1
|
Chen Y, Gao Y, Zhang Z, Jiang Y, Wang R, Zhang H, Su Y. POSTN Silencing Ameliorates LL37-Induced Rosacea and Inhibits the JAK2/STAT3 and NF-κB Pathways. FASEB J 2025; 39:e70643. [PMID: 40387439 DOI: 10.1096/fj.202403202r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/08/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Rosacea is a chronic inflammatory skin disease and its pathogenesis remains unclear. Key genes were screened in the GSE155141 and GSE65914 datasets through a bioinformatics approach. To establish a rosacea-like mouse model with periostin (POSTN) knockdown, mice were subcutaneously injected with lentivirus-packaged Lv-shPOSTN, followed by LL37 treatment on the dorsal skin. Skin tissues were collected for the assessment of skin lesion area, skin thickness, redness score, as well as for hematoxylin and eosin (HE) staining, toluidine blue staining, and immunofluorescence staining. The inflammatory factors and chemokine levels were determined by enzyme-linked immunosorbent assay. Wound healing and Transwell assays were performed to assess cell migration and invasion. Phosphorylation levels of JAK2, STAT3, IKKβ, and p65 were evaluated via western blotting. Hub genes, including COL1A2, POSTN, LOX, BGN, COL3A1, DCN, and COL1A1 were screened. POSTN was highly expressed in rosacea and POSTN silencing ameliorated pathological changes and suppressed inflammation, immune infiltration, and angiogenesis. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) and chemokines (CCL2, CXCL10, and CXCL2), as well as the KLK5, CAMP, TLR2, and VEGF expression levels were reduced after POSTN knockdown. POSTN silencing inhibited migration and invasion of LL37-induced human umbilical vein endothelial cells (HUVEC). Importantly, POSTN silencing suppressed the JAK2/STAT3 and NF-κB pathways both in vivo and in vitro. POSTN knockdown suppresses inflammation and angiogenesis in rosacea possibly by obstructing the JAK2/STAT3 and NF-κB pathways, which offers a potential therapeutic strategy for rosacea.
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Gao
- Department of General Practice, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhang Zhang
- Department of Dermatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Yang Jiang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, China
| | - Ruiqi Wang
- Department of Dermatology, Sichuan Tianfu New Area People's Hospital, Chengdu, China
| | - Hao Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, China
| | - Yang Su
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Ağırgöl Ş, Çaytemel C, Ünlü B, Çetinkaya E, Cayhan B, Çalım B, Türkoğlu Z. Association Between Periostin Expression and Disease Progression in Lichen Planopilaris: Insights Into Pathophysiology. Dermatol Pract Concept 2025; 15:dpc.1502a4813. [PMID: 40401853 PMCID: PMC12090922 DOI: 10.5826/dpc.1502a4813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 05/23/2025] Open
Abstract
INTRODUCTION Lichen planopilaris (LPP) is the most prevalent form of scarring alopecia and lymphocytic infiltration that affects the infundibulum and isthmus, perifollicular melanophages, and perifollicular constrictive fibrosis OBJECTIVE: We aimed to assess the contribution of periostin tissue levels to the pathogenesis of LPP and its association with disease severity. METHODS A total of 30 cases diagnosed with LPP between July 15 and October 15, 2022 were studied. Patient age, disease duration, disease severity, and periostin levels were recorded, and periostin immunohistochemistry was performed to obtain histoscores for the perifollicular area, dermoepidermal junction, fibroblasts, and inflammatory cells, and these were compared with the control group. RESULTS The female sex predominated, with the majority (67%); 25 patients were classified with mild disease and five with severe LPP. Statistically significant differences were found in keratinocyte staining intensities between the mild and severe groups (P=0.023; P<0.01), with the LPP group exhibiting a higher rate of moderate staining intensity compared to the control group. In terms of perifollicular staining intensities, the rate of non-staining was higher in the control group compared to the LPP group. Statistically significant differences were also observed in fibroblast (P=0.001) and inflammatory cell (P=0.001) staining intensities between the groups. No statistically significant difference was found between the patients with mild or severe disease in the LPP group. CONCLUSION The relationship between periostin and disease severity could not be conclusively established. The presence of periostin staining in all histopathologically-affected areas of patients with LPP suggests that periostin may serve as a promising marker in LPP.
Collapse
Affiliation(s)
- Şenay Ağırgöl
- Istanbul Çam and Sakura City Hospital, Department of Dermatology and Venereology, Istanbul, Turkey
| | - Ceyda Çaytemel
- Istanbul Çam and Sakura City Hospital, Department of Dermatology and Venereology, Istanbul, Turkey
| | - Burak Ünlü
- Istanbul Çam and Sakura City Hospital, Department of Dermatology and Venereology, Istanbul, Turkey
| | - Elif Çetinkaya
- Istanbul Çam and Sakura City Hospital, Department of Dermatology and Venereology, Istanbul, Turkey
| | - Baran Cayhan
- Istanbul Çam and Sakura City Hospital, Department of Dermatology and Venereology, Istanbul, Turkey
| | - Begüm Çalım
- Istanbul Çam and Sakura City Hospital, Department of Pathology, Istanbul, Turkey
| | - Zafer Türkoğlu
- Istanbul Çam and Sakura City Hospital, Department of Dermatology and Venereology, Istanbul, Turkey
| |
Collapse
|
3
|
Hossain AS, Clarin MTRDC, Kimura K, Biggin G, Taga Y, Uto K, Yamagishi A, Motoyama E, Narenmandula, Mizuno K, Nakamura C, Asano K, Ohtsuki S, Nakamura T, Kanki S, Baldock C, Raja E, Yanagisawa H. Fibrillin-1 G234D mutation in the hybrid1 domain causes tight skin associated with dysregulated elastogenesis and increased collagen cross-linking in mice. Matrix Biol 2025; 135:24-38. [PMID: 39615636 PMCID: PMC11747857 DOI: 10.1016/j.matbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
Fibrillin-1, an extracellular matrix (ECM) protein encoded by the FBN1 gene, serves as a microfibril scaffold crucial for elastic fiber formation and homeostasis in pliable tissue such as the skin. Aside from causing Marfan syndrome, some mutations in FBN1 result in scleroderma, marked by hardened and thicker skin which limits joint mobility. Here, we describe a tight skin phenotype in the Fbn1G234D/G234D mice carrying a corresponding variant of FBN1 in the hybrid1 domain that was identified in a patient with familial aortic dissection. Unlike scleroderma, skin thickness and collagen fiber abundance do not change in the Fbn1G234D/G234D mutant skin. Instead, increased collagen cross-links were observed. In addition, short elastic fibers were sparsely located underneath the panniculus muscle layer, and an abundance of thin, aberrant elastic fibers was increased within the subcutaneous fascia, which may have tightened skin attachment to the underlying skeletal muscle. Structurally, Fbn1G234D/G234D microfibrils have a disrupted shoulder region that shares similarities with hybrid1 deletion mutant microfibrils. We then demonstrate the consequence of fibrillin-1 G234D mutation on dermal fibroblast functions. Mutant primary fibroblasts produce fewer elastic fibers, exhibit slower migration and increased cell stiffness. Moreover, secretome from mutant fibroblasts are marked by enhanced secretion of ECM, ECM-modifying enzymes, proteoglycans and cytokines, which are pro-tissue repair/fibrogenic. The transcriptome of mutant fibroblasts displays an increased expression of myogenic developmental and immune-related genes. Our study proposes that imbalanced ECM homeostasis due to a fibrillin-1 G234D mutation impacts fibroblast properties with potential ramifications on skin function.
Collapse
Affiliation(s)
- Asm Sakhawat Hossain
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan; Department of Pharmacy, Varendra University, Bangladesh
| | - Maria Thea Rane Dela Cruz Clarin
- School of Integrative and Global Major, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan; National Institute for Material Science, Japan
| | - Kenichi Kimura
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - George Biggin
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Japan
| | | | - Ayana Yamagishi
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Eri Motoyama
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - Narenmandula
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | | | - Chikashi Nakamura
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Keiichi Asano
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Japan
| | | | - Sachiko Kanki
- Department of Surgery, Osaka Medical and Pharmaceutical University, Japan
| | - Clair Baldock
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - Erna Raja
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan.
| | - Hiromi Yanagisawa
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan.
| |
Collapse
|
4
|
Tokura Y, Yunoki M, Kondo S, Otsuka M. What is "eczema"? J Dermatol 2025; 52:192-203. [PMID: 39301836 PMCID: PMC11807370 DOI: 10.1111/1346-8138.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Eczema is the most common category of inflammatory skin disorders as dermatologists see many patients with eczematous diseases in daily practice. It is characterized by the three major morphological features: multiple-pinpoint condition, polymorphism, and itch. To describe polymorphism, "eczema triangle" has been used in German/Japanese dermatology. The multiple pinpoints correspond to numerous tiny foci from which individual papules/vesicles arise. The polymorphism betrays composition of erythema, papule, seropapule, vesicle, pustule, scale, and crust, which are seen in acute eczema. Meanwhile, chronic eczema is represented by lichenification and hyperpigmentation, and possibly by hypopigmentation. In acute eczema, spongiosis is associated with overproduction of hyaluronic acid, secretion of self-protective galectin-7, and decreased expression of E-cadherin. In the upper dermis, Th1/Tc1 or Th2/Tc2, and additional Th17, Th22, and/or Tc22 infiltrate, depending on each eczematous disease. Innate lymphoid cells are also involved in the formation of eczema. In chronic eczema, periostin contributes to remodeling of inflammatory skin with dermal fibrosis, and epidermal melanogenesis and dermal pigment deposition result in hyperpigmentation. Finally, eczematous diseases are potentially associated with increased risk of comorbidities, including not only other allergic diseases but also coronary heart disease and mental problems such as depression. Although the original word for eczema is derived from old Greek "ekzein," eczema remains a major target of modern science and novel therapies.
