1
|
Zheng Z, Zhang H, Yang J, Liu X, Chen L, Li W, Mi S, Zhou H, Zheng W, Xue W, Lin D, Ding W, Li S, Huang W, Yang L. Recent advances in structural and functional design of electrospun nanofibers for wound healing. J Mater Chem B 2025; 13:5226-5263. [PMID: 40237139 DOI: 10.1039/d4tb02718c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The global prevalence of acute and chronic wounds has surged, escalating healthcare burdens and necessitating advanced therapeutic strategies for effective wound management. Electrospun nanofibers have emerged as promising biomimetic platforms for tissue engineering and drug delivery, due to their structural resemblance to the native extracellular matrix (ECM), high porosity, and tunable surface-to-volume ratio. Recent advances in structural design have expanded their applications from conventional two-dimensional (2D) wound dressings to multifunctional three-dimensional (3D) architectures, enabling enhanced mechanical adaptability, bioactive molecule loading, and spatiotemporal control over wound microenvironments. These innovations leverage nanofibers' customizable topography and composition to recapitulate critical ECM cues, thereby fostering cell proliferation, angiogenesis, and immunomodulation during tissue regeneration. This review systematically evaluates cutting-edge strategies focusing on optimizing 2D arrangements and the structural design of multilayered and functionally patterned 3D electrospun nanofibers in wound healing applications. We further present the advantages and limitations of various nanofiber structures, along with the key challenges and future directions for advancing electrospun nanofibers specifically designed for enhanced wound healing.
Collapse
Affiliation(s)
- Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siqi Mi
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weihan Zheng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wanting Ding
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Iorio F, El Khatib M, Wöltinger N, Turriani M, Di Giacinto O, Mauro A, Russo V, Barboni B, Boccaccini AR. Electrospun poly(ε-caprolactone)/poly(glycerol sebacate) aligned fibers fabricated with benign solvents for tendon tissue engineering. J Biomed Mater Res A 2025; 113:e37794. [PMID: 39295227 DOI: 10.1002/jbm.a.37794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.
Collapse
Affiliation(s)
- Francesco Iorio
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Natalie Wöltinger
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maura Turriani
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Oriana Di Giacinto
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Agro-Food and Environmental Technology, Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
3
|
Wang W, Lin X, Tu T, Guo Z, Song Z, Jiang Y, Zhou B, Lei D, Wang X, Zhang W, Zhou G, Yi B, Zhang P, Liu W. Mechanical loading on cell-free polymer composite scaffold enhances in situ regeneration of fully functional Achilles tendon in a rabbit model. BIOMATERIALS ADVANCES 2024; 163:213950. [PMID: 38972278 DOI: 10.1016/j.bioadv.2024.213950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Traditional tendon engineering using cell-loaded scaffold has limited application potential due to the need of autologous cells. We hypothesize that potent mechanical loading can efficiently induce in situ Achilles tendon regeneration in a rabbit model by using a cell-free porous composite scaffold. In this study, melt-spinning was used to fabricate PGA (polyglycolic acid) and PLA (polylactic acid) filament fibers as well as non-woven PGA fibers. The PLA/PGA (4:2) filament fibers were further braided into a hybrid yarn,which was knitted into a PLA/PGA tubular mesh with potent mechanical property for sustaining natural tendon strain. The results showed that a complete cross-section of Achilles tendon created a model of full mechanical loading on the bridging scaffold, which could efficiently induce in situ tendon regeneration by promoting host cell infiltration, matrix production and tissue remodeling. Histologically, mechanical loading assisted in forming parallel aligned collagen fibers and tenocytes in a fashion similar to those of native tendon. Transmission electron microscope further demonstrated that mechanical strain induced collagen fibril development by increasing fibril diameter and forming bipolar structure, which resulted in enhanced mechanical properties. Interestingly, the synergistic effect between mechanical loading and hyaluronic acid modification was also observed on the induced tenogenic differentiation of infiltrated host fibroblasts. In conclusion, potent mechanical loading is the key inductive microenvironment for in situ tendon regeneration for this polymer-based composite scaffold with proper matrix modification, which may serve as a universal scaffold product for tendon regeneration.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Xunxun Lin
- Department of Plastic Surgery, The 1st affiliated hospital of Sun Yat-sen University. Guangzhou, PR China
| | - Tian Tu
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zheng Guo
- Textile College, Zhongyuan University of Technology, Zhengzhou, PR China
| | - Zhenfeng Song
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang, PR China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Dong Lei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China
| | - Bingcheng Yi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qing Dao, PR China.
| | | | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue engineering Center of China, Shanghai, PR China.
| |
Collapse
|
4
|
Liu S, Al-Danakh A, Wang H, Sun Y, Wang L. Advancements in scaffold for treating ligament injuries; in vitro evaluation. Biotechnol J 2024; 19:e2300251. [PMID: 37974555 DOI: 10.1002/biot.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haowen Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Xie X, Xu J, Lin J, Chen L, Ding D, Hu Y, Han K, Li C, Wang F, Zhao J, Wang L. Micro-nano hierarchical scaffold providing temporal-matched biological constraints for tendon reconstruction. Biofabrication 2023; 16:015018. [PMID: 38100814 DOI: 10.1088/1758-5090/ad1608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Due to the limitations of tendon biology, high-quality tendon repair remains a clinical and scientific challenge. Here, a micro-nano hierarchical scaffold is developed to promote orderly tendon regeneration by providing temporal-matched biological constraints. In short, fibrin (Fb), which provides biological constraints, is loaded into poly (DL-lactide-co-glycolide) nanoyarns with suitable degradation cycles (Fb-loaded nanofiber yarns (Fb-NY)). Then further combined with braiding technology, temporary chemotactic Fb scaffolds with tendon extracellular matrix-like structures are obtained to initiate the regeneration process. At the early stage of healing (2 w), the regeneration microenvironment is regulated (inducing M2 macrophages and restoring the early blood supply necessary for healing) by Fb, and the alignment of cells and collagen is induced by nanoyarn. At the late healing stage (8 w), with the degradation of Fb-NY, non-functional vascular regression occurs, and the newborn tissues gradually undergo load-bearing remodeling, restoring the anvascularous and ordered structure of the tendon. In summary, the proposed repair strategy provides temporal-matched biological constraints, offering a potential pathway to reconstruct the ordered structure and function of tendons.
