1
|
Lenzen S. Comment on the role of interferons in the pathology of beta cell destruction in type 1 diabetes. Diabetologia 2024; 67:2598-2599. [PMID: 39243307 PMCID: PMC11519303 DOI: 10.1007/s00125-024-06264-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
3
|
Arroum T, Pham L, Raisanen TE, Morse PT, Wan J, Bell J, Lax R, Saada A, Hüttemann M, Weksler-Zangen S. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants (Basel) 2023; 13:19. [PMID: 38275639 PMCID: PMC10812566 DOI: 10.3390/antiox13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the oxidative phosphorylation complexes. In this study, we analyzed liver mitochondria of Cohen diabetes-sensitive (CDs) and Cohen diabetes-resistant (CDr) rats, using blue native gel electrophoresis (BN-PAGE) in combination with mitochondrial activity measurements and a site-specific tyrosine phosphorylation implicated in inflammation, a known driver of diabetes pathology. We uncovered the presence of a specific inhibitory phosphorylation on tyrosine 304 of catalytic subunit I of dimeric cytochrome c oxidase (CcO, complex IV). Driven by a high sucrose diet in both CDr and CDs rats, Y304 phosphorylation, which occurs close to the catalytic oxygen binding site, correlates with a decrease in CcO activity and respiratory dysfunction in rat liver tissue under hyperglycemic conditions. We propose that this phosphorylation, specifically seen in dimeric CcO and induced by high sucrose diet-mediated inflammatory signaling, triggers enzymatic activity decline of complex IV dimers and the assembly of supercomplexes in liver tissue as a molecular mechanism underlying a (pre-)diabetic phenotype.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Taryn E. Raisanen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Rachel Lax
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Ann Saada
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Sarah Weksler-Zangen
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Paul P, Kaul R, Abdellatif B, Arabi M, Upadhyay R, Saliba R, Sebah M, Chaari A. The Promising Role of Microbiome Therapy on Biomarkers of Inflammation and Oxidative Stress in Type 2 Diabetes: A Systematic and Narrative Review. Front Nutr 2022; 9:906243. [PMID: 35711547 PMCID: PMC9197462 DOI: 10.3389/fnut.2022.906243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background One in 10 adults suffer from type 2 diabetes (T2D). The role of the gut microbiome, its homeostasis, and dysbiosis has been investigated with success in the pathogenesis as well as treatment of T2D. There is an increasing volume of literature reporting interventions of pro-, pre-, and synbiotics on T2D patients. Methods Studies investigating the effect of pro-, pre-, and synbiotics on biomarkers of inflammation and oxidative stress in T2D populations were extracted from databases such as PubMed, Scopus, Web of Science, Embase, and Cochrane from inception to January 2022. Results From an initial screening of 5,984 hits, 47 clinical studies were included. Both statistically significant and non-significant results have been compiled, analyzed, and discussed. We have found various promising pro-, pre-, and synbiotic formulations. Of these, multistrain/multispecies probiotics are found to be more effective than monostrain interventions. Additionally, our findings show resistant dextrin to be the most promising prebiotic, followed closely by inulin and oligosaccharides. Finally, we report that synbiotics have shown excellent effect on markers of oxidative stress and antioxidant enzymes. We further discuss the role of metabolites in the resulting effects in biomarkers and ultimately pathogenesis of T2D, bring attention toward the ability of such nutraceuticals to have significant role in COVID-19 therapy, and finally discuss few ongoing clinical trials and prospects. Conclusion Current literature of pro-, pre- and synbiotic administration for T2D therapy is promising and shows many significant results with respect to most markers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pradipta Paul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ridhima Kaul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Basma Abdellatif
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maryam Arabi
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Rohit Upadhyay
- Department of Medicine—Nephrology and Hypertension, Tulane University, School of Medicine, New Orleans, LA, United States
| | - Reya Saliba
- Distributed eLibrary, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Majda Sebah
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
5
|
Dietary Copper and Selenium Intakes and the Risk of Type 2 Diabetes Mellitus: Findings from the China Health and Nutrition Survey. Nutrients 2022; 14:nu14102055. [PMID: 35631196 PMCID: PMC9142999 DOI: 10.3390/nu14102055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The long-term associations between dietary copper (Cu) and selenium (Se) intakes and type 2 diabetes mellitus (T2DM) risk are unclear. We aimed to examine the prospective associations between dietary Cu and Se intakes and T2DM risk in Chinese adults. A total of 14,711 adults from the China Health and Nutrition Survey (1997–2015) were included. Nutrient intakes were assessed by 3 consecutive 24 h recalls and food-weighing methods. T2DM was identified by a validated questionnaire and laboratory examination. Cox regression models were used for statistical analysis. A total of 1040 T2DM cases were diagnosed during 147,142 person-years of follow-up. In fully adjusted models, dietary Cu or Se intake was not associated with T2DM risk. Dietary Se intake significantly modified the association between dietary Cu intake and T2DM risk, and dietary Cu intake was positively associated with T2DM risk when Se intake was lower than the median (p-interaction = 0.0292). There were no significant effect modifications on the associations by age, sex, BMI, or region. Although dietary Cu or Se intake was not independently associated with T2DM risk in Chinese adults free from cardiometabolic diseases and cancer at the baseline, there was a significant interaction between dietary Cu and Se intakes on T2DM risk.
Collapse
|
6
|
Is Type 2 Diabetes a Primary Mitochondrial Disorder? Cells 2022; 11:cells11101617. [PMID: 35626654 PMCID: PMC9140179 DOI: 10.3390/cells11101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common endocrine disturbance in inherited mitochondrial diseases. It is essential to increase awareness of the correct diagnosis and treatment of diabetes in these patients and screen for the condition in family members, as diabetes might appear with distinctive clinical features, complications and at different ages of onset. The severity of mitochondrial-related diabetes is likely to manifest on a large scale of phenotypes depending on the location of the mutation and whether the number of affected mitochondria copies (heteroplasmy) reaches a critical threshold. Regarding diabetes treatment, the first-choice treatment for type 2 diabetes (T2D), metformin, is not recommended because of the risk of lactic acidosis. The preferred treatment for diabetes in patients with mitochondrial disorders is SGLT-2i and mitochondrial GLP-1-related substances. The tight relationship between mitochondrial dysfunction, reduced glucose-stimulated insulin secretion (GSIS), and diabetes development in human patients is acknowledged. However, despite the well-characterized role of mitochondria in GSIS, there is a relative lack of data in humans implicating mitochondrial dysfunction as a primary defect in T2D. Our recent studies have provided data supporting the significant role of the mitochondrial respiratory-chain enzyme, cytochrome c oxidase (COX), in regulating GSIS in a rodent model of T2D, the Cohen diabetic sensitive (CDs) rat. The nutritionally induced diabetic CDs rat demonstrates several features of mitochondrial diseases: markedly reduced COX activity in several tissues, increased reactive oxygen production, decreased ATP generation, and increased lactate dehydrogenase expression in islets. Moreover, our data demonstrate that reduced islet-COX activity precedes the onset of diabetes, suggesting that islet-COX deficiency is the primary defect causing diabetes in this model. This review examines the possibility of including T2D as a primary mitochondrial-related disease. Understanding the critical interdependence between diabetes and mitochondrial dysfunction, centering on the role of COX, may open novel avenues to diagnose and treat diabetes in patients with mitochondrial diseases and mitochondrial dysfunction in diabetic patients.