Collapse
Affiliation(s)
- Yoshiki Tokura
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
- Allergic Disease Research CenterChutoen General Medical CenterKakegawaJapan
| | - Marina Yunoki
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| | - Shumpei Kondo
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| | - Masaki Otsuka
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| |
Collapse
|
5
|
Tamamoto-Mochizuki C, Mishra SK. Transcriptomic profiling of dorsal root ganglia in atopic and healthy dogs: A comparative RNA sequencing study with implications in cutaneous itch research. Vet Dermatol 2025. [PMID: 39868604 DOI: 10.1111/vde.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/15/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Itch is a common clinical sign in skin disorders. While the neural pathways of itch transmission from the skin to the brain are well understood in rodents, the same pathways in dogs remain unclear. The knowledge gap hinders the development of effective treatments for canine itch-related disorders. HYPOTHESIS/OBJECTIVES This study aimed to investigate the differential gene expression in the dorsal root ganglia (DRGs) between healthy and atopic dogs to identify specific molecules potentially involved in itch signalling and neuroinflammation in canine atopic dermatitis (cAD). ANIMALS Two atopic and four healthy dogs. MATERIALS AND METHODS DRGs were collected from atopic and healthy dogs to compare their transcriptional profiles using RNA sequencing. RESULTS Principal component and heatmap analyses revealed two distinct clusters separating atopic from healthy dogs. Consistent with this observation, we identified 627 (543 upregulated and 84 downregulated) differentially expressed genes (DEGs) in atopic compared with healthy dogs. We further narrowed down our genes of interest to common DEGs in each atopic dog, which revealed 159 (132 upregulated and 27 downregulated) DEGs. Among these genes, when we focused on itch signalling-associated molecules, P2RY12, IL-2RG, TLR1 and POSTN were significantly upregulated, while MRGPRD and LPAR3 were both significantly downregulated in atopic dogs compared with those in healthy dogs. Pathway analysis showed a significant upregulation of CREB signalling in neurons, myelination signalling and neuroinflammation signalling pathways in atopic dogs. CONCLUSIONS AND CLINICAL RELEVANCE Our study suggested that dysregulation of neuroinflammatory pathways might play a role in the pathomechanism of cAD as in humans.
Collapse
Affiliation(s)
- Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Sharma P, McFadden JR, Frost FG, Markello TC, Grange DK, Introne WJ, Gahl WA, Malicdan MCV. Biallelic germline DDX41 variants in a patient with bone dysplasia, ichthyosis, and dysmorphic features. Hum Genet 2024; 143:1445-1457. [PMID: 39453476 PMCID: PMC11576897 DOI: 10.1007/s00439-024-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jason R McFadden
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - F Graeme Frost
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
She Z, Chen H, Lin X, Li C, Su J. POSTN Regulates Fibroblast Proliferation and Migration in Laryngotracheal Stenosis Through the TGF-β/RHOA Pathway. Laryngoscope 2024; 134:4078-4087. [PMID: 38771155 DOI: 10.1002/lary.31505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES To investigate the role of periostin (POSTN) and the transforming growth factor β (TGF-β) pathway in the formation of laryngotracheal stenosis (LTS) scar fibrosis and to explore the specific signaling mechanism of POSTN-regulated TGF-β pathway in tracheal fibroblasts. METHODS Bioinformatics analysis was performed on scar data sets from the GEO database to preliminarily analyze the involvement of POSTN and TGF-β pathways in fibrosis diseases. Expression of POSTN and TGF-β pathway-related molecules was analyzed in LTS scar tissue at the mRNA and protein levels. The effect of POSTN on the biological behavior of tracheal fibroblasts was studied using plasmid DNA overexpression and siRNA silencing techniques to regulate POSTN expression and observe the activation of TGF-β1 and the regulation of cell proliferation and migration via the TGF-β/RHOA pathway. RESULTS The bioinformatics analysis revealed that POSTN and the TGF-β pathway are significantly involved in fibrosis diseases. High expression of POSTN and TGF-β/RHOA pathway-related molecules (TGFβ1, RHOA, CTGF, and COL1) was observed in LTS tissue at both mRNA and protein levels. In tracheal fibroblasts, overexpression or silencing of POSTN led to the activation of TGF-β1 and regulation of cell proliferation and migration through the TGF-β/RHOA pathway. CONCLUSION POSTN is a key molecule in scar formation in LTS, and it regulates the TGF-β/RHOA pathway to mediate the formation of cicatricial LTS by acting on TGF-β1. This study provides insights into the molecular mechanisms underlying LTS and suggests potential therapeutic targets for the treatment of this condition. LEVEL OF EVIDENCE NA Laryngoscope, 134:4078-4087, 2024.
Collapse
Affiliation(s)
- Zhiqiang She
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiying Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoyu Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiping Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Traks T, Reemann P, Eskla KL, Ottas A, Jagomäe T, Liira R, Ilves L, Jaks V, Raam L, Abram K, Kingo K. High-throughput proteomic analysis of chronic inflammatory skin diseases: Psoriasis and atopic dermatitis. Exp Dermatol 2024; 33:e15079. [PMID: 38654506 DOI: 10.1111/exd.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Common characteristics in the pathogenesis of psoriasis (PS) and atopic dermatitis (AD) have been presumed, but only a few studies have clearly supported this. The current aim was to find possible similarities and differences in protein expression patterns between these two major chronic inflammatory skin diseases. High-throughput tandem mass spectrometry proteomic analysis was performed using full thickness skin samples from adult PS patients, AD patients and healthy subjects. We detected a combined total of 3045 proteins in the three study groups. According to principal component analysis, there was significant overlap between the proteomic profiles of PS and AD, and both clearly differed from that of healthy skin. The following validation of selected proteins with western blot analysis showed similar tendencies in expression levels and produced statistically significant results. The expression of periostin (POSTN) was consistently high in AD and very low or undetectable in PS (5% FDR corrected p < 0.001), suggesting POSTN as a potential biomarker to distinguish these diseases. Immunohistochemistry further confirmed higher POSTN expression in AD compared to PS skin. Overall, our findings support the concept that these two chronic skin diseases might share considerably more common mechanisms in pathogenesis than has been suspected thus far.
Collapse
Affiliation(s)
- Tanel Traks
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Clinical Research Centre, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Paula Reemann
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aigar Ottas
- Clinical Research Centre, Tartu University Hospital, University of Tartu, Tartu, Estonia
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rasmus Liira
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - Liis Ilves
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Viljar Jaks
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kristi Abram
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
9
|
Hirata R, Iwata T, Fujita T, Nagahara T, Matsuda S, Sasaki S, Taniguchi Y, Hamamoto Y, Ouhara K, Kudo Y, Kurihara H, Mizuno N. Periostin regulates integrin expression in gingival epithelial cells. J Oral Biosci 2024; 66:170-178. [PMID: 38048847 DOI: 10.1016/j.job.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Human gingival epithelial cells (HGECs) function as a mechanical barrier against invasion by pathogenic organisms through epithelial cell-cell junction complexes, which are complex components of integrin. Integrins play an important role in the protective functions of HGECs. Human periodontal ligament (HPL) cells regulate periodontal homeostasis. However, periodontitis results in the loss of HPL cells. Therefore, as replenishment, HPL cells or mesenchymal stem cells (MSCs) can be transplanted. Herein, HPL cells and MSCs were used to elucidate the regulatory mechanisms of HGECs, assuming periodontal tissue homeostasis. METHODS Human gingival fibroblasts (HGFs), HGECs, HPL cells, and MSCs were cultured, and the conditioned medium was collected. With or without silencing periostin mRNA, HGECs were cultured under normal conditions or in a conditioned medium. Integrin and periostin mRNA expression was determined using real-time polymerase chain reaction. Integrin protein expression was analyzed using flow cytometry, and periostin protein expression was determined via western blotting. RESULTS The conditioned medium affected integrin expression in HGECs. Higher expression of periostin was observed in MSCs and HPL cells than in HGFs. The conditioned medium that contained periostin protein regulated integrin expression in HGECs. After silencing periostin in MSCs and HPL cells, periostin protein was not detected in the conditioned medium, and integrin expression in HGECs remained unaffected. CONCLUSIONS Integrins in HGECs are regulated by periostin secreted from HPL cells and MSCs. This result suggests that periostin maintains gingival cell adhesion and regulates bacterial invasion/infection. Therefore, the functional regulation of periostin-secreting cells is important in preventing periodontitis.
Collapse
Affiliation(s)
- Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan.
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Tamamoto-Mochizuki C, Santoro D, Saridomikelakis MN, Eisenschenk MNC, Hensel P, Pucheu-Haston C. Update on the role of cytokines and chemokines in canine atopic dermatitis. Vet Dermatol 2024; 35:25-39. [PMID: 37485553 DOI: 10.1111/vde.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Cytokines and chemokines play central roles in the pathogenesis of canine atopic dermatitis (cAD). Numerous studies have been published and provide new insights into their roles in cAD. OBJECTIVES To summarise the research updates on the role of cytokines and chemokines in the pathogenesis of cAD since the last review by the International Committee on Allergic Diseases of Animals in 2015. MATERIAL AND METHODS Online citation databases, abstracts and proceedings from international meetings on cytokines and chemokines relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Advances in technologies have allowed the simultaneous analysis of a broader range of cytokines and chemokines, which revealed an upregulation of a multipolar immunological axis (Th1, Th2, Th17 and Th22) in cAD. Most studies focused on specific cytokines, which were proposed as potential novel biomarkers and/or therapeutic targets for cAD, such as interleukin-31. Most other cytokines and chemokines had inconsistent results, perhaps as a consequence of their varied involvement in the pathogenesis of different endotypes of cAD. CONCLUSIONS AND CLINICAL RELEVANCE Inconsistent results for many cytokines and chemokines illustrate the difficulty of studying the complex cytokine and chemokine networks in cAD, and highlight the need for more comprehensive and structured studies in the future.
Collapse
Affiliation(s)
- Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Iizuka Y, Hamano H. The Effect of Bacillus coagulans Induced Interactions among Intestinal Bacteria, Metabolites, and Inflammatory Molecules in Improving Natural Skin Aging. Dermatopathology (Basel) 2023; 10:287-302. [PMID: 37873804 PMCID: PMC10594509 DOI: 10.3390/dermatopathology10040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Lactic acid bacteria consumption serves several health benefits to humans. However, their effect on natural skin aging is still unclear. METHODS This study examined the effects of skin naturalization (particularly skin drying) by administering a spore-bearing lactic acid bacteria (Bacillus coagulans) in mice for 2 years. RESULTS B. coagulans administration improved the natural skin of mice and significantly increased proportions of the genera Bacteroides and Muribaculum, among other intestinal bacteria. As metabolites, increases in nicotinic acid, putrescin, and pantothenic acid levels and a decrease in choline levels were observed. Increased hyaluronic acid, interleukin-10, and M2 macrophage levels indicate aging-related molecules in the skin. Intestinal permeability was also suppressed. Thus, these changes together improved natural skin aging. CONCLUSIONS This study revealed that B. coagulans administration improved the natural skin aging in mice. This enhancement might be induced by the interaction of alterations in intestinal flora, metabolites, or inflammatory substances.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Yasutaka Iizuka
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| |
Collapse
|
12
|
Suzuki M, Ototake Y, Akita A, Asami M, Ikeda N, Watanabe T, Kanaoka M, Yamaguchi Y. Periostin-An inducer of pro-fibrotic phenotype in monocytes and monocyte-derived macrophages in systemic sclerosis. PLoS One 2023; 18:e0281881. [PMID: 37531393 PMCID: PMC10395906 DOI: 10.1371/journal.pone.0281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 08/04/2023] Open
Abstract
Enhanced circulating blood periostin levels positively correlate with disease severity in patients with systemic sclerosis (SSc). Monocytes/macrophages are predominantly associated with the pathogenesis of SSc, but the effect of periostin on immune cells, particularly monocytes and macrophages, still remains to be elucidated. We examined the effect of periostin on monocytes and monocyte-derived macrophages (MDM) in the pathogenesis of SSc. The modified Rodnan total skin thickness score in patients with dcSSc was positively correlated with the proportion of CD80-CD206+ M2 cells. The proportion of M2 macrophages was significantly reduced in rPn-stimulated MDMs of HCs compared to that of SSc patients. The mRNA expression of pro-fibrotic cytokines, chemokines, and ECM proteins was significantly upregulated in rPn-stimulated monocytes and MDMs as compared to that of control monocytes and MDMs. A similar trend was observed for protein expression in the respective MDMs. In addition, the ratio of migrated cells was significantly higher in rPn-stimulated as compared to control monocytes. These results suggest that periostin promotes inflammation and fibrosis in the pathogenesis of SSc by possible modulation of monocytes/macrophages.