Collapse
Affiliation(s)
- Xiaojing Xie
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Jing Lin
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Liang Chen
- National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Danzhi Ding
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yage Hu
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
6
|
Tu T, Shi Y, Zhou B, Wang X, Zhang W, Zhou G, Mo X, Wang W, Wu J, Liu W. Type I collagen and fibromodulin enhance the tenogenic phenotype of hASCs and their potential for tendon regeneration. NPJ Regen Med 2023; 8:67. [PMID: 38092758 PMCID: PMC10719373 DOI: 10.1038/s41536-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Our previous work demonstrated the tendon-derived extracellular matrix (ECM) extracts as vital niches to specifically direct mesenchymal stem cells towards tenogenic differentiation. This study aims to further define the effective ECM molecules capable of teno-lineage induction on human adipose-derived stem cells (hASCs) and test their function for tendon engineering. By detecting the teno-markers expression levels in hASCs exposed to various substrate coatings, collagen I (COL1) and fibromodulin (FMOD) were identified to be the key molecules as a combination and further employed to the modification of poly(L-lactide-co-ε-caprolactone) electrospun nanoyarns, which showed advantages in inducting seeded hASCs for teno-lineage specific differentiation. Under dynamic mechanical loading, modified scaffold seeded with hASCs formed neo-tendon in vitro at the histological level and formed better tendon tissue in vivo with mature histology and enhanced mechanical properties. Primary mechanistic investigation with RNA sequencing demonstrated that the inductive mechanism of these two molecules for hASCs tenogenic differentiation was directly correlated with positive regulation of peptidase activity, regulation of cell-substrate adhesion and regulation of cytoskeletal organization. These biological processes were potentially affected by LOC101929398/has-miR-197-3p/TENM4 ceRNA regulation axis. In summary, COL1 and FMOD in combination are the major bioactive molecules in tendon ECM for likely directing tenogenic phenotype of hASCs and certainly valuable for hASCs-based tendon engineering.
Collapse
Affiliation(s)
- Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yuan Shi
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyu Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Tissue Engineering Center of China, Shanghai, 200241, China.
| |
Collapse
|
7
|
Song W, Ma Z, Wang X, Wang Y, Wu D, Wang C, He D, Kong L, Yu W, Li JJ, Li H, He Y. Macroporous Granular Hydrogels Functionalized with Aligned Architecture and Small Extracellular Vesicles Stimulate Osteoporotic Tendon-To-Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304090. [PMID: 37867219 PMCID: PMC10700691 DOI: 10.1002/advs.202304090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Osteoporotic tendon-to-bone healing (TBH) after rotator cuff repair (RCR) is a significant orthopedic challenge. Considering the aligned architecture of the tendon, inflammatory microenvironment at the injury site, and the need for endogenous cell/tissue infiltration, there is an imminent need for an ideal scaffold to promote TBH that has aligned architecture, ability to modulate inflammation, and macroporous structure. Herein, a novel macroporous hydrogel comprising sodium alginate/hyaluronic acid/small extracellular vesicles from adipose-derived stem cells (sEVs) (MHA-sEVs) with aligned architecture and immunomodulatory ability is fabricated. When implanted subcutaneously, MHA-sEVs significantly improve cell infiltration and tissue integration through its macroporous structure. When applied to the osteoporotic RCR model, MHA-sEVs promote TBH by improving tendon repair through macroporous aligned architecture while enhancing bone regeneration by modulating inflammation. Notably, the biomechanical strength of MHA-sEVs is approximately two times higher than the control group, indicating great potential in reducing postoperative retear rates. Further cell-hydrogel interaction studies reveal that the alignment of microfiber gels in MHA-sEVs induces tenogenic differentiation of tendon-derived stem cells, while sEVs improve mitochondrial dysfunction in M1 macrophages (Mφ) and inhibit Mφ polarization toward M1 via nuclear factor-kappaB (NF-κb) signaling pathway. Taken together, MHA-sEVs provide a promising strategy for future clinical application in promoting osteoporotic TBH.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhijie Ma
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yifei Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Di Wu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chongyang Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Dan He
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Lingzhi Kong
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Weilin Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jiao Jiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNew South Wales2007Australia
| | - Haiyan Li
- Chemical and Environmental Engineering DepartmentSchool of EngineeringSTEM CollegeRMIT University124 La Trobe St.MelbourneVictoria3000Australia
| | - Yaohua He
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
- Department of Orthopedic SurgeryJinshan District Central Hospital affiliated to Shanghai University of Medicine & Health SciencesJinshan Branch of Shanghai Sixth People's HospitalShanghai201500China
| |
Collapse
|
8
|
Ryan CN, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. Physicochemical cues are not potent regulators of human dermal fibroblast trans-differentiation. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100079. [PMID: 37720487 PMCID: PMC10499661 DOI: 10.1016/j.bbiosy.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 09/19/2023] Open
Abstract
Due to their inherent plasticity, dermal fibroblasts hold great promise in regenerative medicine. Although biological signals have been well-established as potent regulators of dermal fibroblast function, it is still unclear whether physiochemical cues can induce dermal fibroblast trans-differentiation. Herein, we evaluated the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human dermal fibroblast cultures. Our data indicate that tissue culture plastic and collagen type I coating increased cell proliferation and metabolic activity. None of the assessed in vitro microenvironment modulators affected cell viability. Anisotropic surface topography induced bidirectional cell morphology, especially on more rigid (1,000 kPa and 130 kPa) substrates. Macromolecular crowding increased various collagen types, but not fibronectin, deposition. Macromolecular crowding induced globular extracellular matrix deposition, independently of the properties of the substrate. At day 14 (longest time point assessed), macromolecular crowding downregulated tenascin C (in 9 out of the 14 groups), aggrecan (in 13 out of the 14 groups), osteonectin (in 13 out of the 14 groups), and collagen type I (in all groups). Overall, our data suggest that physicochemical cues (such surface topography, substrate rigidity, collagen coating and macromolecular crowding) are not as potent as biological signals in inducing dermal fibroblast trans-differentiation.
Collapse
Affiliation(s)
- Christina N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, University of Galway, Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
9
|
Golafshan N, Castilho M, Daghrery A, Alehosseini M, van de Kemp T, Krikonis K, de Ruijter M, Dal-Fabbro R, Dolatshahi-Pirouz A, Bhaduri SB, Bottino MC, Malda J. Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12735-12749. [PMID: 36854044 PMCID: PMC11022588 DOI: 10.1021/acsami.2c21256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy.
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States
| | - Morteza Alehosseini
- Technical University of Denmark, Department of Health Technology, Lyngby, Denmark
| | - Tom van de Kemp
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Konstantinos Krikonis
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Mylene de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Sarit B. Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, Ohio, United States
- EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, Virginia, United States
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Li K, Zhang X, Wang D, Tuan RS, Ker DFE. Synergistic effects of growth factor-based serum-free medium and tendon-like substrate topography on tenogenesis of mesenchymal stem cells. BIOMATERIALS ADVANCES 2023; 146:213316. [PMID: 36736265 DOI: 10.1016/j.bioadv.2023.213316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Addressing clinical challenges for tendon injuries requires a deeper understanding of the effects that biological and biophysical cues have on tenogenesis. Although prior studies have identified tenogenic growth factors (GFs) or elucidated the effects of substrate topography on tenocyte behavior, few have characterized their combined effect in the presence of a tendon-like substrate. In this study, we assessed the effect of biological (GFs) and biophysical (substrate topography) cues on tenogenic proliferation and differentiation under defined, serum-free conditions. Specifically, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured in a serum-free culture medium containing a GF cocktail comprised of fibroblast growth factor-2 (FGF-2), transforming growth factor-beta 3 (TGF-β3), and insulin-like growth factor-1 (IGF-1), either alone or in combination with tendon-like substrate topography produced by replica casting of tendon tissue sections. Our data demonstrated that the use of serum-free GF cocktail medium alone promoted hMSC proliferation, as shown via DNA staining as well as Ki67 protein levels and gene expression. In particular, gene expression of Ki67 was increased by 8.46-fold in all three donors relative to serum-free medium control. Also, serum-free GF cocktail promoted tenogenic differentiation, on the basis of expression of tendon-associated gene and protein markers, scleraxis (SCX), tenascin C (TNC), and collagen type I (COL1A1) including increased normalized collagen production by 1.4-fold in two donors relative to serum-free medium control. Interestingly, hMSCs cultured on a tendon-like substrate exhibited highly oriented cell morphology and extracellular matrix (ECM) alignment reminiscent of tendon. In particular, when this GF cocktail was combined with tendon-like topography, they showed a synergistically increased expression of tendon-related markers and anisotropic organization of ECM proteins with moderate-to-large effect sizes. Together, in addition to showing the utility of a GF cocktail for expansion and differentiation of tenocyte-like cells, our findings clearly demonstrate the synergistic relationship between GF-mediated and substrate topography-related effects on hMSC tenogenic differentiation. This information provides insights into the design of strategies that combine biological and biophysical cues for ex vivo tenocyte production and tendon tissue engineering.