Collapse
|
7
|
Aharon-Hananel G, Romero-Afrima L, Saada A, Mantzur C, Raz I, Weksler-Zangen S. Cytochrome c Oxidase Activity as a Metabolic Regulator in Pancreatic Beta-Cells. Cells 2022; 11:cells11060929. [PMID: 35326380 PMCID: PMC8946064 DOI: 10.3390/cells11060929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cells couple glucose-stimulated insulin secretion (GSIS) with oxidative phosphorylation via cytochrome c oxidase (COX), a mitochondrial respiratory-chain enzyme. The Cohen diabetic-sensitive (CDs) rats exhibit hyperglycemia when fed a diabetogenic diet but maintain normoglycemia on a regular diet. We have previously reported a decreased COX activity in CDs rats and explored its relevance for type 2 diabetes (T2D). In this study, we investigated the relation between COX activity in islets, peripheral-blood mononuclear cells (PBMCs), and GSIS during diabetes development in CDs rats fed a diabetogenic diet for 4, 11, 20, and 30 days and during reversion to normoglycemia in hyperglycemic CDs rats fed a reversion diet for 7, 11, and 20 days. An oral glucose-tolerance test was performed at different periods of the diets measuring blood glucose and insulin concentrations. COX activity was determined in islets and PBMCs isolated from rats at the different periods of the diets. We demonstrated a progressive reduction in COX activity in CDs-islets that correlated positively with the decreasing GSIS (R2 = 0.9691, p < 0.001) and inversely with the elevation in blood glucose levels (R2 = 0.8396, p < 0.001). Hyperglycemia was initiated when islet COX activity decreased below 46%. The reversion diet restored >46% of the islet COX activity and GSIS while re-establishing normoglycemia. Interestingly, COX activity in PBMCs correlated significantly with islet COX activity (R2 = 0.8944, p < 0.001). Our data support islet COX activity as a major metabolic regulator of β-cells function. The correlation between COX activity in PBMCs and islets may serve as a noninvasive biomarker to monitor β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Genya Aharon-Hananel
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel; (G.A.-H.); (L.R.-A.); (C.M.); (I.R.)
- Division of Endocrinology, Diabetes and Metabolism, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 5266202, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Leonor Romero-Afrima
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel; (G.A.-H.); (L.R.-A.); (C.M.); (I.R.)
- The Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Ann Saada
- The Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel;
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel
| | - Carmit Mantzur
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel; (G.A.-H.); (L.R.-A.); (C.M.); (I.R.)
| | - Itamar Raz
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel; (G.A.-H.); (L.R.-A.); (C.M.); (I.R.)
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel
| | - Sarah Weksler-Zangen
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel; (G.A.-H.); (L.R.-A.); (C.M.); (I.R.)
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
- Correspondence: ; Tel.: +972-50-5172008
| |
Collapse
|
8
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
9
|
Daily Intake and Serum Levels of Copper, Selenium and Zinc According to Glucose Metabolism: Cross-Sectional and Comparative Study. Nutrients 2021; 13:nu13114044. [PMID: 34836302 PMCID: PMC8622420 DOI: 10.3390/nu13114044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trace elements play an important role in metabolism. We compared the daily intake and serum concentrations of copper (Cu), selenium (Se), and zinc (Zn) across a spectrum of glucose tolerance status in a representative U.S. population. Daily intake and serum concentrations of Cu, Zn and Se in 5087 adults from the 2011–2016 National Health and Nutrition Examination Survey (NHANES) were examined and compared to normal (NGT) and abnormal (AGT) glucose tolerance and the presence of diabetes mellitus (DM). Other than Zn deficiency (21.15%), the prevalence of Zn, Se, and Cu excess and Se and Cu deficiency were low (<4.00%). As compared to the NGT group, Cu and Se supplementation was higher in the AGT and DM groups (p < 0.0001 for all). Serum Se and Zn, but not Cu, concentrations were highly correlated with daily intake (p < 0.0001 for both). As compared to the NGT group, serum Cu concentration was highest in the AGT group (p = 0.03), serum Se concentration was highest in the DM group (p < 0.0001), and serum Zn concentration was highest in the AGT group (p < 0.0001). Serum Se and Zn concentration was correlated with daily Se and Zn intake. Even within the reference range for serum Cu, Se, and Zn concentrations, a higher serum concentration of Cu, Se, and Zn was associated with abnormal glucose metabolism. Although the casual relationship remains to be elucidated, these data suggest caution in Cu, Se and Zn supplementation in non-deficient individuals.
Collapse
|
10
|
Kong M, Xie K, Lv M, Li J, Yao J, Yan K, Wu X, Xu Y, Ye D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed Pharmacother 2021; 133:110975. [PMID: 33212375 DOI: 10.1016/j.biopha.2020.110975] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Mengjie Kong
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghui Lv
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqin Wu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
11
|
Müller GA. Insulin-like and mimetic molecules from non-mammalian organisms: potential relevance for drug discovery. Arch Physiol Biochem 2020; 126:420-429. [PMID: 30633571 DOI: 10.1080/13813455.2018.1551906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin was first discovered in extracts of vertebrate pancreas during a focused search for a therapy for diabetes. Subsequent efforts to discover and isolate a similar active principle from yeast and plants driven by the hope to identify insulin-like/mimetic molecules with critical advantages in the pharmacokinetic profile and expenditure of production compared to authentic human insulin were not successful. As a consequence, it has generally been assumed that hormones evolved exclusively during course of the evolution of vertebrate endocrine organs, implying a rather recent origin. Concomitantly, the existence and physiological role of vertebrate hormones in lower multi- and unicellular eukaryotes have remained a rather controversial subject over decades, albeit there is some evidence that hormones and hormone-binding proteins resembling those of vertebrates are expressed in fungi and yeast. Past and recent findings on the existence of insulin-like and mimetic materials, such as the glucose tolerance factor, in lower eukaryotes, in particular Neurospora crassa and yeast, will be presented. These data provide further evidence for the provocative view that the evolutionary roots of the vertebrate endocrine system may be far more ancient than is generally believed and that the identification and characterisation of insulin-like/mimetic molecules from lower eukaryotes may be useful for future drug discovery efforts.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Center München, Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Spitters TWGM, Andersen PL, Martel C, Vermette P. Multiple-Condition Analysis in a Retrievable Subcutaneous Animal Model for Drug Screening on Full Pancreatic Tissue Digest. Assay Drug Dev Technol 2018; 16:462-471. [PMID: 30106594 DOI: 10.1089/adt.2018.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lack of understanding on how to treat pancreas-related diseases and develop new therapeutics is partly due to the unavailability of appropriate models. In vitro models fail to provide a physiological environment. Testing new drug targets in these models can give rise to bias and misleading results. Therefore, we developed an in vivo model for drug testing on full pancreatic digests, which maintains the interactions between endo- and exocrine tissues and allows retrieving the samples for further analyses. The use of full pancreatic digest eliminates the need to isolate islets, reducing time and cost. In this model, four different conditions can be implanted subcutaneously within the same animal. Each condition consists of full pancreatic tissue digests embedded in alginate beads. All alginate beads in one animal contained full pancreatic digest of the same donor and, after 5-day implantation, were retrieved for analysis focusing on survival, function, and/or organization. Proof-of-principle of the platform was evidenced by showing the effect of hyaluronic acid and vascular endothelial growth factor on the overall function of the full pancreatic digest and on endothelial cells in the pancreatic digest, respectively. Retrieval from identical animals allows direct comparison between conditions. Metabolism (MTT) quantification, dithizone staining, and glucose-stimulated insulin secretion assessment allow to discriminate, using a minimal number of animals, between treatments and validate the system. Because of its simplicity, the model is highly adaptable to specific needs of the user.