Collapse
Affiliation(s)
- Mao Suzuki
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Ototake
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asami Akita
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miho Asami
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Ikeda
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoya Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
Khatun M, Siddique AE, Wahed AS, Haque N, Tony SR, Islam J, Alam S, Sarker MK, Kabir I, Hossain S, Sumi D, Saud ZA, Barchowsky A, Himeno S, Hossain K. Association between serum periostin levels and the severity of arsenic-induced skin lesions. PLoS One 2023; 18:e0279893. [PMID: 36598904 PMCID: PMC9812306 DOI: 10.1371/journal.pone.0279893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a potent environmental toxicant and human carcinogen. Skin lesions are the most common manifestations of chronic exposure to arsenic. Advanced-stage skin lesions, particularly hyperkeratosis have been recognized as precancerous diseases. However, the underlying mechanism of arsenic-induced skin lesions remains unknown. Periostin, a matricellular protein, is implicated in the pathogenesis of many forms of skin lesions. The objective of this study was to examine whether periostin is associated with arsenic-induced skin lesions. A total of 442 individuals from low- (n = 123) and high-arsenic exposure areas (n = 319) in rural Bangladesh were evaluated for the presence of arsenic-induced skin lesions (Yes/No). Participants with skin lesions were further categorized into two groups: early-stage skin lesions (melanosis and keratosis) and advanced-stage skin lesions (hyperkeratosis). Drinking water, hair, and nail arsenic concentrations were considered as the participants' exposure levels. The higher levels of arsenic and serum periostin were significantly associated with skin lesions. Causal mediation analysis revealed the significant effect of arsenic on skin lesions through the mediator, periostin, suggesting that periostin contributes to the development of skin lesions. When skin lesion was used as a three-category outcome (none, early-stage, and advanced-stage skin lesions), higher serum periostin levels were significantly associated with both early-stage and advanced-stage skin lesions. Median (IQR) periostin levels were progressively increased with the increasing severity of skin lesions. Furthermore, there were general trends in increasing serum type 2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and immunoglobulin E (IgE) levels with the progression of the disease. The median (IQR) of IL-4, IL-5, IL-13, eotaxin, and IgE levels were significantly higher in the early-and advanced-stage skin lesions compared to the group of participants without skin lesions. The results of this study suggest that periostin is implicated in the pathogenesis and progression of arsenic-induced skin lesions through the dysregulation of type 2 immune response.
Collapse
Affiliation(s)
- Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Abdus S. Wahed
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahnur Alam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | | | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
14
|
Kim HM, Kang YM, Jin BR, Lee H, Lee DS, Lee M, An HJ. Morus alba fruits attenuates atopic dermatitis symptoms and pathology in vivo and in vitro via the regulation of barrier function, immune response and pruritus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154579. [PMID: 36610150 DOI: 10.1016/j.phymed.2022.154579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Morus alba fruits (MAF) belong to the Moraceae family, which are known to be effective in treating diabetic, autoimmune, and hormonal diseases owing to its low toxicity. MAF, as excerpted from Donguibogam, a representative Korean medical encyclopedia protected by UNESCO, has been widely used to treat lumbago, arthritis, and diabetes. Based on these effects, MAF is investigated for unidentified effects of atopic dermatitis, characterized by complex etiology of skin barrier dysfunction, inflammation, and chronic pruritus. METHODS The antioxidant, inflammatory, and immunomodulatory properties of MAF and its bioactive compounds have been widely reported. According to an examination of 1-chloro-2,4-dinitrobenzene-induced AD-like skin lesions in NC/Nga mice, AD symptoms, such as increased dermatitis score, scratching frequency, immunoglobulin E, trans-epidermal water loss, epidermal thickness, and infiltration of mast cells, were relieved by topical MAF administration. They effectively attenuated cytokines and chemokines, such as interleukin (IL)-4, IL-5, IL-6, IL-8, IL-13, IL-17A, IL-22, IL-1β, tumor necrosis factor-α, thymic stromal lymphopoietin (TSLP), thymic- and activation-regulated chemokine, normal T cell expression, and macrophage-derived chemokine secretion at the mRNA level in TNF-α/IFN-γ induced HaCaT (human immortalized keratinocyte) cells. RESULTS Both in vivo and in vitro models, MAF increased the expression of filaggrin, involucrin, and loricrin, as well as inhibited the activation of Janus kinase 2, signal transducer and activator of transcription proteins 1, and mitogen-activated protein kinase pathways, including extracellular signal-regulated kinase, c-jun N-terminal kinase, and p38. Moreover, MAF reduced the expression of TSLP and periostin, which play important roles in skin pruritus as chronic pruritogenic factors. CONCLUSION These data indicate that MAF could be used as a potential treatment for AD-like skin lesions by regulating the inflammatory response, improving physical skin barriers, and relieving symptomatic pruritus.
Collapse
Affiliation(s)
- Hye-Min Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Yun-Mi Kang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hwan Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
15
|
Nanri Y, Nunomura S, Honda Y, Takedomi H, Yamaguchi Y, Izuhara K. A positive loop formed by SOX11 and periostin upregulates TGF-β signals leading to skin fibrosis. J Invest Dermatol 2022; 143:989-998.e7. [PMID: 36584910 DOI: 10.1016/j.jid.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Systemic sclerosis (SSc) is a chronic, heterogenous disease of connective tissue characterized by organ fibrosis together with vascular injury and autoimmunity. Transforming growth factor (TGF)-β plays a central role in generating fibrosis, including SSc. Periostin is a matricellular protein playing a key role in the generation of fibrosis by amplifying the TGF-β signals. SOX (SRY-related HMG box) 11 is a transcription factor playing several important roles in organ development in embryos. We have previously shown that SOX11 induces periostin expression. However, the roles of the interactions among the TGF-β signals, periostin, and SOX11 remain unknown in the pathogenesis of SSc. In this study, we found that most clones of dermal fibroblasts derived from SSc patients showed constitutive, high expression of SOX11, which is significantly induced by TGF-β1. SOX11 forms a positive loop with periostin to activate the TGF-β signals in SSc dermal fibroblasts. Genetic deletion of Sox11 in Postn-expressing fibroblasts impairs dermal fibrosis by bleomycin. Moreover, using the DNA microarray method, we identified several fibrotic factors dependent on the TGF-β/SOX11/periostin pathway in SSc dermal fibroblasts. Our findings, taken together, show that a positive loop formed by SOX11 and periostin in fibroblasts upregulates the TGF-β signals, leading to skin fibrosis.
Collapse
Affiliation(s)
- Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan
| | | | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga, Japan.
| |
Collapse
|
16
|
Wang Z, Li G, Li M, Hu L, Hao Z, Li Q, Sun C. Periostin contributes to the adventitial remodeling of atherosclerosis by activating adventitial fibroblasts. ATHEROSCLEROSIS PLUS 2022; 50:57-64. [PMID: 36643802 PMCID: PMC9833252 DOI: 10.1016/j.athplu.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Background and aims Adventitial remodeling is an important pathological process of atherosclerosis, but cues implicated in adventitial remodeling are far from fully understood. Periostin (POSTN), a matricellular protein, has been demonstrated to have multiple roles in cardiovascular diseases. The aim of the study was to explore the function of POSTN in adventitial remodeling during atherosclerosis. Methods An atherosclerosis model was constructed based on ApoE-/- mice fed a high-fat and high-cholesterol diet. The expression of POSTN in the adventitia of mouse atherosclerotic vascular specimens was detected by immunohistochemical staining. The roles of POSTN in regulating adventitial fibroblast activation were assessed by cell contractility and activation marker α-smooth muscle actin (α-SMA) expression evaluation in adventitial fibroblasts overexpressing POSTN. In addition, we performed quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting to examine the expression of the proinflammatory chemokines transforming growth factor-β1 (TGF-β1) and monocyte chemotactic protein 1 (MCP1), as well as some extracellular matrix (ECM)-related proteins, in POSTN-overexpressing adventitial fibroblasts. Finally, the integrin-related signaling pathway was detected upon POSTN overexpression in adventitial fibroblasts. Results POSTN was highly expressed in the adventitia of atherosclerotic aortae in the mouse atherosclerosis model and promoted the activation and contraction of adventitial fibroblasts. Meanwhile, POSTN also induced adventitial fibroblasts to express TGF-β1, monocyte chemotactic protein-1 (MCP1), and ECM-related proteins and activated the phosphorylation of focal adhesion kinase (FAK) and Src. Conclusions Our results revealed that POSTN is elevated in adventitia during atherosclerosis and contributes to the adventitial remodeling of atherosclerosis by activating adventitial fibroblasts.