Collapse
Affiliation(s)
- Ke Li
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
11
|
Wang S, Yao Z, Zhang X, Li J, Huang C, Ouyang Y, Qian Y, Fan C. Energy-Supporting Enzyme-Mimic Nanoscaffold Facilitates Tendon Regeneration Based on a Mitochondrial Protection and Microenvironment Remodeling Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202542. [PMID: 36000796 PMCID: PMC9631092 DOI: 10.1002/advs.202202542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Indexed: 05/15/2023]
Abstract
Tendon injury is a tricky and prevalent motor system disease, leading to compromised daily activity and disability. Insufficient regenerative capability and dysregulation of immune microenvironment are the leading causes of functional loss. First, this work identifies persistent oxidative stress and mitochondrial impairment in the regional tendon tissues postinjury. Therefore, a smart scaffold incorporating the enzyme mimicry nanoparticle-ceria nanozyme (CeNPs) into the nanofiber bundle scaffold (NBS@CeO) with porous, anisotropic, and enhanced mechanical properties is designed to innovatively explore a targeted energy-supporting repair strategy by rescuing mitochondrial function and remodeling the microenvironment favoring endogenous regeneration. The integrated CeNPs scavenge excessive reactive oxygen species (ROS), stabilize the mitochondria membrane potential (ΔΨm), and ATP synthesis of tendon-derived stem cells (TDSCs) under oxidative stress. In a rat Achilles tendon defect model, NBS@CeO reduces oxidative damage and accelerates structural regeneration of collagen fibers, manifesting as recovering mechanical properties and motor function. Furthermore, NBS@CeO mediates the rebalance of endogenous regenerative signaling and dysregulated immune microenvironment by alleviating senescence and apoptosis of TDSCs, downregulating the secretion of senescence-associated secretory phenotype (SASP), and inducing macrophage M2 polarization. This innovative strategy highlights the role of NBS@CeO in tendon repair and thus provides a potential therapeutic approach for promoting tendon regeneration.
Collapse
Affiliation(s)
- Shikun Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhixiao Yao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Xinyu Zhang
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Juehong Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chen Huang
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Yuanming Ouyang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yun Qian
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Cunyi Fan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
12
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
13
|
Chen Z, Zhou B, Wang X, Zhou G, Zhang W, Yi B, Wang W, Liu W. Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering. Acta Biomater 2022; 145:297-315. [PMID: 35470072 DOI: 10.1016/j.actbio.2022.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022]
Abstract
Suitable scaffold structures and mechanical loading are essential for functional tendon engineering. However, the bipolar fibril structure of native tendon collagen is yet to be recaptured in engineered tendons. This study compared the development of Achilles tendons of postnatal rats with and without (via surgical section) mechanical loading to define the mechanism of mechanical stimulation-mediated tendon development. The results demonstrated that the severed tendons weakened mechanically and exhibited disorganization without a bipolar fibril superstructure. Proteomic analysis revealed differentially expressed key regulatory molecules related to the collagen assembly process, including decreased fibromodulin, keratocan, fibroblast growth factor-1, and increased lumican and collagen5a1 in the severed tendons with immunohistochemical verification. Additionally, a complex regulatory network of mechanical stimulation-mediated collagen assembly in a spatiotemporal manner was also revealed using bioinformatics analysis, wherein PI3K-Akt and HDAC4 may be the predominant signaling pathways. A wavy microgrooved surface (Y = 5.47sin(0.015x)) that biomimics tendon topography was observed to enhance the expression of collagen assembly molecules under mechanical loading, and the aforementioned pathways are particularly involved and verified with their respective inhibitors of LY-294002 and LMK-235. Furthermore, an electrospun crimped nanofiber scaffold (approximately 2 μm fiber diameter and 0.12 crimpness) was fabricated to biomimic the tenogenic niche environment; this was observed to be more effective on enhancing collagen production and assembly under mechanical stimulation. In conclusion, the synergistic effect between topographical niche and mechanical stimulation was observed to be essential for collagen assembly and maturation and should be applied to functional tendon engineering in the future. STATEMENT OF SIGNIFICANCE: In biomaterial-mediated tendon regeneration, mechanical stimulation is essential for tendon collagen assembly. However, the underlying mechanisms remain not fully defined, leading to the failure of the native-like collagen regeneration. In this study, a mechanical stimulation deprivation model of rat tendon was established to reveal the mechanisms in tendon development and define the key regulatory molecules including small leucine-rich proteoglycans, lysyl oxidase and collagen V. After ensuring the importance of biomimetic structure in tendon remodeling, crimped nanofibers were developed to verify these regulatory molecules, and demonstrated that mechanical stimulation significantly enhanced collagen assembly via PIK3 and HDAC4 pathways in biomaterial-regulated tendon regeneration. This study provides more insightful perspectives in the physiologically remodeling progression of tendon collagen and design of tendon scaffolds.
Collapse
Affiliation(s)
- Zhenying Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China
| | - Bingcheng Yi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China.
