1
|
Zhang L, Sun Z, Yuan Y, Sheng J. Integrating bioinformatics and machine learning to identify glomerular injury genes and predict drug targets in diabetic nephropathy. Sci Rep 2025; 15:16868. [PMID: 40374840 PMCID: PMC12081755 DOI: 10.1038/s41598-025-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that poses significant challenges to public health. Among its various complications, diabetic nephropathy (DN) emerges as a critical microvascular complication associated with high mortality rates. Despite the development of diverse therapeutic strategies targeting metabolic improvement, hemodynamic regulation, and fibrosis mitigation, the precise mechanisms responsible for glomerular injury in DN are not yet fully elucidated. To explore these mechanisms, public DN datasets (GSE30528, GSE104948, and GSE96804) were obtained from the GEO database. We merged the GSE30528 and GSE104948 datasets to identify differentially expressed genes (DEGs) between DN and control groups using R software. Weighted gene co-expression network analysis (WGCNA) was subsequently employed to discern genes associated with DN in key modules. We utilized Venny software to pinpoint co-expressed genes shared between DEGs and key module genes. These co-expressed genes underwent gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Through LASSO, SVM, and RF methods, we isolated five significant genes: FN1, C1orf21, CD36, CD48, and SRPX2. These genes were further validated using a logistic model and 10-fold cross-validation. The external dataset GSE96804 served to validate the identified biomarkers, while receiver operating characteristic (ROC) curve analysis assessed their diagnostic efficacy for DN. Additionally, GSE104948 facilitated comparison of biomarker expression levels between DN and five other kidney diseases, highlighting their specificity for DN. These biomarkers also enabled the identification and validation of two molecular subtypes characterized by distinct immune profiles. The Nephroseq v5 database corroborated the correlation between biomarkers and clinical data. Furthermore, the GSigDB database was employed to predict protein-drug interactions, with molecular docking confirming the therapeutic potential of these drug targets. Finally, a diabetic mouse model (BKS-db) was constructed, and RT-qPCR experiments validated the reliability of the identified biomarkers. The study identified five biomarkers with robust diagnostic predictive power for DN. Subtype classification based on these biomarkers revealed distinct enrichment pathways and immune cell infiltration profiles, underscoring the close relationship between these genes and immune functions in DN. Drug prediction and molecular docking analyses demonstrated excellent binding affinities of candidate drugs to target proteins. Differential expression analysis between DN and five other kidney diseases indicated that all biomarkers, except C1orf21, were highly expressed in DN. Notably, as the mouse model lacks the C1orf21 gene, RT-qPCR confirmed the upregulated expression of FN1, CD36, CD48, and SRPX2. This study successfully identified five biomarkers with potential diagnostic and therapeutic value for DN. These biomarkers not only offer insights into the regulatory mechanisms underlying glomerular injury but also provide a theoretical foundation for the development of diagnostic biomarkers and therapeutic targets related to DN-associated glomerular injury.
Collapse
Affiliation(s)
- Li Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - ZhenPeng Sun
- Department of Urology, Xi'an Daxing Hospital, Xian, Shaanxi, 710016, China
| | - Yao Yuan
- Department of Pharmacology, College of Pharmacy, Army Medical University, Chongqing, 400016, China
| | - Jie Sheng
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, China.
| |
Collapse
|
2
|
Singh A, Bocher O, Zeggini E. Insights into the molecular underpinning of type 2 diabetes complications. Hum Mol Genet 2025; 34:469-480. [PMID: 39807636 PMCID: PMC11891870 DOI: 10.1093/hmg/ddae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications. We discuss advancements in omics research, summarizing findings from genetic, epigenomic, transcriptomic, proteomic, and metabolomic studies across different ancestries and disease-relevant tissues. We stress the importance of integrating multi-omics techniques to elucidate the biological mechanisms underlying T2D complications and advocate for ancestrally diverse studies. Ultimately, these insights will improve risk prediction for T2D complications and inform translation strategies.
Collapse
Affiliation(s)
- Archit Singh
- Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine and Health Sciences, Ismaninger Straße 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
- Munich School for Data Science (MUDS), Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Ozvan Bocher
- Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Ismaninger Straße 22, Munich 81675, Germany
| |
Collapse
|
3
|
Sunilkumar S, Yerlikaya EI, VanCleave A, Subrahmanian SM, Toro AL, Kimball SR, Dennis MD. REDD1-dependent GSK3β signaling in podocytes promotes canonical NF-κB activation in diabetic nephropathy. J Biol Chem 2025; 301:108244. [PMID: 39880090 PMCID: PMC11904504 DOI: 10.1016/j.jbc.2025.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Increasing evidence supports the role of an augmented immune response in the early development and progression of renal complications caused by diabetes. We recently demonstrated that podocyte-specific expression of stress response protein regulated in development and DNA damage response 1 (REDD1) contributes to activation of the pro-inflammatory transcription factor NF-κB in the kidney of diabetic mice. The studies here were designed to define the specific signaling events whereby REDD1 promotes NF-κB activation in the context of diabetic nephropathy. Streptozotocin (STZ)-induced diabetes promoted activation of glycogen synthase kinase 3β (GSK3β) in the kidney, which was prevented by REDD1 ablation. REDD1 was necessary and sufficient to enhance GSK3β activity in human podocyte cultures exposed to hyperglycemic conditions. GSK3β suppression prevented NF-κB activation and normalized the expression of pro-inflammatory factors in podocytes exposed to hyperglycemic conditions. In the kidneys of diabetic mice and podocytes exposed to hyperglycemic conditions, REDD1-dependent GSK3β signaling promoted activation of the inhibitor of κB (IκB) kinase (IKK) complex upstream of NF-κB. GSK3β knockdown in podocytes exposed to hyperglycemic conditions reduced macrophage chemotaxis. Similarly, in diabetic mice treated with a GSK3 inhibitor, immune cell infiltration in the kidneys was reduced. Overall, the data support a model wherein hyperglycemia amplifies the activation of GSK3β in a REDD1-dependent manner, leading to canonical NF-κB signaling and an augmented renal immune response in diabetic nephropathy.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Esma I Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashley VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sandeep M Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
4
|
Lee HJ, Sun Y, Das F, Ju W, Nair V, Kevil CG, Varadarajan S, Zhang G, Ghosh Choudhury G, Singh BB, Kretzler M, Nelson RG, Sharma K, Kasinath BS. The CLCA1/TMEM16A/Cl- current axis associates with H2S deficiency in diabetic kidney injury. JCI Insight 2025; 10:e174848. [PMID: 39782685 PMCID: PMC11721299 DOI: 10.1172/jci.insight.174848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025] Open
Abstract
The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD. In mice with type 2 diabetes, renal cortical CLCA1 and TMEM16A content was increased. CLCA1 and TMEM16A content was associated with hydrogen sulfide (H2S) deficiency, mTOR complex 1 (mTORC1) activation, albuminuria, and matrix increase. Administering sodium hydrosulfide (NaHS), a source of H2S, mitigated these changes. In proximal tubular epithelial (MCT) cells, high glucose rapidly increased CLCA1 by recruiting the IL-6/STAT3 axis and augmented TMEM16A expression by stimulating its mRNA translation; these changes were abolished by NaHS. Patch clamp experiments showed that high glucose increased Cl- current in MCT cells that was ameliorated by NaHS and a TMEM16A chemical inhibitor. siRNA against CLCA1 or TMEM16A and TMEM16A inhibitor abolished high glucose-induced mTORC1 activation and matrix protein increase. Tubular expression of TMEM16A correlated with albuminuria in kidney biopsies from people with type 2 diabetes. We report a pathway for DKD in which H2S deficiency results in kidney injury by the recruitment of the CLCA1/TMEM16A/Cl- current system.
Collapse
Affiliation(s)
- Hak Joo Lee
- Center for Precision Medicine, Department of Medicine, and
| | - Yuyang Sun
- Department of Periodontics, University of Texas Health, San Antonio, San Antonio, Texas, USA
| | - Falguni Das
- Center for Precision Medicine, Department of Medicine, and
| | - Wenjun Ju
- Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Christopher G. Kevil
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - Shankara Varadarajan
- Department of Periodontics, University of Texas Health, San Antonio, San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine, Department of Medicine, and
| | - Goutam Ghosh Choudhury
- Center for Precision Medicine, Department of Medicine, and
- Research service and
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Brij B. Singh
- Department of Periodontics, University of Texas Health, San Antonio, San Antonio, Texas, USA
| | - Matthias Kretzler
- Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
- Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Kumar Sharma
- Center for Precision Medicine, Department of Medicine, and
- Research service and
| | - Balakuntalam S. Kasinath
- Center for Precision Medicine, Department of Medicine, and
- Research service and
- Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
5
|
Fernandez-Prado R, Valiño L, Pintor-Chocano A, Sanz AB, Ortiz A, Sanchez-Niño MD. Cefadroxil Targeting of SLC15A2/PEPT2 Protects From Colistin Nephrotoxicity. J Transl Med 2025; 105:102182. [PMID: 39522761 DOI: 10.1016/j.labinv.2024.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are considered interconnected syndromes, as AKI episodes may accelerate CKD progression, and CKD increases the risk of AKI. Genome-wide association studies (GWAS) may identify novel actionable therapeutic targets. Human GWAS for AKI or CKD were combined with murine AKI transcriptomics data sets to identify 13 (ACACB, ACSM5, CNDP1, DPEP1, GATM, SLC6A12, AGXT2L1, SLC15A2, CTSS, ICAM1, ITGAX, ITGAM, and PPM1J) potentially actionable therapeutic targets to modulate kidney disease severity across species and the AKI-CKD spectrum. Among them, SLC15A2, encoding the cell membrane proton-coupled peptide transporter 2, was prioritized for data mining and functional intervention studies in vitro and in vivo because of its known function to transport nephrotoxic drugs such as colistin and the possibility for targeting with small molecules already in clinical use, such as cefadroxil. Data mining disclosed that SLC15A2 was upregulated in the tubulointerstitium of human CKD, including diabetic nephropathy, and the upregulation was localized to proximal tubular cells. Colistin elicited cytotoxicity and proinflammatory response in cultured human and murine proximal tubular cells that was decreased by concomitant exposure to cefadroxil. In proof-of-concept in vivo studies, cefadroxil protected from colistin nephrotoxicity in mice. The GWAS association of SLC15A2 with human kidney disease may be actionable and related to the modifiable transport of nephrotoxins causing repeated subclinical episodes of AKI and/or chronic nephrotoxicity.
Collapse
Affiliation(s)
- Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | - Lara Valiño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | | | - Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Yang C, Xu X, Wu M, Zhao Z, Feng Y, Liang W, Xu C, Jiang T, Zhang G. Huang-Jin-Shuang-Shen Decoction promotes CD8+ T-cell-mediated anti-tumor immunity by regulating chemokine CXCL10 in gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156065. [PMID: 39341128 DOI: 10.1016/j.phymed.2024.156065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Research on immunotherapy for gastric cancer is currently receiving significant attention, with particular emphasis on the role of CD8+ T cells in anti-tumor immune responses. In recent years, the importance of the chemokine CXCL10 in promoting anti-tumor immunity has been increasingly recognized because it plays a crucial role in recruiting CD8+ T cells to the tumor microenvironment. The Huang-Jin-Shuang-Shen (HJSS) Decoction, a Chinese medicine, has been used as an adjuvant drug for gastric cancer chemotherapy. Its mechanism of action may be related to the activation of anti-tumor immunity. PURPOSE To assess the role of the HJSS Decoction in regulating the immune microenvironment of gastric cancer and elucidate its mechanism. STUDY DESIGN/METHODS Ultra-high performance liquid chromatography Q Exactive-mass spectrometry was used to analyze the main components of the HJSS Decoction and evaluate the therapeutic effect of the HJSS Decoction synergized with 5-fluorouracil (5-FU) on gastric cancer. The proportions of CD8+ T cells and killing markers were determined using flow cytometry. Mechanisms of action and targets were screened using network pharmacology. The level of CXCL10 was detected using enzyme-linked immunosorbent assay and western blot, and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) related signaling pathway was detected in vitro. The target function was validated by siRNA transfection. RESULTS The combination of HJSS Decoction and 5-FU demonstrated a synergistic effect in impeding the progression of subcutaneous gastric cancer. This was achieved through the facilitation of apoptosis and suppression of proliferation. Furthermore, HJSS Decoction exhibited the ability to enhance the population of CD8+ T cells and augment their cytotoxic capabilities, both in laboratory settings and in living organisms. Notably, HJSS Decoction upregulated the expression of CXCL10, and mechanistically, it activated the NFκB-related signaling pathway to initiate subsequent transcription of chemokines. CONCLUSION The present study aimed to investigate the pharmacological mechanism of the HJSS Decoction and its potential clinical application in inhibiting gastric cancer in mice. HJSS Decoction can cooperate with 5-FU to inhibit gastric cancer, and the optimal dose is medium. HJSS Decoction exerts anti-tumor immunity by activating the NFκB-related signaling pathway and promoting the expression of CXCL10, which in turn recruits CD8+ T cells into the tumor immune microenvironment. Overall, these findings provide valuable evidence for the potential clinical application of HJSS Decoction.