Collapse
Key Words
- Adventitial fibroblasts
- Adventitial remodeling
- Atherosclerosis
- COL1A1, collagen Ⅰ
- COL3A1, collagen Ⅲ
- DMEM, Dulbecco's modified Eagle's medium
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FBS, fetal bovine serum
- MCP1, monocyte chemotactic protein-1
- MMPs, matrix metalloproteinases
- POSTN
- POSTN, periostin
- TGF-β1
- TGF-β1, transforming growth factor-β1
- qRT-PCR, quantitative real-time polymerase chain reaction
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China,Department of Cardiovascular Medicine, Affiliated to the First People's Hospital of Chenzhou of University of South China, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mingpeng Li
- Department of Cardiovascular Medicine, Affiliated to the First People's Hospital of Chenzhou of University of South China, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Lu Hu
- Department of Cardiovascular Medicine, Affiliated to the First People's Hospital of Chenzhou of University of South China, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Zichen Hao
- Department of Cardiovascular Medicine, Affiliated to the First People's Hospital of Chenzhou of University of South China, Chenzhou No. 1 People's Hospital, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Qian Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China,Corresponding author. Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Mastraftsi S, Vrioni G, Bakakis M, Nicolaidou E, Rigopoulos D, Stratigos AJ, Gregoriou S. Atopic Dermatitis: Striving for Reliable Biomarkers. J Clin Med 2022; 11:jcm11164639. [PMID: 36012878 PMCID: PMC9410433 DOI: 10.3390/jcm11164639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) is a highly heterogeneous inflammatory disease regarding both its pathophysiology and clinical manifestations. However, it is treated according to the “one-size-fits-all” approach, which may restrict response to treatment. Thus, there is an unmet need for the stratification of patients with AD into distinct endotypes and clinical phenotypes based on biomarkers that will contribute to the development of precision medicine in AD. The development of reliable biomarkers that may distinguish which patients with AD are most likely to benefit from specific targeted therapies is a complex procedure and to date none of the identified candidate biomarkers for AD has been validated for use in routine clinical practice. Reliable biomarkers in AD are expected to improve diagnosis, evaluate disease severity, predict the course of disease, the development of comorbidities, or the therapeutic response, resulting in effective and personalized treatment of AD. Among the studied AD potential biomarkers, thymus and activation-regulated chemokine/C-C motif ligand 17 (TARC/CCL17) has the greatest evidence-based support for becoming a reliable biomarker in AD correlated with disease severity in both children and adults. In this review, we present the most prominent candidate biomarkers in AD and their suggested use.
Collapse
Affiliation(s)
- Styliani Mastraftsi
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
- Correspondence: ; Tel.: +30-6974819341
| | - Georgia Vrioni
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail Bakakis
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Electra Nicolaidou
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Dimitrios Rigopoulos
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Alexander J. Stratigos
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
18
|
Haddad EB, Cyr SL, Arima K, McDonald RA, Levit NA, Nestle FO. Current and Emerging Strategies to Inhibit Type 2 Inflammation in Atopic Dermatitis. Dermatol Ther (Heidelb) 2022; 12:1501-1533. [PMID: 35596901 PMCID: PMC9276864 DOI: 10.1007/s13555-022-00737-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
Type 2 immunity evolved to combat helminth infections by orchestrating a combined protective response of innate and adaptive immune cells and promotion of parasitic worm destruction or expulsion, wound repair, and barrier function. Aberrant type 2 immune responses are associated with allergic conditions characterized by chronic tissue inflammation, including atopic dermatitis (AD) and asthma. Signature cytokines of type 2 immunity include interleukin (IL)-4, IL-5, IL-9, IL-13, and IL-31, mainly secreted from immune cells, as well as IL-25, IL-33, and thymic stromal lymphopoietin, mainly secreted from tissue cells, particularly epithelial cells. IL-4 and IL-13 are key players mediating the prototypical type 2 response; IL-4 initiates and promotes differentiation and proliferation of naïve T-helper (Th) cells toward a Th2 cell phenotype, whereas IL-13 has a pleiotropic effect on type 2 inflammation, including, together with IL-4, decreased barrier function. Both cytokines are implicated in B-cell isotype class switching to generate immunoglobulin E, tissue fibrosis, and pruritus. IL-5, a key regulator of eosinophils, is responsible for eosinophil growth, differentiation, survival, and mobilization. In AD, IL-4, IL-13, and IL-31 are associated with sensory nerve sensitization and itch, leading to scratching that further exacerbates inflammation and barrier dysfunction. Various strategies have emerged to suppress type 2 inflammation, including biologics targeting cytokines or their receptors, and Janus kinase inhibitors that block intracellular cytokine signaling pathways. Here we review type 2 inflammation, its role in inflammatory diseases, and current and future therapies targeting type 2 pathways, with a focus on AD. INFOGRAPHIC.
Collapse
Affiliation(s)
| | - Sonya L Cyr
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | - Noah A Levit
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | |
Collapse
|
19
|
Takai M, Ono J, Okamoto M, Fujimoto K, Kamei A, Nunomura S, Nanri Y, Ohta S, Hoshino T, Azuma A, Izuhara K. Establishment of a novel ELISA system for measuring periostin independently of formation of the IgA complex. Ann Clin Biochem 2022; 59:347-356. [PMID: 35610952 DOI: 10.1177/00045632221106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Periostin, a matricellular protein that modulates cell functions having various pathophysiological roles, has the potential to be a useful biomarker for various diseases. We recently found that periostin forms a complex with IgA in human serum, which may affect the periostin measurement. METHODS We investigated (1) whether the formation of the periostin-IgA complex affects the original periostin ELISA system, decreasing the values of serum periostin? (2) bow each domain of periostin affects periostin measurement by the original periostin ELISA system? (3) whether we can establish a novel ELISA system that is not affected by formation of the IgA complex? RESULTS The periostin value at the reducing condition was significantly higher than that of the non-reducing condition, demonstrating that formation of the IgA complex affects periostin measurement. The monoclonal antibodies (mAbs) for periostin recognizing the EMI and R1 domains immunoprecipitated serum periostin in the reducing condition more than in the non-reducing condition, whereas the mAbs recognizing the R2 or R3 domain immunoprecipitated comparable amounts of serum periostin in the reducing and non-reducing conditions, suggesting the EMI and R1 domains contribute to formation of the complex with IgA. Using SS16A recognizing the R3 domain combined with SS17B recognizing the R4 domain, we established an ELISA system that was able to measure periostin independently of the IgA complex. CONCLUSIONS We have established a novel ELISA system that measures periostin independently of the IgA complex. This system is promising in identifying periostin as a biomarker for various diseases.
Collapse
Affiliation(s)
- Masayuki Takai
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.,Shino-Test Corporation, Sagamihara, Japan
| | - Junya Ono
- Shino-Test Corporation, Sagamihara, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine,26333Kurume University School of Medicine, Kurume, Japan
| | - Kiminori Fujimoto
- Department of Radiology and Center for Diagnostic Imaging, 26333Kurume University School of Medicine, Kurume, Japan
| | | | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Shoichiro Ohta
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine,26333Kurume University School of Medicine, Kurume, Japan
| | - Arata Azuma
- Department of Respirology, 157710Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
20
|
Expression profile of periostin isoforms in systemic sclerosis. J Dermatol Sci 2021; 104:210-212. [PMID: 34782190 DOI: 10.1016/j.jdermsci.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
|
21
|
Li Z, Yu S, Hu X, Li Y, You X, Tian D, Cheng L, Zheng M, Jing J. Fibrotic Scar After Spinal Cord Injury: Crosstalk With Other Cells, Cellular Origin, Function, and Mechanism. Front Cell Neurosci 2021; 15:720938. [PMID: 34539350 PMCID: PMC8441597 DOI: 10.3389/fncel.2021.720938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
The failure of axonal regeneration after spinal cord injury (SCI) results in permanent loss of sensorimotor function. The persistent presence of scar tissue, mainly fibrotic scar and astrocytic scar, is a critical cause of axonal regeneration failure and is widely accepted as a treatment target for SCI. Astrocytic scar has been widely investigated, while fibrotic scar has received less attention. Here, we review recent advances in fibrotic scar formation and its crosstalk with other main cellular components in the injured core after SCI, as well as its cellular origin, function, and mechanism. This study is expected to provide an important basis and novel insights into fibrotic scar as a treatment target for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Cheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
23
|
Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, Paps JS, Ralph P, Coyne J, Parkington M, DeBrecht J, Ehrhardt-Humbert LC, Cruse GP, Bäumer W, Ji RR, Ko MC, Olivry T. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep 2021; 31:107472. [PMID: 32268102 PMCID: PMC9210348 DOI: 10.1016/j.celrep.2020.03.036] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic allergic itch is a common symptom affecting millions of people and animals, but its pathogenesis is not fully explained. Herein, we show that periostin, abundantly expressed in the skin of patients with atopic dermatitis (AD), induces itch in mice, dogs, and monkeys. We identify the integrin αVβ3 expressed on a subset of sensory neurons as the periostin receptor. Using pharmacological and genetic approaches, we inhibited the function of neuronal integrin αVβ3, which significantly reduces periostin-induced itch in mice. Furthermore, we show that the cytokine TSLP, the application of AD-causing MC903 (calcipotriol), and house dust mites all induce periostin secretion. Finally, we establish that the JAK/STAT pathway is a key regulator of periostin secretion in keratinocytes. Altogether, our results identify a TSLP-periostin reciprocal activation loop that links the skin to the spinal cord via peripheral sensory neurons, and we characterize the non-canonical functional role of an integrin in itch. Mishra et al. demonstrate periostin-induced itch in mice, dogs, and monkeys and identify the integrin αVβ3 as the periostin neuronal receptor. They find that keratinocytes release periostin in response to TSLP, thus identifying a possible reciprocal vicious circle implicating the cytokine TSLP and periostin in chronic allergic itch.
Collapse
Affiliation(s)
- Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; The WM Keck Behavioral Center, North Carolina State University, Raleigh, NC, USA; Program in Genetics, North Carolina State University, Raleigh, NC, USA.
| | - Joshua J Wheeler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Tomoki Fukuyama
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Judy S Paps
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Patrick Ralph
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacob Coyne
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michelle Parkington
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jennifer DeBrecht
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lauren C Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Wolfgang Bäumer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thierry Olivry
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Papanikolaou M, Onoufriadis A, Mellerio JE, Nattkemper LA, Yosipovitch G, Steinhoff M, McGrath JA. Prevalence, pathophysiology and management of itch in epidermolysis bullosa. Br J Dermatol 2020; 184:816-825. [PMID: 32810291 DOI: 10.1111/bjd.19496] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Epidermolysis bullosa (EB) is a highly diverse group of inherited skin disorders, resulting from mutations in genes encoding proteins of the dermoepidermal junction. Itch (pruritus) is one of the most common symptoms across all EB subtypes. It occurs in blistered or wounded sites, or manifests as a generalized phenomenon, thereby affecting both intact skin and healing wounds. The mechanism of pruritus in EB is unclear. It is likely that skin inflammation secondary to barrier disruption, wound healing cascades and dysregulated activation of epidermal sensory nerve endings are all involved in its pathophysiology on the molecular and cellular level. Understanding these mechanisms in depth is crucial in developing optimized treatments for people with EB and improving quality of life. This review summarizes current evidence on the prevalence, mechanisms and management of itch in EB.