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Tissue Engineering Research, Shanghai 200011, China.
| |
Collapse
|
14
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
15
|
Stevenson AW, Melton PE, Moses EK, Wallace HJ, Wood FM, Rea S, Danielsen PL, Alghamdi M, Hortin N, Borowczyk J, Deng Z, Manzur M, Fear MW. A methylome and transcriptome analysis of normal human scar cells reveals a role for FOXF2 in scar maintenance. J Invest Dermatol 2021; 142:1489-1498.e12. [PMID: 34687743 DOI: 10.1016/j.jid.2021.08.445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
Scar is maintained for life and increases in size during periods of growth such as puberty. Epigenetic changes in fibroblasts after injury may underpin the maintenance and growth of scar. Here, we, combined methylome and transcriptome data from normotrophic mature scar and contralateral uninjured normal skin fibroblasts to identify potential regulators of scar maintenance. 219 significantly differentially expressed and 1199 significantly differentially methylated promoters were identified, of which there were 12 genes both significantly differentially methylated and expressed. Of these the two transcription factors, Forkhead Box F2 (FOXF2) and Mohawk Homeobox (MKX) were selected for further analysis. Immunocytochemistry and qPCR suggested FOXF2 but not MKX had elevated expression in scar fibroblasts. Using RNASeq, FOXF2 knockdown was shown to significantly reduce expression of extracellular matrix related genes, whilst MKX did not appear to affect similar pathways. Finally, FOXF2 knockdown was also shown to significantly decrease collagen I production in scar and keloid fibroblasts. This study provides insights into the maintenance of normotrophic scar, suggesting FOXF2 is an important regulator of this process. Targeting genes responsible for maintenance of scar phenotype may ameliorate scar appearance and improve patient outcomes in the future.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia.
| | - Phillip E Melton
- School of Population and Global Health, The University of Western Australia, Perth, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Eric K Moses
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Hilary J Wallace
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; School of Medicine, The University of Notre Dame Australia, Fremantle, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, Australia
| | - Suzanne Rea
- Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, Australia
| | - Patricia L Danielsen
- Department of Dermatology and Copenhagen Wound Healing Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalised Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Nicole Hortin
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - Mitali Manzur
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00104-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Dede Eren A, Vasilevich A, Eren ED, Sudarsanam P, Tuvshindorj U, de Boer J, Foolen J. Tendon-Derived Biomimetic Surface Topographies Induce Phenotypic Maintenance of Tenocytes In Vitro. Tissue Eng Part A 2020; 27:1023-1036. [PMID: 33045937 DOI: 10.1089/ten.tea.2020.0249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tenocyte niche contains biochemical and biophysical signals that are needed for tendon homeostasis. The tenocyte phenotype is correlated with cell shape in vivo and in vitro, and shape-modifying cues are needed for tenocyte phenotypical maintenance. Indeed, cell shape changes from elongated to spread when cultured on a flat surface, and rat tenocytes lose the expression of phenotypical markers throughout five passages. We hypothesized that tendon gene expression can be preserved by culturing cells in the native tendon shape. To this end, we reproduced the tendon topographical landscape into tissue culture polystyrene, using imprinting technology. We confirmed that the imprints forced the cells into a more elongated shape, which correlated with the level of Scleraxis expression. When we cultured the tenocytes for 7 days on flat surfaces and tendon imprints, we observed a decline in tenogenic marker expression on flat but not on imprints. This research demonstrates that native tendon topography is an important factor contributing to the tenocyte phenotype. Tendon imprints therefore provide a powerful platform to explore the effect of instructive cues originating from native tendon topography on guiding cell shape, phenotype, and function of tendon-related cells.
Collapse
Affiliation(s)
- Aysegul Dede Eren
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aliaksey Vasilevich
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Phanikrishna Sudarsanam
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Urandelger Tuvshindorj
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,MERLN Institute for Technology Inspired Regenerative Medicine, Instructive Biomaterial Engineering, Maastricht University, Maastricht, The Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Sheng R, Jiang Y, Backman LJ, Zhang W, Chen J. The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells Int 2020; 2020:8824783. [PMID: 33029149 PMCID: PMC7532391 DOI: 10.1155/2020/8824783] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J. Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
19
|
Chu J, Lu M, Pfeifer CG, Alt V, Docheva D. Rebuilding Tendons: A Concise Review on the Potential of Dermal Fibroblasts. Cells 2020; 9:E2047. [PMID: 32911760 PMCID: PMC7563185 DOI: 10.3390/cells9092047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Tendons are vital to joint movement by connecting muscles to bones. Along with an increasing incidence of tendon injuries, tendon disorders can burden the quality of life of patients or the career of athletes. Current treatments involve surgical reconstruction and conservative therapy. Especially in the elderly population, tendon recovery requires lengthy periods and it may result in unsatisfactory outcome. Cell-mediated tendon engineering is a rapidly progressing experimental and pre-clinical field, which holds great potential for an alternative approach to established medical treatments. The selection of an appropriate cell source is critical and remains under investigation. Dermal fibroblasts exhibit multiple similarities to tendon cells, suggesting they may be a promising cell source for tendon engineering. Hence, the purpose of this review article was in brief, to compare tendon to dermis tissues, and summarize in vitro studies on tenogenic differentiation of dermal fibroblasts. Furthermore, analysis of an open source Gene Expression Omnibus (GEO) data repository was carried out, revealing great overlap in the molecular profiles of both cell types. Lastly, a summary of in vivo studies employing dermal fibroblasts in tendon repair as well as pilot clinical studies in this area is included. Altogether, dermal fibroblasts hold therapeutic potential and are attractive cells for rebuilding injured tendons.
Collapse
Affiliation(s)
- Jin Chu
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| | - Ming Lu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116023, China;
| | - Christian G. Pfeifer
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Volker Alt
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
- Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany
| | - Denitsa Docheva
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; (J.C.); (C.G.P.); (V.A.)
| |
Collapse
|
20
|
Sheng D, Li J, Ai C, Feng S, Ying T, Liu X, Cai J, Ding X, Jin W, Xu H, Chen J, Chen S. Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J Mater Chem B 2020; 7:4801-4810. [PMID: 31389951 DOI: 10.1039/c9tb00837c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tendons can transmit mechanical force from muscles to bones for movement. However, the mechanical strength of tendons is compromised after surgery, thus causing a high rate of tendon retear. Hence, the design and preparation of biodegradable materials with excellent mechanical properties have become an urgent demand for sports medicine. In this study, biomimetic polycaprolactone (PCL)/gelatin (Gel)-aligned scaffolds were fabricated for the mechanical restoration of the injured tendon in a rabbit model. The diameter of nanofibers was about 427.82 ± 56.99 nm, which was approximate to that of the native collagen fibrils; the directional consistency of the nanofibers in PCL/Gel-aligned scaffolds reached 77.33 ± 3.22%, which were ultrastructurally biomimetic. Compared to the observations for the control group, the in vitro mechanical results showed that the PCL/Gel-aligned scaffolds (P/G-A) were anisotropic in terms of failure load, tensile strength, and Young's modulus. After verifying their good cytocompatibility, the scaffolds were implanted into the rabbit patellar tendon in situ. The biomechanical properties of the repaired tendon in P/G-A reached 343.97 ± 65.30 N in failure load, 85.99 ± 16.33 MPa in tensile strength, 590.84 ± 201.87 MPa in Young's modulus, and 171.29 ± 61.50 N mm-1 in stiffness in vivo at 8 weeks post operation. In a word, our results demonstrated that P/G-A could support the regenerated tissue of injured patellar tendons to restore the biomechanical strength in a rabbit model. This suggested that the PCL/Gel-aligned scaffolds can pave a promising way to improve the healing of injured tendons in the clinic in the future.