Collapse
Affiliation(s)
- Tim W G M Spitters
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| | - Parker L Andersen
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| | - Chloé Martel
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.,Pharmacology Institute of Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Canada
| |
Collapse
|
13
|
Li S, Wang YY, Cui J, Chen DN, Li Y, Xin Z, Xie RR, Cao X, Lu J, Yang FY, Yang JK. Are low levels of serum bicarbonate associated with risk of progressing to impaired fasting glucose/diabetes? A single-centre prospective cohort study in Beijing, China. BMJ Open 2018; 8:e019145. [PMID: 30037858 PMCID: PMC6059285 DOI: 10.1136/bmjopen-2017-019145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AIMS Bicarbonate is involved in many human essential metabolic processes, but little is known about the association between serum bicarbonate and glucose metabolism. This study aims to investigate the association between serum bicarbonate and the risk of progressing to impaired fasting glucose (IFG)/diabetes mellitus (DM). SETTING The data were obtained from a large-scale prospective cohort study in a single health centre in Beijing. PARTICIPANTS A total of 5318 participants aged 18-70 years who underwent health examinations annually with baseline fasting plasma glucose (FPG) ranging from 3.9 to 5.5 mmol/L, without a history of either diabetes or concomitant chronic diseases, were enrolled in this 6-year observational study. PRIMARY OUTCOME MEASURES A logistic regression analysis was used to calculate ORs for progressing to IFG/DM by the category of baseline serum bicarbonate. In addition, an analysis of the receiver operating characteristic (ROC) curve for predicting IFG was performed. RESULTS Of the 5318 participants, 210 developed IFG after a median 2.2 years of follow-up. After adjusting for sex, age, FPG, body mass index, systolic blood pressure, serum creatinine, serum alanine aminotransferase and low-density lipoprotein cholesterol at baseline, the participants in the first (OR 4.18, 95% CI 2.42 to 7.21; p<0.001), second (OR 3.02, 95% CI 1.71 to 5.33; p<0.001) and third (OR 2.12, 95% CI 1.15 to 3.89; p=0.015) quartiles of serum bicarbonate had higher odds for progressing to IFG/DM compared with those in the highest quartile. The area under the ROC curve for predicting IFG/DM was 0.69 (95% CI 0.65 to 0.72; p<0.001). CONCLUSIONS Lower serum bicarbonate is associated with higher risk of the development of IFG/DM.
Collapse
Affiliation(s)
- Sen Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Ying-Ying Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Cui
- Health Examination Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong-Ning Chen
- Health Examination Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Health Examination Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Rong-Rong Xie
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Xi Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Fang-Yuan Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| |
Collapse
|
14
|
Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim Biophys Acta Gen Subj 2017; 1861:1929-1942. [PMID: 28527893 DOI: 10.1016/j.bbagen.2017.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. SCOPE REVIEW This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. MAJOR CONCLUSION The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H2O2 inactivation at all major subcellular sites. GENERAL SIGNIFICANCE Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease.
Collapse
|
15
|
Lalazar G, Zigmond E, Weksler-Zangen S, Ya'acov AB, Levy MS, Hemed N, Raz I, Ilan Y. Oral Administration of β-Glucosylceramide for the Treatment of Insulin Resistance and Nonalcoholic Steatohepatitis: Results of a Double-Blind, Placebo-Controlled Trial. J Med Food 2017; 20:458-464. [DOI: 10.1089/jmf.2016.3753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gadi Lalazar
- Gasroeterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ehud Zigmond
- Gasroeterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- Diabetes Unit, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ami Ben Ya'acov
- Gasroeterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Miriam Sklair Levy
- Department of Radiology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Nilla Hemed
- Gasroeterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Itamar Raz
- Diabetes Unit, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gasroeterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
16
|
Vinokur V, Weksler-Zangen S, Berenshtein E, Eliashar R, Chevion M. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes. PLoS One 2016; 11:e0159908. [PMID: 27458721 PMCID: PMC4961428 DOI: 10.1371/journal.pone.0159908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/11/2016] [Indexed: 11/18/2022] Open
Abstract
Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir Vinokur
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Otolaryngology-Head and Neck Surgery, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- The Diabetes Unit, Department of Internal Medicine, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Eliashar
- Department of Otolaryngology-Head and Neck Surgery, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
17
|
Long AJ, Sampson E, McCarthy RW, Harris CM, Barnard M, Shi D, Conlon D, Caldwell R, Honor D, Wishart N, Hoemann M, Duggan L, Fritz D, Stedman C, O'Connor E, Mikaelian I, Schwartz A. Syk Inhibition Induces Platelet Dependent Peri-islet Hemorrhage in the Rat Pancreas. Toxicol Pathol 2016; 44:998-1012. [PMID: 27324990 DOI: 10.1177/0192623316654015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spleen tyrosine kinase (Syk) is a nonreceptor tyrosine kinase that is an important signaling enzyme downstream of immunoreceptors containing an intracellular immunoreceptor tyrosine activating motif (ITAM). These receptors encompass a wide variety of biological functions involved in autoimmune disease pathogenesis. There has been considerable interest in the development of inhibitors of the Syk pathway for the treatment of rheumatoid arthritis and systemic lupus erythematosus. We report that Syk inhibition mechanistically caused peri-islet hemorrhages and fibrin deposition in the rat pancreas and that this finding is due to a homeostatic functional defect in platelets. In more limited studies, similar lesions could not be induced in mice, dogs, and cynomolgus monkeys at similar or higher plasma drug concentrations. Irradiation-induced thrombocytopenia caused a phenotypically similar peri-islet pancreas lesion and the formation of this lesion could be prevented by platelet transfusion. In addition, Syk inhibitor-induced lesions were prevented by the coadministration of prednisone. A relatively greater sensitivity of rat platelets to Syk inhibition was supported by functional analyses demonstrating rat-specific differences in response to convulxin, a glycoprotein VI agonist that signals through Syk. These data demonstrate that the Syk pathway is critical in platelet-endothelial cell homeostasis in the peri-islet pancreatic microvasculature in rats.