Collapse
Affiliation(s)
- Chuqi Yang
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China; Suzhou Ninth Hospital affiliated to Soochow University (Suzhou Ninth People's Hospital), Suzhou 215200, China
| | - Xuefei Xu
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mengting Wu
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengqi Zhao
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yewen Feng
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weiyu Liang
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chuyun Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310053, China
| | - Tao Jiang
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guangji Zhang
- Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China.
| |
Collapse
|
7
|
Syreeni A, Dahlström EH, Smyth LJ, Hill C, Mutter S, Gupta Y, Harjutsalo V, Chen Z, Natarajan R, Krolewski AS, Hirschhorn JN, Florez JC, GENIE consortium, Maxwell AP, Groop PH, McKnight AJ, Sandholm N. Blood methylation biomarkers are associated with diabetic kidney disease progression in type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.28.24318055. [PMID: 39649605 PMCID: PMC11623717 DOI: 10.1101/2024.11.28.24318055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background DNA methylation differences are associated with kidney function and diabetic kidney disease (DKD), but prospective studies are scarce. Therefore, we aimed to study DNA methylation in a prospective setting in the Finnish Diabetic Nephropathy Study type 1 diabetes (T1D) cohort. Methods We analysed baseline blood sample-derived DNA methylation (Illumina's EPIC array) of 403 individuals with normal albumin excretion rate (early progression group) and 373 individuals with severe albuminuria (late progression group) and followed-up their DKD progression defined as decrease in eGFR to <60 mL/min/1.73m2 (early DKD progression group; median follow-up 13.1 years) or end-stage kidney disease (ESKD) (late DKD progression group; median follow-up 8.4 years). We conducted two epigenome-wide association studies (EWASs) on DKD progression and sought methylation quantitative trait loci (meQTLs) for the lead CpGs to estimate genetic contribution. Results Altogether, 14 methylation sites were associated with DKD progression (P<9.4×10-8). Methylation at cg01730944 near CDKN1C and at other CpGs associated with early DKD progression were not correlated with baseline eGFR, whereas late progression CpGs were strongly associated. Importantly, 13 of 14 CpGs could be linked to a gene showing differential expression in DKD or chronic kidney disease. Higher methylation at the lead CpG cg17944885, a frequent finding in eGFR EWASs, was associated with ESKD risk (HR [95% CI] = 2.15 [1.79, 2.58]). Additionally, we replicated meQTLs for cg17944885 and identified ten novel meQTL variants for other CpGs. Furthermore, survival models including the significant CpG sites showed increased predictive performance on top of clinical risk factors. Conclusions Our EWAS on early DKD progression identified a podocyte-specific CDKN1C locus. EWAS on late progression proposed novel CpGs for ESKD risk and confirmed previously known sites for kidney function. Since DNA methylation signals could improve disease course prediction, a combination of blood-derived methylation sites could serve as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Anna Syreeni
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura J. Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Claire Hill
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Stefan Mutter
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yogesh Gupta
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Valma Harjutsalo
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute and Beckman Research Institute of City of Hope; Duarte, CA, 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute and Beckman Research Institute of City of Hope; Duarte, CA, 91010, USA
| | - Andrzej S. Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center; Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA, 02215, USA
| | - Joel N. Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School; Boston, MA, 02215, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Alexander P. Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Per-Henrik Groop
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Niina Sandholm
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Sun L, Liu L, Jiang J, Liu K, Zhu J, Wu L, Lu X, Huang Z, Yuan Y, Crowley SD, Mao H, Xing C, Ren J. Transcription factor Twist1 drives fibroblast activation to promote kidney fibrosis via signaling proteins Prrx1/TNC. Kidney Int 2024; 106:840-855. [PMID: 39181396 DOI: 10.1016/j.kint.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The transcription factor Twist1 plays a vital role in normal development in many tissue systems and continues to be important throughout life. However, inappropriate Twist1 activity has been associated with kidney injury and fibrosis, though the underlying mechanisms involved remain incomplete. Here, we explored the role of Twist1 in regulating fibroblast behaviors and the development kidney fibrosis. Initially Twist1 protein and activity was found to be markedly increased within interstitial myofibroblasts in fibrotic kidneys in both humans and rodents. Treatment of rat kidney interstitial fibroblasts with transforming growth factor-β1 (a profibrotic factor) also induced Twist1 expression in vitro. Gain- and loss-of-function experiments supported that Twist1 signaling was responsible for transforming growth factor-β1-induced fibroblast activation and fetal bovine serum-induced fibroblast proliferation. Mechanistically, Twist1 protein promoted kidney fibroblast activation by driving the expression of downstream signaling proteins, Prrx1 and Tnc. Twist1 directly enhanced binding to the promoter of Prrx1 but not TNC, whereas the promoter of TNC was directly bound by Prrx1. Finally, mice with fibroblast-specific deletion of Twist1 exhibited less Prrx1 and TNC protein abundance, interstitial extracellular matrix deposition and kidney inflammation in both the unilateral ureteral obstruction and ischemic-reperfusion injury-induced-kidney fibrotic models. Inhibition of Twist1 signaling with Harmine, a β-carboline alkaloid, improved extracellular matrix deposition in both injury models. Thus, our results suggest that Twist1 signaling promotes the activation and proliferation of kidney fibroblasts, contributing to the development of interstitial fibrosis, offering a potential therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lishan Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanjuan Jiang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kang Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingfeng Zhu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Durham VA Medical Center, Durham, North Carolina, USA
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jiafa Ren
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Min L, Chen Y, Zhong F, Gu L, Lee K, He JC. Role and Mechanisms of Tyro3 in Podocyte Biology and Glomerular Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:398-406. [PMID: 39430290 PMCID: PMC11488836 DOI: 10.1159/000540452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
Background Podocyte loss occurs in both primary and secondary glomerular diseases, leading to the progression of kidney disease. A large body of evidence suggests that apoptosis and detachment are the mechanisms mediating the reduction in podocyte numbers in glomerular diseases. Recent studies demonstrate a renal protective effect of protein S (PS) through the activation of Tyro3, one of the TAM receptors. Tyro3 is predominantly expressed in podocytes within the kidney, and its expression increases in early diabetic kidney disease (DKD) but decreases in patients with progressive DKD and focal segmental glomerulosclerosis (FSGS). Glomerular expression of Tyro3 also correlates with the progression of DKD and predicts the progression of primary glomerular diseases. High glucose increases Tyro3 expression, while TNF-α suppresses the expression of PS and Tyro3. PS has anti-inflammatory and antiapoptotic effects in podocytes, likely via the activation of the Akt pathway and the inhibition of NF-kB activation. In vivo, the knockout of PS or Tyro3 exacerbates podocyte loss and glomerular disease, while the overexpression of PS and Tyro3 attenuates the injury in mice with DKD and FSGS. Tyro3 agonists have also been shown to protect podocytes from injury in these animal models. Summary Tyro3 plays a critical role in podocyte biology and glomerular disease. Tyro3 agonists could potentially be developed as a new therapy for glomerular disease. Key Message The aim of this review article was to summarize the role and mechanisms mediating the protective effects of Tyro3 in podocyte biology and glomerular disease. Additionally, we discuss the possibility of developing Tyro3 agonists as potential treatment for glomerular diseases.
Collapse
Affiliation(s)
- Lulin Min
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA
| |
Collapse
|
10
|
Valiño-Rivas L, Pintor-Chocano A, Carriazo SM, Sanz AB, Ortiz A, Sanchez-Niño MD. Loss of NLRP6 increases the severity of kidney fibrosis. J Cell Physiol 2024; 239:e31347. [PMID: 38934623 DOI: 10.1002/jcp.31347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
While NLRP3 contributes to kidney fibrosis, the function of most NOD-like receptors (NLRs) in chronic kidney disease (CKD) remains unexplored. To identify further NLR members involved in the pathogenesis of CKD, we searched for NLR genes expressed by normal kidneys and differentially expressed in human CKD transcriptomics databases. For NLRP6, lower kidney expression correlated with decreasing glomerular filtration rate. The role and molecular mechanisms of Nlrp6 in kidney fibrosis were explored in wild-type and Nlrp6-deficient mice and cell cultures. Data mining of single-cell transcriptomics databases identified proximal tubular cells as the main site of Nlrp6 expression in normal human kidneys and tubular cell Nlrp6 was lost in CKD. We confirmed kidney Nlrp6 downregulation following murine unilateral ureteral obstruction. Nlrp6-deficient mice had higher kidney p38 MAPK activation and more severe kidney inflammation and fibrosis. Similar results were obtained in adenine-induced kidney fibrosis. Mechanistically, profibrotic cytokines transforming growth factor beta 1 (TGF-β1) and TWEAK decreased Nlrp6 expression in cultured tubular cells, and Nlrp6 downregulation resulted in increased TGF-β1 and CTGF expression through p38 MAPK activation, as well as in downregulation of the antifibrotic factor Klotho, suggesting that loss of Nlrp6 promotes maladaptive tubular cell responses. The pattern of gene expression following Nlrp6 targeting in cultured proximal tubular cells was consistent with maladaptive transitions for proximal tubular cells described in single-cell transcriptomics datasets. In conclusion, endogenous constitutive Nlrp6 dampens sterile kidney inflammation and fibrosis. Loss of Nlrp6 expression by tubular cells may contribute to CKD progression.
