1
|
Chang CS, Yu SS, Ho LC, Chao SH, Chou TY, Shao AN, Kao LZ, Chang CY, Chen YH, Wu MS, Tsai PJ, Maeda N, Tsai YS. Inguinal Fat Compensates Whole Body Metabolic Functionality in Partially Lipodystrophic Mice with Reduced PPARγ Expression. Int J Mol Sci 2023; 24:3904. [PMID: 36835312 PMCID: PMC9966317 DOI: 10.3390/ijms24043904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) gene mutations in humans and mice lead to whole-body insulin resistance and partial lipodystrophy. It is unclear whether preserved fat depots in partial lipodystrophy are beneficial for whole-body metabolic homeostasis. We analyzed the insulin response and expression of metabolic genes in the preserved fat depots of PpargC/- mice, a familial partial lipodystrophy type 3 (FPLD3) mouse model resulting from a 75% decrease in Pparg transcripts. Perigonadal fat of PpargC/- mice in the basal state showed dramatic decreases in adipose tissue mass and insulin sensitivity, whereas inguinal fat showed compensatory increases. Preservation of inguinal fat metabolic ability and flexibility was reflected by the normal expression of metabolic genes in the basal or fasting/refeeding states. The high nutrient load further increased insulin sensitivity in inguinal fat, but the expression of metabolic genes became dysregulated. Inguinal fat removal resulted in further impairment of whole-body insulin sensitivity in PpargC/- mice. Conversely, the compensatory increase in insulin sensitivity of the inguinal fat in PpargC/- mice diminished as activation of PPARγ by its agonists restored insulin sensitivity and metabolic ability of perigonadal fat. Together, we demonstrated that inguinal fat of PpargC/- mice plays a compensatory role in combating perigonadal fat abnormalities.
Collapse
Affiliation(s)
- Cherng-Shyang Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Shiuan Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Chun Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
- Division of General Medicine, Department of Internal Medicine, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Shu-Hsin Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Yu Chou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ai-Ning Shao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ling-Zhen Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yu Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Hsin Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Shan Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
2
|
Gasdermin D Deficiency Does Not Protect Mice from High-Fat Diet-Induced Glucose Intolerance and Adipose Tissue Inflammation. Mediators Inflamm 2022; 2022:7853482. [PMID: 36065376 PMCID: PMC9440627 DOI: 10.1155/2022/7853482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
The adipose tissue NLRP3 inflammasome has recently emerged as a contributor to obesity-related metabolic inflammation. Recent studies have demonstrated that the activation of the NLRP3 inflammasome cleaves gasdermin D (GSDMD) and induces pyroptosis, a proinflammatory programmed cell death. However, whether GSDMD is involved in the regulation of adipose tissue function and the development of obesity-induced metabolic disease remains unknown. The aim of the present study was to investigate the role of GSDMD in adipose tissue inflammation as well as whole-body metabolism using GSDMD-deficient mice fed a high-fat diet (HFD) for 30 weeks. The effects of GSDMD deficiency on adipose tissue, liver, and isolated macrophages from wild-type (WT) and GSDMD knockout (KO) mice were examined. In addition, 3T3-L1 cells were used to examine the expression of GSDMD during adipogenesis. The results demonstrate that although HFD-induced inflammation was partly ameliorated in isolated macrophages and liver, adipose tissue remained unaffected by GSDMD deficiency. Compared with the WT HFD mice, GSDMD KO HFD mice exhibited a mild increase in HFD-induced glucose intolerance with increased systemic and adipose tissue IL-1β levels. Interestingly, GSDMD deficiency caused accumulation of fat mass when challenged with HFD, partly by suppressing the expression of peroxisome proliferator-activated receptor gamma (PPARγ). The expression of GSDMD mRNA and protein was dramatically suppressed during adipocyte differentiation and was inversely correlated with PPARγ expression. Together, these findings indicate that GSDMD is not a prerequisite for HFD-induced adipose tissue inflammation and suggest a noncanonical function of GSDMD in regulation of fat mass through PPARγ.
Collapse
|
3
|
Castro É, Vieira TS, Oliveira TE, Ortiz-Silva M, Andrade ML, Tomazelli CA, Peixoto AS, Sobrinho CR, Moreno MF, Gilio GR, Moreira RJ, Guimarães RC, Perandini LA, Chimin P, Reckziegel P, Moretti EH, Steiner AA, Laplante M, Festuccia WT. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab 2021; 321:E592-E605. [PMID: 34541875 DOI: 10.1152/ajpendo.00587.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis. Cold acclimation inhibited mTORC2 in BAT and iWAT, but its residual activity is still required for the cold-induced increases in BAT adipocyte number, total UCP-1 content and mRNA levels of proliferation markers Ki67 and cyclin 1 D, and de novo lipogenesis enzymes ATP-citrate lyase and acetyl-CoA carboxylase. In iWAT, mTORC2 residual activity is partially required for the cold-induced increases in multilocular adipocytes, mitochondrial mass, and uncoupling protein 1 (UCP-1) content. Conversely, BAT mTORC1 activity and BAT and iWAT glucose uptake were upregulated by cold independently of mTORC2. Noteworthy, the impairment in BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency had no major impact on whole body energy expenditure in cold-acclimated mice due to a compensatory activation of muscle shivering. In conclusion, adipocyte mTORC2 deficiency impairs, through different mechanisms, BAT and iWAT total UCP-1 content and thermogenic capacity in cold-acclimated mice, without affecting glucose uptake and whole body energy expenditure.NEW & NOTEWORTHY BAT and iWAT mTORC2 is inhibited by cold acclimation, but its residual activity is required for cold-induced increases in total UCP-1 content and thermogenic capacity, but not glucose uptake and mTORC1 activity. The impaired BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency are compensated by activation of muscle shivering in cold-acclimated mice.
Collapse
Affiliation(s)
- Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Tomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphael C Guimarães
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Parana, Brazil
| | - Patricia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Eduardo H Moretti
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Mathieu Laplante
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Han J, Zhang J, Zhang C. Irinotecan-Induced Steatohepatitis: Current Insights. Front Oncol 2021; 11:754891. [PMID: 34707997 PMCID: PMC8542761 DOI: 10.3389/fonc.2021.754891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
The hepatotoxicity of irinotecan is drawing wide concern nowadays due to the widespread use of this chemotherapeutic against various solid tumors, particularly metastatic colorectal cancer. Irinotecan-induced hepatotoxicity mainly manifests as transaminase increase and steatosis with or without transaminase increase, and is accompanied by vacuolization, and lobular inflammation. Irinotecan-induced steatohepatitis (IIS) increases the risk of morbidity and mortality in patients with colorectal cancer liver metastasis (CRCLM). The major risks and predisposing factors for IIS include high body mass index (BMI) or obesity, diabetes, and high-fat diet. Mitochondrial dysfunction and autophagy impairment may be involved in the pathogenesis of IIS. However, there is currently no effective preventive or therapeutic treatment for this condition. Thus, the precise mechanisms underlying the pathogenesis of IIS should be deciphered for the development of therapeutic drugs. This review summarizes the current knowledge and research progress on IIS.
Collapse
Affiliation(s)
- Jun Han
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Affiliated Hospital of Jianghan University, Wuhan, China
| | | | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Glucose enhances catecholamine-stimulated lipolysis via increased glycerol-3-phosphate synthesis in 3T3-L1 adipocytes and rat adipose tissue. Mol Biol Rep 2021; 48:6269-6276. [PMID: 34374898 DOI: 10.1007/s11033-021-06617-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND During lipolysis, triglyceride (TG) are hydrolyzed into a glycerol and fatty acids in adipocyte. A significant portion of the fatty acids are re-esterificated into TG, and this is a critical step in promoting lipolysis. Although glycerol-3-phosphate (G3P) is required for triglyceride synthesis in mammalian cell, the substrate for G3P synthesis during active lipolysis is not known. A recent study showed that the inhibition of glucose uptake reduces catecholamine-stimulated lipolysis, suggesting that glucose availability is important in lipolysis in adipocytes. We hypothesized that glucose might play an essential role in generating G3P and thereby promoting catecholamine-stimulated lipolysis in adipocytes. Therefore, we determined the effect of glucose availability on catecholamine-stimulated lipolysis in 3T3-L1 adipocytes and rat adipose tissue. METHODS AND RESULTS 3T3-L1 adipocytes and rat epididymal fat pads were cultured in a medium with/without glucose during stimulation by isoproterenol. Glycerol release was higher when adipocytes were cultured in a glucose-containing medium than that in a medium without glucose. Measurement of glucose uptake during catecholamine-stimulated lipolysis showed a slight, but significant increase in glucose uptake. We also compared glucose metabolism-related protein, such as glucose transporter 4, hexokinase, glycerol-3-phosphate dehydrogenase and lipase contents between fat tissues that play a critical role in active lipolysis. Epididymal fat exhibited higher lipolytic activity than inguinal fat because of higher lipase and glucose metabolism-related protein contents. CONCLUSION We demonstrated that catecholamine-stimulated lipolysis is enhanced in the presence of glucose, and suggests that glucose is one of the primary substrates for G3P in adipocytes during active lipolysis.