Collapse
Affiliation(s)
- Andrew J Long
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Erik Sampson
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | - Marc Barnard
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Dan Shi
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Donna Conlon
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | - David Honor
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Neil Wishart
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | - Lori Duggan
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Douglas Fritz
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | - Igor Mikaelian
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | |
Collapse
|
18
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
19
|
Ergaz Z, Neeman-azulay M, Weinstein-Fudim L, Weksler-Zangen S, Shoshani-Dror D, Szyf M, Ornoy A. Diabetes in the Cohen Rat Intensifies the Fetal Pancreatic Damage Induced by the Diabetogenic High Sucrose Low Copper Diet. ACTA ACUST UNITED AC 2016; 107:21-31. [DOI: 10.1002/bdrb.21169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/24/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Zivanit Ergaz
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
- Department of Neonatology; Hadassah Medical Center, Hebrew University of Jerusalem; Jerusalem Israel
| | - Meytal Neeman-azulay
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| | - Liza Weinstein-Fudim
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| | - Sarah Weksler-Zangen
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
- Diabetes Unit; Department of Internal Medicine; Hadassah Medical Center, Hebrew University of Jerusalem; Jerusalem Israel
| | - Dana Shoshani-Dror
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics; McGill University; Montreal Canada
| | - Asher Ornoy
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
20
|
Gurgul-Convey E, Lenzen S. Is nitric oxide really the primary mediator of pancreatic β-cell death in type 1 diabetes? J Biol Chem 2015; 290:10570. [PMID: 25888569 DOI: 10.1074/jbc.l115.648089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Aharon-Hananel G, Jörns A, Lenzen S, Raz I, Weksler-Zangen S. Antidiabetic Effect of Interleukin-1β Antibody Therapy Through β-Cell Protection in the Cohen Diabetes-Sensitive Rat. Diabetes 2015; 64:1780-5. [PMID: 25488902 DOI: 10.2337/db14-1018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022]
Abstract
Interleukin (IL)-1β, the sole proinflammatory cytokine released from pancreas-infiltrating macrophages, inhibits glucose-stimulated insulin secretion (GSIS), causing hyperglycemia in Cohen diabetes-sensitive (CDs) rats fed a diabetogenic-diet (CDs-HSD). Because IL-1β blockade is a potential therapeutic target in diabetes, we examined whether treating CDs rats with IL-1β antibody (IL-1βAb; 0.5 mg/kg body weight) could counteract the inhibition of GSIS and hyperglycemia. We found that daily IL-1βAb injections had a beneficial effect on glucose tolerance and insulin secretion in CDs-HSD rats. In the oral glucose tolerance test, IL-1βAb-treated CDs-HSD rats showed lower blood glucose concentrations (P < 0.001) and higher GSIS (P < 0.05) compared with nontreated CDs-HSD rats. IL-1βAb treatment also protected the exocrine pancreas; the number of infiltrating macrophages decreased by 70% (P < 0.01) and IL-1β expression decreased by 85% (P < 0.01). In parallel, a 50% reduction (P < 0.01) in the rate of apoptosis and in fat infiltration (P < 0.05) was noted in the exocrine parenchyma of IL-1βAb-treated CDs-HSD rats compared with nontreated CDs-HSD rats. Altogether, these data demonstrate that blocking IL-1β action by IL-1βAb counteracted β-cell dysfunction and glucose intolerance, supporting the notion that prevention of pancreas infiltration by macrophages producing IL-1β is of crucial importance for the preservation of β-cell function and prevention of diabetes.
Collapse
Affiliation(s)
- Genya Aharon-Hananel
- Diabetes Unit, Department of Internal Medicine and Hadassah Diabetes Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany Centre of Anatomy, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Itamar Raz
- Diabetes Unit, Department of Internal Medicine and Hadassah Diabetes Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- Diabetes Unit, Department of Internal Medicine and Hadassah Diabetes Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
22
|
Sauter NS, Thienel C, Plutino Y, Kampe K, Dror E, Traub S, Timper K, Bédat B, Pattou F, Kerr-Conte J, Jehle AW, Böni-Schnetzler M, Donath MY. Angiotensin II induces interleukin-1β-mediated islet inflammation and β-cell dysfunction independently of vasoconstrictive effects. Diabetes 2015; 64:1273-83. [PMID: 25352639 DOI: 10.2337/db14-1282] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathological activation of the renin-angiotensin system (RAS) is associated with the metabolic syndrome, and the new onset of type 2 diabetes can be delayed by RAS inhibition. In animal models of type 2 diabetes, inhibition of the RAS improves insulin secretion. However, the direct effects of angiotensin II on islet function and underlying mechanisms independent of changes in blood pressure remain unclear. Here we show that exposure of human and mouse islets to angiotensin II induces interleukin (IL)-1-dependent expression of IL-6 and MCP-1, enhances β-cell apoptosis, and impairs mitochondrial function and insulin secretion. In vivo, mice fed a high-fat diet and treated with angiotensin II and the vasodilator hydralazine to prevent hypertension showed defective glucose-stimulated insulin secretion and deteriorated glucose tolerance. Application of an anti-IL-1β antibody reduced the deleterious effects of angiotensin II on islet inflammation, restored insulin secretion, and improved glycemia. We conclude that angiotensin II leads to islet dysfunction via induction of inflammation and independent of vasoconstriction. Our findings reveal a novel role for the RAS and an additional rationale for the treatment of type 2 diabetic patients with an IL-1β antagonist.
Collapse
Affiliation(s)
- Nadine S Sauter
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Constanze Thienel
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yuliya Plutino
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Kapil Kampe
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Erez Dror
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Shuyang Traub
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Timper
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Benoit Bédat
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | - Andreas W Jehle
- Department of Biomedicine, University of Basel, Basel, Switzerland Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes, and Metabolism, University Hospital Basel, Basel, Switzerland Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Rawat AK, Korthikunta V, Gautam S, Pal S, Tadigoppula N, Tamrakar AK, Srivastava AK. 4-Hydroxyisoleucine improves insulin resistance by promoting mitochondrial biogenesis and act through AMPK and Akt dependent pathway. Fitoterapia 2014; 99:307-17. [PMID: 25454462 DOI: 10.1016/j.fitote.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 11/18/2022]
Abstract
4-Hydroxyisoleucine (4-HIL) is an unusual amino acid isolated from fenugreek seeds (Trigonella foenum graecum L). Various studies have shown that it acts as an antidiabetic agent yet its mechanism of action is not clear. We therefore investigated the effect 4-HIL on the high fructose diet fed streptozotocin induced diabetic rats and L6 myotubes. 4-HIL (50 mg/kg) has improved blood lipid profile, glucose tolerance and insulin sensitivity in a diabetic rat model. It has increased the glucose uptake in L6 myotubes in AMPK-dependent manner and upregulated the expression of genes (PGC-1α, PGC-1β, CPT 1 and CPT 2), which have role in mitochondrial biogenesis and energy metabolism in the liver, skeletal muscles as well as in L6 myotubes. Interestingly, it also increased the AMPK and Akt expression along with their phosphorylated forms in the liver and muscle tissues of treated animals. Altogether we concluded that 4-HIL acts to improve insulin resistance by promoting mitochondrial biogenesis in high fructose diet fed STZ induced diabetic rats.