Collapse
Grants
- Sociedad Española de Nefrología, Comunidad de Madrid en Biomedicina P2022/BMD-7223, CIFRA_COR-CM and COST Action PERMEDIK CA21165, supported by COST (European Cooperation in Science and Technology). MDSN and ABS were supported by MICINN Ramon y Cajal program RYC2018-024461-I and RYC2019-026916-I respectively. IIS- Fundacion Jimenez Diaz Biobank, part of the Spanish Biobanks Platform (PT17/0015/0006)
- MICINN
- This work was supported by Instituto de Salud Carlos III (ISCIII)-FIS/Fondo Europeo de Desarrollo Regional FEDER grants (PI18/01366, PI21/00251, PI22/00050, PI22/00469), Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación/Next Generation EU (CNS2022-135937), ERA- PerMed-JTC2022 (SPAREKID AC22/00027), RICORS program to RICORS2040 (RD21/0005/0001) funded by European Union - NextGenerationEU, Mecanismo para la Recuperación y la Resiliencia (MRR) and SPACKDc PMP21/00109 FEDER
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Sol M Carriazo
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Ana B Sanz
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria D Sanchez-Niño
- Division of Nephrology, Nephrology and Hypertension Laboratory, FIIS-Fundacion Jimenez Diaz, Madrid, Spain
- Division of Nephrology, RICORS2040, Madrid, Spain
- Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Dai Q, Huang S, Fang Y, Ding X. Identifying the Potential Diagnostic Gene Biomarkers and Forecasting the Potential Therapeutic Agents for Advanced Diabetic Nephropathy Based on Pyroptosis and Ferroptosis. J Inflamm Res 2024; 17:5763-5779. [PMID: 39224660 PMCID: PMC11368145 DOI: 10.2147/jir.s467388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent complication of diabetes, often leading to end-stage kidney disease (ESKD). Advanced DN progresses to ESKD rapidly, yet effective diagnostic indicators and treatments are lacking. Methods Two DN-related datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the R packages. Pyroptosis-related genes (PRGs) and ferroptosis-related genes (FRGs) were collected from their respective database. Pyroptosis- and ferroptosis-related differentially expressed genes (PFRDEGs) were identified by overlapping DEGs, PRGs, and FRGs for further analysis, including functional enrichment and immune infiltration. Hub genes were identified using a PPI network via MCODE-plugin in Cytoscape. GeneMANIA was utilized to explore intermolecular interactions among hub genes. Based on these hub genes, a diagnostic model was constructed using the receiver operating characteristic curve and potential therapeutic agents were retrieved. Correlation analysis between hub genes and estimated glomerular filtration rate was performed using Nephroseq v5 database, and expression of hub genes was validated in external GEO database, Nephroseq v5 database and DN mice in vivo. Results Four hub genes (CYBB, LCN2, JUN and ADIPOQ) were identified, and three of the four hub genes (CYBB, LCN2 and ADIPOQ) were found to be potential biomarkers for advanced DN. On this basis, three potential therapeutic agents were screened. More importantly, a series of biological experiments confirmed that CYBB and LCN2 were significantly up-regulated in DN mice. Conclusion This study identifies three hub genes as diagnostic biomarkers and mines three potential therapeutic agents for advanced DN, providing new insights into the role of pyroptosis and ferroptosis in advanced DN and laying the foundation for future research.
Collapse
Affiliation(s)
- Qin Dai
- Department of Nephrology, Xuhui District Central Hospital, Shanghai, People’s Republic of China
- Department of Nephrology, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Siyi Huang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Cliff CL, Squires PE, Hills CE. Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal 2024; 22:351. [PMID: 38970061 PMCID: PMC11225428 DOI: 10.1186/s12964-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.
Collapse
Affiliation(s)
- C L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - P E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - C E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
13
|
Hofherr A, Liarte Marin E, Musial B, Seth A, Slidel T, Conway J, Baker D, Hansen PB, Challis B, Bartesaghi S, Bhat M, Pecoits-Filho R, Tu X, Selvarajah V, Woollard K, Heerspink HJ. Inhibition of Interleukin-33 to Reduce Glomerular Endothelial Inflammation in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1876-1891. [PMID: 38899206 PMCID: PMC11184260 DOI: 10.1016/j.ekir.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Inflammation is a significant contributor to cardiorenal morbidity and mortality in diabetic kidney disease (DKD). The pathophysiological mechanisms linking systemic, subacute inflammation and local, kidney injury-initiated immune maladaptation is partially understood. Methods Here, we explored the expression of proinflammatory cytokines in patients with DKD; investigated mouse models of type 1 and type 2 diabetes (T2D); evaluated glomerular signaling in vitro; performed post hoc analyses of systemic and urinary markers of inflammation; and initiated a phase 2b clinical study (FRONTIER-1; NCT04170543). Results Transcriptomic profiling of kidney biopsies from patients with DKD revealed significant glomerular upregulation of interleukin-33 (IL-33). Inhibition of IL-33 signaling reduced glomerular damage and albuminuria in the uninephrectomized db/db mouse model (T2D/DKD). On a cellular level, inhibiting IL-33 improved glomerular endothelial health by decreasing cellular inflammation and reducing release of proinflammatory cytokines. Therefore, FRONTIER-1 was designed to test the safety and efficacy of the IL-33-targeted monoclonal antibody tozorakimab in patients with DKD. So far, 578 patients are enrolled in FRONTIER-1. The baseline inflammation status of participants (N > 146) was assessed in blood and urine. Comparison to independent reference cohorts (N > 200) validated the distribution of urinary tumor necrosis factor receptor 1 (TNFR1) and C-C motif chemokine ligand 2 (CCL2). Treatment with dapagliflozin for 6 weeks did not alter these biomarkers significantly. Conclusion We show that blocking the IL-33 pathway may mitigate glomerular endothelial inflammation in DKD. The findings from the FRONTIER-1 study will provide valuable insights into the therapeutic potential of IL-33 inhibition in DKD.
Collapse
Affiliation(s)
- Alexis Hofherr
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elena Liarte Marin
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Barbara Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Asha Seth
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tim Slidel
- Bioinformatics, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James Conway
- Bioinformatics, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - David Baker
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Pernille B.L. Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin Challis
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Bhat
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
- School of Medicine, Pontificia Universidade de Catolica do Parana, Curitiba, Brazil
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Xiao Tu
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Viknesh Selvarajah
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hiddo J.L. Heerspink
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Zhang Y, Xu L, Guo C, Li X, Tian Y, Liao L, Dong J. High CD133 expression in proximal tubular cells in diabetic kidney disease: good or bad? J Transl Med 2024; 22:159. [PMID: 38365731 PMCID: PMC10870558 DOI: 10.1186/s12967-024-04950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Proximal tubular cells (PTCs) play a critical role in the progression of diabetic kidney disease (DKD). As one of important progenitor markers, CD133 was reported to indicate the regeneration of dedifferentiated PTCs in acute kidney disease. However, its role in chronic DKD is unclear. Therefore, we aimed to investigate the expression patterns and elucidate its functional significance of CD133 in DKD. METHODS Data mining was employed to illustrate the expression and molecular function of CD133 in PTCs in human DKD. Subsequently, rat models representing various stages of DKD progression were established. The expression of CD133 was confirmed in DKD rats, as well as in human PTCs (HK-2 cells) and rat PTCs (NRK-52E cells) exposed to high glucose. The immunofluorescence and flow cytometry techniques were utilized to determine the expression patterns of CD133, utilizing proliferative and injury indicators. After overexpression or knockdown of CD133 in HK-2 cells, the cell proliferation and apoptosis were detected by EdU assay, real-time cell analysis and flow analysis. Additionally, the evaluation of epithelial, progenitor cell, and apoptotic indices was performed through western blot and quantitative RT-PCR analyses. RESULTS The expression of CD133 was notably elevated in both human and rat PTCs in DKD, and this expression increased as DKD progressed. CD133 was found to be co-expressed with CD24, KIM-1, SOX9, and PCNA, suggesting that CD133+ cells were damaged and associated with proliferation. In terms of functionality, the knockdown of CD133 resulted in a significant reduction in proliferation and an increase in apoptosis in HK-2 cells compared to the high glucose stimulus group. Conversely, the overexpression of CD133 significantly mitigated high glucose-induced cell apoptosis, but had no impact on cellular proliferation. Furthermore, the Nephroseq database provided additional evidence to support the correlation between CD133 expression and the progression of DKD. Analysis of single-cell RNA-sequencing data revealed that CD133+ PTCs potentially play a role in the advancement of DKD through multiple mechanisms, including heat damage, cell microtubule stabilization, cell growth inhibition and tumor necrosis factor-mediated signaling pathway. CONCLUSION Our study demonstrates that the upregulation of CD133 is linked to cellular proliferation and protects PTC from apoptosis in DKD and high glucose induced PTC injury. We propose that heightened CD133 expression may facilitate cellular self-protective responses during the initial stages of high glucose exposure. However, its sustained increase is associated with the pathological progression of DKD. In conclusion, CD133 exhibits dual roles in the advancement of DKD, necessitating further investigation.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
| | - Lusi Xu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
15
|
Tserga A, Saulnier-Blache JS, Palamaris K, Pouloudi D, Gakiopoulou H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Complement Cascade Proteins Correlate with Fibrosis and Inflammation in Early-Stage Type 1 Diabetic Kidney Disease in the Ins2Akita Mouse Model. Int J Mol Sci 2024; 25:1387. [PMID: 38338666 PMCID: PMC10855735 DOI: 10.3390/ijms25031387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Kostantinos Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Despoina Pouloudi
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
- Department of Biology, National and Kapodistrian University of Athens, 15701 Zografou, Greece
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| |
Collapse
|
16
|
Bhayana S, Dougherty JA, Kamigaki Y, Agrawal S, Wijeratne S, Fitch J, Waller AP, Wolfgang KJ, White P, Kerlin BA, Smoyer WE. Glucocorticoid- and pioglitazone-induced proteinuria reduction in experimental NS both correlate with glomerular ECM modulation. iScience 2024; 27:108631. [PMID: 38188512 PMCID: PMC10770536 DOI: 10.1016/j.isci.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Idiopathic nephrotic syndrome (NS) is a common glomerular disease. Although glucocorticoids (GC) are the primary treatment, the PPARγ agonist pioglitazone (Pio) also reduces proteinuria in patients with NS and directly protects podocytes from injury. Because both drugs reduce proteinuria, we hypothesized these effects result from overlapping transcriptional patterns. Systems biology approaches compared glomerular transcriptomes from rats with PAN-induced NS treated with GC vs. Pio and identified 29 commonly regulated genes-of-interest, primarily involved in extracellular matrix (ECM) remodeling. Correlation with clinical idiopathic NS patient datasets confirmed glomerular ECM dysregulation as a potential mechanism of injury. Cellular deconvolution in silico revealed GC- and Pio-induced amelioration of altered genes primarily within podocytes and mesangial cells. While validation studies are indicated, these analyses identified molecular pathways involved in the early stages of NS (prior to scarring), suggesting that targeting glomerular ECM dysregulation may enable a future non-immunosuppressive approach for proteinuria reduction in idiopathic NS.
Collapse
Affiliation(s)
- Sagar Bhayana
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Julie A. Dougherty
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Yu Kamigaki
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - James Fitch
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Amanda P. Waller
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Katelyn J. Wolfgang
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Bryce A. Kerlin
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - William E. Smoyer
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Avello A, Guerrero-Mauvecin J, Sanz AB. Urine MMP7 as a kidney injury biomarker. Clin Kidney J 2024; 17:sfad233. [PMID: 38186894 PMCID: PMC10768779 DOI: 10.1093/ckj/sfad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Matrix metalloproteinase 7 (MMP-7) is a secreted endopeptidase involved in the degradation of extracellular matrix components and the activation of cytokines and growth factors. The regulation of MMP-7 can be transcriptionally regulated by AP-1 or Wnt/β-catenin or post-translationally by proteolytic activation. MMP-7 expression is low or absent in the healthy kidney, but is significantly upregulated in kidney injury, including AKI and CKD. The function of MMP-7 in kidney disease may differ for CKD and AKI; it may have a profibrotic role in CKD and an anti-apoptotic and regenerative function in AKI. Additionally, the potential of MMP-7 as a biomarker has been studied in different kidney diseases, and the results are promising. Recently, combined unbiased kidney proteomics and transcriptomics approaches identified kidney MMP-7 as the protein having the strongest association with both fibrosis and eGFR and confirmed the predictive role of plasma MMP-7 levels for kidney function decline in over 11 000 individuals. Additionally, urinary MMP-7, combined with urinary cystatin C (CysC) and retinol binding protein (RBP) was reported to provide information on tubular injury in focal segmental glomerulosclerosis and minimal change disease. We now present an overview of research on MMP-7 expression and function in kidney diseases and discuss its potential as a biomarker of kidney diseases.