Collapse
|
6
|
Andrade ML, Gilio GR, Perandini LA, Peixoto AS, Moreno MF, Castro É, Oliveira TE, Vieira TS, Ortiz-Silva M, Thomazelli CA, Chaves-Filho AB, Belchior T, Chimin P, Magdalon J, Ivison R, Pant D, Tsai L, Yoshinaga MY, Miyamoto S, Festuccia WT. PPARγ-induced upregulation of subcutaneous fat adiponectin secretion, glyceroneogenesis and BCAA oxidation requires mTORC1 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158967. [PMID: 34004356 PMCID: PMC9391032 DOI: 10.1016/j.bbalip.2021.158967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
The nutrient sensors peroxisome proliferator-activated receptor γ (PPARγ) and mechanistic target of rapamycin complex 1 (mTORC1) closely interact in the regulation of adipocyte lipid storage. The precise mechanisms underlying this interaction and whether this extends to other metabolic processes and the endocrine function of adipocytes are still unknown. We investigated herein the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue (iWAT) mass, endocrine function, lipidome, transcriptome and branched-chain amino acid (BCAA) metabolism. Mice bearing regulatory associated protein of mTOR (Raptor) deletion and therefore mTORC1 deficiency exclusively in adipocytes and littermate controls were fed a high-fat diet supplemented or not with the PPARγ agonist rosiglitazone (30 mg/kg/day) for 8 weeks and evaluated for iWAT mass, lipidome, transcriptome (Rnaseq), respiration and BCAA metabolism. Adipocyte mTORC1 deficiency not only impaired iWAT adiponectin transcription, synthesis and secretion, PEPCK mRNA levels, triacylglycerol synthesis and BCAA oxidation and mRNA levels of related proteins but also completely blocked the upregulation in these processes induced by pharmacological PPARγ activation with rosiglitazone. Mechanistically, adipocyte mTORC1 deficiency impairs PPARγ transcriptional activity by reducing PPARγ protein content, as well as by downregulating C/EBPα, a co-partner and facilitator of PPARγ. In conclusion, mTORC1 and PPARγ are essential partners involved in the regulation of subcutaneous adipose tissue adiponectin production and secretion and BCAA oxidative metabolism.
Collapse
Affiliation(s)
- Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo R Gilio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz A Perandini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mayara F Moreno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thayna S Vieira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caroline A Thomazelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Londrina, Brazil
| | | | | | - Deepti Pant
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Huang Z, Lu X, Huang L, Zhang C, Veldhuis JD, Cowley MA, Chen C. Stimulation of endogenous pulsatile growth hormone secretion by activation of growth hormone secretagogue receptor reduces the fat accumulation and improves the insulin sensitivity in obese mice. FASEB J 2021; 35:e21269. [PMID: 33368660 DOI: 10.1096/fj.202001924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Obese individuals often show low growth hormone (GH) secretion, which leads to reduced lipid mobilization and further fat accumulation. Pharmacological approaches to increase GH levels in obese individuals by GH injection or GH-releasing hormone receptor agonist showed promising effects on fat reduction. However, side effects on glucose metabolism and the heavy costs on making large peptides hindered their clinical application. Here, we tested whether stimulation of endogenous GH secretion by a synthetic GH secretagogue receptor (GHSR) agonist, hexarelin, improved the metabolism in a hyperphagic obese mouse model. Male melanocortin 4 receptor knockout mice (MC4RKO) were pair-fed and received continuous hexarelin (10.56 μg/day) or vehicle infusion by an osmotic pump for 3-4 weeks. Hexarelin treatment significantly increased the pulsatile GH secretion without detectable alteration on basal GH secretion in MC4RKO mice. The treated mice showed increased lipolysis and lipid oxidation in the adipose tissue, and reduced de novo lipogenesis in the liver, leading to reduced visceral fat mass, reduced triglyceride content in liver, and unchanged circulating free fatty acid levels. Importantly, hexarelin treatment improved the whole-body insulin sensitivity but did not alter glucose tolerance, insulin levels, or insulin-like growth factor 1 (IGF-1) levels. The metabolic effects of hexarelin were likely through the direct action of GH, as indicated by the increased expression level of genes involved in GH signaling pathways in visceral adipose tissues and liver. In conclusion, hexarelin treatment stimulated the pulsatile GH secretion and reduced the fat accumulation in visceral depots and liver in obese MC4RKO mice with improved insulin sensitivity without altered levels of insulin or IGF-1. It provides evidence for managing obesity by enhancing pulsatile GH secretion through activation of GHSR in the pituitary gland.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Xuehan Lu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Chunhong Zhang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Johannes D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - Michael A Cowley
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Panteleeva AA, Razgildina ND, Brovin DL, Pobozheva IA, Dracheva KV, Berkovich OA, Polyakova EA, Belyaeva OD, Baranova EI, Pchelina SN, Miroshnikova VV. The Expression of Genes Encoding ABCA1 and ABCG1 Transporters and PPARγ, LXRβ, and RORα Transcriptional Factors in Subcutaneous and Visceral Adipose Tissue in Women with Metabolic Syndrome. Mol Biol 2021. [DOI: 10.1134/s0026893321010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Cabral-Santos C, Silveira LS, Chimin P, Rosa-Neto JC, Lira FS. Moderate aerobic exercise-induced cytokines changes are disturbed in PPARα knockout mice. Cytokine 2020; 134:155207. [PMID: 32693363 DOI: 10.1016/j.cyto.2020.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 11/25/2022]
Abstract
The nuclear transcriptional factor peroxisome proliferator activated receptor alpha (PPARα) plays a role in regulating genes involved in lipid metabolism, adipogenesis and inflammation. We aimed to assess the role of PPARα on exercise-mediated locally produced cytokines in adipose fat deposits and skeletal muscle. C57BL/6 (WT) and PPARα knockout (PPARα-/-) mice were examined. Each genotype was randomly subdivided into three groups: non-exercised, and euthanized 2 or 24 h after a moderate aerobic exercise session (run on a treadmill at 60% of maximum speed for 1 h). Fat content in gastrocnemius muscle and lipolytic activity in isolated adipose tissue from mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue were evaluated. In addition, Interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) content were evaluated by ELISA. WT mice showed a maximum lipolysis rate, as well as higher IL-6, IL-10, and IL10/TNF-α ratio values 2 h post-exercise (RPAT only) compared with PPARα-/- mice. Taken together, our data suggests that PPARα knockout mice exhibited reduced lipolysis and anti-inflammatory response in adipose tissue following exercise, PPARα appears to play an important role in immunomodulatory and lipolysis signaling after acute moderate exercise.
Collapse
Affiliation(s)
- Carolina Cabral-Santos
- Exercise and Immunometabolism Research Group, Department of Physical Education, Post-Graduation Program in Movement Sciences, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Loreana Sanches Silveira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Patricia Chimin
- Universidade Estadual de Londrina, Centro de Educação Física e Desportos, Departamento de Fundamentos da Educação Física, Londrina, Brazil
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil.
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Post-Graduation Program in Movement Sciences, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
10
|
Sato H, Funaki A, Kimura Y, Sumitomo M, Yoshida H, Okumura A, Fukata H, Hosoyama H, Kuroda M, Okawa T, Hisaka A, Ueno K. [Anti-diabetic effect of ethanol extract of Cyclolepis genistoides D. Don (Palo azul), made in Paraguay]. Nihon Yakurigaku Zasshi 2020; 155:202-208. [PMID: 32612029 DOI: 10.1254/fpj.20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Extract of Cyclolepis genistoides D. Don (vernacular name Palo azul; Palo) are traditionally consumed in the Republic of Paraguay in South America for the treatment of diabetes and kidney disease, and is sold in Japan as dietary supplement. This study aimed to elucidate the mechanism of anti-diabetes activity of Palo, especially focused on insulin resistance. Palo promoted adipocytes differentiation and regulated adipokine profiles in 3T3-L1 adipocytes by modulation of PPARγ, a major regulator of adipose differentiation. Human adipocyte showed almost similar profile with 3T3-L1 against Palo treatment. Furthermore, Palo treatment (250 or 1000 mg/kg) was performed with C57BL/6J mice for 14 weeks, being fed high-fat-diet (HFD60) simultaneously. Palo 250 mg/kg exhibited a tendency to decrease subcutaneous adipose volume along with increase of PPARγ and its target, adiponectin mRNA expression. In addition, as the other insulin targeted cell, effect on muscle differentiation was examined. Palo increased differentiation of C2C12 mouse muscle myoblasts by increase of IGF-1, myogenin, and myosine heavy chain (MHC) as well as 5'-AMP-activated protein kinase (AMPK) activation. Palo subsequently promoted myotube formation under differentiation condition. From the above, it was clarified that Palo acts variously on the differentiation and maturation of both adipocytes and muscle cells, and from the viewpoint of the regulatory mechanism for adipocytes, PPARγ-inducing action was shown to be a mechanism that acts across species.