Collapse
Affiliation(s)
- Arun Kumar Rawat
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Venkateswarlu Korthikunta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Sudeep Gautam
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Savita Pal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Narender Tadigoppula
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | | | | |
Collapse
|
24
|
Weksler-Zangen S, Aharon-Hananel G, Mantzur C, Aouizerat T, Gurgul-Convey E, Raz I, Saada A. IL-1β hampers glucose-stimulated insulin secretion in Cohen diabetic rat islets through mitochondrial cytochrome c oxidase inhibition by nitric oxide. Am J Physiol Endocrinol Metab 2014; 306:E648-57. [PMID: 24425765 DOI: 10.1152/ajpendo.00451.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A high-sucrose, low-copper-diet (HSD) induces inhibition of glucose-sensitive rats (CDs) but not Cohen diabetes-resistant rats (CDr). Copper-supplemented HSD increased activity of the copper-dependent mitochondrial respiratory chain enzyme cytochrome c oxidase (COX) and reversed hyperglycemia. This study examined the mechanism by which interleukin-1β modulates GSIS and the role of COX in this process. We measured COX activity, ATP content, GSIS, iNOS expression, and nitrite production with and without IL-1β, N(ω)-nitro-l-arginine, copper, or potassium cyanide in isolated islets of CDs and CDr fed different diets. We found reduced COX activity, ATP content, and GSIS in isolated islets of CDs rats fed a regular diet. These were severely reduced following HSD and were restored to regular diet levels on copper-supplemented HSD (P < 0.01 vs. CDr islets). Potassium cyanide chemically reduced COX activity, decreasing GSIS and thus reinforcing the link between islet COX activity and GSIS. Interleukin-1β (2.5 U/ml) reduced GSIS and COX activity in CDs islets. Exposure to 10 U/ml interleukin-1β decreased GSIS and COX activity in both CDs and CDr islets, inducing a similar nitrite production. Nevertheless, the effect on GSIS was more marked in CDs islets. A significant iNOS expression was detected in CDs on the HSD diet, which was reduced by copper supplementation. N(ω)-nitro-l-arginine and copper prevented the deleterious effect of interleukin-1β on COX activity and GSIS. We conclude that reduced islet COX activity renders vulnerability to GSIS inhibition on low-copper HSD through two interrelated pathways: 1) by further reducing the activity of COX that is essential for β-cell ATP-production and insulin secretion and 2) by inducing the expression of iNOS and nitric oxide-mediated COX inhibition. We suggest that islet COX activity must be maintained above a critical threshold to sustain adequate GSIS with exposure to low-copper HSD.
Collapse
Affiliation(s)
- Sarah Weksler-Zangen
- Diabetes Unit, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes. Immunol Cell Biol 2014; 92:314-23. [PMID: 24492799 DOI: 10.1038/icb.2014.4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/17/2022]
Abstract
The global health and economic burden of type 2 diabetes (T2D) has reached staggering proportions. Current projections estimate that 592 million people will have diabetes by 2035. T2D-which comprises 90% of cases-is a complex disease, in most cases resulting from a combination of predisposing genes and an unhealthy environment. Clinical onset of the disease occurs when pancreatic β cells fail in the face of insulin resistance. It has long been appreciated that chronic activation of the innate immune system is associated with T2D, and many organs critical to the regulation of glucose homeostasis show signs of a chronic inflammatory process, including the pancreatic islets of Langerhans. Recent clinical trials using IL-1-targeting agents have confirmed that inflammation contributes to β-cell failure in humans with T2D. However, little is known about the nature of the pro-inflammatory response within the islet, and there is considerable debate about the triggers for islet inflammation, which may be systemically derived and/or tissue-specific. In this review, we present evidence that Toll-like receptors 2 and 4 and the NLRP3 (Nucleotide-binding oligomerization domain, Leucine-rich Repeat and Pyrin domain containing 3) inflammasome are triggers for islet inflammation in T2D and propose that the activation of macrophages by these triggers mediates islet endocrine cell dysfunction. Therapeutically targeting these receptors may improve hyperglycemia and protect the β cell in T2D.
Collapse
|
26
|
Weksler-Zangen S, Jörns A, Tarsi-Chen L, Vernea F, Aharon-Hananel G, Saada A, Lenzen S, Raz I. Dietary copper supplementation restores β-cell function of Cohen diabetic rats: a link between mitochondrial function and glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 2013; 304:E1023-34. [PMID: 23512809 DOI: 10.1152/ajpendo.00036.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
β-Cell mitochondrial dysfunction as well as proinflammatory cytokines have been suggested to contribute to reduced glucose-stimulated insulin secretion (GSIS) in type 2 diabetes. We recently demonstrated that Cohen diabetic sensitive (CDs) rats fed a high-sucrose, low-copper diet (HSD) developed hyperglycemia and reduced GSIS in association with peri-islet infiltration of fat and interleukin (IL)-1β-expressing macrophages, whereas CD resistant (CDr) rats remained normoglycemic on HSD. We examined: 1) the correlation between copper concentration in the HSD and progression, prevention, and reversion of hyperglycemia in CDs rats, 2) the relationship between activity of the copper-dependent, respiratory-chain enzyme cytochrome c oxidase (COX), infiltration of fat, IL-1β-expressing macrophages, and defective GSIS in hyperglycemic CDs rats. CDs and CDr rats were fed HSD or copper-supplemented HSD before and during hyperglycemia development. Blood glucose and insulin concentrations were measured during glucose tolerance tests. Macrophage infiltration and IL-1β expression were evaluated in pancreatic sections by electron-microscopy and immunostaining. COX activity was measured in pancreatic sections and isolated islets. In CDs rats fed HSD, GSIS and islet COX activity decreased, while blood glucose and infiltration of fat and IL-1β-expressing macrophages increased with time on HSD (P < 0.01 vs. CDr-HSD rats, all parameters, respectively). CDs rats maintained on copper-supplemented HSD did not develop hyperglycemia, and in hyperglycemic CDs rats, copper supplementation restored GSIS and COX activity, reversed hyperglycemia and infiltration of fat and IL-1β-expressing macrophages (P < 0.01 vs. hyperglycemic CDs-HSD rats, all parameters, respectively). We provide novel evidence for a critical role of low dietary copper in diminished GSIS of susceptible CDs rats involving the combined consequence of reduced islet COX activity and pancreatic low-grade inflammation.