Collapse
Affiliation(s)
- Alejandro Avello
- Laboratory of Experimental Nephrology, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Ana Belen Sanz
- Laboratory of Experimental Nephrology, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
18
|
Wang J, Wang L, Pang Z, Ge Q, Wu Y, Qi X. Integrated Analysis of Ferroptosis and Immunity-Related Genes Associated with Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2023; 16:3773-3793. [PMID: 38028994 PMCID: PMC10680475 DOI: 10.2147/dmso.s434970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) worldwide. Elucidation of the molecular mechanisms underlying ferroptosis and immunity in DKD could aid the development of potentially effective therapeutics. This study aimed to perform an integrated analysis of ferroptosis and immune-related differentially expressed mRNAs (DEGs) in DKD. Materials and Methods Gene expression profiles of samples obtained from patients with DKD and controls were downloaded from the Gene Expression Omnibus (GEO) database. The potential differentially expressed genes (DEGs) were screened using R software, and ferroptosis immune-related differentially expressed genes (FIRDEGs) were extracted from the DEGs. We performed functional enrichment analyses, and constructed protein-protein interaction (PPI) networks, transcription factor (TFs)-gene networks, and gene-drug networks to explore their potential biological functions. Correlation analysis and receiver operating characteristic curves were used for evaluating the FIRDEGs. We used the CIBERSORT algorithm to examine the composition of immune cells and determine the relationship between FIRDEG signatures and immune cells. Finally, the RNA expression of six FIRDEGs was validated in animal kidney samples using RT-PCR. Results We identified 80 FIRDEGs and performed their functional analyses. We identified six hub genes (Ccl5, Il18, Cybb, Fcgr2b, Myd88, and Ccr2) using PPI networks and predicted potential TF gene networks and gene-drug pairs. Immune cells, including M2 macrophages, resting mast cells, and gamma-delta T cells, were altered in DKD; the FIRDEGs (Fcgr2b, Cybb, Ccr2, and Ccl5) were closely correlated with the infiltration abundance of M2 macrophages and gamma-delta T cells. Finally, the hub genes were verified in mouse kidney samples. Conclusion We identified six hub FIRDEGs (Ccl5, Il18, Cybb, Fcgr2b, Myd88, and Ccr2) in DKD, and predicted the potential transcription factor gene networks and possible treatment targets for future research.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Lin Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Zhe Pang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Qingmiao Ge
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Xiangming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| |
Collapse
|
19
|
Carriazo S, Abasheva D, Duarte D, Ortiz A, Sanchez-Niño MD. SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies. Int J Mol Sci 2023; 24:16078. [PMID: 38003268 PMCID: PMC10671056 DOI: 10.3390/ijms242216078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections.
Collapse
Affiliation(s)
- Sol Carriazo
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
- RICORS2040, 28049 Madrid, Spain;
| | - Daria Abasheva
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Deborah Duarte
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Alberto Ortiz
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
20
|
Sanchez-Niño MD, Ceballos MI, Carriazo S, Pintor-Chocano A, Sanz AB, Saleem MA, Ortiz A. Interaction of Fabry Disease and Diabetes Mellitus: Suboptimal Recruitment of Kidney Protective Factors. Int J Mol Sci 2023; 24:15853. [PMID: 37958836 PMCID: PMC10650640 DOI: 10.3390/ijms242115853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.
Collapse
Affiliation(s)
- Maria D. Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
- Department of Pharmacology, School of Medicine, Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Maria I. Ceballos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Ana B. Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
| | - Moin A. Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; (M.I.C.); (S.C.); (A.P.-C.); (A.B.S.)
- RICORS2040, 28040 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
21
|
Yang J, Li L, Li C, Chen W, Liu Y, Luo S, Zhao C, Han Y, Yang M, Zhao H, Jiang N, Xi Y, Tang C, Cai J, Xiao L, Liu H, Sun L. PACS-2 deficiency aggravates tubular injury in diabetic kidney disease by inhibiting ER-phagy. Cell Death Dis 2023; 14:649. [PMID: 37794057 PMCID: PMC10550977 DOI: 10.1038/s41419-023-06175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Autophagy of endoplasmic reticulum (ER-phagy) selectively removes damaged ER through autophagy-lysosome pathway, acting as an adaptive mechanism to alleviate ER stress and restore ER homeostasis. However, the role and precise mechanism of ER-phagy in tubular injury of diabetic kidney disease (DKD) remain obscure. In the present study, we demonstrated that ER-phagy of renal tubular cells was severely impaired in streptozocin (STZ)-induced diabetic mice, with a decreased expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a membrane trafficking protein which was involved in autophagy, and a reduction of family with sequence similarity 134 member B (FAM134B), one ER-phagy receptor. These changes were further aggravated in mice with proximal tubule specific knockout of Pacs-2 gene. In vitro, transfection of HK-2 cells with PACS-2 overexpression plasmid partially improved the impairment of ER-phagy and the reduction of FAM134B, both of which were induced in high glucose ambience; while the effect was blocked by FAM134B siRNA. Mechanistically, PACS-2 interacted with and promoted the nuclear translocation of transcription factor EB (TFEB), which was reported to activate the expression of FAM134B. Collectively, these data unveiled that PACS-2 deficiency aggravates renal tubular injury in DKD via inhibiting ER-phagy through TFEB/FAM134B pathway.
Collapse
Affiliation(s)
- Jinfei Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
22
|
Roger E, Chadjichristos CE, Kavvadas P, Price GW, Cliff CL, Hadjadj S, Renciot J, Squires PE, Hills CE. Connexin-43 hemichannels orchestrate NOD-like receptor protein-3 (NLRP3) inflammasome activation and sterile inflammation in tubular injury. Cell Commun Signal 2023; 21:263. [PMID: 37770948 PMCID: PMC10536814 DOI: 10.1186/s12964-023-01245-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Without a viable cure, chronic kidney disease is a global health concern. Inflammatory damage in and around the renal tubules dictates disease severity and is contributed to by multiple cell types. Activated in response to danger associated molecular patterns (DAMPs) including ATP, the NOD-like receptor protein-3 (NLRP3) inflammasome is integral to this inflammation. In vivo, we have previously observed that increased expression of Connexin 43 (Cx43) is linked to inflammation in chronic kidney disease (CKD) whilst in vitro studies in human proximal tubule cells highlight a role for aberrant Cx43 hemichannel mediated ATP release in tubule injury. A role for Cx43 hemichannels in priming and activation of the NLRP3 inflammasome in tubule epithelial cells remains to be determined. METHODS Using the Nephroseq database, analysis of unpublished transcriptomic data, examined gene expression and correlation in human CKD. The unilateral ureteral obstruction (UUO) mouse model was combined with genetic (tubule-specific Cx43 knockout) and specific pharmacological blockade of Cx43 (Peptide5), to explore a role for Cx43-hemichannels in tubule damage. Human primary tubule epithelial cells were used as an in vitro model of CKD. RESULTS Increased Cx43 and NLRP3 expression correlates with declining glomerular filtration rate and increased proteinuria in biopsies isolated from patients with CKD. Connexin 43-tubule deletion prior to UUO protected against tubular injury, increased expression of proinflammatory molecules, and significantly reduced NLRP3 expression and downstream signalling mediators. Accompanied by a reduction in F4/80 macrophages and fibroblast specific protein (FSP1+) fibroblasts, Cx43 specific hemichannel blocker Peptide5 conferred similar protection in UUO mice. In vitro, Peptide5 determined that increased Cx43-hemichannel activity primes and activates the NLRP3 inflammasome via ATP-P2X7 receptor signalling culminating in increased secretion of chemokines and cytokines, each of which are elevated in individuals with CKD. Inhibition of NLRP3 and caspase 1 similarly decreased markers of tubular injury, whilst preventing the perpetual increase in Cx43-hemichannel activity. CONCLUSION Aberrant Cx43-hemichannel activity in kidney tubule cells contributes to tubule inflammation via activation of the NLRP3 inflammasome and downstream paracrine mediated cell signalling. Use of hemichannel blockers in targeting Cx43-hemichannels is an attractive future therapeutic target to slow or prevent disease progression in CKD. Video Abstract.
Collapse
Affiliation(s)
- Elena Roger
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Christos E Chadjichristos
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Panagiotis Kavvadas
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Gareth W Price
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Safia Hadjadj
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Jessy Renciot
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
23
|
Wang S, Chen S, Gao Y, Zhou H. Bioinformatics led discovery of biomarkers related to immune infiltration in diabetes nephropathy. Medicine (Baltimore) 2023; 102:e34992. [PMID: 37656997 PMCID: PMC10476789 DOI: 10.1097/md.0000000000034992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The leading cause of end-stage renal disease is diabetic nephropathy (DN). A key factor in DN is immune cell infiltration (ICI). It has been shown that immune-related genes play a significant role in inflammation and immune cell recruitment. However, neither the underlying mechanisms nor immune-related biomarkers have been identified in DNs. Using bioinformatics, this study investigated biomarkers associated with immunity in DN. METHODS Using bioinformatic methods, this study aimed to identify biomarkers and immune infiltration associated with DN. Gene expression profiles (GSE30528, GSE47183, and GSE104948) were selected from the Gene Expression Omnibus database. First, we identified 23 differentially expressed immune-related genes and 7 signature genes, LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2, and RBP4. Subsequently, protein-protein interaction networks were created, and functional enrichment analysis and genome enrichment analysis were performed using the gene ontology and Kyoto Encyclopedia of Genes and Genome databases. In the R software, the ConsensusClusterPlus package identified 2 different immune modes (cluster A and cluster B) following the consistent clustering method. The infiltration of immune cells between the 2 clusters was analyzed by applying the CIBERSORT method. And preliminarily verified the characteristic genes through in vitro experiments. RESULTS In this study, the samples of diabetes nephropathy were classified based on immune related genes, and the Hub genes LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2 and RBP4 related to immune infiltration of diabetes nephropathy were obtained through the analysis of gene expression differences between different subtypes. CONCLUSIONS This study was based on bioinformatics technology to analyze the biomarkers of immune related genes in diabetes nephropathy. To analyze the pathogenesis of diabetes nephropathy at the RNA level, and ultimately provide guidance for disease diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Shuo Wang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, People’s Republic of China
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shengwu Chen
- Department of Orthopaedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Yixuan Gao
- Department of Orthopaedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Hongli Zhou
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, People’s Republic of China
- Department of Nephrology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
24
|
Mamilla M, Yartha SGR, Tuli R, Konipineni S, Rayaprolu DT, Borgharkar G, Kalluru PKR, Thugu TR. Role of Magnesium in Diabetic Nephropathy for Better Outcomes. Cureus 2023; 15:e43076. [PMID: 37692668 PMCID: PMC10484355 DOI: 10.7759/cureus.43076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease worldwide, resulting from uncontrolled diabetes. Oxidative stress plays a critical role in the pathophysiology of DN, leading to cellular damage and disease progression. Magnesium, an essential mineral, has emerged as a potential therapeutic agent due to its antioxidative, anti-inflammatory, and antifibrotic properties. An extensive literature search was conducted on Medline using the keywords "Diabetic nephropathy," "Magnesium," and "Chronic Kidney Disease," and the results published after 2000 were exclusively studied to build this review. This review aims to summarize the role of magnesium in DN and explore its therapeutic potential. Magnesium acts as a cofactor for antioxidant enzymes, directly scavenges reactive oxygen species, and enhances the expression of antioxidant proteins. Furthermore, magnesium exhibits anti-inflammatory effects by suppressing pro-inflammatory cytokine production and inhibiting inflammatory signaling pathways. Magnesium supplementation has been shown to reduce oxidative stress markers and improve antioxidant enzyme activities in clinical studies. Additionally, magnesium has been found to mitigate renal fibrosis, maintain tubular integrity and function, improve endothelial function, and modulate renal hemodynamics. Although limited clinical trials suggest the renoprotective effects of magnesium in DN, further research is needed to determine the optimal dosage, duration, and long-term effects of magnesium supplementation. Despite existing drawbacks and gaps in the literature, magnesium holds promise as adjunctive therapy for DN by targeting oxidative stress and preserving renal function.