Collapse
Affiliation(s)
- M Papanikolaou
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - J E Mellerio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - L A Nattkemper
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Centre, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G Yosipovitch
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Centre, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Steinhoff
- Department of Dermatology, Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar.,Translational Research Institute, Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar.,Weill Cornell Medicine, New York, NY, USA
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
25
|
Wu J, Del Duca E, Espino M, Gontzes A, Cueto I, Zhang N, Estrada YD, Pavel AB, Krueger JG, Guttman-Yassky E. RNA Sequencing Keloid Transcriptome Associates Keloids With Th2, Th1, Th17/Th22, and JAK3-Skewing. Front Immunol 2020; 11:597741. [PMID: 33329590 PMCID: PMC7719808 DOI: 10.3389/fimmu.2020.597741] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Keloids are disfiguring, fibroproliferative growths and their pathogenesis remains unclear, inhibiting therapeutic development. Available treatment options have limited efficacy and harbor safety concerns. Thus, there is a great need to clarify keloid pathomechanisms that may lead to novel treatments. In this study, we aimed to elucidate the profile of lesional and non-lesional keloid skin compared to normal skin. We performed gene (RNAseq, qRT-PCR) and protein (immunohistochemistry) expression analyses on biopsy specimens obtained from lesional and non-lesional skin of African American (AA) keloid patients compared to healthy skin from AA controls. Fold-change≥2 and false-discovery rate (FDR)<0.05 was used to define significance. We found that lesional versus normal skin showed significant up-regulation of markers of T-cell activation/migration (ICOS, CCR7), Th2- (IL-4R, CCL11, TNFSF4/OX40L), Th1- (CXCL9/CXCL10/CXCL11), Th17/Th22- (CCL20, S100As) pathways, and JAK/STAT-signaling (JAK3) (false-discovery rate [FDR]<0.05). Non-lesional skin also exhibited similar trends. We observed increased cellular infiltrates in keloid tissues, including T-cells, dendritic cells, mast cells, as well as greater IL-4rα+, CCR9+, and periostin+ immunostaining. In sum, comprehensive molecular profiling demonstrated that both lesional and non-lesional skin show significant immune alternations, and particularly Th2 and JAK3 expression. This advocates for the investigation of novel treatments targeting the Th2 axis and/or JAK/STAT-signaling in keloid patients.
Collapse
Affiliation(s)
- Jianni Wu
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - Michael Espino
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alyssa Gontzes
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Inna Cueto
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Ning Zhang
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yeriel D. Estrada
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ana B. Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Biomedical Engineering, University of Mississippi, Oxford, MS, United States
| | - James G. Krueger
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
26
|
Aguado T, García M, García A, Ferrer-Mayorga G, Martínez-Santamaría L, del Río M, Botella LM, Sánchez-Puelles JM. Raloxifene and n-Acetylcysteine Ameliorate TGF-Signalling in Fibroblasts from Patients with Recessive Dominant Epidermolysis Bullosa. Cells 2020; 9:E2108. [PMID: 32947957 PMCID: PMC7565802 DOI: 10.3390/cells9092108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin disease caused by mutation of the COL7A1 gene. RDEB is associated with high levels of TGF-β1, which is likely to be involved in the fibrosis that develops in this disease. Endoglin (CD105) is a type III coreceptor for TGF-β1 and its overexpression in fibroblasts deregulates physiological Smad/Alk1/Alk5 signalling, repressing the synthesis of TGF-β1 and extracellular matrix (ECM) proteins. Raloxifene is a specific estrogen receptor modulator designated as an orphan drug for hereditary hemorrhagic telangiectasia, a rare vascular disease. Raloxifene stimulates endoglin synthesis, which could attenuate fibrosis. By contrast, the antioxidant N-acetylcysteine may have therapeutic value to rectify inflammation, fibrosis and endothelial dysfunction. Thus, we present here a repurposing strategy based on the molecular and functional screening of fibroblasts from RDEB patients with these drugs, leading us to propose the repositioning of these two well-known drugs currently in clinical use, raloxifene and N-acetylcysteine, to counteract fibrosis and inflammation in RDEB. Both compounds modulate the profibrotic events that may ultimately be responsible for the clinical manifestations in RDEB, suggesting that these findings may also be relevant for other diseases in which fibrosis is an important pathophysiological event.
Collapse
Affiliation(s)
- Tania Aguado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, U-707 CIBERER, 28040 Madrid, Spain;
| | - Marta García
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Adela García
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Gemma Ferrer-Mayorga
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Lucía Martínez-Santamaría
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Marcela del Río
- Departament of Biomedical Engineering, Universidad Carlos III, 28911 Madrid, Spain; (M.G.); (A.G.); (L.M.-S.); (M.d.R.)
- Spanish Network of Research Groups on Rare Diseases (CIBERER) U714, 28911 Madrid, Spain
- Foundation of the Institute for Health Research, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Luisa-María Botella
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, U-707 CIBERER, 28040 Madrid, Spain;
| | - José-María Sánchez-Puelles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, U-707 CIBERER, 28040 Madrid, Spain;
| |
Collapse
|
27
|
Hassan Z, Luvsannyam E, Patel D, Nukala S, Puvvada SR, Hamid P. Review of Prominent Cytokines as Superior Therapeutic Targets for Moderate-to-Severe Atopic Dermatitis. Cureus 2020; 12:e9901. [PMID: 32968566 PMCID: PMC7505528 DOI: 10.7759/cureus.9901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines predominate the inflammatory pathways in diseases like rhinitis, asthma, and atopic dermatitis. Corticosteroids and immunosuppressants are presently the mainstays of treatment for patients with moderate-to-severe disease, but often accompany a poor side effect profile. In this review, we attempt to consolidate current data on various interleukins (IL) that participate in the pathogenesis of atopic dermatitis (AD) to further improve therapeutic strategies. For now, dupilumab is the most accepted biologic to be registered for treatment for moderate-to-severe disease. Recently, IL-37, IL-13, IL-26, IL-17 & IL-31/33 axis as well as proteins like thymic stromal lymphopoietin (TSLP) show promising results as future therapeutic targets because of their important role in the pathogenesis of AD. However, further studies are required to clarify the safety and efficacy of these interventions compared to current treatment modalities but it is worthwhile to pursue research into biologics as a more successful treatment option for moderate-to-severe AD.
Collapse
Affiliation(s)
- Zaira Hassan
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Enkhmaa Luvsannyam
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dhara Patel
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Swetha Nukala
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Suvarna Rekha Puvvada
- Department of Research, California Instititute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
28
|
Roh SY, Kim JY, Cha HK, Lim HY, Park Y, Lee KN, Shim J, Choi JI, Kim YH, Son GH. Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue. Mol Cells 2020; 43:408-418. [PMID: 32235021 PMCID: PMC7191046 DOI: 10.14348/molcells.2020.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 12/03/2022] Open
Abstract
The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.
Collapse
Affiliation(s)
- Seung-Young Roh
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Guro Hospital, Seoul 08308, Korea
- These authors contributed equally to this work.
| | - Ji Yeon Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
- These authors contributed equally to this work.
| | - Hyo Kyeong Cha
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
| | - Hye Young Lim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
| | - Youngran Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
| | - Kwang-No Lee
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Jaemin Shim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Young-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, Seoul 02841, Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 0841, Korea
- Department of Legal Medicine, College of Medicine, Korea University, Seoul 0281, Korea
| |
Collapse
|
29
|
Evaluation of periostin level for predicting severity and chronicity of childhood atopic dermatitis. Postepy Dermatol Alergol 2019; 36:616-619. [PMID: 31839780 PMCID: PMC6906968 DOI: 10.5114/ada.2018.79728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Periostin has some effects on the pathogenesis of atopic dermatitis (AD) via release of pro-inflammatory cytokines and chemokines from activated keratinocytes and it is related to chronicity of skin lesions. Aim To evaluate the relationship between plasma periostin levels and severity and chronicity of AD in children. Material and methods The study population consisted of 29 children with atopic dermatitis without concomitant allergic disease such as asthma or allergic rhinitis and 31 healthy controls. Data of demographic features, serum eosinophil, total IgE and skin prick test results were collected through the patient's medical records. The severity of the disease was assessed by the SCORAD index. Serum periostin levels were measured with a human periostin ELISA kit. Results The mean ages of the AD patients and the control group participants were 80.7 ±52.8 and 90.3 ±41.6 months, respectively. Mean plasma periostin levels were 63.0 ±19.0 ng/ml in AD patients, and 23.6 ±7.3 in healthy controls, and there was a statistically significant difference between the two groups (p = 0.001). Plasma periostin level did not vary according to total IgE or serum eosinophil count (p > 0.05). Age of onset and duration of symptoms also were not correlated with plasma periostin levels. Although there was a positive relationship between plasma periostin level and the SCORAD index of patients, it was not statistically significant (r = 0.19, p > 0.05). Conclusions This study showed that plasma periostin levels were increased in children with atopic dermatitis. Periostin may have a partial role in the pathogenesis of atopic dermatitis, but it is not associated with severity or chronicity in children with atopic dermatitis.
Collapse
|
30
|
Matsuda-Hirose H, Yamate T, Goto M, Katoh A, Kouji H, Yamamoto Y, Sakai T, Uemura N, Kobayashi T, Hatano Y. Selective Inhibition of β-Catenin/Co-Activator Cyclic AMP Response Element-Binding Protein-Dependent Signaling Prevents the Emergence of Hapten-Induced Atopic Dermatitis-Like Dermatitis. Ann Dermatol 2019; 31:631-639. [PMID: 33911662 PMCID: PMC7992594 DOI: 10.5021/ad.2019.31.6.631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022] Open
Abstract
Background The canonical Wnt/β-catenin signaling pathway is a fundamental regulatory system involved in various biological events. ICG-001 selectively blocks the interaction of β-catenin with its transcriptional co-activator cyclic AMP response element-binding protein (CBP). Recent studies have provided convincing evidence of the inhibitory effects of ICG-001 on Wnt-driven disease models, such as organ fibrosis, cancer, acute lymphoblastic leukemia, and asthma. However, the effects of ICG-001 in atopic dermatitis (AD) have not been investigated. Objective To investigate whether β-catenin/CBP-dependent signaling was contributed in the pathogenesis of AD and ICG-001 could be a therapeutic agent for AD. Methods We examined the effects of ICG-001 in an AD-like murine model generated by repeated topical application of the hapten, oxazolone (Ox). ICG-001 or vehicle alone was injected intraperitoneally every day during the development of AD-like dermatitis arising from once-daily Ox treatment. Results Ox-induced AD-like dermatitis characterized by increases in transepidermal water loss, epidermal thickness, dermal thickness accompanied by increased myofibroblast and mast cell counts, and serum levels of thymic stromal lymphopoietin and thymus and activation-regulated chemokine, and decreases in stratum corneum hydration, were virtually normalized by the treatment with ICG-001. Elevated serum levels of periostin tended to be downregulated, without statistical significance. Conclusion These results suggest that β-catenin/CBP-dependent signaling might be involved in the pathogenesis of AD and could be a therapeutic target.