Collapse
Affiliation(s)
- Sarah Weksler-Zangen
- Diabetes Unit, Hadassah-Hebrew Univ. Medical Center, Jerusalem 12000, Israel 91120.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu JM, Shi GP. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 2012; 33:71-108. [PMID: 22240242 PMCID: PMC3365842 DOI: 10.1210/er.2011-0013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell-cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions.
Collapse
Affiliation(s)
- Jia-Ming Xu
- Department of Medicine, Nanfang Hospital and Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|
28
|
Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies. Br J Nutr 2011; 108:875-82. [DOI: 10.1017/s0007114511006167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In search for an effective oral treatment for diabetes, we examined the capacity of glucose tolerance factor (GTF) extracted from yeast and administered orally to reduce hyperglycaemia in rat models exhibiting insulin deficiency. The cellular effect of GTF on the insulin signalling pathway was investigated in vitro. GTF (oral bolus), insulin (intraperitoneal) or their combination was administered to streptozotocin-diabetic (STZ) or hyperglycaemic Cohen diabetic-sensitive (hyp-CDs) rats. Blood glucose (BG) and insulin levels were measured in the postprandial (PP) state and during an oral glucose tolerance test. Deoxy-glucose transport and insulin signal transduction were assessed in 3T3-L1 adipocytes and myoblasts incubated with the GTF. Low dose of insulin produced a 34 and 12·5 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. GTF induced a 33 and 17 % reduction in the PP-BG levels of hyp-CDs and STZ rats, respectively. When combined with insulin, a respective decrease (58 and 42 %) in BG levels was observed, suggesting a partially additive (hyp-CDs) or synergistic (STZ rats) effect of the GTF and insulin. GTF did not induce insulin secretion in hyp-CDs rats, yet it lowered their BG levels, proposing an effect on glucose clearance by peripheral tissues. GTF induced a dose-dependent increase in deoxy-glucose transport into myoblasts and fat cells similar to insulin, while the combined treatment resulted in augmented transport rate. GTF induced a dose- and time-dependent phosphorylation of insulin receptor substrate 1, Akt and mitogen-activated protein kinase independent of insulin receptor phosphorylation. GTF exerts remarkable insulin-mimetic and insulin-potentiating effects, both in vivo and in vitro. It produces an insulin-like effect by acting on cellular signals downstream of the insulin receptor. These results demonstrate a potential source for a novel oral medication for diabetes.
Collapse
|
29
|
Abstract
Interleukin-1β Interleukin-1β (IL-1β) is a key regulator of the body's inflammatory response and is produced after infection, injury, and an antigenic challenge. Cloned in 1984, the single polypeptide IL-1β has been shown to exert numerous biological effects. It plays a role in various diseases, including autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, and Type 1 diabetes, as well as in diseases associated with metabolic syndrome such as atherosclerosis, chronic heart failure, and Type 2 diabetes. The macrophage is the primary source of IL-1β, but epidermal, epithelial, lymphoid, and vascular tissues also synthesize IL-1. Recently, IL-1β production and secretion have also been reported from pancreatic islets. Insulin-producing β-cells β-cells within the pancreatic islets are specifically prone to IL-β-induced destruction and loss of function. Macrophage-derived IL-1β production in insulin-sensitive organs leads to the progression of inflammation inflammation and induction of insulin resistance in obesity. This chapter explains the mechanisms involved in the inflammatory response during diabetes progression with specific attention to the IL-1β signal effects influencing insulin action and insulin secretion insulin secretion . We highlight recent clinical studies, rodent and in vitro experiments with isolated islets using IL-1β as a potential target for the therapy of Type 2 diabetes.
Collapse
|
30
|
Abstract
OBJECTIVES To compare the effects of glucocorticoids and thyroid hormones on the regulation of the beta cell mass in the pancreas, the rats were treated and analyzed for cell cycle changes in islet and duct cells as a source for beta cell neogenesis. METHODS Different rat pancreases were morphometrically analyzed after immunohistochemical staining for markers of proliferation and apoptosis. RESULTS Hydrocortisone increased the beta cell mass of rat pancreases through an increase of proliferation. This effect was counteracted by an increase of apoptosis. In contrast, thyroxine decreased the beta cell mass through an increase of apoptosis. This effect was counteracted by an increased rate of proliferation. Combined treatment with both hormones nullified the antagonistic effects on proliferation, apoptosis, and beta cell mass, thereby contributing to the maintenance of a stable total beta cell volume of the pancreas. CONCLUSIONS Hydrocortisone and thyroxine induced analogous changes in pancreatic duct cells, which represent a crucial pool for new beta cells through neogenesis. This may explain the positive effects of glucocorticoids in the immunosuppressive therapy regimen after whole pancreas transplantation upon long-term insulin independence, which is not achievable with isolated islets because of the loss of duct cells during the islet process before transplantation.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To understand the role of inflammation as the fundamental cause of type 2 diabetes and specifically to examine the contribution of IL-1beta. RECENT FINDINGS Recent studies from animals, in-vitro cultures and clinical trials provide evidence that support a causative role for IL-1beta as the primary agonist in the loss of beta-cell mass in type 2 diabetes. In vitro, IL-1beta-mediated autoinflammatory process results in beta-cell death. The autoinflammation is driven by glucose, free fatty acids, leptin, and IL-1beta itself. Caspase-1 is required for IL-1beta activity and the release of free fatty acids from the adipocyte. An emerging hypothesis gains support from patients with type 2 diabetes in which an imbalance in the amount of IL-1beta agonist activity versus the specific countering by the naturally occurring IL-1 receptor antagonist (IL-1Ra) determines the outcome of islet inflammation. An important confirmation comes from clinical trials. Blockade of IL-1 receptor with anakinra, the recombinant form of IL-1Ra, or neutralizing anti-IL-1beta antibodies, provides proof-of-principle data that reducing IL-1beta activity is sufficient for correcting dysfunctional beta-cell production of insulin in type 2 diabetes, including a possibility that suppression of IL-1beta-mediated inflammation in the microenvironment of the islet allows for regeneration. SUMMARY Monotherapy or add-on therapy targeting IL-1beta in type 2 diabetes holds promise for long-term benefits in glycemic control and possibly reducing cardiovascular events.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
32
|
Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL, Cnop M. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 2010; 53:1395-405. [PMID: 20369226 DOI: 10.1007/s00125-010-1707-y] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/27/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Beta cell failure is a crucial component in the pathogenesis of type 2 diabetes. One of the proposed mechanisms of beta cell failure is local inflammation, but the presence of pancreatic islet inflammation in type 2 diabetes and the mechanisms involved remain under debate. METHODS Chemokine and cytokine expression was studied by microarray analysis of laser-capture microdissected islets from pancreases obtained from ten non-diabetic and ten type 2 diabetic donors, and by real-time PCR of human islets exposed to oleate or palmitate at 6 or 28 mmol/l glucose. The cellular source of the chemokines was analysed by immunofluorescence of pancreatic sections from individuals without diabetes and with type 2 diabetes. RESULTS Microarray analysis of laser-capture microdissected beta cells showed increased chemokine and cytokine expression in type 2 diabetes compared with non-diabetic controls. The inflammatory response in type 2 diabetes was mimicked by exposure of non-diabetic human islets to palmitate, but not to oleate or high glucose, leading to the induction of IL-1beta, TNF-alpha, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-C motif) ligand 2 (CCL2). Interference with IL-1beta signalling abolished palmitate-induced cytokine and chemokine expression but failed to prevent lipotoxic human islet cell death. Palmitate activated nuclear factor kappaB (NF-kappaB) in human pancreatic beta and non-beta cells, and chemically induced endoplasmic reticulum stress caused cytokine expression and NF-kappaB activation similar to that occurring with palmitate. CONCLUSIONS/INTERPRETATION Saturated-fatty-acid-induced NF-kappaB activation and endoplasmic reticulum stress may contribute to IL-1beta production and mild islet inflammation in type 2 diabetes. This inflammatory process does not contribute to lipotoxicity ex vivo, but may lead to local chemokine release.