Collapse
Affiliation(s)
- Hiromi Sato
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Asami Funaki
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yuki Kimura
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Mai Sumitomo
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | | | | | | - Toya Okawa
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akihiro Hisaka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Koichi Ueno
- Center for Preventive Medical Science, Chiba University
| |
Collapse
|
11
|
Yan K, Wang X, Zhu H, Pan H, Wang L, Yang H, Liu M, Jin M, Zang B, Gong F. Safflower yellow improves insulin sensitivity in high-fat diet-induced obese mice by promoting peroxisome proliferator-activated receptor-γ2 expression in subcutaneous adipose tissue. J Diabetes Investig 2020; 11:1457-1469. [PMID: 32356607 PMCID: PMC7610129 DOI: 10.1111/jdi.13285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aims/Introduction Safflower yellow (SY) and its main component, hydroxysafflor yellow A, have been demonstrated to show anti‐obesity effects. Peroxisome proliferator‐activated receptor‐γ2 (PPARγ2) is a critical transcription factor in adipose tissue metabolism. The aim of the present study was to explore the effects of SY in high‐fat diet‐induced obese mice, and further investigate the mechanism involving PPARγ2. Methods High‐fat diet‐induced obese mice were given 120 mg/kg/day SY for 8 weeks. Glucose and insulin tolerance tests were carried out. Fat mass and serum levels of glucose and insulin were measured. The expression of insulin signaling pathway‐related genes and PPARγ2 in the adipose tissue was measured. In vitro, the effects of SY (0–500 mg/L) and hydroxysafflor yellow A (0–100 mg/L) on PPARγ2 promoter activities and PPARγ2 messenger ribonucleic acid (mRNA) levels in 3T3‐L1 preadipocytes or adipocytes were also detected. Results Safflower yellow reduced fat mass, decreased glucose levels and improved insulin sensitivity in obese mice. SY also increased the mRNA levels of insulin signaling pathway‐related genes, and increased PPARγ2 mRNA levels by 39.1% in subcutaneous adipose tissue (P < 0.05). In vitro, SY and hydroxysafflor yellow A significantly enhanced PPARγ2 promoter activities by 1.3–2.1‐fold, and increased PPARγ2 mRNA levels by 1.2–1.6‐fold in 3T3‐L1 preadipocytes or adipocytes (P < 0.05). Conclusions SY could reduce fat mass, decrease glucose levels and improve insulin sensitivity in high‐fat diet‐induced obese mice. The probable mechanism is to increase PPARγ2 expression by stimulating PPARγ2 promoter activities, further increasing the expression of insulin signaling pathway‐related genes in subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Jin
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Strand E, Lysne V, Grinna ML, Bohov P, Svardal A, Nygård O, Berge RK, Bjørndal B. Short-Term Activation of Peroxisome Proliferator-Activated Receptors α and γ Induces Tissue-Specific Effects on Lipid Metabolism and Fatty Acid Composition in Male Wistar Rats. PPAR Res 2019; 2019:8047627. [PMID: 31308847 PMCID: PMC6594300 DOI: 10.1155/2019/8047627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022] Open
Abstract
Dietary fatty acids (FAs) affect certain metabolic routes, including pathways controlled by the peroxisome proliferator-activated receptors (PPARs), but tissue-specific effects are not well-defined. Thus, the aim was to compare the metabolic response in hepatic, adipose, and cardiac tissues after treatment with specific PPAR agonists. Male Wistar rats were randomized into three groups: a control group receiving placebo (n=8); a PPARα agonist group receiving WY-14,643 (n=6); and a PPARγ agonist group receiving rosiglitazone (n=6) for 12 days. All animals received a low-fat standard chow diet and were given a daily dose of placebo or agonist orally. Lipids and FA methyl esters were measured in plasma, liver, and heart and gene expression was measured in liver and adipose tissue, while enzyme activities were measured in liver. Treatment with the PPARα agonist was associated with higher liver mass relative to body weight (liver index), lower plasma, and hepatic total cholesterol, as well as lower plasma carnitine and acylcarnitines, compared with control. In heart, PPARα activation leads to overall lower levels of free FAs and specific changes in certain FAs, compared with control. Furthermore, β-oxidation in liver and the enzymatic activities of well-known PPARα targeted genes were higher following PPARα administration. Overall, rats treated with the PPARα agonist had higher hepatic saturated FAs (SFAs) and monounsaturated FAs (MUFAs) and lower n-6 and n-3 PUFAs, compared to control. Treatment with the PPARγ agonist was associated with a lower liver index, lower plasma triglycerides (TAG) and phospholipids, and higher hepatic phospholipids, compared with control. PPARγ target genes were increased specifically in adipose tissue. Moreover, lower total cardiac FAs and SFA and higher cardiac n-6 PUFA were also associated with PPARγ activation. Altogether, there were characteristic effects of PPARα activation in liver and heart, as well as in plasma. PPARγ effects were not only confined to adipose tissue, but specific effects were also seen in liver, heart, and plasma. In conclusion, short-term treatment with PPAR agonists induced tissue-specific effects on FA composition in liver and heart. Moreover, both PPARα and PPARγ activation lowered plasma TAG and phospholipids, most likely through effects on liver and adipose tissue, respectively. In future studies we aim to reveal whether similar patterns can be found through diet-induced activation of specific pathways.
Collapse
Affiliation(s)
- Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Asbjørn Svardal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Nygård
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Blanchard PG, Moreira RJ, Castro É, Caron A, Côté M, Andrade ML, Oliveira TE, Ortiz-Silva M, Peixoto AS, Dias FA, Gélinas Y, Guerra-Sá R, Deshaies Y, Festuccia WT. PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism 2018; 89:27-38. [PMID: 30316815 DOI: 10.1016/j.metabol.2018.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation. METHODS Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis. RESULTS Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPARγ copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPARγ deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. CONCLUSIONS PPARγ, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPARγ agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation.
Collapse
Affiliation(s)
- Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Caron
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Marie Côté
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - France Anne Dias
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Gélinas
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Renata Guerra-Sá
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Deshaies
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Winkler TW, Günther F, Höllerer S, Zimmermann M, Loos RJ, Kutalik Z, Heid IM. A joint view on genetic variants for adiposity differentiates subtypes with distinct metabolic implications. Nat Commun 2018; 9:1946. [PMID: 29769528 PMCID: PMC5956079 DOI: 10.1038/s41467-018-04124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
The problem of the genetics of related phenotypes is often addressed by analyzing adjusted-model traits, but such traits warrant cautious interpretation. Here, we adopt a joint view of adiposity traits in ~322,154 subjects (GIANT consortium). We classify 159 signals associated with body mass index (BMI), waist-to-hip ratio (WHR), or WHR adjusted for BMI (WHRadjBMI) at P < 5 × 10-8, into four classes based on the direction of their effects on BMI and WHR. Our classes help differentiate adiposity genetics with respect to anthropometry, fat depots, and metabolic health. Class-specific Mendelian randomization reveals that variants associated with both WHR-decrease and BMI increase are linked to metabolically rather favorable adiposity through beneficial hip fat. Class-specific enrichment analyses implicate digestive systems as a pathway in adiposity genetics. Our results demonstrate that WHRadjBMI variants capture relevant effects of "unexpected fat distribution given the BMI" and that a joint view of the genetics underlying related phenotypes can inform on important biology.
Collapse
Affiliation(s)
- Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, D-93051, Regensburg, Germany.
| | - Felix Günther
- Department of Genetic Epidemiology, University of Regensburg, D-93051, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität Munich, D-80539, Munich, Germany
| | - Simon Höllerer
- Department of Genetic Epidemiology, University of Regensburg, D-93051, Regensburg, Germany
| | - Martina Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, D-93051, Regensburg, Germany
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
- The Mindich Child health and Development Institute, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois (CHUV), 1010, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, D-93051, Regensburg, Germany.
| |
Collapse
|
15
|
Del Prato S, Chilton R. Practical strategies for improving outcomes in T2DM: The potential role of pioglitazone and DPP4 inhibitors. Diabetes Obes Metab 2018; 20:786-799. [PMID: 29171700 PMCID: PMC5887932 DOI: 10.1111/dom.13169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
T2DM is a complex disease underlined by multiple pathogenic defects responsible for the development and progression of hyperglycaemia. Each of these factors can now be tackled in a more targeted manner thanks to glucose-lowering drugs that have been made available in the past 2 to 3 decades. Recognition of the multiplicity of the mechanisms underlying hyperglycaemia calls for treatments that address more than 1 of these mechanisms, with more emphasis placed on the earlier use of combination therapies. Although chronic hyperglycaemia contributes to and amplifies cardiovascular risk, several trials have failed to show a marked effect from intensive glycaemic control. During the past 10 years, the effect of specific glucose-lowering agents on cardiovascular risk has been explored with dedicated trials. Overall, the cardiovascular safety of the new glucose-lowering agents has been proven with some of the trials summarized in this review, showing significant reduction of cardiovascular risk. Against this background, pioglitazone, in addition to exerting a sustained glucose-lowering effect, also has ancillary metabolic actions of potential interest in addressing the cardiovascular risk of T2DM, such as preservation of beta-cell mass and function. As such, it seems a logical agent to combine with other oral anti-hyperglycaemic agents, including dipeptidyl peptidase-4 inhibitors (DPP4i). DPP4i, which may also have a potential to preserve beta-cell function, is available as a fixed-dose combination with pioglitazone, and could, potentially, attenuate some of the side effects of pioglitazone, particularly if a lower dose of the thiazolidinedione is used. This review critically discusses the potential for early combination of pioglitazone and DPP4i.