Collapse
Affiliation(s)
- Dandan Sheng
- Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
El Khatib M, Mauro A, Di Mattia M, Wyrwa R, Schweder M, Ancora M, Lazzaro F, Berardinelli P, Valbonetti L, Di Giacinto O, Polci A, Cammà C, Schnabelrauch M, Barboni B, Russo V. Electrospun PLGA Fiber Diameter and Alignment of Tendon Biomimetic Fleece Potentiate Tenogenic Differentiation and Immunomodulatory Function of Amniotic Epithelial Stem Cells. Cells 2020; 9:cells9051207. [PMID: 32413998 PMCID: PMC7290802 DOI: 10.3390/cells9051207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
- Correspondence:
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Martina Schweder
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany;
| | - Massimo Ancora
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Francesco Lazzaro
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L’Aquila, Italy;
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Andrea Polci
- Laboratory of Diagnosis and surveillance of foreign diseases, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy;
| | - Cesare Cammà
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| |
Collapse
|
22
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
23
|
Schoenenberger AD, Tempfer H, Lehner C, Egloff J, Mauracher M, Bird A, Widmer J, Maniura-Weber K, Fucentese SF, Traweger A, Silvan U, Snedeker JG. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials 2020; 249:120034. [PMID: 32315865 DOI: 10.1016/j.biomaterials.2020.120034] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
Abstract
Appropriate macrophage response to an implanted biomaterial is crucial for successful tissue healing outcomes. In this work we investigated how intrinsic topological cues from electrospun biomaterials and extrinsic mechanical loads cooperate to guide macrophage activation and macrophage-tendon fibroblast cross-talk. We performed a series of in vitro and in vivo experiments using aligned or randomly oriented polycaprolactone nanofiber substrates in both mechanically loaded and unloaded conditions. Across all experiments a disorganized biomaterial fiber topography was alone sufficient to promote a pro-inflammatory signature in macrophages, tendon fibroblasts, and tendon tissue. Extrinsic mechanical loading was found to strongly regulate the character of this signature by reducing pro-inflammatory markers both in vitro and in vivo. We observed that macrophages generally displayed a stronger response to biophysical cues than tendon fibroblasts, with dominant effects of cross-talk between these cell types observed in mechanical co-culture models. Collectively our data suggest that macrophages play a potentially important role as mechanosensory cells in tendon repair, and provide insight into how biological response might be therapeutically modulated by rational biomaterial designs that address the biomechanical niche of recruited cells.
Collapse
Affiliation(s)
- Angelina D Schoenenberger
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury & Tissue Regeneration Center Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christine Lehner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury & Tissue Regeneration Center Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jasmin Egloff
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Marita Mauracher
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Anna Bird
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jonas Widmer
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces, Empa, Swiss Federal Laboratories for Material Science and Technology, St. Gallen, Switzerland
| | - Sandro F Fucentese
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury & Tissue Regeneration Center Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Unai Silvan
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
25
|
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q. From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:131. [PMID: 32175424 DOI: 10.21037/atm.2019.12.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue concerning a single optimal source. In this review, we summarized the development of tendon tissue from the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all procedure. The best cell source for tendon engineering will require a case-based assessment.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chang Liu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengjuan Lyu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tao Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Centre for Orthopaedic Translational Research, School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
26
|
Russo V, El Khatib M, di Marcantonio L, Ancora M, Wyrwa R, Mauro A, Walter T, Weisser J, Citeroni MR, Lazzaro F, Di Federico M, Berardinelli P, Cammà C, Schnabelrauch M, Barboni B. Tendon Biomimetic Electrospun PLGA Fleeces Induce an Early Epithelial-Mesenchymal Transition and Tenogenic Differentiation on Amniotic Epithelial Stem Cells. Cells 2020; 9:E303. [PMID: 32012741 PMCID: PMC7072418 DOI: 10.3390/cells9020303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 01/08/2023] Open
Abstract
Background. The design of tendon biomimetic electrospun fleece with Amniotic Epithelial Stem Cells (AECs) that have shown a high tenogenic attitude may represent an alternative strategy to overcome the unsatisfactory results of conventional treatments in tendon regeneration. Methods. In this study, we evaluated AEC-engineered electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned fibers (ha-PLGA) that mimic tendon extracellular matrix, their biocompatibility, and differentiation towards the tenogenic lineage. PLGA fleeces with randomly distributed fibers (rd-PLGA) were generated as control. Results. Optimal cell infiltration and biocompatibility with both PLGA fleeces were shown. However, only ha-PLGA fleeces committed AECs towards an Epithelial-Mesenchymal Transition (EMT) after 48 h culture, inducing their cellular elongation along the fibers' axis and the upregulation of mesenchymal markers. AECs further differentiated towards tenogenic lineage as confirmed by the up-regulation of tendon-related genes and Collagen Type 1 (COL1) protein expression that, after 28 days culture, appeared extracellularly distributed along the direction of ha-PLGA fibers. Moreover, long-term co-cultures of AEC-ha-PLGA bio-hybrids with fetal tendon explants significantly accelerated of half time AEC tenogenic differentiation compared to ha-PLGA fleeces cultured only with AECs. Conclusions. The fabricated tendon biomimetic ha-PLGA fleeces induce AEC tenogenesis through an early EMT, providing a potential tendon substitute for tendon engineering research.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Lisa di Marcantonio
- Laboratory of Bacteriology, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, 64100 Teramo, Italy;
| | - Massimo Ancora
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Torsten Walter
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Jürgen Weisser
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Francesco Lazzaro
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L’Aquila, Italy;
| | - Marta Di Federico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Cesare Cammà
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Matthias Schnabelrauch
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| |
Collapse
|
27
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|
28
|
Rey-Vinolas S, Castaño O, Ruiz-Macarrilla L, Llorens X, Mora JM, Engel E, Mateos-Timoneda MA. Development of a novel automatable fabrication method based on electrospinning co electrospraying for rotator cuff augmentation patches. PLoS One 2019; 14:e0224661. [PMID: 31725745 PMCID: PMC6855444 DOI: 10.1371/journal.pone.0224661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/18/2019] [Indexed: 01/02/2023] Open
Abstract
Rotator cuff tear is one of the most common shoulder diseases. Rotator cuff augmentation (RCA) is trying to solve the high retear failure percentage after the surgery procedures (20-90%). The ideal augmentation patch must provide a temporal mechanical support during the healing process. In this work, we proposed a simple method for the fabrication of synthetic RCA patches. This method combines the use of electrospraying to produce poly-L-lactic-co-ε-caprolactone (PLC) films in an organogel form and electrospinning to produce poly(lactic) acid (PLA) nanofibers. The device consists in a combination of layers, creating a multilayered construct, enabling the possibility of tuning its mechanical properties and thickness. Besides, both techniques are simple to escalate for industrial production. A complete characterization has been performed to optimize the involved number of layers and production time of PLC films and PLA nanofibers fabrication, obtaining a final optimal configuration for RCA devices. Structural, mechanical and suture properties were evaluated. Also, the possibility of surface functionalization to improve the bioactivity of the scaffold was studied, adding aligned electrospun PLA nanofibers on the surface of the device to mimic the natural tendon topography. Surface modification was characterized by culturing adult normal human dermal fibroblasts. Lack of toxicity was detected for material presented, and cell alignment shape orientation guided by aligned fibers, mimicking tendon structure, was obtained. Cell proliferation and protein production were also evaluated.