Collapse
Affiliation(s)
- M Igoillo-Esteve
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barkalifa R, Yagil Y, Yagil C. Sex-specific genetic dissection of diabetes in a rodent model identifies Ica1 and Ndufa4 as major candidate genes. Physiol Genomics 2010; 42:445-55. [PMID: 20530722 DOI: 10.1152/physiolgenomics.00042.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to initiate a sex-specific investigation of the molecular basis of diabetes, using a genomic approach in the Cohen Diabetic rat model of diet-induced Type 2 diabetes. We used an F2 population resulting from a cross between Cohen Diabetic susceptible (CDs) and resistant (CDr) and consisting of 132 males and 159 females to detect relevant QTLs by linkage and cosegregation analyses. To confirm the functional relevance of the QTL, we applied the "chromosome substitution" strategy. We identified candidate genes within the quantitative trait locus (QTL) and studied their differential expression. We sequenced the differentially expressed candidate genes to account for differences in their expression. We confirmed in this new cross in males a previously detected major QTL on rat chromosome 4 (RNO4); we identified in females this major QTL as well. We found three additional diabetes-related QTLs on RNO11, 13, and 20 in females only. We pursued the investigation of the QTL on RNO4 and generated a CDs.4(CDr) consomic strain, which provided us with functional confirmation for the contribution of the QTL to the diabetic phenotype in both sexes. We successfully narrowed the QTL span to 2.6 cM and identified within it six candidate genes, but only two of which, Ica1 (islet cell autoantigen 1) and Ndufa4 (NADH dehydrogenase ubiquinone) were differentially expressed between CDs and CDr. We sequenced the exons and promoter regions of Ica1 and Ndufa4 but did not identify sequence variations between the strains. The detection of the QTL on RNO4 in both sexes suggests involvement of Ica1, Ndufa4, the Golgi apparatus, the mitochondria and genetic susceptibility to dietary-environmental factors in the pathophysiology of diabetes in our model. The additional sex-specific QTLs are likely to account for differences in the diabetic phenotype between the sexes.
Collapse
Affiliation(s)
- Ronit Barkalifa
- Faculty of Health Sciences, Ben-Gurion University, Barzilai Medical Center Campus, Ashkelon, Israel
| | | | | |
Collapse
|
34
|
Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA. Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 2010; 21:261-7. [PMID: 20096598 DOI: 10.1016/j.tem.2009.12.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/17/2009] [Accepted: 12/28/2009] [Indexed: 12/21/2022]
Abstract
Islets produce a variety of cytokines and chemokines in response to physiologic and pathologic stimulation by nutrients. The cellular source of these inflammatory mediators includes alpha-, beta-, endothelial-, ductal- and recruited immune cells. Islet-derived cytokines promote alpha- and beta-cell adaptation and repair in the short term. Eventually, chronic metabolic stress can induce a deleterious autoinflammatory process in islets leading to insulin secretion failure and type 2 diabetes. Understanding the specific role of islet derived cytokines and chemokines has opened the door to targeted clinical interventions aimed at remodeling islet inflammation from destruction to adaptation. In this article, we review the islet cellular origin of various cytokines and chemokines and describe their regulation and respective roles in physiology and diabetes.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology and Diabetes, Center for Integrated Human Physiology, University Hospital of Zurich, 8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Donath MY, Böni-Schnetzler M, Ellingsgaard H, Ehses JA. Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. Physiology (Bethesda) 2010; 24:325-31. [PMID: 19996363 DOI: 10.1152/physiol.00032.2009] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Onset of Type 2 diabetes occurs when the pancreatic beta-cell fails to adapt to the increased insulin demand caused by insulin resistance. Morphological and therapeutic intervention studies have uncovered an inflammatory process in islets of patients with Type 2 diabetes characterized by the presence of cytokines, immune cells, beta-cell apoptosis, amyloid deposits, and fibrosis. This insulitis is due to a pathological activation of the innate immune system by metabolic stress and governed by IL-1 signaling. We propose that this insulitis contributes to the decrease in beta-cell mass and the impaired insulin secretion observed in patients with Type 2 diabetes.
Collapse
Affiliation(s)
- Marc Y Donath
- Division of Endocrinology, Diabetes, and Nutrition, and Center for Integrated Human Physiology, University Hospital of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
36
|
Wang L, Cao H, Jiang N, Zhang N, Zhang J, Hou R, Chen C, Wang Y, Li X, Li D, Ji Q. Differential expression of gonadotropin-releasing hormone (GnRH) in pancreas during rat pregnancy. Endocrine 2009; 36:538-45. [PMID: 19856133 DOI: 10.1007/s12020-009-9264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
Many studies have shown that there is a relationship between gonadotropin-releasing hormone (GnRH) and glucose metabolism, but little is known about the effects of GnRH on the pancreas. Our experiment investigated the effect of GnRH on pancreatic islet cell in Sprague-Dawley (SD) rats fed with high-cholesterol diet before and during pregnancy. We found that although high-cholesterol diet led to no significant difference of GnRH mRNA levels in pancreas in nonpregnant rats, it led to a marked increase of those in pregnant rats. Furthermore, in rats fed with standard laboratory chow, no significant differences were apparent in GnRH mRNA levels before and during gestation; however, when fed with high-cholesterol diet, the GnRH mRNA levels increased significantly in pregnant rats. As results indicated both diets could lead to increase of PG mRNA in pancreas of pregnant rats. It is also demonstrated that the GnRH mRNA levels are positively associated with PG mRNA levels. Moreover, our data showed a significant increase in fasting insulin level in the Gestation group compared with Control. Such changes were contrary to the changes of GnRH level in the pancreas. This may imply that GnRH influences hormones secretion in the pancreas by autocrine and paracrine effects on islet cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ehses JA, Ellingsgaard H, Böni-Schnetzler M, Donath MY. Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch Physiol Biochem 2009; 115:240-7. [PMID: 19645635 DOI: 10.1080/13813450903025879] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Evidence in support of the concept of local pancreatic islet inflammation as a mechanism of beta cell failure in type 2 diabetes is accumulating. Observations in human islets from type 2 diabetic patients and rodent models of the disease indicate the increased presence of IL-1 driven cytokines and chemokines in pancreatic islets, concomitant with immune cell infiltration. Inflammation is the body's protective response to harmful stimuli and tissue damage. However, under chronic stress (e.g. metabolic stress in obesity and type 2 diabetes) the body's own defensive response may become deleterious to tissue function. Here, we summarize the current evidence that islet inflammation is a feature of type 2 diabetes, and discuss its role with respect to alpha and beta cell compensation and eventual beta cell failure.