Collapse
Affiliation(s)
- Stefano Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Robert Chilton
- Division of CardiologyUniversity of Texas Health Science Center at San Antonio and South Texas Veterans Health Care SystemSan AntonioTexas
| |
Collapse
|
16
|
Secco B, Camiré É, Brière MA, Caron A, Billong A, Gélinas Y, Lemay AM, Tharp KM, Lee PL, Gobeil S, Guimond JV, Patey N, Guertin DA, Stahl A, Haddad É, Marsolais D, Bossé Y, Birsoy K, Laplante M. Amplification of Adipogenic Commitment by VSTM2A. Cell Rep 2017; 18:93-106. [PMID: 28052263 PMCID: PMC5551894 DOI: 10.1016/j.celrep.2016.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/31/2016] [Accepted: 12/06/2016] [Indexed: 11/05/2022] Open
Abstract
Despite progress in our comprehension of the mechanisms regulating adipose tissue development, the nature of the factors that functionally characterize adipose precursors is still elusive. Defining the early steps regulating adipocyte development is needed for the generation of tools to control adipose tissue size and function. Here, we report the discovery of V-set and transmembrane domain containing 2A (VSTM2A) as a protein expressed and secreted by committed preadipocytes. VSTM2A expression is elevated in the early phases of adipogenesis in vitro and adipose tissue development in vivo. We show that VSTM2A-producing cells associate with the vasculature and express the common surface markers of adipocyte progenitors. Overexpression of VSTM2A induces adipogenesis, whereas its depletion impairs this process. VSTM2A controls preadipocyte determination at least in part by modulating BMP signaling and PPARγ2 activation. We propose a model in which VSTM2A is produced to preserve and amplify the adipogenic capability of adipose precursors.
Collapse
Affiliation(s)
- Blandine Secco
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Étienne Camiré
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Marc-Antoine Brière
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Alexandre Caron
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Armande Billong
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Yves Gélinas
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Anne-Marie Lemay
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Kevin M Tharp
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter L Lee
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, MA 01605, USA
| | - Stéphane Gobeil
- Centre hospitalier universitaire de Québec (CHU de Québec), Université Laval, Faculté de médecine, 2705 Boulevard Laurier, QC G1V 4G2, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-de-Montréal, CLSC des Faubourgs, 66 rue Sainte-Catherine Est, Montréal, QC H2X 1K6, Canada
| | - Natacha Patey
- Centre Hospitalier Universitaire de Sainte-Justine (CHU de Sainte-Justine), Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, 3175 Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - David A Guertin
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, MA 01605, USA
| | - Andreas Stahl
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Élie Haddad
- Centre Hospitalier Universitaire de Sainte-Justine (CHU de Sainte-Justine), Faculté de Médecine, Département de pédiatrie et Département de microbiologie, infectiologie et immunologie, Université de Montréal, 3175 Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - David Marsolais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Yohan Bossé
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Faculté de médecine, 2725 Chemin Ste-Foy, QC G1V 4G5, Canada.
| |
Collapse
|
17
|
Beaudoin MS, Gaudio N, Reed JK, Foute-Nelong J, Mutch DM, Wright DC. Rosiglitazone is superior to resveratrol in inducing the expression of glyceroneogenic genes in adipose tissue from obese participants. Appl Physiol Nutr Metab 2017; 43:307-311. [PMID: 29144887 DOI: 10.1139/apnm-2017-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the effects of resveratrol and rosiglitazone, alone and in combination, on indices of fatty acid re-esterification in cultured adipose tissue from obese participants (n = 17) undergoing gastric bypass. Rosiglitazone induced PDK4 and PEPCK gene expression to a greater extent than resveratrol. Co-treatment with both compounds induced PDK4 and PEPCK expression in parallel with reductions in the fatty acid to glycerol ratio. Our findings suggest beneficial effects of resveratrol and rosiglitazone co-treatment.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas Gaudio
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - John K Reed
- b Guelph General Hospital, 115 Delhi Street, Guelph, ON N1E 4J4, Canada
| | | | - David M Mutch
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - David C Wright
- a Department of Human Health & Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
18
|
Jankovic A, Otasevic V, Stancic A, Buzadzic B, Korac A, Korac B. Physiological regulation and metabolic role of browning in white adipose tissue. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0034. [PMID: 28862984 DOI: 10.1515/hmbci-2017-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/24/2017] [Indexed: 04/25/2024]
Abstract
Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia, Phone: (381-11)-2078-307, Fax: (381-11)-2761-433
| |
Collapse
|
19
|
Ko KD, Kim KK, Lee KR. Does Weight Gain Associated with Thiazolidinedione Use Negatively Affect Cardiometabolic Health? J Obes Metab Syndr 2017; 26:102-106. [PMID: 31089503 PMCID: PMC6484909 DOI: 10.7570/jomes.2017.26.2.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
Thiazolidinediones (TZDs) are oral anti-diabetic drugs that are peroxisome proliferator-activated receptor gamma (PPARγ) agonists and act as insulin sensitizers. The clinical efficacy and durability of the currently available TZDs in improving glycemic control are well established. However, TZDs cause weight gain, which has been thought to be a class effect of TZDs. TZD-associated weight gain may result mainly from increased fat mass and fluid retention and may be in part congruent to the mechanism of action of TZD. Increases in fat mass are almost exclusively limited to subcutaneous fat, while there are no effects or even decreases in visceral fat. Insulin resistance and cardiovascular risk associated with fat accumulation (obesity) depend on body fat distribution, with visceral fat associated with insulin resistance and a greater degree of risk than subcutaneous fat. Therefore, despite TZD-associated weight gain, TZDs are less likely to confer an increased risk of insulin resistance and cardiovascular complications. As patients with diabetes are younger and/or more obese in Korea, TZDs may be a cost-effective treatment option, offering a unique insulin-sensitizing action and good durability for the long-term management of type 2 diabetes.
Collapse
Affiliation(s)
- Ki Dong Ko
- Department of Family Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyoung Kon Kim
- Department of Family Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyu Rae Lee
- Department of Family Medicine, Gachon University Dong-Incheon Gil Hospital, Incheon, Korea
| |
Collapse
|
20
|
de Fatima Silva F, Ortiz-Silva M, de Souza Galia WB, Cassolla P, Graciano MFR, Zaia CTBV, Zaia D, Carpinelli ÂR, da Silva FG, de Souza HM. Pioglitazone improves insulin sensitivity and reduces weight loss in Walker-256 tumor-bearing rats. Life Sci 2017; 171:68-74. [DOI: 10.1016/j.lfs.2016.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/20/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
|
21
|
Schooneman MG, Napolitano A, Houten SM, Ambler GK, Murgatroyd PR, Miller SR, Hollak CEM, Tan CY, Virtue S, Vidal-Puig A, Nunez DJ, Soeters MR. Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Arch Biochem Biophys 2016; 606:73-80. [PMID: 27444119 DOI: 10.1016/j.abb.2016.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 12/22/2022]
Abstract
Acylcarnitines, fatty acid oxidation (FAO) intermediates, have been implicated in diet-induced insulin resistance and type 2 diabetes mellitus, as increased levels are found in obese insulin resistant humans. Moreover plasma acylcarnitines have been associated with clinical parameters related to glucose metabolism, such as fasting glucose levels and HbA1c. We hypothesized that plasma acylcarnitines would correlate with energy expenditure, insulin sensitivity and other clinical parameters before and during a weight loss intervention. We measured plasma acylcarnitines in 60 obese subjects before and after a 12 week weight loss intervention. These samples originated from three different interventions (diet alone (n = 20); diet and exercise (n = 21); diet and drug treatment (n = 19)). Acylcarnitine profiles were analysed in relation to clinical parameters of glucose metabolism, insulin sensitivity and energy expenditure. Conclusions were drawn from all 60 subjects together. Despite amelioration of HOMA-IR, plasma acylcarnitines levels increased during weight loss. HOMA-IR, energy expenditure and respiratory exchange ratio were not related to plasma acylcarnitines. However non-esterified fatty acids correlated strongly with several acylcarnitines at baseline and during the weight loss intervention (p < 0.001). Acylcarnitines did not correlate with clinical parameters of glucose metabolism during weight loss, questioning their role in insulin resistance and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Marieke G Schooneman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Antonella Napolitano
- GlaxoSmithKline Research and Development, Research Triangle Park, NC, 27709, USA
| | - Sander M Houten
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Graeme K Ambler
- Institute of Metabolic Science, Metabolic Research Laboratories, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Peter R Murgatroyd
- NIHR Wellcome Trust Clinical Research Facility, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Sam R Miller
- GlaxoSmithKline Research and Development, Research Triangle Park, NC, 27709, USA
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chong Y Tan
- Institute of Metabolic Science, Metabolic Research Laboratories, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Samuel Virtue
- Institute of Metabolic Science, Metabolic Research Laboratories, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, Metabolic Research Laboratories, Cambridge University Hospital NHS Trust, Cambridge, UK
| | - Derek J Nunez
- GlaxoSmithKline Research and Development, Research Triangle Park, NC, 27709, USA
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Institute of Metabolic Science, Metabolic Research Laboratories, Cambridge University Hospital NHS Trust, Cambridge, UK. http://www.metabolism.maartensoeters.nl/
| |
Collapse
|
22
|
Jelena Vidakovic A, Santos S, Williams MA, Duijts L, Hofman A, Demmelmair H, Koletzko B, Jaddoe VWV, Gaillard R. Maternal plasma n-3 and n-6 polyunsaturated fatty acid concentrations during pregnancy and subcutaneous fat mass in infancy. Obesity (Silver Spring) 2016; 24:1759-66. [PMID: 27356181 PMCID: PMC5426538 DOI: 10.1002/oby.21547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/25/2016] [Accepted: 04/16/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The associations of maternal plasma n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations during pregnancy with infant subcutaneous fat were examined. METHODS In a population-based prospective cohort study among 904 mothers and their infants, maternal plasma n-3 and n-6 PUFA concentrations were measured at midpregnancy. Body mass index, total subcutaneous fat, and central-to-total subcutaneous fat ratio were calculated at 1.5, 6, and 24 months. RESULTS Maternal n-3 PUFA levels were not consistently associated with infant body mass index or total subcutaneous fat. Higher maternal total n-3 PUFA levels, and specifically eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid, were associated with higher central-to-total subcutaneous fat ratio at 1.5 months, whereas higher maternal total n-3 PUFA levels were associated with lower central-to-total subcutaneous fat ratio at 6 months (all P values < 0.05). These associations were not present at 24 months. Maternal n-6 PUFA levels were not consistently associated with infant subcutaneous fat. A higher n-6/n-3 ratio was associated with lower central-to-total subcutaneous fat ratio at 1.5 months only (P value < 0.05). CONCLUSIONS Maternal n-3 PUFA levels during pregnancy may have transient effects on infant subcutaneous fat. Further studies are needed to assess the effects of maternal PUFA concentrations on fat mass development during early infancy.