Collapse
Affiliation(s)
- Sergi Rey-Vinolas
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Oscar Castaño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Serra Hunter Fellow, Electronics and Biomedical Engineering Department, University of Barcelona (UB), Barcelona, Spain
- Bioelectronics Unit and Nanobioengineering Lab., Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | | | - Xavier Llorens
- Fundació Joan Costa Roma, Consorci Sanitari de Terrassa, Terrassa, Spain
- Servei de C.O.T., Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - José M. Mora
- Fundació Joan Costa Roma, Consorci Sanitari de Terrassa, Terrassa, Spain
- Servei de C.O.T., Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), Barcelona, Spain
| | - Miguel A. Mateos-Timoneda
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
29
|
Song W, Ma Z, Wang C, Li H, He Y. Pro-chondrogenic and immunomodulatory melatonin-loaded electrospun membranes for tendon-to-bone healing. J Mater Chem B 2019; 7:6564-6575. [PMID: 31588948 DOI: 10.1039/c9tb01516g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reconstructing the native structure of the tendon-to-bone insertion site (enthesis) in rotator cuff repair has always been a great challenge for orthopedic surgeons. Difficulty arises mainly due to the limited enthesis regenerative capability and severe inflammatory cell infiltration, which result in fibrovascular scar formation instead of native cartilage-like enthesis. Therefore, tissue engineering scaffolds with pro-chondrogenic and immunomodulatory capabilities may offer a new strategy for native enthesis regeneration. In this study, melatonin-loaded aligned polycaprolactone (PCL) electrospun fibrous membranes were fabricated. The sustained release of melatonin from this membrane significantly promoted the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in a long-term chondroid pellet model. After the membranes were implanted in a rat acute rotator cuff tear model, melatonin-loaded PCL membranes inhibited macrophage infiltration in the tendon-to-bone interface at the early healing phase, increasing chondroid zone formation, promoting collagen maturation, decreasing fibrovascular tissue formation and eventually improving the biomechanical strength of the regenerated enthesis. Taken together, melatonin-loaded PCL membranes possess great clinical application potential for tendon-to-bone healing.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Zhijie Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. and Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| |
Collapse
|
30
|
In vitro and in vivo assessments of an optimal polyblend composition of polycaprolactone/gelatin nanofibrous scaffolds for Achilles tendon tissue engineering. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Yang S, Shi X, Li X, Wang J, Wang Y, Luo Y. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration. Biomaterials 2019; 207:61-75. [DOI: 10.1016/j.biomaterials.2019.03.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
32
|
Chen X, Feng B, Zhu DQ, Chen YW, Ji W, Ji TJ, Li F. Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. Int J Nanomedicine 2019; 14:3669-3678. [PMID: 31190818 PMCID: PMC6535102 DOI: 10.2147/ijn.s204971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Electrospun gelatin/polycaprolactone (Gt/PCL) nanofibrous scaffolds loaded with graphene are novel nanomaterials with the uniquely strong property of electrical conductivity, which have been widely investigated for their potential applications in cardiovascular tissue engineering, including in bypass tracts for atrioventricular block. Purpose: Electrospun Gt/PCL/graphene nanofibrous mats were successfully produced. Scanning electron micrography showed that the fibers with graphene were smooth and homogeneous. In vitro, to determine the biocompatibility of the scaffolds, hybrid scaffolds with different fractions of graphene were seeded with neonatal rat ventricular myocytes. In vivo, Gt/PCL scaffolds with different concentrations of graphene were implanted into rats for 4, 8 and 12 weeks. Results: CCK-8 assays and histopathological staining (including DAPI, cTNT, and CX43) indicated that cells grew and survived well on the hybrid scaffolds if the mass fraction of graphene was lower than 0.5%. After implanting into rats for 4, 8 or 12 weeks, there was no gathering of inflammatory cells around the nanomaterials according to the HE staining results. Conclusion: The results indicate that Gt/PCL nanofibrous scaffolds loaded with graphene have favorable electrical conductivity and biological properties and may be suitable scaffolds for use in the treatment of atrioventricular block. These findings alleviate safety concerns and provide novel insights into the potential applications of Gt/PCL loaded with graphene, offering a solid foundation for comprehensive in vivo studies.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Bei Feng
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Di-Qi Zhu
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi-Wei Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Ji
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tian-Ji Ji
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Feng B, Wang S, Hu D, Fu W, Wu J, Hong H, Domian IJ, Li F, Liu J. Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomater 2019; 83:211-220. [PMID: 30352286 DOI: 10.1016/j.actbio.2018.10.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022]
Abstract
Post-cardiac surgical sternal and epicardial adhesions increase the risk and complexity of cardiac re-operative surgeries, which represent a significant challenge for patients with the congenital cardiac disease. Bioresorbable membranes can serve as barriers to prevent postoperative adhesions. Herein, we fabricated a bioresorbable gelatin/polycaprolactone (GT/PCL) composite membrane via electrospinning. The membrane was characterized in terms of morphology, mechanical properties, and biocompatibility. We then evaluated its efficacy as a physical barrier to prevent cardiac operative adhesions in a rabbit model. Our results showed that the membrane had a nanofibrous structure and was sturdy enough to be handled for the surgical procedures. In vitro studies with rabbit cardiac fibroblasts demonstrated that the membrane was biocompatible and inhibited cell infiltration. Further application of the membrane in a rabbit cardiac adhesion model revealed that the membrane was resorbed gradually and effectively resisted the sternal and epicardial adhesions. Interestingly, six months after the operation, the GT/PCL membrane was completely resorbed with simultaneous ingrowth of host cells to form a natural barrier. Collectively, these results indicated that the GT/PCL membrane might be a suitable barrier to prevent sternal and epicardial adhesions and might be utilized as a novel pericardial substitute for cardiac surgery. STATEMENT OF SIGNIFICANCE: Electrospinning is a versatile method to prepare nanofibrous membranes for tissue engineering and regenerative medicine applications. However, with the micro-/nano-scale structure and high porosity, the electrospun membrane might be an excellent candidate as a barrier to prevent postoperative adhesion. Here we prepared an electropun GT/PCL nanofibrous membrane and applied it as a barrier to prevent sternal and epicardial adhesions. Our results showed that the membrane had sufficient mechanical strength, good biocompatibility, and effectively resisted the sternal and epicardial adhesions. What's more, the membrane was bioresorbable and allowed simultaneous ingrowth of host cells to form a natural barrier. We believe that the current will inspire more research on nanomaterials to prevent postoperative adhesion applications.