Collapse
Affiliation(s)
- Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | | | - Richa Tuli
- Internal Medicine, School of Medicine, Xiamen University, Xiamen, CHN
| | - Sunil Konipineni
- Internal Medicine, Zaporizhzhia State Medical University, Zaporizhzhia, UKR
| | | | - Gargi Borgharkar
- Public Health, University of Alabama at Birmingham, Birmingham, USA
| | | | - Thanmai Reddy Thugu
- Internal Medicine, Sri Padmavathi Medical College for Women, Sri Venkateswara Institute of Medical Sciences, Tirupati, IND
| |
Collapse
|
25
|
Gad EM, Abdel-rahman HG, Abd-el-fattah ME, Kamal MM, Eltahan AS, Dessouki AA. Renoprotective impact of Dapagliflozin and Mulberry extracts toward Fr-STZ induced diabetic nephropathy in rats: Biochemical and Molecular aspects.. [DOI: 10.21203/rs.3.rs-3186379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Among the most typical reasons of end-stage renal disease (ESRD) is diabetic nephropathy (DN), which is also rated as a major microvascular complication of diabetes mellitus. The existent study looked at the impact of dapagliflozin, mulberry fruit and leaves extracts and their combination on the kidney of diabetic rats. To induce diabetic nephropathy, experimental rats were supplied with 10% fructose (Fr) in drinking water for the first two weeks. Each Fr-fed animal received an intraperitoneal injection of a low single dose of STZ (40 mg/kg) after being fasted for the whole night. Sixty albino rats were separated into six equivalent groups. Group I control rats, group II untreated diabetic rats, group III–VI are diabetic groups; received dapagliflozin for 4 weeks, mulberry fruit extract, mulberry leaves extract and combination of DAPA, MFE and MLE, respectively for 6 weeks. Untreated diabetic rats exhibited considerable rise in serum glucose, urea, creatinine, KIM-1, β2-MG, TNF-α, and TGβ1 levels compared to control rats, while treated diabetic ones manifested significant decrease in these measures in contrast to the untreated diabetic rats. Also, renal tissue IL-6, NF-κB and NADPH oxidase manifested significant increase in untreated diabetic rats, while treated groups revealed significant decline in comparison to the untreated one. DAPA and mulberry fruit and leaves extracts optimized IL-10 and renin expression in renal tissue. Histopathological picture of kidney, revealed significant improvement in rats received DAPA and mulberry extracts compared to untreated diabetic rats. It could be concluded that, DAPA, mulberry fruits and leaves extracts alleviated diabetic nephropathy complications. Therefore, combining these ingredients in a supplement may be promising for modulating diabetic nephropathy.
Collapse
|
26
|
Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DB, Ma’ayan A. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res 2023; 51:W168-W179. [PMID: 37166973 PMCID: PMC10320098 DOI: 10.1093/nar/gkad393] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Gene and protein set enrichment analysis is a critical step in the analysis of data collected from omics experiments. Enrichr is a popular gene set enrichment analysis web-server search engine that contains hundreds of thousands of annotated gene sets. While Enrichr has been useful in providing enrichment analysis with many gene set libraries from different categories, integrating enrichment results across libraries and domains of knowledge can further hypothesis generation. To this end, Enrichr-KG is a knowledge graph database and a web-server application that combines selected gene set libraries from Enrichr for integrative enrichment analysis and visualization. The enrichment results are presented as subgraphs made of nodes and links that connect genes to their enriched terms. In addition, users of Enrichr-KG can add gene-gene links, as well as predicted genes to the subgraphs. This graphical representation of cross-library results with enriched and predicted genes can illuminate hidden associations between genes and annotated enriched terms from across datasets and resources. Enrichr-KG currently serves 26 gene set libraries from different categories that include transcription, pathways, ontologies, diseases/drugs, and cell types. To demonstrate the utility of Enrichr-KG we provide several case studies. Enrichr-KG is freely available at: https://maayanlab.cloud/enrichr-kg.
Collapse
Affiliation(s)
- John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Zhuorui Xie
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Nhi Nguyen
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| |
Collapse
|
27
|
Chi Y, Zhang X, Liang D, Wang Y, Cai X, Dong J, Li L, Chi Z. ZnT8 Exerts Anti-apoptosis of Kidney Tubular Epithelial Cell in Diabetic Kidney Disease Through TNFAIP3-NF-κB Signal Pathways. Biol Trace Elem Res 2023; 201:2442-2457. [PMID: 35871203 DOI: 10.1007/s12011-022-03361-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
Apoptosis of kidney tubular epithelial cells contributes to diabetic kidney disease (DKD) pathophysiology, but the mechanisms are not fully understood. Zinc transporter protein member 8 (ZnT8, SLC30A8) is a susceptive gene in diabetes. Here, we aim to investigate whether ZnT8 has effects on pathophysiology of DKD. The animal groups include control, ZnT8KO mice, STZ-induced, and ZnT8-KO-STZ. STZ-induced DKD was performed in male C57BL/6 J mice and in ZnT8-KO mice. High glucose (HG)-induced apoptosis in a normal rat kidney tubular epithelial cell line (NRK-52E cells) was performed in vitro. Transfection of hZnT8-EGFP or TNFAIP3 siRNA was done in NRK-52E cells. Flow cytometry with Annexin V-FITC/PI double staining and TUNEL analysis was performed for the detection of apoptosis. Gene expression at mRNA and protein levels was examined with real-time RT-PCR and Western blot. Urine albumin to creatinine ratio, proinflammatory cytokines, and apoptosis were enhanced in kidneys of STZ and ZnT8-KO-STZ mice compared to control or ZnT8-KO mice. ZnT8 overexpression after hZnT8-EGFP transfection decreased HG-stimulated inflammatory activity and apoptosis in NRK-52E cells. Furthermore, treatment with ZnSO4 blunted HG-induced apoptosis and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3). Also, ZnT8 over-expression after hZnT8-EGFP transfection significantly ameliorates HG-induced NF-κB-dependent transcriptional activity and apoptotic protein expressions in NRK-52E cells, but the inhibitory effect of ZnT8 was significantly abolished with TNFAIP3 siRNA. Our study provides evidence that ZnT8 has protective effects against apoptosis of renal tubular epithelial cells through induction of TNFAIP3 and subsequent suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Yinmao Chi
- Department of Physiology, China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China.
- Department of Nephrology, Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518000, People's Republic of China.
| | - Dan Liang
- Troops of 95988 Unit, Changchun, Jilin, 158000, People's Republic of China
| | - Yue Wang
- Department of Tissue Culture, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiaoyi Cai
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong Province, 515000, People's Republic of China
| | - Jiqiu Dong
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
| | - Lingzhi Li
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
| | - Zhihong Chi
- Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| |
Collapse
|
28
|
Liu J, Duan G, Yang W, Zhang S, Liu F, Peng Y, Sun L, Liu Y, Xiao L. Identification of transcription factors related to diabetic tubulointerstitial injury. J Transl Med 2023; 21:228. [PMID: 36978091 PMCID: PMC10053902 DOI: 10.1186/s12967-023-04069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a main cause of chronic renal failure. Despite decades of extensive study, the molecular mechanisms underlying diabetic tubulointerstitial injury remain unclear. We aim to identify key transcription factor genes involved in diabetic tubulointerstitial injury. METHODS A microarray dataset (GSE30122) from Gene Expression Omnibus (GEO) was downloaded. A total of 38 transcription factor genes based on 166 differentially expressed genes (DEGs) were identified by UCSC_TFBS. RESULTS The regulatory network showed connections between the top 10 transcription factors and their target DEGs. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of targeted DEGs indicated that extracellular space, extracellular exosome, cell surface and complement and coagulation cascades were most significantly enriched. Utilizing Nephroseq v5 online platform, the mRNA expression pattern analysis of transcription factor genes demonstrated that mRNA expression of CDC5, CEBPA, FAC1, HFH1, IRF1, NFE2 and TGIF1 increased in renal tubulointerstitium of DN patients compared with normal controls while that of CEBPB and FOXO4 decreased in renal tubulointerstitium of DN patients compared with normal controls. Correlation analysis between mRNA expression of transcription factor genes in renal tubulointerstitium and clinical features showed that AP1, BACH1, CDC5, FAC1, FOXD1, FOXJ2, FOXO1, FOXO4, HFH1, IRF1, POU3F2, SOX5, SOX9, RSRFC4, S8 and TGIF1 may be related to diabetic tubulointerstitial injury. CONCLUSIONS (1) CDC5, FAC1, FOXO4, HFH1, IRF1 and TGIF1 may be key transcription factor genes. (2)Transcription factors involved in diabetic tubulointerstitial injury may become prospective targets for diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Guangzhong Duan
- Hunan Communication Polytechnic, Changsha, 410132, Hunan, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Broadening horizons in mechanisms, management, and treatment of diabetic kidney disease. Pharmacol Res 2023; 190:106710. [PMID: 36871895 DOI: 10.1016/j.phrs.2023.106710] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Diabetic kidney disease (DKD) is the first cause of end-stage kidney disease in patients with diabetes and its prevalence is increasing worldwide. It encompasses histological alterations that mainly affect the glomerular filtration unit, which include thickening of the basement membrane, mesangial cell proliferation, endothelial alteration, and podocyte injury. These morphological abnormalities further result in a persistent increase of urinary albumin-to-creatinine ratio and in a reduction of the estimated glomerular filtration rate. Several molecular and cellular mechanisms have been recognized, up to date, as major players in mediating such clinical and histological features and many more are being under investigation. This review summarizes the most recent advances in understanding cell death mechanisms, intracellular signaling pathways and molecular effectors that play a role in the onset and progression of diabetic kidney damage. Some of those molecular and cellular mechanisms have been already successfully targeted in preclinical models of DKD and, in some cases, strategies have been tested in clinical trials. Finally, this report sheds light on the relevance of novel pathways that may become therapeutic targets for future applications in DKD.
Collapse
|
30
|
Baek J, Sas K, He C, Nair V, Giblin W, Inoki A, Zhang H, Yingbao Y, Hodgin J, Nelson RG, Brosius FC, Kretzler M, Stemmer PM, Lombard DB, Pennathur S. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease. J Biol Chem 2023; 299:102960. [PMID: 36736426 PMCID: PMC9996370 DOI: 10.1016/j.jbc.2023.102960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Early diabetic kidney disease (DKD) is marked by dramatic metabolic reprogramming due to nutrient excess, mitochondrial dysfunction, and increased renal energy requirements from hyperfiltration. We hypothesized that changes in metabolism in DKD may be regulated by Sirtuin 5 (SIRT5), a deacylase that removes posttranslational modifications derived from acyl-coenzyme A and has been demonstrated to regulate numerous metabolic pathways. We found decreased malonylation in the kidney cortex (∼80% proximal tubules) of type 2 diabetic BKS db/db mice, associated with increased SIRT5 expression. We performed a proteomics analysis of malonylated peptides and found that proteins with significantly decreased malonylated lysines in the db/db cortex were enriched in nonmitochondrial metabolic pathways: glycolysis and peroxisomal fatty acid oxidation. To confirm relevance of these findings in human disease, we analyzed diabetic kidney transcriptomic data from a cohort of Southwestern American Indians, which revealed a tubulointerstitial-specific increase in Sirt5 expression. These data were further corroborated by immunofluorescence data of SIRT5 from nondiabetic and DKD cohorts. Furthermore, overexpression of SIRT5 in cultured human proximal tubules demonstrated increased aerobic glycolysis. Conversely, we observed reduced glycolysis with decreased SIRT5 expression. These findings suggest that SIRT5 may lead to differential nutrient partitioning and utilization in DKD. Taken together, our findings highlight a previously unrecognized role for SIRT5 in metabolic reprogramming in DKD.