Collapse
Affiliation(s)
- Aleksandra Jelena Vidakovic
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- EPI-Unit, Institute of Public Health, University of Porto, Porto, Portugal
| | - Michelle A Williams
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Liesbeth Duijts
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Divisions of Respiratory Medicine and Neonatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Metabolic Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Medical Center, München, Germany
| | - Hans Demmelmair
- Department of Pediatrics, Division of Metabolic Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Medical Center, München, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Division of Metabolic Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich Medical Center, München, Germany
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Blanchard PG, Turcotte V, Côté M, Gélinas Y, Nilsson S, Olivecrona G, Deshaies Y, Festuccia WT. Peroxisome proliferator-activated receptor γ activation favours selective subcutaneous lipid deposition by coordinately regulating lipoprotein lipase modulators, fatty acid transporters and lipogenic enzymes. Acta Physiol (Oxf) 2016; 217:227-39. [PMID: 26918671 DOI: 10.1111/apha.12665] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
AIM Peroxisome proliferator-activated receptor (PPAR) γ activation is associated with preferential lipoprotein lipase (LPL)-mediated fatty acid storage in peripheral subcutaneous fat depots. How PPARγ agonism acts upon the multi-level modulation of depot-specific lipid storage remains incompletely understood. METHODS We evaluated herein triglyceride-derived lipid incorporation into adipose tissue depots, LPL mass and activity, mRNA levels and content of proteins involved in the modulation of LPL activity and fatty acid transport, and the expression/activity of enzymes defining adipose tissue lipogenic potential in rats treated with the PPARγ ligand rosiglitazone (30 mg kg(-1) day(-1) , 23 days) after either a 10-h fasting period or a 17-h fast followed by 6 h of ad libitum refeeding. RESULTS Rosiglitazone stimulated lipid accretion in subcutaneous fat (SF) ~twofold and significantly reduced that of visceral fat (VF) to nearly half. PPARγ activation selectively increased LPL mass, activity and the expression of its chaperone LMF1 in SF. In VF, rosiglitazone had no effect on LPL activity and downregulated the mRNA levels of the transendothelial transporter GPIHBP1. Overexpression of lipid uptake and fatty acid transport proteins (FAT/CD36, FATP1 and FABP4) and stimulation of lipogenic enzyme activities (GPAT, AGPAT and DGAT) upon rosiglitazone treatment were of higher magnitude in SF. CONCLUSIONS Together these findings demonstrate that the depot-specific transcriptional control of LPL induced by PPARγ activation extends to its key interacting proteins and post-translational modulators to favour subcutaneous lipid storage.
Collapse
Affiliation(s)
- P. G. Blanchard
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - V. Turcotte
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - M. Côté
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - Y. Gélinas
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - S. Nilsson
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - G. Olivecrona
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - Y. Deshaies
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - W. T. Festuccia
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
24
|
Bouderbala H, Kaddouri H, Kheroua O, Saidi D. [Anti-obesogenic effect of apple cider vinegar in rats subjected to a high fat diet]. Ann Cardiol Angeiol (Paris) 2016; 65:208-13. [PMID: 27209492 DOI: 10.1016/j.ancard.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
Abstract
AIM OF THE STUDY The search of new anti-obesogenic treatments based on medicinal plants without or with minimal side effects is a challenge. In this context, the present study was conducted to evaluate the anti-obesogenic effect of apple cider vinegar (ACV) in Wistar rats subjected to a high fat diet. MATERIALS AND METHODS Eighteen male Wistar rats (140±5g) were divided into 3 three equal groups. A witness group submitted to standard laboratory diet and two groups subjected to a high fat diet (cafeteria diet); one receives a daily gavage of apple cider vinegar (7mL/kg/d) for 30 days. Throughout the experiment monitoring the nutritional assessment, anthropometric and biochemical parameters is achieved. RESULTS In the RCV vs RC group, we observed a highly significant decrease (P<0.001) in body weight and food intake. On the other hand, the VCP decreases very significantly different anthropometric parameters: BMI (P<0.01), chest circumference and abdominal circumference (P<0.001), decreases serum glucose levels (26.83%) and improves the serum lipid profile by reducing plasma levels of total cholesterol (34.29%), TG (51.06%), LDL-c (59.15%), VLDL (50%) and the total lipid (45.15%), and increasing HDL-c (39.39%), thus offering protection against oatherogenic risk (61.62%). CONCLUSION This preliminary study indicates that the metabolic disorders caused by high fat diet (cafeteria) are thwarted by taking apple cider vinegar which proves to have a satiating effect, antihyperlipidemic and hypoglycemic effects, and seems prevent the atherogenic risk.
Collapse
Affiliation(s)
- H Bouderbala
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie.
| | - H Kaddouri
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie
| | - O Kheroua
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie
| | - D Saidi
- Laboratoire de physiologie de la nutrition et de sécurité alimentaire, département de biologie, faculté des sciences de la nature et de la vie, université d'Oran 1 Ahmed Ben Bella, Oran, Algérie
| |
Collapse
|
25
|
van der Veen JN, Lingrell S, Gao X, Quiroga AD, Takawale A, Armstrong EA, Yager JY, Kassiri Z, Lehner R, Vance DE, Jacobs RL. Pioglitazone attenuates hepatic inflammation and fibrosis in phosphatidylethanolamine N-methyltransferase-deficient mice. Am J Physiol Gastrointest Liver Physiol 2016; 310:G526-38. [PMID: 26797396 DOI: 10.1152/ajpgi.00243.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 01/31/2023]
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) is an important enzyme in hepatic phosphatidylcholine (PC) biosynthesis. Pemt(-/-) mice are protected against high-fat diet (HFD)-induced obesity and insulin resistance; however, these mice develop nonalcoholic fatty liver disease (NAFLD). We hypothesized that peroxisomal proliferator-activated receptor-γ (PPARγ) activation by pioglitazone might stimulate adipocyte proliferation, thereby directing lipids from the liver toward white adipose tissue. Pioglitazone might also act directly on PPARγ in the liver to improve NAFLD. Pemt(+/+) and Pemt(-/-) mice were fed a HFD with or without pioglitazone (20 mg·kg(-1)·day(-1)) for 10 wk. Pemt(-/-) mice were protected from HFD-induced obesity but developed NAFLD. Treatment with pioglitazone caused an increase in body weight gain in Pemt(-/-) mice that was mainly due to increased adiposity. Moreover, pioglitazone improved NAFLD in Pemt(-/-) mice, as indicated by a 35% reduction in liver weight and a 57% decrease in plasma alanine transaminase levels. Livers from HFD-fed Pemt(-/-) mice were steatotic, inflamed, and fibrotic. Hepatic steatosis was still evident in pioglitazone-treated Pemt(-/-) mice; however, treatment with pioglitazone reduced hepatic fibrosis, as evidenced by reduced Sirius red staining and lowered mRNA levels of collagen type Iα1 (Col1a1), tissue inhibitor of metalloproteinases 1 (Timp1), α-smooth muscle actin (Acta2), and transforming growth factor-β (Tgf-β). Similarly, oxidative stress and inflammation were reduced in livers from Pemt(-/-) mice upon treatment with pioglitazone. Together, these data show that activation of PPARγ in HFD-fed Pemt(-/-) mice improved liver function, while these mice were still protected against diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Lingrell
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xia Gao
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ariel D Quiroga
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Edward A Armstrong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y Yager
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Richard Lehner
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Park SE, Park CY, Choi JM, Chang E, Rhee EJ, Lee WY, Oh KW, Park SW, Kang ES, Lee HC, Cha BS. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model. PLoS One 2016; 11:e0148141. [PMID: 26894429 PMCID: PMC4760935 DOI: 10.1371/journal.pone.0148141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.
Collapse
Affiliation(s)
- Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail: (BSC); (CYP)
| | - Jung Mook Choi
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eugene Chang
- Diabetes Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Won Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University, College of Medicine, Seoul, Korea
| | - Hyun Chul Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University, College of Medicine, Seoul, Korea
| | - Bong Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University, College of Medicine, Seoul, Korea
- * E-mail: (BSC); (CYP)
| |
Collapse
|
27
|
Boullu-Ciocca S, Tassistro V, Dutour A, Grino M. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations. Endocrine 2015; 50:608-19. [PMID: 26084260 DOI: 10.1007/s12020-015-0657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.