Collapse
Affiliation(s)
| | - Tomoko Yamate
- Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan
| | - Mizuki Goto
- Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan
| | - Akira Katoh
- Translational Chemical Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroyuki Kouji
- Translational Chemical Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuya Yamamoto
- Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Sakai
- Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan
| | - Naoto Uemura
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Yutaka Hatano
- Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
31
|
Furue K, Ito T, Tsuji G, Ulzii D, Vu YH, Kido-Nakahara M, Nakahara T, Furue M. The IL-13-OVOL1-FLG axis in atopic dermatitis. Immunology 2019; 158:281-286. [PMID: 31509236 DOI: 10.1111/imm.13120] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Despite sharing interleukin-4 receptor α (IL-4Rα) in their signaling cascades, IL-4 and IL-13 have different functions in atopic inflammation. IL-13 preferentially participates in the peripheral tissues because tissue-resident group 2 innate lymphoid cells produce IL-13 but not IL-4. In contrast, lymph node T follicular helper cells express IL-4 but not IL-13 to regulate B-cell immunity. The dominant microenvironment of IL-13 is evident in the lesional skin of atopic dermatitis (AD). The IL-13-rich local milieu causes barrier dysfunction by down-regulating the OVOL1-filaggrin (FLG) axis and up-regulating the periostin-IL-24 axis. Genome-wide association studies also point to the crucial involvement of the IL-13, OVOL1 and FLG genes in the pathogenesis of AD. Biologics targeting IL-13, such as the anti-IL-4Rα antibody dupilumab and the anti-IL-13 antibody tralokinumab, successfully improve AD lesions and further highlight the importance of IL-13 in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kazuhisa Furue
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Gaku Tsuji
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Dugarmaa Ulzii
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yen Hai Vu
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Makiko Kido-Nakahara
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,Division of Skin Surface Sensing, Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,Division of Skin Surface Sensing, Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
32
|
Chacón‐Solano E, León C, Díaz F, García‐García F, García M, Escámez M, Guerrero‐Aspizua S, Conti C, Mencía Á, Martínez‐Santamaría L, Llames S, Pévida M, Carbonell‐Caballero J, Puig‐Butillé J, Maseda R, Puig S, de Lucas R, Baselga E, Larcher F, Dopazo J, del Río M. Fibroblast activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses. Br J Dermatol 2019; 181:512-522. [PMID: 30693469 PMCID: PMC6850467 DOI: 10.1111/bjd.17698] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders. OBJECTIVES To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC. METHODS We conducted RNA-Seq analysis, which included a thorough examination of the differentially expressed genes, a functional enrichment analysis and a description of affected signalling circuits. Transcriptomic data were validated at the protein level in cell cultures, serum samples and skin biopsies. RESULTS Interdisease comparisons against control fibroblasts revealed a unifying signature of 186 differentially expressed genes and four signalling pathways in the three genodermatoses. Remarkably, some of the uncovered expression changes suggest a synthetic fibroblast phenotype characterized by the aberrant expression of extracellular matrix (ECM) proteins. Western blot and immunofluorescence in situ analyses validated the RNA-Seq data. In addition, enzyme-linked immunosorbent assay revealed increased circulating levels of periostin in patients with RDEB. CONCLUSIONS Our results suggest that the different causal genetic defects converge into common changes in gene expression, possibly due to injury-sensitive events. These, in turn, trigger a cascade of reactions involving abnormal ECM deposition and underexpression of antioxidant enzymes. The elucidated expression signature provides new potential biomarkers and common therapeutic targets in RDEB, XPC and KS. What's already known about this topic? Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three genodermatoses with high predisposition to cancer development. Although their causal genetic mutations mainly affect epithelia, the dermal microenvironment likely contributes to the physiopathology of these disorders. What does this study add? We disclose a large overlapping transcription profile between XPC, KS and RDEB fibroblasts that points towards an activated phenotype with high matrix-synthetic capacity. This common signature seems to be independent of the primary causal deficiency, but reflects an underlying derangement of the extracellular matrix via transforming growth factor-β signalling activation and oxidative state imbalance. What is the translational message? This study broadens the current knowledge about the pathology of these diseases and highlights new targets and biomarkers for effective therapeutic intervention. It is suggested that high levels of circulating periostin could represent a potential biomarker in RDEB.
Collapse
|
33
|
Prakoura N, Hadchouel J, Chatziantoniou C. Novel Targets for Therapy of Renal Fibrosis. J Histochem Cytochem 2019; 67:701-715. [PMID: 31116064 PMCID: PMC6713972 DOI: 10.1369/0022155419849386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is an important component of chronic kidney disease, an incurable pathology with increasing prevalence worldwide. With a lack of available therapeutic options, end-stage renal disease is currently treated with renal replacement therapy through dialysis or transplantation. In recent years, many efforts have been made to identify novel targets for therapy of renal diseases, with special focus on the characterization of unknown mediators and pathways participating in renal fibrosis development. Using experimental models of renal disease and patient biopsies, we identified four novel mediators of renal fibrosis with potential to constitute future therapeutic targets against kidney disease: discoidin domain receptor 1, periostin, connexin 43, and cannabinoid receptor 1. The four candidates were highly upregulated in different models of renal disease and were localized at the sites of injury. Subsequent studies showed that they are centrally involved in the underlying mechanisms of renal fibrosis progression. Interestingly, inhibition of either of these proteins by different strategies, including gene deletion, antisense administration, or specific blockers, delayed the progression of renal disease and preserved renal structure and function, even when the inhibition started after initiation of the disease. This review will summarize the current findings on these candidates emphasizing on their potential to constitute future targets of therapy.
Collapse
Affiliation(s)
- Niki Prakoura
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| | - Christos Chatziantoniou
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
34
|
3D-Organotypic Cultures to Unravel Molecular and Cellular Abnormalities in Atopic Dermatitis and Ichthyosis Vulgaris. Cells 2019; 8:cells8050489. [PMID: 31121896 PMCID: PMC6562513 DOI: 10.3390/cells8050489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is characterized by dry and itchy skin evolving into disseminated skin lesions. AD is believed to result from a primary acquired or a genetically-induced epidermal barrier defect leading to immune hyper-responsiveness. Filaggrin (FLG) is a protein found in the cornified envelope of fully differentiated keratinocytes, referred to as corneocytes. Although FLG null mutations are strongly associated with AD, they are not sufficient to induce the disease. Moreover, most patients with ichthyosis vulgaris (IV), a monogenetic skin disease characterized by FLG homozygous, heterozygous, or compound heterozygous null mutations, display non-inflamed dry and scaly skin. Thus, all causes of epidermal barrier impairment in AD have not yet been identified, including those leading to the Th2-predominant inflammation observed in AD. Three dimensional organotypic cultures have emerged as valuable tools in skin research, replacing animal experimentation in many cases and precluding the need for repeated patient biopsies. Here, we review the results on IV and AD obtained with epidermal or skin equivalents and consider these findings in the context of human in vivo data. Further research utilizing complex models including immune cells and cutaneous innervation will enable finer dissection of the pathogenesis of AD and deepen our knowledge of epidermal biology.
Collapse
|
35
|
Maeda D, Kubo T, Kiya K, Kawai K, Matsuzaki S, Kobayashi D, Fujiwara T, Katayama T, Hosokawa K. Periostin is induced by IL-4/IL-13 in dermal fibroblasts and promotes RhoA/ROCK pathway-mediated TGF-β1 secretion in abnormal scar formation. J Plast Surg Hand Surg 2019; 53:288-294. [DOI: 10.1080/2000656x.2019.1612752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daisuke Maeda
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichiro Kiya
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ko Hosokawa
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
36
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Front Cell Dev Biol 2019; 7:68. [PMID: 31134198 PMCID: PMC6514232 DOI: 10.3389/fcell.2019.00068] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics. The ECM also acts as a sink for growth factors and cytokines, providing critical cues during epithelial morphogenesis. Dysregulation in the organization and deposition of ECMs lead to a plethora of pathophysiological conditions that are exacerbated by aberrant ECM-immune cell interactions. In this review, we focus on the interplay between ECM and immune cells in the context of skin diseases and also discuss state of the art therapies that target the key molecular players involved.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Uttkarsh Ayyangar
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Ambika S. Kurbet
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Driti Ashok
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| |
Collapse
|
37
|
The Growth Differentiation Factor 11 is Involved in Skin Fibroblast Ageing and is Induced by a Preparation of Peptides and Sugars Derived from Plant Cell Cultures. Mol Biotechnol 2019; 61:209-220. [DOI: 10.1007/s12033-019-00154-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Clarysse K, Pfaff CM, Marquardt Y, Huth L, Kortekaas Krohn I, Kluwig D, Lüscher B, Gutermuth J, Baron J. JAK1/3 inhibition preserves epidermal morphology in full-thickness 3D skin models of atopic dermatitis and psoriasis. J Eur Acad Dermatol Venereol 2019; 33:367-375. [PMID: 30357932 DOI: 10.1111/jdv.15301] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Janus kinase (JAK) inhibition may be a promising new treatment modality for inflammatory (skin) diseases. However, little is known about direct effects of kinase inhibitors on keratinocyte differentiation and function as well as skin barrier formation. OBJECTIVE Our aim was to address the direct impact of kinase inhibition of the JAK1/3 pathways by tofacitinib on keratinocyte immune function and barrier formation in atopic dermatitis (AD) and psoriasis. METHODS 3D skin equivalents of both diseases were developed and concurrently pretreated with tofacitinib. To induce AD, 3D skin equivalents were stimulated with recombinant human IL-4 and IL-13. Psoriasis-like conditions were induced by incubation with IL-17A, IL-22 and tumour necrosis factor α (TNFα). The activation of signal transducer and activator of transcription (STAT)1, STAT3 and STAT6 was assessed by Western blot analysis. Microarray analysis and quantitative real-time PCR were used for gene expression analysis. RESULTS Tofacitinib pretreatment preserved epidermal morphology and reduced STAT3 and STAT6 phosphorylation of AD-like and STAT3 phosphorylation of psoriasis-like culture conditions in 3D skin models compared to sham-controls. Filaggrin expression was fully maintained in the AD-like models, but only partially in psoriasis-like conditions after pretreatment with tofacitinib. In addition, tofacitinib upregulated DSC1, FLG and KRT1. Using gene expression analysis, downregulation of POSTN and IL24 was observed in AD-like conditions, whereas downregulation of IL20 and IL1B was observed in psoriasis-like conditions. CONCLUSION JAK1/3 inhibition counteracted cytokine-induced AD- and psoriasis-like epidermal morphology and enhanced keratinocyte differentiation in 3D skin models. This effect was more pronounced in the AD-like models compared to the psoriasis-like 3D skin models.