Collapse
Affiliation(s)
- Judy Baek
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelli Sas
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chenchen He
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - William Giblin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongyu Zhang
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Yingbao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
31
|
Mariani LH, Eddy S, AlAkwaa FM, McCown PJ, Harder JL, Nair V, Eichinger F, Martini S, Ademola AD, Boima V, Reich HN, El Saghir J, Godfrey B, Ju W, Tanner EC, Vega-Warner V, Wys NL, Adler SG, Appel GB, Athavale A, Atkinson MA, Bagnasco SM, Barisoni L, Brown E, Cattran DC, Coppock GM, Dell KM, Derebail VK, Fervenza FC, Fornoni A, Gadegbeku CA, Gibson KL, Greenbaum LA, Hingorani SR, Hladunewich MA, Hodgin JB, Hogan MC, Holzman LB, Jefferson JA, Kaskel FJ, Kopp JB, Lafayette RA, Lemley KV, Lieske JC, Lin JJ, Menon R, Meyers KE, Nachman PH, Nast CC, O'Shaughnessy MM, Otto EA, Reidy KJ, Sambandam KK, Sedor JR, Sethna CB, Singer P, Srivastava T, Tran CL, Tuttle KR, Vento SM, Wang CS, Ojo AO, Adu D, Gipson DS, Trachtman H, Kretzler M. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. Kidney Int 2023; 103:565-579. [PMID: 36442540 DOI: 10.1016/j.kint.2022.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.
Collapse
Affiliation(s)
- Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl M AlAkwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip J McCown
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sebastian Martini
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Adebowale D Ademola
- Department of Paediatrics, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Heather N Reich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley Godfrey
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily C Tanner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Virginia Vega-Warner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Noel L Wys
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon G Adler
- Division of Nephrology and Hypertension at Harbor-UCLA Medical Center and The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ambarish Athavale
- Division of Nephrology-Hypertension, University of San Diego, California, San Diego, California, USA
| | - Meredith A Atkinson
- Division of Pediatric Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serena M Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth Brown
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel C Cattran
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gaia M Coppock
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine M Dell
- Center for Pediatric Nephrology, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vimal K Derebail
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Keisha L Gibson
- Pediatric Nephrology Division, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A Greenbaum
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sangeeta R Hingorani
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michelle A Hladunewich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Ashley Jefferson
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Frederick J Kaskel
- Division of Pediatric Nephrology, Montefiore Medical Center, Bronx, New York, USA
| | - Jeffrey B Kopp
- National Institute of Diabetes and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Lafayette
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, California, USA
| | - Kevin V Lemley
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jen-Jar Lin
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajarasee Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin E Meyers
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Patrick H Nachman
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly J Reidy
- Division of Pediatric Nephrology, Montefiore Medical Center, Bronx, New York, USA
| | - Kamalanathan K Sambandam
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R Sedor
- Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Physiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine B Sethna
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Pamela Singer
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Cheryl L Tran
- Pediatric Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine R Tuttle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA; Providence Medical Research Center, Providence Health Care, University of Washington, Spokane, Washington, USA
| | - Suzanne M Vento
- Division of Nephrology, Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Chia-Shi Wang
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akinlolu O Ojo
- Department of Population Health, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Debbie S Gipson
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
32
|
Denicolò S, Nair V, Leierer J, Rudnicki M, Kretzler M, Mayer G, Ju W, Perco P. Assessment of Fibrinogen-like 2 (FGL2) in Human Chronic Kidney Disease through Transcriptomics Data Analysis. Biomolecules 2022; 13:89. [PMID: 36671474 PMCID: PMC9855364 DOI: 10.3390/biom13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen-like 2 (FGL2) was recently found to be associated with fibrosis in a mouse model of kidney damage and was proposed as a potential therapeutic target in chronic kidney disease (CKD). We assessed the association of renal FGL2 mRNA expression with the disease outcome in two independent CKD cohorts (NEPTUNE and Innsbruck CKD cohort) using Kaplan Meier survival analysis. The regulation of FGL2 in kidney biopsies of CKD patients as compared to healthy controls was further assessed in 13 human CKD transcriptomics datasets. The FGL2 protein expression in human renal tissue sections was determined via immunohistochemistry. The regulators of FGL2 mRNA expression in renal tissue were identified in the co-expression and upstream regulator analysis of FGL2-positive renal cells via the use of single-cell RNA sequencing data from the kidney precision medicine project (KPMP). Higher renal FGL2 mRNA expression was positively associated with kidney fibrosis and negatively associated with eGFR. Renal FGL2 mRNA expression was upregulated in CKD as compared with healthy controls and associated with CKD progression in the Innsbruck CKD cohort (p-value = 0.0036) and NEPTUNE cohort (p-value = 0.0048). The highest abundance of FGL2 protein in renal tissue was detected in the thick ascending limb of the loop of Henle and macula densa, proximal tubular cells, as well as in glomerular endothelial cells. The upstream regulator analysis identified TNF, IL1B, IFNG, NFKB1, and SP1 as factors potentially inducing FGL2-co-expressed genes, whereas factors counterbalancing FGL2-co-expressed genes included GLI1, HNF1B, or PPARGC1A. In conclusion, renal FGL2 mRNA expression is elevated in human CKD, and higher FGL2 levels are associated with fibrosis and worse outcomes.
Collapse
Affiliation(s)
- Sara Denicolò
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Viji Nair
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Zheng X, Higdon L, Gaudet A, Shah M, Balistieri A, Li C, Nadai P, Palaniappan L, Yang X, Santo B, Ginley B, Wang XX, Myakala K, Nallagatla P, Levi M, Sarder P, Rosenberg A, Maltzman JS, de Freitas Caires N, Bhalla V. Endothelial Cell-Specific Molecule-1 Inhibits Albuminuria in Diabetic Mice. KIDNEY360 2022; 3:2059-2076. [PMID: 36591362 PMCID: PMC9802554 DOI: 10.34067/kid.0001712022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023]
Abstract
Background Diabetic kidney disease (DKD) is the most common cause of kidney failure in the world, and novel predictive biomarkers and molecular mechanisms of disease are needed. Endothelial cell-specific molecule-1 (Esm-1) is a secreted proteoglycan that attenuates inflammation. We previously identified that a glomerular deficiency of Esm-1 associates with more pronounced albuminuria and glomerular inflammation in DKD-susceptible relative to DKD-resistant mice, but its contribution to DKD remains unexplored. Methods Using hydrodynamic tail-vein injection, we overexpress Esm-1 in DKD-susceptible DBA/2 mice and delete Esm-1 in DKD-resistant C57BL/6 mice to study the contribution of Esm-1 to DKD. We analyze clinical indices of DKD, leukocyte infiltration, podocytopenia, and extracellular matrix production. We also study transcriptomic changes to assess potential mechanisms of Esm-1 in glomeruli. Results In DKD-susceptible mice, Esm-1 inversely correlates with albuminuria and glomerular leukocyte infiltration. We show that overexpression of Esm-1 reduces albuminuria and diabetes-induced podocyte injury, independent of changes in leukocyte infiltration. Using a complementary approach, we find that constitutive deletion of Esm-1 in DKD-resistant mice modestly increases the degree of diabetes-induced albuminuria versus wild-type controls. By glomerular RNAseq, we identify that Esm-1 attenuates expression of kidney disease-promoting and interferon (IFN)-related genes, including Ackr2 and Cxcl11. Conclusions We demonstrate that, in DKD-susceptible mice, Esm-1 protects against diabetes-induced albuminuria and podocytopathy, possibly through select IFN signaling. Companion studies in patients with diabetes suggest a role of Esm-1 in human DKD.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lauren Higdon
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Alexandre Gaudet
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Manav Shah
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Angela Balistieri
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Catherine Li
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Patricia Nadai
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Latha Palaniappan
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California
| | - Xiaoping Yang
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Briana Santo
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Brandon Ginley
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Xiaoxin X. Wang
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | - Moshe Levi
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo–The State University of New York, Buffalo, New York
| | - Avi Rosenberg
- Division of Kidney-Urologic Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan S. Maltzman
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Heath Care System, Palo Alto, California
| | - Nathalie de Freitas Caires
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1019-UMR9017-Center for Infection & Immunity of Lille, Pasteur Institute of Lille, University of Lille, Lille, France
- Biothelis, Lille, France
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
34
|
Smyth LJ, Dahlström EH, Syreeni A, Kerr K, Kilner J, Doyle R, Brennan E, Nair V, Fermin D, Nelson RG, Looker HC, Wooster C, Andrews D, Anderson K, McKay GJ, Cole JB, Salem RM, Conlon PJ, Kretzler M, Hirschhorn JN, Sadlier D, Godson C, Florez JC, Forsblom C, Maxwell AP, Groop PH, Sandholm N, McKnight AJ. Epigenome-wide meta-analysis identifies DNA methylation biomarkers associated with diabetic kidney disease. Nat Commun 2022; 13:7891. [PMID: 36550108 PMCID: PMC9780337 DOI: 10.1038/s41467-022-34963-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.
Collapse
Affiliation(s)
- Laura J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Katie Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jill Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Viji Nair
- Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Damian Fermin
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Christopher Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kerry Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Gareth J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital and Department of Medicine Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel N Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alexander P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
35
|
Li Y, Lin H, Shu S, Sun Y, Lai W, Chen W, Hu Z, Peng H. Integrative transcriptome analysis reveals TEKT2 and PIAS2 involvement in diabetic nephropathy. FASEB J 2022; 36:e22592. [PMID: 36251411 DOI: 10.1096/fj.202200740rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Cell heterogeneity has impeded the accurate interpretation of the bulk transcriptome data from patients with diabetic nephropathy (DN). We performed an analysis by integrating bulk and single-cell transcriptome datasets to uncover novel mechanisms leading to DN, especially in the podocytes. Microdissected glomeruli and tubules transcriptome datasets were selected from Gene Expression Omnibus (GEO). Then the consistency between datasets was evaluated. The analysis of the bulk dataset and single-nucleus RNA dataset was integrated to reveal the cell type-specific responses to DN. The candidate genes were validated in kidney tissues from DN patients and diabetic mice. We compared 4 glomerular and 4 tubular datasets and found considerable discrepancies among datasets regarding the deferentially expressed genes (DEGs), involved signaling pathways, and the hallmark enrichment profiles. Deconvolution of the bulk data revealed that the variations in cell-type proportion contributed greatly to this discrepancy. The integrative analysis uncovered that the dysregulation of spermatogenesis-related genes, including TEKT2 and PIAS2, was involved in the development of DN. Importantly, the mRNA level of TEKT2 was negatively correlated with the mRNA levels of NPHS1 (r = -.66, p < .0001) and NPHS2 (r = -.85, p < .0001) in human diabetic glomeruli. Immunostaining confirmed that the expression of TEKT2 and PIAS2 were up-regulated in podocytes of DN patients and diabetic mice. Knocking down TEKT2 resisted high glucose-induced cytoskeletal remodeling and down-regulation of NPHS1 protein in the cultured podocyte. In conclusion, the integrative strategy can help us efficiently use the publicly available transcriptomics resources. Using this approach and combining it with classical research methods, we identified TEKT2 and PIAS2, two spermatogenesis-related genes involved in the pathogenesis of DN. Furthermore, TEKT2 is involved in this pathogenesis by regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
- Yuanqing Li
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongchun Lin
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuangshuang Shu
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxiang Sun
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiyan Lai
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Peng
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
37
|
Bitzer M, Ju W, Subramanian L, Troost JP, Tychewicz J, Steck B, Wiggins RC, Gipson DS, Gadegbeku CA, Brosius FC, Kretzler M, Pennathur S. The Michigan O'Brien Kidney Research Center: transforming translational kidney research through systems biology. Am J Physiol Renal Physiol 2022; 323:F401-F410. [PMID: 35924446 PMCID: PMC9485002 DOI: 10.1152/ajprenal.00091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Research on kidney diseases is being transformed by the rapid expansion and innovations in omics technologies. The analysis, integration, and interpretation of big data, however, have been an impediment to the growing interest in applying these technologies to understand kidney function and failure. Targeting this urgent need, the University of Michigan O'Brien Kidney Translational Core Center (MKTC) and its Administrative Core established the Applied Systems Biology Core. The Core provides need-based support for the global kidney community centered on enabling incorporation of systems biology approaches by creating web-based, user-friendly analytic and visualization tools, like Nephroseq and Nephrocell, guiding with experimental design, and processing, analysis, and integration of large data sets. The enrichment core supports systems biology education and dissemination through workshops, seminars, and individualized training sessions. Meanwhile, the Pilot and Feasibility Program of the MKTC provides pilot funding to both early-career and established investigators new to the field, to integrate a systems biology approach into their research projects. The relevance and value of the portfolio of training and services offered by MKTC are reflected in the expanding community of young investigators, collaborators, and users accessing resources and engaging in systems biology-based kidney research, thereby motivating MKTC to persevere in its mission to serve the kidney research community by enabling access to state-of-the-art data sets, tools, technologies, expertise, and learning opportunities for transformative basic, translational, and clinical studies that will usher in solutions to improve the lives of people impacted by kidney disease.