Collapse
Affiliation(s)
- S Boullu-Ciocca
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
| | - V Tassistro
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France
- INRA, UMR1260, 13385, Marseille, France
| | - A Dutour
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France
- INRA, UMR1260, 13385, Marseille, France
| | - M Grino
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France.
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France.
- INRA, UMR1260, 13385, Marseille, France.
| |
Collapse
|
28
|
Bolsoni-Lopes A, Deshaies Y, Festuccia WT. Regulation of brown adipose tissue recruitment, metabolism and thermogenic function by peroxisome proliferator-activated receptor γ. Temperature (Austin) 2015; 2:476-482. [PMID: 27227067 PMCID: PMC4843924 DOI: 10.1080/23328940.2015.1011564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
Brown adipose tissue contributes importantly to homeothermy and energy balance in rodents due its ability under demand to produce heat through a process denominated nonshivering thermogenesis. Such thermogenic ability of brown adipocytes relies on the activity of mitochondrial uncoupling protein 1 that, when properly activated, dissipates energy from oxidative metabolism as heat. Brown adipose tissue sympathetic innervation through norepinephrine release not only induces brown adipocyte lipolysis and thermogenesis, but also acts as the major determinant of tissue mass, cellularity and mitochondrial content. Several pieces of evidence gathered over the years indicate that, in addition to tissue sympathetic innervation, the nuclear receptor peroxisome proliferator-activated receptor γ plays an important role in regulating the development, metabolism and thermogenic function of brown adipose tissue. Herein we review the main evidence supporting such key role of peroxisome proliferator-activated receptor γ to brown fat biology and discuss the future directions of this important area of research.
Collapse
Affiliation(s)
- Andressa Bolsoni-Lopes
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo, SP Brazil
| | - Yves Deshaies
- Department of Medicine; Faculty of Medicine; and Québec Heart and Lung Institute; Université Laval; Québec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo, SP Brazil
| |
Collapse
|
29
|
Jankovic A, Golic I, Markelic M, Stancic A, Otasevic V, Buzadzic B, Korac A, Korac B. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J Physiol 2015; 593:3267-80. [PMID: 26096127 DOI: 10.1113/jp270805] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. ABSTRACT Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold acclimation. Compared with controls (22 ± 1 °C), levels of UCP1 mRNA increased in parallel with PPARγ (PPARα from days 1 to 7 and PGC-1α on day 1). Transcriptional recruitment of rpWAT was followed by an increase in UCP1 protein content (from days 1 to 21). Results clearly showed that most of the adipocytes within rpWAT underwent transient brown-fat-like thermogenic recruitment upon stimulation, but only a minority of cells retained a brown adipose tissue-like phenotype after the attainment of cold acclimation. Therefore, browning of WAT is dependent on both maintaining the thermogenic response and retaining enough brown-like thermogenically competent adipocytes in the long-term. Both aspects of browning could be important for long-term energy homeostasis and body-weight regulation.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Igor Golic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Milica Markelic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
30
|
Rogers RS, Beaudoin MS, Wheatley JL, Wright DC, Geiger PC. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects. J Appl Physiol (1985) 2014; 118:98-106. [PMID: 25554799 DOI: 10.1152/japplphysiol.00286.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heat treatments (HT) and the induction of heat shock proteins (HSPs) improve whole body and skeletal muscle insulin sensitivity while decreasing white adipose tissue (WAT) mass. However, HSPs in WAT have been understudied. The purpose of the present study was to examine patterns of HSP expression in WAT depots, and to examine the effects of a single in vivo HT on WAT metabolism. Male Wistar rats received HT (41°C, 20 min) or sham treatment (37°C), and 24 h later subcutaneous, epididymal, and retroperitoneal WAT depots (SCAT, eWAT, and rpWAT, respectively) were removed for ex vivo experiments and Western blotting. SCAT, eWAT, and rpWAT from a subset of rats were also cultured separately and received a single in vitro HT or sham treatment. HSP72 and HSP25 expression was greatest in more metabolically active WAT depots (i.e., eWAT and rpWAT) compared with the SCAT. Following HT, HSP72 increased in all depots with the greatest induction occurring in the SCAT. In addition, HSP25 increased in the rpWAT and eWAT, while HSP60 increased in the rpWAT only in vivo. Free fatty acid (FFA) release from WAT explants was increased following HT in the rpWAT only, and fatty acid reesterification was decreased in the rpWAT but increased in the SCAT following HT. HT increased insulin responsiveness in eWAT, but not in SCAT or rpWAT. Differences in HSP expression and induction patterns following HT further support the growing body of literature differentiating distinct WAT depots in health and disease.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Marie-Soleil Beaudoin
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joshua L Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| |
Collapse
|
31
|
Fernando HA, Chandramouli C, Rosli D, Lam YL, Yong ST, Yaw HP, Ton SH, Kadir KA, Sainsbury A. Glycyrrhizic acid can attenuate metabolic deviations caused by a high-sucrose diet without causing water retention in male Sprague-Dawley rats. Nutrients 2014; 6:4856-71. [PMID: 25375630 PMCID: PMC4245567 DOI: 10.3390/nu6114856] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/17/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhizic acid (GA) ameliorates many components of the metabolic syndrome, but its potential therapeutic use is marred by edema caused by inhibition of renal 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). We assessed whether 100 mg/kg per day GA administered orally could promote metabolic benefits without causing edema in rats fed on a high-sucrose diet. Groups of eight male rats were fed on one of three diets for 28 days: normal diet, a high-sucrose diet, or a high-sucrose diet supplemented with GA. Rats were then culled and renal 11β-HSD2 activity, as well as serum sodium, potassium, angiotensin II and leptin levels were determined. Histological analyses were performed to assess changes in adipocyte size in visceral and subcutaneous depots, as well as hepatic and renal tissue morphology. This dosing paradigm of GA attenuated the increases in serum leptin levels and visceral, but not subcutaneous adipocyte size caused by the high-sucrose diet. Although GA decreased renal 11β-HSD2 activity, it did not affect serum electrolyte or angiotensin II levels, indicating no onset of edema. Furthermore, there were no apparent morphological changes in the liver or kidney, indicating no toxicity. In conclusion, it is possible to reap metabolic benefits of GA without edema using the current dosage and treatment time.
Collapse
Affiliation(s)
- Hamish Alexander Fernando
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Chanchal Chandramouli
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Dayang Rosli
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Yi Lyn Lam
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Sheau Ting Yong
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Hui Ping Yaw
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - So Ha Ton
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|
32
|
Thompson N, Huber K, Bedürftig M, Hansen K, Miles-Chan J, Breier BH. Metabolic programming of adipose tissue structure and function in male rat offspring by prenatal undernutrition. Nutr Metab (Lond) 2014; 11:50. [PMID: 25352910 PMCID: PMC4210519 DOI: 10.1186/1743-7075-11-50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/08/2014] [Indexed: 12/25/2022] Open
Abstract
Background A number of different pathways to obesity with different metabolic outcomes are recognised. Prenatal undernutrition in rats leads to increased fat deposition in adulthood. However, the form of obesity is metabolically distinct from obesity induced through other pathways (e.g. diet-induced obesity). Previous rat studies have shown that maternal undernutrition during pregnancy led to insulin hyper-secretion and obesity in offspring, but not to systemic insulin resistance. Increased muscle and liver glycogen stores indicated that glucose is taken up efficiently, reflecting an active physiological function of these energy storage tissues. It is increasingly recognised that adipose tissue plays a central role in the regulation of metabolism and pathophysiology of obesity development. The present study investigated the cell size and endocrine responsiveness of subcutaneous and visceral adipose tissue from prenatally undernourished rats. We aimed to identify whether these adipose tissue depots contribute to the altered energy metabolism observed in these offspring. Methods Adipocyte size was measured in both subcutaneous (ScAT) and retroperitoneal adipose tissue (RpAT) in male prenatally ad libitum fed (AD) or prenatally undernourished (UN) rat offspring. Metabolic responses were investigated in adipose tissue explants stimulated by insulin and beta3 receptor agonists ex vivo. Expression of markers of insulin signalling was determined by Western blot analyses. Data were analysed by unpaired t-test or Two Way ANOVA followed by Fisher’s PLSD post-hoc test, where appropriate. Results Adipocytes in offspring of undernourished mothers were larger, even at a lower body weight, in both RpAT and ScAT. The insulin response of adipose tissue was reduced in ScAT, and statistically absent in RpAT of UN rats compared with control. This lack of RpAT insulin response was associated with reduced expression of insulin signalling pathway proteins. Adrenergic receptor-driven lipolysis was observed in both adipose depots; however insulin failed to express its anti-lipolytic effect in RpAT in both, AD and UN offspring. Conclusions Metabolic dysregulation in offspring of undernourished mothers is mediated by increased adipocyte size and reduced insulin responsiveness in both ScAT and especially in RpAT. These functional and morphological changes in adipocytes were accompanied by impaired activity of the insulin signalling cascade highlighting the important role of different adipose tissue depots in the pathogenesis of metabolic disorders.