Collapse
|
34
|
Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X. Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:443-453. [PMID: 29724151 DOI: 10.1089/ten.teb.2018.0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tendon injuries are common musculoskeletal system disorders, but the tendons have poor regeneration ability. To address this issue, tendon tissue engineering provides potential strategies for future therapeutic treatment. Elements of the physical microenvironment, such as the mechanical force and surface topography, play a vital role in regulating stem cell fate, enhancing the differentiation efficiency of seed cells in tendon tissue engineering. Various inducible scaffolds have been widely explored for tendon regeneration, and scaffold-enhancing modifications have been extensively studied. In this review, we systematically summarize the effects of the physical microenvironment on stem cell differentiation and tendon regeneration; we also provide an overview of the inducible scaffolds for stem cell tenogenic differentiation. Finally, we suggest some potential scaffold-based therapies for tendon injuries, presenting an interesting perspective on tendon regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhang
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Meng-Fei Liu
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Ri-Chun Liu
- 4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China
| | - Wei-Liang Shen
- 2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China .,7 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Zi Yin
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| | - Xiao Chen
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| |
Collapse
|
35
|
Zhou K, Feng B, Wang W, Jiang Y, Zhang W, Zhou G, Jiang T, Cao Y, Liu W. Nanoscaled and microscaled parallel topography promotes tenogenic differentiation of ASC and neotendon formation in vitro. Int J Nanomedicine 2018; 13:3867-3881. [PMID: 30013341 PMCID: PMC6038871 DOI: 10.2147/ijn.s161423] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Topography at different scales plays an important role in directing mesenchymal stem cell differentiation including adipose-derived stem cells (ASCs) and the differential effect remains to be investigated. Purpose This study aimed to investigate the similarity and difference between micro- and nanoscaled aligned topography for inducing tenogenic differentiation of human ASCs (hASCs). Methods Parallel microgrooved PDMS membrane and a parallel aligned electrospun nanofibers of gelatin/poly-ε-caprolactone mixture were employed as the models for the study. Results Aligned topographies of both microscales and nanoscales could induce an elongated cell shape with parallel alignment, as supported by quantitative cell morphology analysis (cell area, cell body aspect, and cell body major axis angle). qPCR analysis also demonstrated that the aligned topography at both scales could induce the gene expressions of various tenogenic markers at the 7th day of in vitro culture including tenomodulin, collagen I and collagen VI, decorin, tenascin-C and biglycan, but with upregulated expression of scleraxis and tenascin-C only in microscaled topography. Additionally, tenogenic differentiation at the 3rd day was confirmed only at microscale. Furthermore, microscaled topography was confirmed for its tenogenic induction at tissue level as neotendon tissue was formed with the evidence of mature type I collagen fibers only in parallel aligned polyglycolic acid (PGA) microfibers after in vitro culture with mouse ASCs. Instead, only fat tissue was formed in random patterned PGA microfibers. Conclusion Both microscaled and nanoscaled aligned topographies could induce tenogenic differentiation of hASCs and micro-scaled topography seemed better able to induce elongated cell shape and stable tenogenic marker expression when compared to nanoscaled topography. The microscaled inductive effect was also confirmed at tissue level by neotendon formation in vitro.
Collapse
Affiliation(s)
- Kaili Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Bei Feng
- Shanghai Children's Medical Center, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Ting Jiang
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| |
Collapse
|
36
|
Silva MDA, Leite YKDC, de Carvalho CES, Feitosa MLT, Alves MMDM, Carvalho FADA, Neto BCV, Miglino MA, Jozala AF, de Carvalho MAM. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ 2018; 6:e4656. [PMID: 29736332 PMCID: PMC5933324 DOI: 10.7717/peerj.4656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. METHODS Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. RESULTS The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs' bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. CONCLUSION The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering.
Collapse
Affiliation(s)
- Marcello de Alencar Silva
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Matheus Levi Tajra Feitosa
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Bartolomeu Cruz Viana Neto
- Department of Physics/Advanced Microscopy Multiuser Laboratory/Laboratory of Physics Material, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Maria Angélica Miglino
- Departament of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Angela Faustino Jozala
- Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | | |
Collapse
|
37
|
Abstract
Healthy tendon tissue features a highly aligned extracellular matrix that becomes disorganized with disease. Recent evidence suggests that inflammation coexists with early degenerative changes in tendon, and that crosstalk between immune-cells and tendon fibroblasts (TFs) can contribute to poor tissue healing. We hypothesized that a disorganized tissue architecture may predispose tendon cells to degenerative extracellular matrix remodeling pathways, particularly within a pro-inflammatory niche. This hypothesis was tested by analyzing human TFs cultured on electrospun polycaprolactone (PCL) mats with either highly aligned or randomly oriented fiber structures. We confirmed that fibroblast morphology, phenotype, and markers of matrix turnover could be significantly affected by matrix topography. More strikingly, the TF response to paracrine signals from polarized macrophages or by stimulation with pro-inflammatory cytokines featured significant downregulation of signaling related to extracellular synthesis, with significant concomitant upregulation of gene and protein expression of matrix degrading enzymes. Critically, this tendency towards degenerative re-regulation was exacerbated on randomly oriented PCL substrates. These novel findings indicate that highly aligned tendon cell scaffolds not only promote tendon matrix synthesis, but also play a previously unappreciated role in mitigating adverse resident fibroblast response within an inflammatory milieu. STATEMENT OF SIGNIFICANCE Use of biomaterial scaffolds for tendon repair often results in tissue formation characteristic of scar tissue, rather than the highly aligned type-1 collagen matrix of healthy tendons. We hypothesized that non-optimal biomaterial surfaces may play a role in these outcomes, specifically randomly oriented biomaterial surfaces that unintentionally mimic structure of pathological tendon. We observed that disorganized scaffold surfaces do adversely affect early cell attachment and gene expression. We further identified that disorganized fiber surfaces can prime tendon cells toward pro-inflammatory signaling. These findings represent provocative evidence unstructured fiber surfaces may underlie inflammatory responses that drive aberrant collagen matrix turnover. This work could be highly relevant for the design of cell instructive biomaterial therapies that yield positive clinical outcomes.
Collapse
|
38
|
Lin J, Zhou W, Han S, Bunpetch V, Zhao K, Liu C, Yin Z, Ouyang H. Cell-material interactions in tendon tissue engineering. Acta Biomater 2018; 70:1-11. [PMID: 29355716 DOI: 10.1016/j.actbio.2018.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
The interplay between cells and materials is a fundamental topic in biomaterial-based tissue regeneration. One of the principles for biomaterial development in tendon regeneration is to stimulate tenogenic differentiation of stem cells. To this end, efforts have been made to optimize the physicochemical and bio-mechanical properties of biomaterials for tendon tissue engineering. However, recent progress indicated that innate immune cells, especially macrophages, can also respond to the material cues and undergo phenotypical changes, which will either facilitate or hinder tissue regeneration. This process has been, to some extent, neglected by traditional strategies and may partially explain the unsatisfactory outcomes of previous studies; thus, more researchers have turned their focus on developing and designing immunoregenerative biomaterials to enhance tendon regeneration. In this review, we will first summarize the effects of material cues on tenogenic differentiation and paracrine secretion of stem cells. A brief introduction will also be made on how material cues can be manipulated for the regeneration of tendon-to-bone interface. Then, we will discuss the characteristics and influences of macrophages on the repair process of tendon healing and how they respond to different materials cues. These principles may benefit the development of novel biomaterials provided with combinative bioactive cues to activate tenogenic differentiation of stem cells and pro-resolving macrophage phenotype. STATEMENT OF SIGNIFICANCE The progress achieved with the rapid development of biomaterial-based strategies for tendon regeneration has not yielded broad benefits to clinical patients. In addition to the interplay between stem cells and biomaterials, the innate immune response to biomaterials also plays a determinant role in tissue regeneration. Here, we propose that fine-tuning of stem cell behaviors and alternative activation of macrophages through material cues may lead to effective tendon/ligament regeneration. We first review the characteristics of key material cues that have been manipulated to promote tenogenic differentiation and paracrine secretion of stem cells in tendon regeneration. Then, we discuss the potentiality of corresponding material cues in activating macrophages toward a pro-resolving phenotype to promote tissue repair.
