubes. Chem Commun (Camb) 2014; 50:602-4. [DOI: 10.1039/c3cc45907a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Unzueta U, Saccardo P, Domingo-Espín J, Cedano J, Conchillo-Solé O, García-Fruitós E, Céspedes MV, Corchero JL, Daura X, Mangues R, Ferrer-Miralles N, Villaverde A, Vázquez E. Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:535-41. [PMID: 24269989 DOI: 10.1016/j.nano.2013.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/23/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED By recruiting functional domains supporting DNA condensation, cell binding, internalization, endosomal escape and nuclear transport, modular single-chain polypeptides can be tailored to associate with cargo DNA for cell-targeted gene therapy. Recently, an emerging architectonic principle at the nanoscale has permitted tagging protein monomers for self-organization as protein-only nanoparticles. We have studied here the accommodation of plasmid DNA into protein nanoparticles assembled with the synergistic assistance of end terminal poly-arginines (R9) and poly-histidines (H6). Data indicate a virus-like organization of the complexes, in which a DNA core is surrounded by a solvent-exposed protein layer. This finding validates end-terminal cationic peptides as pleiotropic tags in protein building blocks for the mimicry of viral architecture in artificial viruses, representing a promising alternative to the conventional use of viruses and virus-like particles for nanomedicine and gene therapy. FROM THE CLINICAL EDITOR Finding efficient gene delivery methods still represents a challenge and is one of the bottlenecks to the more widespread application of gene therapy. The findings presented in this paper validate the application of end-terminal cationic peptides as pleiotropic tags in protein building blocks for "viral architecture mimicking" in artificial viruses, representing a promising alternative to the use of viruses and virus-like particles for gene delivery.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Joan Domingo-Espín
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Juan Cedano
- Laboratory of Immunology, Regional Norte, Universidad de la República,, Salto, Uruguay
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain; Grup d'Oncogènesi i Antitumorals, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain; Grup d'Oncogènesi i Antitumorals, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain.
| |
Collapse
|
39
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Balandrán-Quintana RR, Valdéz-Covarrubias MA, Mendoza-Wilson AM, Sotelo-Mundo RR. α-Lactalbumin hydrolysate spontaneously produces disk-shaped nanoparticles. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Unzueta U, Saccardo P, Ferrer-Miralles N, García-Fruitós E, Vazquez E, Villaverde A, Cortés F, Mangues R. Improved performance of protein-based recombinant gene therapy vehicles by tuning downstream procedures. Biotechnol Prog 2013; 29:1458-63. [DOI: 10.1002/btpr.1798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Francisco Cortés
- Servei de Cultius Cel·lulars, Producció d'Anticossos i Citometria, (SCAC), Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau; C/Sant Antoni Maria Claret, 167 08025 Barcelona Spain
| |
Collapse
|
42
|
Cano-Garrido O, Rodríguez-Carmona E, Díez-Gil C, Vázquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, García-Fruitós E. Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 2013; 9:6134-42. [PMID: 23220450 DOI: 10.1016/j.actbio.2012.11.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/20/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Unzueta U, Ferrer-Miralles N, Cedano J, Zikung X, Pesarrodona M, Saccardo P, García-Fruitós E, Domingo-Espín J, Kumar P, Gupta KC, Mangues R, Villaverde A, Vazquez E. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials 2012; 33:8714-22. [PMID: 22954515 DOI: 10.1016/j.biomaterials.2012.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 01/11/2023]
Abstract
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Unzueta U, Céspedes MV, Ferrer-Miralles N, Casanova I, Cedano J, Corchero JL, Domingo-Espín J, Villaverde A, Mangues R, Vázquez E. Intracellular CXCR4⁺ cell targeting with T22-empowered protein-only nanoparticles. Int J Nanomedicine 2012; 7:4533-44. [PMID: 22923991 PMCID: PMC3423154 DOI: 10.2147/ijn.s34450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. RESULTS Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4⁺ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. CONCLUSION Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - María Virtudes Céspedes
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Isolda Casanova
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Juan Cedano
- Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, Uruguay
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Joan Domingo-Espín
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Ramón Mangues
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| |
Collapse
|
45
|
Patra HK, Dasgupta AK. Cancer cell response to nanoparticles: criticality and optimality. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:842-52. [DOI: 10.1016/j.nano.2011.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
|
46
|
Enzymatic characterization of highly stable human alpha-galactosidase A displayed on magnetic particles. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Ferrer-Miralles N, Corchero JL, Kumar P, Cedano JA, Gupta KC, Villaverde A, Vazquez E. Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine. Microb Cell Fact 2011; 10:101. [PMID: 22136342 PMCID: PMC3339332 DOI: 10.1186/1475-2859-10-101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022] Open
Abstract
Histidine-rich peptides are commonly used in recombinant protein production as purification tags, allowing the one-step affinity separation of the His-tagged proteins from the extracellular media or cell extracts. Genetic engineering makes feasible the post-purification His-tag removal by inserting, between the tag and the main protein body, a target site for trans-acting proteases or a self-proteolytic peptide with regulatable activities. However, for technical ease, His tags are often not removed and the fusion proteins eventually used in this form. In this commentary, we revise the powerful biological properties of histidine-rich peptides as endosomolytic agents and as architectonic tags in nanoparticle formation, for which they are exploited in drug delivery and other nanomedical applications. These activities, generally unknown to biotechnologists, can unwillingly modulate the functionality and biotechnological performance of recombinant proteins in which they remain trivially attached.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Fact 2011; 10:92. [PMID: 22046962 PMCID: PMC3247854 DOI: 10.1186/1475-2859-10-92] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 12/23/2022] Open
Abstract
Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery.
Collapse
|
49
|
Domingo-Espín J, Vazquez E, Ganz J, Conchillo O, García-Fruitós E, Cedano J, Unzueta U, Petegnief V, Gonzalez-Montalbán N, Planas AM, Daura X, Peluffo H, Ferrer-Miralles N, Villaverde A. Nanoparticulate architecture of protein-based artificial viruses is supported by protein-DNA interactions. Nanomedicine (Lond) 2011; 6:1047-61. [PMID: 21651444 DOI: 10.2217/nnm.11.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED AIM & METHODS: We have produced two chimerical peptides of 10.2 kDa, each contain four biologically active domains, which act as building blocks of protein-based nonviral vehicles for gene therapy. In solution, these peptides tend to aggregate as amorphous clusters of more than 1000 nm, while the presence of DNA promotes their architectonic reorganization as mechanically stable nanometric spherical entities of approximately 80 nm that penetrate mammalian cells through arginine-glycine-aspartic acid cell-binding domains and promote significant transgene expression levels. RESULTS & CONCLUSION The structural analysis of the protein in these hybrid nanoparticles indicates a molecular conformation with predominance of α-helix and the absence of cross-molecular, β-sheet-supported protein interactions. The nanoscale organizing forces generated by DNA-protein interactions can then be observed as a potentially tunable, critical factor in the design of protein-only based artificial viruses for gene therapy.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology & Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Domingo-Espín J, Unzueta U, Saccardo P, Rodríguez-Carmona E, Corchero JL, Vázquez E, Ferrer-Miralles N. Engineered biological entities for drug delivery and gene therapy protein nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:247-98. [PMID: 22093221 PMCID: PMC7173510 DOI: 10.1016/b978-0-12-416020-0.00006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Ugutz Unzueta
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Escarlata Rodríguez-Carmona
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - José Luís Corchero
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| |
Collapse
|