Collapse
Affiliation(s)
- Nichola Thompson
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Korinna Huber
- Department of Physiology, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Mirijam Bedürftig
- Department of Physiology, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Kathrin Hansen
- Department of Physiology, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Jennifer Miles-Chan
- Institute of Physiology, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bernhard H Breier
- Institute of Food, Nutrition and Human Health, College of Health, Massey University, Albany Campus, Auckland, 1142 New Zealand
| |
Collapse
|
33
|
Liu L, Gu H, Zhao Y, An L, Yang J. Glypican 4 may be involved in the adipose tissue redistribution in high-fat feeding C57BL/6J mice with peroxisome proliferators-activated receptor γ agonist rosiglitazone treatment. Exp Ther Med 2014; 8:1813-1818. [PMID: 25371737 PMCID: PMC4217774 DOI: 10.3892/etm.2014.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/02/2014] [Indexed: 12/25/2022] Open
Abstract
Fat distribution affects the risk of developing obesity-related chronic diseases. Glypican 4 (Gpc4) may be involved in the regulation of obesity and body fat distribution. The aim of the study was to explore whether Gpc4 affects fat accumulation and the possible mechanism. C57BL/6J mice were fed with a high-fat diet for eight weeks and treated with a peroxisome proliferators-activated receptor γ (PPARγ) agonist, rosiglitazone, for another four weeks. The weight of inguinal and epididymal fat pads was determined. The Gpc4 mRNA and protein expression and two probable regulators of the Gpc4 gene, specificity protein 1 (Sp1) and Sp3 mRNA, were also measured. Mice treated with rosiglitazone showed a significant increase in subcutaneous fat weight compared with the untreated mice. The expression of Gpc4 mRNA and protein was significantly higher in visceral than in subcutaneous fat in all the groups. Compared with untreated mice the expression of Gpc4 and Sp3 mRNA in subcutaneous fat and the expression of Sp1 and Sp3 mRNA in visceral fat in mice treated with rosiglitazone increased significantly. The Sp3/Sp1 ratio was consistent with the expression of Gpc4 mRNA and protein in subcutaneous and visceral fat. The present study indicated that Gpc4 may play an important role in fat distribution, and this effect is perhaps regulated by the ratio of Sp3/Sp1 in the subcutaneous and visceral fat tissues.
Collapse
Affiliation(s)
- Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
34
|
Schooneman MG, Achterkamp N, Argmann CA, Soeters MR, Houten SM. Plasma acylcarnitines inadequately reflect tissue acylcarnitine metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:987-94. [DOI: 10.1016/j.bbalip.2014.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022]
|
35
|
Beaudoin MS, Snook LA, Arkell AM, Stefanson A, Wan Z, Simpson JA, Holloway GP, Wright DC. Novel effects of rosiglitazone on SMAD2 and SMAD3 signaling in white adipose tissue of diabetic rats. Obesity (Silver Spring) 2014; 22:1632-42. [PMID: 24500776 DOI: 10.1002/oby.20717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The effects of the proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone (ROSI) on the transforming growth factor (TGF)-β/SMAD signaling pathway in white adipose tissue (WAT) of diabetic rats were assessed. METHODS Six-week-old, male ZDF rats were fed a chow diet with (ZDF ROSI) or without (ZDF chow) ROSI (diet, 100 mg/kg) for 6 weeks. Subcutaneous (scWAT) and retroperitoneal (rpWAT) adipose tissues were excised to quantify the protein content/phosphorylation. RESULTS ZDF ROSI animals showed enhanced glucose tolerance and mitochondrial protein content in both depots. The protein content of enzymes involved in fatty acid handling was increased in scWAT of ZDF ROSI animals. ZDF ROSI exhibited decreased phosphorylation of SMAD2 and SMAD3 exclusively in scWAT, along with increases in inhibitory SMAD7 and the E3 ubiquitin ligase SMURF2. In contrast, ROSI increased the protein content of SMAD4, TGF-β receptor I and II, and SMAD Anchor for Receptor Activation in scWAT. CONCLUSIONS For the first time, the fact that ROSI inhibits SMAD2 and SMAD3 signaling in a depot-specific manner in diabetic rats was demonstrated. In scWAT, ROSI reduced SMAD2 and SMAD3 phosphorylation, likely through the inhibitory actions of SMAD7 and SMURF2. Induction of proximal components of the SMAD pathway may constitute a feedback mechanism to counteract ROSI-induced lipid synthesis in scWAT.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Alligier M, Dewulf EM, Salazar N, Mairal A, Neyrinck AM, Cani PD, Langin D, Delzenne NM. Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in diet-induced obese mice. Obesity (Silver Spring) 2014; 22:1653-61. [PMID: 24585705 DOI: 10.1002/oby.20733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/23/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To investigate whether inulin-type fructan (ITF) prebiotics could counteract the thiazolidinedione (TZD, PPARγ activator) induced-fat mass gain, without affecting its beneficial effect on glucose homeostasis, in high-fat (HF) diet fed mice. METHODS Male C57bl6/J mice were fed a HF diet alone or supplemented with ITF prebiotics (0.2 g/day × mouse) or TZD (30 mg pioglitazone (PIO)/kg body weight × day) or both during 4 weeks. An insulin tolerance test was performed after 3 weeks of treatment. RESULTS As expected, PIO improved glucose homeostasis and increased adiponectinaemia. Furthermore, it induced an over-expression of several PPARγ target genes in white adipose tissues. ITF prebiotics modulated the PIO-induced PPARγ activation in a tissue-dependent manner. The co-treatment with ITF prebiotics and PIO maintained the beneficial impact of TZD on glucose homeostasis and adiponectinaemia. Moreover, the combination of both treatments reduced fat mass accumulation, circulating lipids and hepatic triglyceride content, suggesting an overall improvement of metabolism. Finally, the co-treatment favored induction of white-to-brown fat conversion in subcutaneous adipose tissue, thereby leading to the development of brite adipocytes that could increase the oxidative capacity of the tissue. CONCLUSIONS ITF prebiotics decrease adiposity and improve the metabolic response in HF fed mice treated with TZD.
Collapse
Affiliation(s)
- Maud Alligier
- Nutrition and Metabolism Research Group, LDRI, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohno T, Nishigaki Y, Yamada T, Wakahara Y, Sakai H, Yoshimura K, Shimizu M, Usui T, Saito M, Yasuda I, Tsurumi H, Tomita E, Moriwaki H. Effects of pioglitazone on nonalcoholic steatohepatitis in a patient with anorexia nervosa: A case report. Exp Ther Med 2014; 7:811-815. [PMID: 24669237 PMCID: PMC3961108 DOI: 10.3892/etm.2014.1509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Diseases associated with metabolic syndromes are of major concern in developed countries. Nonalcoholic steatohepatitis (NASH) is one of the manifestations of metabolic syndrome in the liver. Previous studies have shown that NASH is also caused by malnutrition. In the present study, a case of malnutrition-associated NASH in a 66-year-old female with anorexia nervosa is reported. The patient had a body mass index (BMI) of only 11.1 kg/m2 and serum alanine aminotransferase levels of 1,495 IU/l. Steatohepatitis with fibrosis was confirmed by percutaneous liver needle biopsy. Total parenteral nutrition was conducted at first, followed by the administration of Stronger Neo-Minophagen C (a glycyrrhizin-containing preparation), ursodeoxycholic acid and prednisolone. The abnormal elevation of aminotransferase levels of the patient was prolonged and total bilirubin levels increased. Pioglitazone (15 mg/day), which has been identified to be effective for nonalcoholic steatohepatitis, was then administered. This resulted in marked reductions in aminotransferase and bilirubin levels within three months. Histological improvement of the liver was also confirmed by percutaneous liver needle biopsy after one year. The observations in the present case suggest that pioglitazone may be useful for the treatment of malnutrition-associated NASH.
Collapse
Affiliation(s)
- Tomohiko Ohno
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yoichi Nishigaki
- Second Department of Internal Medicine, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Tetsuya Yamada
- Department of Clinical Laboratory, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Yuko Wakahara
- Department of Internal Medicine, Seki Central Hospital, Gifu 500-3919, Japan
| | - Hiroyasu Sakai
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kotaro Yoshimura
- Department of Internal Medicine, Seki Central Hospital, Gifu 500-3919, Japan
| | - Masahito Shimizu
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toshio Usui
- Department of Internal Medicine, Seki Central Hospital, Gifu 500-3919, Japan
| | - Masaya Saito
- Department of Internal Medicine, Seki Central Hospital, Gifu 500-3919, Japan
| | - Ichiro Yasuda
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hisashi Tsurumi
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Eiichi Tomita
- Second Department of Internal Medicine, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Hisataka Moriwaki
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
38
|
Bolsoni-Lopes A, Festuccia WT, Farias TSM, Chimin P, Torres-Leal FL, Derogis PBM, de Andrade PB, Miyamoto S, Lima FB, Curi R, Alonso-Vale MIC. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am J Physiol Endocrinol Metab 2013; 305:E1093-E1102. [PMID: 24022867 DOI: 10.1152/ajpendo.00082.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether palmitoleic acid, a fatty acid that enhances whole body glucose disposal and suppresses hepatic steatosis, modulates triacylglycerol (TAG) metabolism in adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from wild-type or PPARα-deficient mice treated with 16:1n7 (300 mg·kg(-1)·day(-1)) or oleic acid (18:1n9, 300 mg·kg(-1)·day(-1)) by gavage for 10 days were evaluated for lipolysis, TAG, and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and protein content of ATGL and pSer(660)-HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of PPARα binding to DNA. In contrast to lipolysis, both 16:1n7 and 16:0 increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild-type but not PPARα-deficient mice with 16:1n7 increased primary adipocyte basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild-type and PPARα-deficient mice. In conclusion, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα.