Collapse
Affiliation(s)
- K Clarysse
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - C M Pfaff
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany.,Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Y Marquardt
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| | - L Huth
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| | - I Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - D Kluwig
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| | - B Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - J Gutermuth
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - J Baron
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Eosinophilic esophagitis (EoE) is a relatively new disease but its understanding is evolving over a period of time. This review highlights recent advances in the understanding of pathophysiology, diagnostic modalities, short and long-term goals of therapy and novel therapeutic agents. RECENT FINDINGS The prevalence of EoE is increasing. Upper endoscopy and biopsy remains the gold standard for diagnosing EoE but less invasive and more cost-effective testing has been under investigation. Scoring systems to assess symptoms, histology and endoscopic findings can distinguish between active and inactive disease. Step up therapy with 2-4-6 food elimination can result in early identification of triggering foods and reduce frequency of endoscopies. The term proton pump inhibitor (PPI) responsive eosinophilia should be avoided and PPI should be considered a therapeutic modality. Oral viscous budesonide has been more effective than fluticasone in achieving remission. Adrenal suppression should be looked for patients on swallowed steroids. IL-13 antagonists can be a promising therapy for EoE and dilation is a safe and effective treatment modality in patients with EoE but as is expected, does not decrease inflammation. SUMMARY EoE has been increasingly recognized as a cause of food impactions and dysphagia. Less invasive methods for diagnosis and to monitor treatment response have been studied but need validation in children. Short-term treatment goals include symptomatic and histological improvement, with prevention of fibrostenotic disease the primary long-term goal. Elemental diet and empiric elimination diet appear to be successful in inducing remission. PPI and swallowed steroids cause symptomatic improvement and histological remission but relapse is common after discontinuation of therapy.
Collapse
|
40
|
Joly F, Deret S, Gamboa B, Menigot C, Fogel P, Mounier C, Reiniche P, Sidou F, Aubert J, Lear J, Fryer AA, Zolezzi F, Voegel JJ. Photodynamic therapy corrects abnormal cancer-associated gene expression observed in actinic keratosis lesions and induces a remodeling effect in photodamaged skin. J Dermatol Sci 2018; 91:S0923-1811(17)30775-2. [PMID: 29779986 DOI: 10.1016/j.jdermsci.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Actinic keratoses (AK) are proliferations of neoplastic keratinocytes in the epidermis resulting from cumulative exposure to ultraviolet radiation (UVR), which are liable to transform into squamous cell carcinoma (SCC). Organ Transplant Recipients (OTR) have an increased risk of developing SCC as a consequence of long-term immunosuppressive therapy. The aim of this study was to determine the molecular signature of AKs from OTR prior to treatment with methyl aminolevulinate-photodynamic therapy (MAL-PDT), and to assess what impact the treatment has on promoting remodeling of the photo-damaged skin. METHODS Seven patients were enrolled on a clinical trial to assess the effect of MAL-PDT with biopsies taken at screening prior to the first treatment session (week 1), and six weeks after completion of final treatment (week 18). Whole-genome gene expression analysis was carried out on skin biopsies isolated from an AK lesion, an area surrounding the lesion, and a non-sun exposed region of the body. Quantitative PCR was utilized to confirm the differential expression of key genes. RESULTS MAL-PDT treatment corrected abnormal proliferation-related gene profiles, corrected aberrantly expressed cancer-associated genes and induced expression of dermal extracellular matrix genes in photo-exposed skin. CONCLUSION The efficacy of the MAL-PDT on AK lesions was confirmed at whole-genome gene expression level. A transcriptional signature of remodeling, identified through assessing the effect of MAL-PDT on photodamaged skin, supports the use of MAL-PDT for treating photodamaged skin and field cancerized areas.
Collapse
Affiliation(s)
| | - Sophie Deret
- GALDERMA R&D, 06902 Sophia Antipolis Cedex, France
| | | | | | - Paul Fogel
- Independent Consultant, Paris 75006, France
| | | | | | | | | | - John Lear
- Manchester Academic Health Science Centre, MAHSC, Manchester University and Salford Royal NHS Trust, Manchester, UK
| | - Anthony A Fryer
- Institute for Applied Clinical Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent Staffordshire, ST4 7QB, UK
| | | | | |
Collapse
|
41
|
Kanaoka M, Yamaguchi Y, Komitsu N, Feghali-Bostwick CA, Ogawa M, Arima K, Izuhara K, Aihara M. Pro-fibrotic phenotype of human skin fibroblasts induced by periostin via modulating TGF-β signaling. J Dermatol Sci 2018; 90:199-208. [PMID: 29433908 DOI: 10.1016/j.jdermsci.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Periostin is a matricellular protein that belongs to a class of extracellular matrix (ECM)-related molecules defined by their ability to modulate cell-matrix interactions. We previously reported an elevated level of circulating periostin in patients with systemic sclerosis (SSc) and its association with the severity of skin sclerosis. OBJECTIVE To examine the role of periostin in transforming growth factor (TGF)-β signaling involved in fibrosis. METHODS Levels of periostin were examined in skin and lung fibroblasts obtained from SSc patients. Levels of ECM proteins and pro-fibrotic factors were evaluated in periostin-expressing human skin fibroblasts in the presence or absence of TGF-β. Effects of periostin on the Smad proteins were also evaluated following stimulation with TGF-β by immunoblotting, immunofluorescence staining, and RNA interference. RESULTS Periostin was strongly expressed in skin and lung fibroblasts from SSc patients. Although recombinant periostin alone did not affect ECM protein levels, TGF-β and recombinant periostin treatment or periostin overexpression in skin fibroblasts significantly enhanced the production of ECM proteins. Overexpression of periostin in the presence of TGF-β also augmented expressions of α-smooth muscle actin and early growth response-1 but decreased the level and activity of matrix metalloproteinase 1. Interestingly, the level of Smad 7, a TGF-β-inducible inhibitor of TGF-β signaling, was reduced in periostin-expressing fibroblasts but increased in periostin-silenced fibroblasts. In addition, Smad 7 reduction induced by periostin was partially inhibited in integrin αV-silenced fibroblasts. CONCLUSION Periostin contributes to fibrosis by enhancing TGF-β signaling via Smad 7 inhibition, which may lead to ECM deposition and periostin generation.
Collapse
Affiliation(s)
- Miwa Kanaoka
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| | - Noriko Komitsu
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Carol A Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Masahiro Ogawa
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kazuhiko Arima
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
42
|
Mineshige T, Kamiie J, Sugahara G, Shirota K. A study on periostin involvement in the pathophysiology of canine atopic skin. J Vet Med Sci 2017; 80:103-111. [PMID: 29176263 PMCID: PMC5797867 DOI: 10.1292/jvms.17-0453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, pruritic, and allergic skin disease in humans and animals, particularly dogs. Canine AD (cAD) has received attention as a spontaneous atopic animal model because domesticated dogs
inhabit a human environment, and cAD shares several clinicopathological features with human AD (hAD). In hAD, periostin (PO) is suggested to play a critical role in the enhancement and chronicity of allergic skin
inflammation; however, PO involvement in the pathogenesis of cAD is unknown. Here we aimed to clarify PO involvement in the pathophysiology of cAD and focused on the inducing factor and function of PO in canine atopic
skin. Using double-labeled in situ hybridization (ISH), interleukin (IL)-13 mRNA-positive cells were detected near the keratinocytes and dermal fibroblasts expressing PO mRNA in atopic skin. Using an
in vitro assay, IL-13 induced PO gene expression in both canine dermal fibroblasts and keratinocytes. PO enhanced in vitro growth of canine keratinocytes. Moreover, among PO-induced
genes in cultured canine keratinocytes detected using a microarray, we identified IL-25 as a possible mediator in canine atopic skin. In addition, real time polymerase chain reaction (PCR) analysis revealed upregulation
of IL-25 gene expression in PO-stimulated keratinocytes. These data suggest that IL-13 possibly derived from T helper 2 (Th2) cells stimulates PO production in both keratinocytes and fibroblasts, and then PO may play a
critical role in the pathophysiology of cAD, particularly in the enhancement and chronicity of skin lesions via IL-25.
Collapse
Affiliation(s)
- Takayuki Mineshige
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.,Present address: Marmoset Research Department, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Go Sugahara
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kinji Shirota
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
43
|
Sung M, Lee KS, Ha EG, Lee SJ, Kim MA, Lee SW, Jee HM, Sheen YH, Jung YH, Han MY. An association of periostin levels with the severity and chronicity of atopic dermatitis in children. Pediatr Allergy Immunol 2017. [PMID: 28631851 DOI: 10.1111/pai.12744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Serum periostin might be a biomarker in the pathogenesis of T helper 2-type allergic diseases. The aim of this study was to investigate the relationship between serum periostin levels and the severity and chronicity of atopic dermatitis (AD) in children. METHODS This population-based study examined 4076 children aged 4 to 13 years between June 2015 and July 2015. Of the 4076 children, 196-137 with a history of AD in the AD group and 59 without allergic diseases history in the healthy control (HC) group-were included for the final analysis. RESULTS Serum periostin levels were higher in the AD group than in the HC group (P<.001) and were found to be positively associated with SCORAD score (Spearman's rho [r]=.24, P=.001). Children with AD-onset time <2 years had significantly higher periostin levels (P=.030) compared to those with AD-onset time ≥2 years. The total eosinophil (P=.189) and IgE levels (P=.140) were comparable between children with AD-onset time <2 years and those with AD-onset time ≥2 years. After adjustment for age, gender, and parental allergic history, serum periostin level (OR: 1.03, 95% CI: 1.00-1.06, P=.046) contributed to the development of AD in children with AD-onset time <2 years. CONCLUSION Serum periostin level may play a role in the severity and chronicity of AD in children.