Collapse
Affiliation(s)
- Markus Bitzer
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lalita Subramanian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan P Troost
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Joseph Tychewicz
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Becky Steck
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Roger C Wiggins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Debbie S Gipson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic Health System, Cleveland, Ohio
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
38
|
Cao H, Rao X, Jia J, Yan T, Li D. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches. Hereditas 2022; 159:36. [PMID: 36154667 PMCID: PMC9511769 DOI: 10.1186/s41065-022-00249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. The mechanism of tubulointerstitial lesions in DN is not fully elucidated. This article aims to identify novel genes and clarify the molecular mechanisms for the progression of DN through integrated bioinformatics approaches. Method We downloaded microarray datasets from Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs). Enrichment analyses, construction of Protein–protein interaction (PPI) network, and visualization of the co-expressed network between mRNAs and microRNAs (miRNAs) were performed. Additionally, we validated the expression of hub genes and analyzed the Receiver Operating Characteristic (ROC) curve in another GEO dataset. Clinical analysis and ceRNA networks were further analyzed. Results Totally 463 DEGs were identified, and enrichment analyses demonstrated that extracellular matrix structural constituents, regulation of immune effector process, positive regulation of cytokine production, phagosome, and complement and coagulation cascades were the major enriched pathways in DN. Three hub genes (CD53, CSF2RB, and LAPTM5) were obtained, and their expression levels were validated by GEO datasets. Pearson analysis showed that these genes were negatively correlated with the glomerular filtration rate (GFR). After literature searching, the ceRNA networks among circRNAs/IncRNAs, miRNAs, and mRNAs were constructed. The predicted RNA pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB provides an important perspective and insights into the molecular mechanism of DN. Conclusion In conclusion, we identified three genes, namely CD53, CSF2RB, and LAPTM5, as hub genes of tubulointerstitial lesions in DN. They may be closely related to the pathogenesis of DN and the predicted RNA regulatory pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB presents a biomarker axis to the occurrence and development of DN.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaosheng Rao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dong Li
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
39
|
Li X, Liu J, Lu L, Huang T, Hou W, Wang F, Yu L, Wu F, Qi J, Chen X, Meng Z, Zhu M. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res 2022; 247:99-116. [PMID: 35470010 DOI: 10.1016/j.trsl.2022.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of advanced diabetes, and increases patient mortality. Recently, epigenetics-mediated hyperglycemic memory in pathological process of DN has received attention. The purpose of this study was to determine the underlying mechanism by which sirt7 modulates hyperglycemic memory in DN. In glomerular endothelial cells (GECs) cultured in high glucose and glomeruli of DN patients and rats, an increase in p65 phosphorylation and endothelial adhesion molecule levels persisted after glucose normalization but was reversed by glucose normalization associated with death-associated protein kinase-3 (DAPK3) knockout or DAPK3 inhibitor. High glucose-mediated decrease in sirt7, the deacetylase modulating H3K18-acetylation (H3K18ac), was sustained after normoglycemia. Sirt7 overexpression accompanied by glucose normalization suppressed DAPK3 expression and inflammation in GECs. Moreover, sh-sirt7-induced inflammation was inhibited by si-DAPK3. Furthermore, sirt7 and H3K18ac were located at the DAPK3 promoter region. ELK1 was found to combine with sirt7. si-ELK1 supplemented with normoglycemia inhibited high glucose-induced DAPK3 expression and inflammation in GECs. ELK1 overexpression-mediated inflammation was inhibited by si-DAPK3. In addition, ELK1 and sirt7 were located at the same promoter region of DAPK3. ELK1 overexpression enhanced DAPK3 promoter activity, which disappeared after specific binding site mutation. In vivo, sirt7 overexpression decreased inflammation and improved renal function during insulin treatment of DN rats, whereas insulin alone did not work. Our data demonstrated high glucose-mediated mutual inhibition between sirt7 and ELK1 induced DAPK3 transcription and inflammation despite normoglycemia in GECs, thus forming a vicious cycle and participating in the occurrence of hyperglycemic memory in DN.
Collapse
Affiliation(s)
- Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Anaesthesiology, Huzhou Maternal & Child Health Care Hospital, Huzhou, Zhejiang, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lang Yu
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Jie Qi
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhipeng Meng
- Department of Anaesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Cao H, Rao X, Jia J, Yan T, Li D. Exploring the pathogenesis of diabetic kidney disease by microarray data analysis. Front Pharmacol 2022; 13:932205. [PMID: 36059966 PMCID: PMC9428563 DOI: 10.3389/fphar.2022.932205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus, and the leading contributor of end-stage renal disease. Hence, insights into the molecular pathogenesis of DKD are urgently needed. The purpose of this article is to reveal the molecular mechanisms underlying the pathogenesis of DKD. The microarray datasets of GSE30528 and GSE30529 were downloaded from the NCBI Gene Expression Omnibus (GEO) database to identify the common differentially expressed genes (DEGs) between the glomerular DKD (GDKD) and tubular DKD (TDKD), respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to analyze the function and pathways of the common DEGs. After constructing the protein–protein interaction (PPI) network and subnetwork analysis, three types of analyses were performed, namely, identification of hub genes, analysis of the coexpressed network, and exploration of transcription factors (TFs). Totally, 348 and 463 DEGs were identified in GDKD and TDKD, respectively. Then, 66 common DEGs (63 upregulated DEGs and three downregulated DEGs) were obtained in DKD patients. GO and KEGG pathway analyses revealed the importance of inflammation response, immune-related pathways, and extracellular matrix-related pathways, especially chemokines and cytokines, in DKD. Fifteen hub genes from the 66 common DEGs, namely, IL10RA, IRF8, LY86, C1QA, C1QB, CD53, CD1C, CTSS, CCR2, CD163, CCL5, CD48, RNASE6, CD52, and CD2 were identified. In summary, through the microarray data analysis, the common functions and hub genes greatly contribute to the elucidation of the molecular pathogenesis associated with DKD.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaosheng Rao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Li
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Dong Li,
| |
Collapse
|
41
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
42
|
Abbad L, Prakoura N, Michon A, Chalghoumi R, Reichelt-Wurm S, Banas MC, Chatziantoniou C. Role of Periostin and Nuclear Factor-κB Interplay in the Development of Diabetic Nephropathy. Cells 2022; 11:cells11142212. [PMID: 35883655 PMCID: PMC9320904 DOI: 10.3390/cells11142212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) remains the most common reason for end-stage renal disease and a leading cause of kidney replacement therapy. Multifactorial pathophysiological mechanisms underlie the development of DN. Among the signalling pathways involved, nuclear factor-κB (NF-κB) plays a key role in pathogenesis triggering inflammation, oxidative stress and fibrosis. Recent evidence shows that periostin, a matricellular protein, is involved in the development of renal glomerular diseases through interaction with NF-κB signalling. The aim of the present study is to investigate the contribution of periostin and its interaction with NF-κB in DN development. To this end, we used the BTBR ob/ob mice model of diabetes type 2, and we applied transcriptomic analysis, immunostaining and methods quantifying protein and mRNA expressions. We found that increased periostin expression was correlated with decreased renal function, advanced stage renal damage and fibrosis, and NF-κB activation. Subsequently, we identified novel pathways and genes regulated by the NF-κB-periostin interaction which are involved in the mechanisms of progression of DN. Some of these genes, such as FGF1 and GDF15, have the potential to be new biomarkers and/or targets for the therapy of DN.
Collapse
Affiliation(s)
- Lilia Abbad
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Niki Prakoura
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Arthur Michon
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Rym Chalghoumi
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
| | - Simone Reichelt-Wurm
- Department of Nephrology, University Hospital Regensburg, D-93053 Regensburg, Germany; (S.R.-W.); (M.C.B.)
| | - Miriam C. Banas
- Department of Nephrology, University Hospital Regensburg, D-93053 Regensburg, Germany; (S.R.-W.); (M.C.B.)
| | - Christos Chatziantoniou
- Unite Mixte de Recherche Scientific 1155, Institut National de la Sante et de la Recherche Medicale, Tenon Hospital, 75020 Paris, France; (L.A.); (N.P.); (A.M.); (R.C.)
- Faculty of Medicine, Sorbonne University, 75020 Paris, France
- Correspondence:
| |
Collapse
|
43
|
Tampe D, Hakroush S, Tampe B. Dissecting signalling pathways associated with intrarenal synthesis of complement components in lupus nephritis. RMD Open 2022; 8:rmdopen-2022-002517. [PMID: 35906025 PMCID: PMC9345095 DOI: 10.1136/rmdopen-2022-002517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Lupus nephritis is one of the most common and serious complications of systemic lupus erythematosus, attributed to increased morbidity and mortality. The in situ deposition of intrarenal immune complexes promote the accumulation of inflammatory cells and cause kidney injury in lupus nephritis. Among potential sources of intrarenal complement deposits, the concept of intrarenal complement synthesis has been described more than three decades ago in experimental lupus nephritis. By using transcriptome datasets, we here identified accelerated intrarenal synthesis of distinct classical and alternative complement pathway components, most associated with impaired kidney function. Contrasting to this, no such induction of intrarenal complement synthesis was observed in disease controls, further supporting relevance of intrarenal complement synthesis especially in human lupus nephritis. Gene set enrichment identified that glomerular complement synthesis predominantly associated with interferon signalling and signalling by interleukins in human lupus nephritis, whereas tubulointerstitial complement synthesis with aberrant T-cell receptor signalling. Because the pathomechanistic involvement of complement system activation contributed to recent advances in targeted therapy in lupus nephritis, this study provides additional insights into signalling pathways associated with intrarenal synthesis of complement components in lupus nephritis that might be also affected by targeted therapy of the complement system.