Collapse
Affiliation(s)
- Andressa Bolsoni-Lopes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lamming DW, Demirkan G, Boylan JM, Mihaylova MM, Peng T, Ferreira J, Neretti N, Salomon A, Sabatini DM, Gruppuso PA. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). FASEB J 2013; 28:300-15. [PMID: 24072782 DOI: 10.1096/fj.13-237743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.
Collapse
Affiliation(s)
- Dudley W Lamming
- 3Division of Pediatric Endocrinology, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Beaudoin MS, Snook LA, Arkell AM, Simpson JA, Holloway GP, Wright DC. Resveratrol supplementation improves white adipose tissue function in a depot-specific manner in Zucker diabetic fatty rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R542-51. [DOI: 10.1152/ajpregu.00200.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resveratrol (RSV) is a polyphenolic compound suggested to have anti-diabetic properties. Surprisingly, little is known regarding the effects of RSV supplementation on adipose tissue (AT) metabolism in vivo. The purpose of this study was to assess the effects of RSV on mitochondrial content and respiration, glyceroneogenesis (GNG), and adiponectin secretion in adipose tissue from Zucker diabetic fatty (ZDF) rats. Five-week-old ZDF rats were fed a chow diet with (ZDF RSV) or without (ZDF chow) RSV (200 mg/kg body wt) for 6 wk. Changes in adipose tissue metabolism were assessed in subcutaneous (scAT) and intra-abdominal [retroperitoneal (rpWAT), epididymal (eWAT)] adipose tissue depots. ZDF RSV rats showed lower fasting glucose and higher circulating adiponectin, as well as lower glucose area under the curve during intraperitoneal glucose and insulin tolerance tests than ZDF chow. [14C]pyruvate incorporation into triglycerides and adiponectin secretion were higher in scAT from ZDF RSV rats, concurrent with increases in adipose tissue triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and the phosphorylation of pyruvate dehydrogenase-E1α (PDH) (Ser293) protein content in this depot. Moreover, uncoupled mitochondrial respiration and complex I and II-supported respiration were increased in both scAT and rpWAT, which correlated with increases in cytochrome c oxidase subunit IV (COX4) protein content. In vitro treatment of scAT with RSV (50 μmol/l; 24 h) induced pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) mRNA expression. Collectively, these data demonstrate that RSV can induce adipose tissue mitochondrial biogenesis in parallel with increases in GNG and adiponectin secretion.
Collapse
Affiliation(s)
- Marie-Soleil Beaudoin
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Laelie A. Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alicia M. Arkell
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A. Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P. Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C. Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
Than A, Leow MKS, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem 2013; 288:15520-31. [PMID: 23592774 DOI: 10.1074/jbc.m113.459792] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1-7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1-7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1-7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1-7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1-7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1-7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | |
Collapse
|
42
|
Shum M, Pinard S, Guimond MO, Labbé SM, Roberge C, Baillargeon JP, Langlois MF, Alterman M, Wallinder C, Hallberg A, Carpentier AC, Gallo-Payet N. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats. Am J Physiol Endocrinol Metab 2013; 304:E197-210. [PMID: 23149621 PMCID: PMC3543572 DOI: 10.1152/ajpendo.00149.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipocytes/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Size/drug effects
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Dietary Carbohydrates/adverse effects
- Dietary Fats/adverse effects
- Fructose/adverse effects
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Male
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
Collapse
Affiliation(s)
- Michaël Shum
- Division of Endocrinology, Department of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.
Collapse
Affiliation(s)
- Gema Medina-Gómez
- Dpto. de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
44
|
Estrany ME, Proenza AM, Gianotti M, Lladó I. High‐fat diet feeding induces sex‐dependent changes in inflammatory and insulin sensitivity profiles of rat adipose tissue. Cell Biochem Funct 2012; 31:504-10. [DOI: 10.1002/cbf.2927] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Maria E. Estrany
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| | - Ana M. Proenza
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| | - Magdalena Gianotti
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| | - Isabel Lladó
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears Palma de Mallorca Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
45
|
Lee EJ, Lee HJ, Kamli MR, Pokharel S, Bhat AR, Lee YH, Choi BH, Chun T, Kang SW, Lee YS, Kim JW, Schnabel RD, Taylor JF, Choi I. Depot-specific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells, and differentiation of preadipocytes. Genomics 2012; 100:195-202. [PMID: 22728265 DOI: 10.1016/j.ygeno.2012.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/18/2012] [Accepted: 06/13/2012] [Indexed: 01/22/2023]
Abstract
We report a systematic study of gene expression during myogenesis and transdifferentiation in four bovine muscle tissues and of adipogenesis in three bovine fat tissues using DNA microarray analysis. One hundred hybridizations were performed and 7245 genes of known and unknown function were identified as being differentially expressed. Supervised hierarchical cluster analysis of gene expression patterns revealed the tissue specificity of genes. A close relationship in global gene expression observed for adipocyte-like cells derived from muscle and adipocytes derived from intramuscular fat suggests a common origin for these cells. The role of transthyretin in myogenesis is a novel finding. Different genes were highly induced during the transdifferentiation of myogenic satellite cells and in the adipogenesis of preadipocytes, indicating the involvement of different molecular mechanisms in these processes. Induction of CD36 and FABP4 expression in adipocyte-like cells and adipocytes may share a common pathway.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335:1638-43. [PMID: 22461615 DOI: 10.1126/science.1215135] [Citation(s) in RCA: 914] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.
Collapse
Affiliation(s)
- Dudley W Lamming
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blanchard PG, Festuccia WT, Houde VP, St-Pierre P, Brûlé S, Turcotte V, Côté M, Bellmann K, Marette A, Deshaies Y. Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J Lipid Res 2012; 53:1117-25. [PMID: 22467681 DOI: 10.1194/jlr.m021485] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)γ agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPARγ agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPARγ activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPARγ activation.
Collapse
Affiliation(s)
- Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec G1V 4G5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
He S, Liang XF, Qu CM, Huang W, Shen D, Zhang WB, Mai KS. Identification, organ expression and ligand-dependent expression levels of peroxisome proliferator activated receptors in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:381-8. [PMID: 22079418 DOI: 10.1016/j.cbpc.2011.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/11/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor family, and can regulate various genes involved in lipid metabolism. The aim of the present study was to investigate the tissue distribution patterns of PPARs and their ligand specificities in grass carp. We cloned three PPAR isotypes of the species and evaluated their organ distribution patterns using real-time PCR. Through analyzing the deduced amino acid sequences identities between the products cloned in grass carp and those described in other species, we concluded that the same type of PPAR amino acid sequences in different species were with high homology, and different subtypes of PPAR in the same species were with low homology. The mRNA constitutive expression level of PPARα predominated in the liver, but was weak in other tested tissues. PPARβ was present in all tested organs, and particularly abundant in heart, liver and muscle. PPARγ was only detected in the liver, and to a lesser extent in brain, muscle and visceral adipose tissue. Grass carp were intraperitoneally injected with 50 mg kg(-1) body mass (bw) dose of clofibrate, 42 mg kg(-1) bw dose of 2-bromo palmitate and 1 mg kg(-1) bw dose of 15-deoxy-Δ(12,14) prostaglandin J2 (15d-PGJ2), respectively, and the relative changes of the mRNA abundance of PPARs in liver were analyzed by real-time PCR. Clofibrate was able to increase the expressions of both PPARα and β, but was not able to for PPARγ. 2-bromo palmitate could affect the expressions of both PPARβ and γ, but was not able to for PPARα. 15d-PGJ2 was able to induce PPARβ expression, but PPARα and γ were not enhanced. Consequently, these results indicate that clofibrate, 2-bromo palmitate and 15d-PGJ2 could be applied as the activators of grass carp PPARs.
Collapse
Affiliation(s)
- Shan He
- College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Schwarz S, Rotter N. Human salivary gland stem cells: isolation, propagation, and characterization. Methods Mol Biol 2012; 879:403-442. [PMID: 22610574 DOI: 10.1007/978-1-61779-815-3_25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Stem cells are of outstanding interest for a variety of applications in regenerative medicine. The identification and characterization of novel tissue sources in order to reduce donor site morbidity and to provide specific cells in clinically applicable numbers have led to the detection of stem cells in almost all adult tissues. Salivary glands are of specific interest to our lab, as these tissues are easily accessible for the head and neck surgeon with low donor site morbidity. On the other hand, they possess an endocrine and exocrine function and thus play a very specific role in the human body. Stem cell identity however can only be demonstrated using a combination of different methods in vitro, as there is not a single marker or feature allowing for definite identification of such cells. In this chapter, we provide a comprehensive summary of our experimental methods for the isolation and characterization of human salivary gland stem cells in vitro.
Collapse
Affiliation(s)
- Silke Schwarz
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
50
|
Zhang L, Li L, Yang M, Liu H, Yang G. Elevated circulating vaspin levels were decreased by rosiglitazone therapy in T2DM patients with poor glycemic control on metformin alone. Cytokine 2011; 56:399-402. [PMID: 21802961 DOI: 10.1016/j.cyto.2011.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/16/2011] [Accepted: 07/05/2011] [Indexed: 11/28/2022]
|