Collapse
Affiliation(s)
- Myongsoon Sung
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Kyung Suk Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun Gyo Ha
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Seung Jin Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Mi Ae Kim
- Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Seung Won Lee
- CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Youn Ho Sheen
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Young Ho Jung
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
44
|
Zhang Y, Yuan D, Yao Y, Sun W, Shi Y, Su X. Predictive and prognostic value of serum periostin in advanced non-small cell lung cancer patients receiving chemotherapy. Tumour Biol 2017; 39:1010428317698367. [PMID: 28459197 DOI: 10.1177/1010428317698367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Periostin is an extracellular matrix protein involved in tumorigenesis and metastasis. However, the role of serum periostin as a surrogate marker for treatment efficacy is still unknown. In 122 advanced non-small cell lung cancer cases, 37 patients with benign lung disease and 40 healthy controls, serum periostin was measured by enzyme-linked immunosorbent assays. The associations of serum periostin levels with the clinic-pathological parameters, chemotherapy response, and clinical outcomes of non-small cell lung cancer patients were analyzed. Serum periostin levels were significantly higher in non-small cell lung cancer patients, and it was related significantly to bone metastasis ( p = 0.021). Serum periostin of 65 non-small cell lung cancer patients were detected before and after two cycles of chemotherapy. The patients with and without periostin response had significant difference in objective response to chemotherapy ( p = 0.001). For the 122 non-small cell lung cancer patients, the median progression-free survival was 5 months. In a multivariate analysis, performance status (hazard ratio, 1.71; 95% confidence interval, 1.10-2.67), baseline periostin (hazard ratio, 1.01; 95% confidence interval, 1.00-1.01), and periostin response (hazard ratio, 0.50; 95% confidence interval, 0.29-0.86) were significantly correlated with prognosis. In conclusion, serum periostin was elevated in advanced non-small cell lung cancer patients. Baseline periostin and periostin responses appeared to be reliable surrogate markers to predict chemotherapy response and survival in patients with advanced non-small cell lung cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yanwen Yao
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yi Shi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xin Su
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
45
|
Wardzyńska A, Makowska JS, Pawełczyk M, Piechota-Polańczyk A, Kurowski M, Kowalski ML. Periostin in Exhaled Breath Condensate and in Serum of Asthmatic Patients: Relationship to Upper and Lower Airway Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:126-132. [PMID: 28102057 PMCID: PMC5266120 DOI: 10.4168/aair.2017.9.2.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/15/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Periostin is considered a biomarker for eosinophilic airway inflammation and have been associated with NSAID-Exacerbated Respiratory Disease (NERD) and chronic rhinosinusitis (CRS). In this study, we aimed to evaluate periostin in exhaled breath condensate (EBC) and in serum of patients with various asthma phenotypes. METHODS The study included 40 asthmatic patients (22 with NERD) and 17 healthy controls. All the procedures (questionnaire, spirometry, FeNO, nasal swabs, EBC collecting, and blood sampling) were performed on the same day. Periostin concentrations were measured using an ELISA kit. RESULTS Periostin was detected in EBC from 37 of 40 asthmatics and in 16 from 17 of controls. The concentration of periostin in EBC did not differ between the study groups and was not associated with NERD or asthma severity. However, the EBC periostin was significantly higher in asthmatics with CRS as compared to those without (3.1 vs 2 ng/mL, P=0.046). Patients with positive bacterial culture from nasal swabs had higher EBC periostin concentrations than those without (3.2 vs 2.1 ng/mL; P=0.046). The mean serum periostin level was higher in asthmatics with a 1-year history of exacerbation than in those without (3.2 vs 2.3 ng/mL, P=0.045). Asthmatics with skin manifestation of NSAIDs hypersensitivity had higher serum periostin levels as compared to those without (3.5 vs 2.3 ng/mL; P=0.03). CONCLUSIONS EBC periostin levels seem to reflect intensity of upper airway disease in asthmatics, while serum levels of periostin are associated with asthma activity (exacerbations or FeNO) or NERD subphenotypes.
Collapse
Affiliation(s)
- Aleksandra Wardzyńska
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Poland
| | - Joanna S Makowska
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Poland
- Department of Rheumatology, Medical University of Lodz, Poland
| | - Małgorzata Pawełczyk
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Poland
| | - Aleksandra Piechota-Polańczyk
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Poland
| | - Marcin Kurowski
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Poland
| | - Marek L Kowalski
- Department of Clinical Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Poland.
| |
Collapse
|
46
|
Idolazzi L, Ridolo E, Fassio A, Gatti D, Montagni M, Caminati M, Martignago I, Incorvaia C, Senna G. Periostin: The bone and beyond. Eur J Intern Med 2017; 38:12-16. [PMID: 27939043 DOI: 10.1016/j.ejim.2016.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
Abstract
In recent years the relationship between bone, metabolism and many pathophysiologic mechanisms involving other organs and the immune system, was increasingly apparent. This observation concerns vitamin D, osteopontin and periostin (PO). PO is expressed in the periosteum of long bones but also in many other tissues and organs, including heart, kidney, skin and lungs, being enhanced by mechanical stress or injury. PO has a relevant physiological function in promoting injury repair in a large number of tissues. However, its overexpression was observed in different diseases characterized by inflammation, fibrosis and tumorigenesis. Here we review the current knowledge on the role of PO in physiologic and pathologic pathways of different diseases. A specific focus regards the correlation between the level of PO and lung diseases and the identification of PO also as an inflammatory key effector in asthma, strongly associated with airways eosinophilia. In fact PO seems to be a useful biomarker of "Th2-high" asthma compared to "Th2-low" asthma phenotype and a predictor of response to therapeutic agents. Currently, a growing number of studies suggests a possible role of PO as a new diagnostic marker and/or therapeutic target for different diseases and its usefulness in clinical practice should be supported and confirmed by further and larger studies.
Collapse
Affiliation(s)
- L Idolazzi
- Rheumatology Unit, Department of Medicine, University of Verona, Italy.
| | - E Ridolo
- Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - A Fassio
- Rheumatology Unit, Department of Medicine, University of Verona, Italy
| | - D Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Italy
| | - M Montagni
- Departmental Unit of Allergology, AUSL of Piacenza,, "Guglielmo da Saliceto" Hospital, Piacenza, Italy
| | - M Caminati
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - I Martignago
- Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - C Incorvaia
- Allergy/Cardiac & Pulmonary Rehabilitation, ASST Gaetano Pini/CTO, Milan, Italy
| | - G Senna
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| |
Collapse
|
47
|
Takai S, Yoshino M, Takao K, Yoshikawa K, Jin D. Periostin antisense oligonucleotide prevents adhesion formation after surgery in mice. J Pharmacol Sci 2017; 133:65-69. [PMID: 28238645 DOI: 10.1016/j.jphs.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 01/27/2023] Open
Abstract
To study the role of periostin in adhesion formation, the effect of periostin antisense oligonucleotide (PAO) on adhesion formation was evaluated in mice. Under anesthesia, the serous membrane of the cecum was abraded, and the adhesion score and mRNA levels of periostin and its related factors were determined after surgery. Saline, 40 mg/kg of negative sense oligonucleotide (NSO), or 40 mg/kg of PAO were injected into the abdomen after surgery, and the adhesion score and mRNA levels were evaluated 14 days later. Filmy adhesion formation was observed 1 day after surgery, and the adhesion score increased gradually to 14 days. The mRNA levels of periostin, transforming growth factor (TGF)-β, and collagen I increased gradually from 3 days to 14 days. The adhesion score of PAO was significantly lower than of saline or NSO 14 days after surgery. The mRNA levels of periostin, TGF-β, and collagen I were also significantly attenuated by treatment with PAO compared with saline or NSO. Thus, these results demonstrated that the periostin mRNA level increased in the abraded cecum, and PAO prevented adhesion formation along with attenuation of the periostin mRNA level.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Innovative Medicine, Osaka Medical College Graduate School of Medicine, Takatsuki, Japan.
| | | | | | | | - Denan Jin
- Department of Innovative Medicine, Osaka Medical College Graduate School of Medicine, Takatsuki, Japan
| |
Collapse
|
48
|
Kim DY, Kim JH, Lee KH, Hong SC, Lee HS, Kang JW. Serum periostin level is not associated with allergic rhinitis or allergic sensitization in Korean children. Int J Pediatr Otorhinolaryngol 2017; 93:24-29. [PMID: 28109493 DOI: 10.1016/j.ijporl.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Periostin is a matricellular protein, synthesized in the airway epithelium and induced by interleukin (IL)-4 and IL-13. The significance of periostin as a biomarker of T helper type 2 cell (Th2)-induced airway inflammation, and as a measure of the response to Th2-targeted therapy, has recently been highlighted. We explored the relationship between serum periostin and allergic rhinitis in Korean children. METHODS Data for fifth and sixth grade children from six randomly selected elementary schools located in Jeju and Seogwipo City, Korea, were investigated. Serum periostin levels were determined by enzyme-linked immunosorbent assay. Sex, school grade, body mass index, and presence of allergic nasal symptoms were obtained via a self-reported survey and skin prick testing was performed. RESULTS There were no significant differences between groups, when stratification was applied according to sex, grade, presence of atopy, and presence of allergic nasal symptoms. Sex and body mass index were significantly associated with serum periostin levels in multivariate linear regression analysis. However, allergic rhinitis was not associated with serum periostin levels. CONCLUSION Allergic rhinitis or allergic sensitization in Korean children did not influence serum periostin levels. Further studies are required to investigate the significance of serum periostin levels in pediatric allergic rhinitis.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, South Korea
| | - Jeong Hong Kim
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, South Korea; The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Keun-Hwa Lee
- The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Seong-Chul Hong
- The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Hye-Sook Lee
- The Environmental Health Center (Atopic Dermatitis and Allergic Rhinitis), Jeju National University School of Medicine, Jeju, South Korea
| | - Ju Wan Kang
- Department of Otorhinolaryngology, Jeju National University School of Medicine, Jeju, South Korea; Department of Medicine, Yonsei University Graduate School, Seoul, South Korea.
| |
Collapse
|
49
|
Yokota K, Kobayakawa K, Saito T, Hara M, Kijima K, Ohkawa Y, Harada A, Okazaki K, Ishihara K, Yoshida S, Kudo A, Iwamoto Y, Okada S. Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:639-653. [PMID: 28082119 DOI: 10.1016/j.ajpath.2016.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023]
Abstract
Scar formation is a prominent pathological feature of traumatic central nervous system (CNS) injury, which has long been implicated as a major impediment to the CNS regeneration. However, the factors affecting such scar formation remain to be elucidated. We herein demonstrate that the extracellular matrix protein periostin (POSTN) is a key player in scar formation after traumatic spinal cord injury (SCI). Using high-throughput RNA sequencing data sets, we found that the genes involved in the extracellular region, such as POSTN, were significantly expressed in the injured spinal cord. The expression of POSTN peaked at 7 days after SCI, predominantly in the scar-forming pericytes. Notably, we found that genetic deletion of POSTN in mice reduced scar formation at the lesion site by suppressing the proliferation of the pericytes. Conversely, we found that recombinant POSTN promoted the migration capacity of the monocytes/macrophages and increased the expression of tumor necrosis factor-α from the monocytes/macrophages in vitro, which facilitated the proliferation of pericytes. Furthermore, we revealed that the pharmacological blockade of POSTN suppressed scar formation and improved the long-term functional outcome after SCI. Our findings suggest a potential mechanism whereby POSTN regulates the scar formation after SCI and provide significant evidence that POSTN is a promising therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Kazuya Yokota
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Department of Transcriptomics, Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Department of Transcriptomics, Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Ishihara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
50
|
Kim J. New biomarkers in atopic dermatitis. ALLERGY ASTHMA & RESPIRATORY DISEASE 2017. [DOI: 10.4168/aard.2017.5.2.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|