Collapse
Affiliation(s)
- Desiree Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
44
|
Xu Z, Zhang M, Wang Y, Chen R, Xu S, Sun X, Yang Y, Lin Z, Wang S, Huang H. Gentiopicroside Ameliorates Diabetic Renal Tubulointerstitial Fibrosis via Inhibiting the AT1R/CK2/NF-κB Pathway. Front Pharmacol 2022; 13:848915. [PMID: 35814242 PMCID: PMC9260113 DOI: 10.3389/fphar.2022.848915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Renal tubulointerstitial fibrosis (TIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells, is the typical pathological alteration in diabetic nephropathy. Gentiopicroside (GPS), a natural compound with anti-inflammatory activity, has been demonstrated to alleviate glomerulosclerosis, whereas whether GPS inhibits TIF via regulating inflammation remains unclear. In this study, diabetic db/db mice and high glucose (HG)-stimulated renal tubular epithelial cells (NRK-52E) were applied to explore the effects and mechanisms of GPS on TIF. The results in vivo showed that GPS effectively improves glycolipid metabolism disorder, renal dysfunction, and TIF. In particular, GPS treatment reversed the abnormal expressions of EMT marker proteins including elevated α-smooth muscle actin and vimentin and decreased E-cadherin in the kidney of db/db mice. Moreover, GPS treatment also inhibited protein expressions of angiotensinⅡ type 1 receptor (AT1R) and CK2α and the activation of the NF-κB pathway. Importantly, the aforementioned effects of GPS acted in vivo were further observed in vitro in HG-stimulated NRK-52E cells, which were independent of its effects on glucose and lipid-lowering activity but were reversed by AT1R over-expression. Together, our results indicate that GPS that directly inhibits the CK2/NF-κB inflammatory signaling pathway via AT1R may also contribute to the amelioration of TIF in diabetes.
Collapse
Affiliation(s)
- Zhanchi Xu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou,, China
| | - Rui Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Shiyue Xu, ; Shaogui Wang, ; Heqing Huang,
| | - Xiaohong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zeyuan Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaogui Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shiyue Xu, ; Shaogui Wang, ; Heqing Huang,
| | - Heqing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Shiyue Xu, ; Shaogui Wang, ; Heqing Huang,
| |
Collapse
|
45
|
Sealfon R, Mariani L, Avila-Casado C, Nair V, Menon R, Funk J, Wong A, Lerner G, Hayashi N, Troyanskaya O, Kretzler M, Beck LH. Molecular Characterization of Membranous Nephropathy. J Am Soc Nephrol 2022; 33:1208-1221. [PMID: 35477557 PMCID: PMC9161788 DOI: 10.1681/asn.2021060784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Molecular characterization of nephropathies may facilitate pathophysiologic insight, development of targeted therapeutics, and transcriptome-based disease classification. Although membranous nephropathy (MN) is a common cause of adult-onset nephrotic syndrome, the molecular pathways of kidney damage in MN require further definition. METHODS We applied a machine-learning framework to predict diagnosis on the basis of gene expression from the microdissected kidney tissue of participants in the Nephrotic Syndrome Study Network (NEPTUNE) cohort. We sought to identify differentially expressed genes between participants with MN versus those of other glomerulonephropathies across the NEPTUNE and European Renal cDNA Bank (ERCB) cohorts, to find MN-specific gene modules in a kidney-specific functional network, and to identify cell-type specificity of MN-specific genes using single-cell sequencing data from reference nephrectomy tissue. RESULTS Glomerular gene expression alone accurately separated participants with MN from those with other nephrotic syndrome etiologies. The top predictive classifier genes from NEPTUNE participants were also differentially expressed in the ERCB participants with MN. We identified a signature of 158 genes that are significantly differentially expressed in MN across both cohorts, finding 120 of these in a validation cohort. This signature is enriched in targets of transcription factor NF-κB. Clustering these MN-specific genes in a kidney-specific functional network uncovered modules with functional enrichments, including in ion transport, cell projection morphogenesis, regulation of adhesion, and wounding response. Expression data from reference nephrectomy tissue indicated 43% of these genes are most highly expressed by podocytes. CONCLUSIONS These results suggest that, relative to other glomerulonephropathies, MN has a distinctive molecular signature that includes upregulation of many podocyte-expressed genes, provides a molecular snapshot of MN, and facilitates insight into MN's underlying pathophysiology.
Collapse
Affiliation(s)
- Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, New York, New York
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Laura Mariani
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Viji Nair
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Rajasree Menon
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Julien Funk
- Center for Computational Biology, Flatiron Institute, New York, New York
| | - Aaron Wong
- Center for Computational Biology, Flatiron Institute, New York, New York
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Gabriel Lerner
- Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts
| | - Norifumi Hayashi
- Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts
- Division of Nephrology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Olga Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, New York
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
- Department of Computer Science, Princeton University, Princeton, New Jersey
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Laurence H. Beck
- Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
46
|
Wu K, Peng R, Mu Q, Jiang Y, Chen J, Ming R, Zhao J, Zhang Z, Sun Y. Rack1 regulates pro-inflammatory cytokines by NF-κB in diabetic nephropathy. Open Med (Wars) 2022; 17:978-990. [PMID: 35663595 PMCID: PMC9137783 DOI: 10.1515/med-2022-0487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the chronic microvascular diseases of diabetes. Studies revealed that inflammation is involved in the development of DN. However, its mechanisms are not fully clear. Here, we screened DN-related mRNAs by RNA sequencing in the renal tissues of db/db DN mice and normal control mice. The Swiss-Model, ZDOCK 3.0.2 and PyMOL 2.3.2 were applied for bioinformatics analysis. In total, we obtained 6,820 mRNAs that were dysexpressed in DN. Among them, Receptor for Activated C Kinase 1 (Rack1) was focused on for its high fold changes and high values of fragments per kilobase million (FPKM) in both two groups (FPKM >100). Moreover, Rack1 was highly expressed in DN in vivo and in vitro. Results displayed that the expressions of pro-inflammatory cytokines Mcp-1 and Tnf-α were increased when Rack1 was overexpressed in cells cultured with low glucose while the expressions of Mcp-1 and Tnf-α were decreased when Rack1 was silenced in cells cultured with high glucose. Furthermore, results showed that the established DN inflammatory factor nuclear factor NF-kappa-B (NF-κB) was regulated by Rack1 via the direct interaction between Rack1 and NF-κB subunits P50 and P65. In summary, this identified Rack1 could play an important role in the inflammation of DN via NF-κB, which can provide new insight for DN research.
Collapse
Affiliation(s)
- Keqian Wu
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Qiuyu Mu
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yongxue Jiang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jingshou Chen
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Ming
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zhao
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
47
|
Integrated Analysis of Multiple Microarray Studies to Identify Core Gene-Expression Signatures Involved in Tubulointerstitial Injury in Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9554658. [PMID: 35592524 PMCID: PMC9113875 DOI: 10.1155/2022/9554658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease in both developed and developing countries. It is lack of specific diagnosis, and the pathogenesis remains unclarified in diabetic nephropathy, following the unsatisfactory effects of existing treatments. Therefore, it is very meaningful to find biomarkers with high specificity and potential targets. Two datasets, GSE30529 and GSE47184 from GEO based on diabetic nephropathy tubular samples, were downloaded and merged after batch effect removal. A total of 545 different expression genes screened with
were weighted gene coexpression correlation network analysis, and green module and blue module were identified. The results of KEGG analyses both in green module and GSEA analysis showed the same two enriched pathway, focal adhesion and viral myocarditis. Based on the intersection among WGCNA focal adhesion/Viral myocarditis, GSEA focal adhesion/viral myocarditis, and PPI network, 17 core genes, ACTN1, CAV1, PRKCB, PDGFRA, COL1A2, COL6A3, RHOA, VWF, FN1, HLA-F, HLA-DPB1, ITGB2, HLA-DRA, HLA-DMA, HLA-DPA1, HLA-B, and HLA-DMB, were identified as potential biomarkers in diabetic tubulointerstitial injury and were further validated externally for expression at GSE99325 and GSE104954 and clinical feature at nephroseq V5 online platform. CMap analysis suggested that two compounds, LY-294002 and bufexamac, may be new insights for therapeutics of diabetic tubulointerstitial injury. Conclusively, it was raised that a series of core genes may be as potential biomarkers for diagnosis and two prospective compounds.
Collapse
|
48
|
Li H, Eksi R, Yi D, Godfrey B, Mathew LR, O’Connor CL, Bitzer M, Kretzler M, Menon R, Guan Y. Micro-dissection and integration of long and short reads to create a robust catalog of kidney compartment-specific isoforms. PLoS Comput Biol 2022; 18:e1010040. [PMID: 35468141 PMCID: PMC9037928 DOI: 10.1371/journal.pcbi.1010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/19/2022] [Indexed: 11/19/2022] Open
Abstract
Studying isoform expression at the microscopic level has always been a challenging task. A classical example is kidney, where glomerular and tubulo-interstitial compartments carry out drastically different physiological functions and thus presumably their isoform expression also differs. We aim at developing an experimental and computational pipeline for identifying isoforms at microscopic structure-level. We microdissected glomerular and tubulo-interstitial compartments from healthy human kidney tissues from two cohorts. The two compartments were separately sequenced with the PacBio RS II platform. These transcripts were then validated using transcripts of the same samples by the traditional Illumina RNA-Seq protocol, distinct Illumina RNA-Seq short reads from European Renal cDNA Bank (ERCB) samples, and annotated GENCODE transcript list, thus identifying novel transcripts. We identified 14,739 and 14,259 annotated transcripts, and 17,268 and 13,118 potentially novel transcripts in the glomerular and tubulo-interstitial compartments, respectively. Of note, relying solely on either short or long reads would have resulted in many erroneous identifications. We identified distinct pathways involved in glomerular and tubulo-interstitial compartments at the isoform level, creating an important experimental and computational resource for the kidney research community.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ridvan Eksi
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daiyao Yi
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bradley Godfrey
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa R. Mathew
- Harvard College, Cambridge, Massachusetts, United States of America
| | - Christopher L. O’Connor
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Markus Bitzer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthias Kretzler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (RM); (YG)
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (RM); (YG)
| |
Collapse
|
49
|
Salem F, Li XZ, Hindi J, Casablanca NM, Zhong F, El Jamal SM, Haroon Al Rasheed MR, Li L, Lee K, Chan L, He JC. Activation of STAT3 signaling pathway in the kidney of COVID-19 patients. J Nephrol 2022; 35:735-743. [PMID: 34626364 PMCID: PMC8501346 DOI: 10.1007/s40620-021-01173-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute kidney injury is common in patients with COVID-19, however mechanisms of kidney injury remain unclear. Since cytokine storm is likely a cause of AKI and glomerular disease, we investigated the two major transcription factors, STAT3 and NF-kB, which are known to be activated by cytokines. METHODS This is an observational study of the postmortem kidneys of 50 patients who died with COVID-19 in the Mount Sinai Hospital during the first pandemic surge. All samples were reviewed under light microscopy, electron microscopy, and immunofluorescence by trained renal pathologists. In situ hybridization evaluation for SARS-CoV-2 and immunostaining of transcription factors STAT3 and NF-kB were performed. RESULTS Consistent with previous findings, acute tubular injury was the major pathological finding, together with global or focal glomerulosclerosis. We were not able to detect SARS-CoV-2 in kidney cells. ACE2 expression was reduced in the tubular cells of patients who died with COVID-19 and did not co-localize with TMPRSS2. SARS-CoV-2 was identified occasionally in the mononuclear cells in the peritubular capillary and interstitium. STAT3 phosphorylation at Tyr705 was increased in 2 cases in the glomeruli and in 3 cases in the tubulointerstitial compartments. Interestingly, STAT3 phosphorylation at Ser727 increased in 9 cases but only in the tubulointerstitial compartment. A significant increase in NF-kB phosphorylation at Ser276 was also found in the tubulointerstitium of the two patients with increased p-STAT3 (Tyr705). CONCLUSIONS Our findings suggest that, instead of tyrosine phosphorylation, serine phosphorylation of STAT3 is commonly activated in the kidney of patients with COVID-19.
Collapse
Affiliation(s)
- Fadi Salem
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue Zhu Li
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Judy Hindi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nitzy Munoz Casablanca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siraj M El Jamal
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Li Li
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lili Chan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Program, James J Peters VAMC, Bronx, NY, USA.
| |
Collapse
|
50
|
Liu L, Pan X, Xie F, Xu X, Xiao D, Xiao J, Zhou X. Design, Synthesis and Biological Activity Evaluation of a Series of Bardoxolone Methyl Prodrugs. Bioorg Chem 2022; 124:105831. [DOI: 10.1016/j.bioorg.2022.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
|