Collapse
Affiliation(s)
- Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Kun Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China
| | - Chaozhong Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; China Orthopedic Regenerative Medicine Group (CORMed), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
39
|
Proteomic Analysis of Nucleus Pulposus Cell-derived Extracellular Matrix Niche and Its Effect on Phenotypic Alteration of Dermal Fibroblasts. Sci Rep 2018; 8:1512. [PMID: 29367647 PMCID: PMC5784136 DOI: 10.1038/s41598-018-19931-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Reconstituting biomimetic matrix niche in vitro and culturing cells at the cell niche interface is necessary to understand the effect and function of the specific matrix niche. Here we attempted to reconstitute a biomimetic extracellular matrix (ECM) niche by culturing nucleus pulposus cells (NPCs) in a collagen microsphere system previously established and allowing them to remodel the template matrix. The reconstituted NPC-derived complex ECM was obtained after decellularization and the composition of such niche was evaluated by proteomic analysis. Results showed that a complex acellular matrix niche consisting of ECM proteins and cytoskeletal proteins by comparing with the template collagen matrix starting material. In order to study the significance of the NPC-derived matrix niche, dermal fibroblasts were repopulated in such niche and the phenotypes of these cells were changed, gene expression of collagen type II and CA12 increased significantly. A biomimetic NPC-derived cell niche consisting of complex ECM can be reconstituted in vitro, and repopulating such matrix niche with fibroblasts resulted in changes in phenotypic markers. This work reports a 3D in vitro model to study cell niche factors, contributing to future understanding of cellular interactions at the cell-niche interface and rationalized scaffold design for tissue engineering.
Collapse
|
40
|
Tang R, Wang X, Zhang H, Liang X, Feng X, Zhu X, Lu X, Wu F, Liu Z. Promoting early neovascularization of SIS-repaired abdominal wall by controlled release of bioactive VEGF. RSC Adv 2018; 8:4548-4560. [PMID: 35539528 PMCID: PMC9077786 DOI: 10.1039/c7ra11954b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/06/2018] [Indexed: 11/21/2022] Open
Abstract
Insufficient early neovascularization post-operation is thought to be the main reason of surgical recurrence of porcine small intestinal submucosa (SIS)-repaired abdominal wall defects.
Collapse
Affiliation(s)
- Rui Tang
- Department of Hernia and Abdominal Wall Surgery
- Shanghai East Hospital
- TongJi University
- Shanghai 200120
- PR China
| | - Xin Wang
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- PR China
| | - Hanying Zhang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Xi Liang
- Department of Thoracic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- PR China
| | - Xueyi Feng
- Department of General Surgery
- Lu'an People's Hospital
- Lu'an Affiliated Hospital of Anhui Medical University
- Lu'an
- PR China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery
- Shanghai East Hospital
- TongJi University
- Shanghai 200120
- PR China
| | - Xinwu Lu
- Department of Vascular Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- PR China
| | - Fei Wu
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery
- Shanghai East Hospital
- TongJi University
- Shanghai 200120
- PR China
| |
Collapse
|
41
|
Wu Z, Xu Y, Li H. Synergetic stimulation of nanostructure and chemistry cues on behaviors of fibroblasts and endothelial cells. Colloids Surf B Biointerfaces 2017; 160:500-509. [DOI: 10.1016/j.colsurfb.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/15/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
|
42
|
Wu S, Peng H, Li X, Streubel PN, Liu Y, Duan B. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L‑lactic acid) fibrous meshes. Biofabrication 2017; 9:044106. [PMID: 29134948 PMCID: PMC5849472 DOI: 10.1088/1758-5090/aa8fb8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Engineered tendon grafts offer a promising alternative for grafting during the reconstruction of complex tendon tears. The tissue-engineered tendon substitutes have the advantage of increased biosafety and the option to customize their biochemical and biophysical properties to promote tendon regeneration. In this study, we developed a novel centrifugal melt electrospinning (CME) technique, with the goal of optimizing the fabrication parameters to generate fibrous scaffolds for tendon tissue engineering. The effects of CME processing parameters, including rotational speed, voltage, and temperature, on fiber properties (i.e. orientation, mean diameter, and productivity) were systematically investigated. By using this solvent-free and environmentally friendly method, we fabricated both random and aligned poly (L-lactic acid) (PLLA) fibrous scaffolds with controllable mesh thickness. We also investigated and compared their morphology, surface hydrophilicity, and mechanical properties. We seeded human adipose derived mesenchymal stem cells (HADMSC) on various PLLA fibrous scaffolds and conditioned the constructs in tenogenic differentiation medium for up to 21 days, to investigate the effects of fiber alignment and scaffold thickness on cell behavior. Aligned fibrous scaffolds induced cell elongation and orientation through a contact guidance phenomenon and promoted HADMSC proliferation and differentiation towards tenocytes. At the early stage, thinner scaffolds were beneficial for HADMSC proliferation, but the scaffold thickness had no significant effects on cell proliferation for longer-term cell culture. We further co-seeded HADMSC and human umbilical vein endothelial cells (HUVEC) on aligned PLLA fibrous mats and determined how the vascularization affected HADMSC tenogenesis. We found that co-cultured HADMSC-HUVEC expressed more tendon-related markers on the aligned fibrous scaffold. The co-culture systems promoted in vitro HADMSC differentiation towards tenocytes. These aligned fibrous scaffolds fabricated by CME technique could potentially be utilized to repair and regenerate tendon defects and injuries with cell co-culture and controlled vascularization.
Collapse
Affiliation(s)
- Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hao Peng
- College of Mechanical and Electric Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuhong Li
- College of Mechanical and Electric Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Philipp N. Streubel
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yong Liu
- College of Mechanical and Electric Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
43
|
Shi Y, Zhou K, Zhang W, Zhang Z, Zhou G, Cao Y, Liu W. Microgrooved topographical surface directs tenogenic lineage specific differentiation of mouse tendon derived stem cells. Biomed Mater 2017; 12:015013. [DOI: 10.1088/1748-605x/12/1/015013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Pandit A, Zeugolis DI. Twenty-five years of nano-bio-materials: have we revolutionized healthcare? Nanomedicine (Lond) 2016; 11:985-7. [PMID: 27092982 DOI: 10.2217/nnm.16.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|