Collapse
Affiliation(s)
- Jan A Ehses
- Division of Endocrinology, Diabetes and Nutrition, Center for Integrated Human Physiology, University Hospital of Zürich, 8091 Zürich, Switzerland.
| | | | | | | |
Collapse
|
38
|
Maedler K, Dharmadhikari G, Schumann DM, Størling J. Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 2009; 9:1177-88. [PMID: 19604125 DOI: 10.1517/14712590903136688] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Zigmond E, Zangen SW, Pappo O, Sklair-Levy M, Lalazar G, Zolotaryova L, Raz I, Ilan Y. Beta-glycosphingolipids improve glucose intolerance and hepatic steatosis of the Cohen diabetic rat. Am J Physiol Endocrinol Metab 2009; 296:E72-8. [PMID: 18940939 DOI: 10.1152/ajpendo.90634.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A link between altered levels of various gangliosides and the development of insulin resistance was described in transgenic mice. Naturally occurring glycosphingolipids were shown to exert immunomodulatory effects in a natural killer T (NKT) cell-dependent manner. This study examined whether glycosphingolipid-induced modulation of the immune system may reduce pancreatic and liver steatosis and stimulate insulin secretion in the Cohen diabetes-sensitive (CDS) rat, a lean model of non-insulin-resistant, nutritionally induced diabetes. Four groups of CDS rats fed a diabetogenic diet were treated with daily intraperitoneal injections of glycosphingolipids beta-glucosylceramide, beta-lactosylceramide, a combination of both (IGL), or vehicle (PBS) for up to 45 days. Immune modulation was assessed by fluorescence-activated cell sorting analysis of intrahepatic and intrasplenic lymphocytes. Steatosis was assessed by MRI imaging and histological examination of liver and pancreas, Blood glucose and plasma insulin concentrations were assessed during an oral glucose tolerance test. Administration of glycosphingolipids, particularly IGL, increased intrahepatic trapping of CD8 T and NKT lymphocytes. Pancreatic and liver histology were markedly improved and steatosis was reduced in all treated groups compared with vehicle-treated rats. Insulin secretion was restored after glycosphingolipid treatment, resulting in improved glucose tolerance. The immunomodulatory effect of beta-glycosphingolipids improved the beta-cell function of the hyperglycemic CDS rat. Thus our results suggest a role for the immune system in the pathogenesis of diabetes in this model.
Collapse
Affiliation(s)
- Ehud Zigmond
- Liver Unit, Dept. of Medicine, Hebrew University-Hadassah Medical Center, PO Box 12000, Jerusalem, Israel IL-91120
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Islets of patients with type 2 diabetes have the feature of an inflammatory process reflected by the presence of cytokines, immune cells, beta-cell apoptosis, amyloid deposits and fibrosis. Indeed, beta-cells from patients with type 2 diabetes display inflammatory markers, including increased interleukin (IL)-1 beta expression. Furthermore, increased islet-associated macrophages are observed in human type 2 diabetic patients and in most animal models of diabetes. Importantly, increased numbers of macrophages are detectable very early in high fat-fed mice islets, before the onset of diabetes. These immune cells are most likely attracted by islet-derived chemokines, produced in response to metabolic stress, and under the control of IL-1 beta. It follows that modulation of intra-islet inflammatory mediators, in particular IL-1 beta, may prevent insulitis in type 2 diabetes and therefore presents itself as a possible causal therapy with disease-modifying potential.
Collapse
Affiliation(s)
- M Böni-Schnetzler
- Clinic of Endocrinology and Diabetes and Centre for Integrated Human Physiology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
41
|
Böni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath MY. Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab 2008; 93:4065-74. [PMID: 18664535 PMCID: PMC2579638 DOI: 10.1210/jc.2008-0396] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Elevated glucose levels impair islet function and survival, and it has been proposed that intraislet expression of IL-1beta contributes to glucotoxicity. OBJECTIVE The objective was to investigate IL-1beta mRNA expression in near-pure beta-cells of patients with type 2 diabetes (T2DM) and study the regulation of IL-1beta by glucose in isolated human islets. METHODS Laser capture microdissection was performed to isolate beta-cells from pancreas sections of 10 type 2 diabetic donors and nine controls, and IL-1beta mRNA expression was analyzed using gene arrays and PCR. Cultured human islets and fluorescence-activated cell sorter-purified human beta-cells were used to study the regulation of IL-1beta expression by glucose and IL-1beta. RESULTS Gene array analysis of RNA from beta-cells of individuals with T2DM revealed increased expression of IL-1beta mRNA. Real-time PCR confirmed increased IL-1beta expression in six of 10 T2DM samples, with minimal or no expression in nine control samples. In cultured human islets, IL-1beta mRNA and protein expression was induced by high glucose and IL-1beta autostimulation and decreased by the IL-1 receptor antagonist IL-1Ra. The glucose response was negatively correlated with basal IL-1beta expression levels. Autostimulation was transient and nuclear factor-kappaB dependent. Glucose-induced IL-1beta was biologically active and stimulated IL-8 release. Low picogram per milliliter concentrations of IL-1beta up-regulated inflammatory factors IL-8 and IL-6. CONCLUSION Evidence that IL-1beta mRNA expression is up-regulated in beta-cells of patients with T2DM is presented, and glucose-promoted IL-1beta autostimulation may be a possible contributor.
Collapse
|
42
|
Ryu S, Ornoy A, Samuni A, Zangen S, Kohen R. Oxidative stress in Cohen diabetic rat model by high-sucrose, low-copper diet: inducing pancreatic damage and diabetes. Metabolism 2008; 57:1253-61. [PMID: 18702952 DOI: 10.1016/j.metabol.2008.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/22/2008] [Indexed: 02/02/2023]
Abstract
Increased oxidative stress contributes to the development and progression of both types of diabetes mellitus (DM) and its complications. In the Cohen diabetic (CD) rats, a known genetic model of nutritionally induced type 2 DM, a high-sucrose, low-copper diet (HSD) induces within 4 weeks DM in the sensitive (CDs) rats but not in the resistant (CDr) rats. To assess the possible involvement of oxidative stress in the induction of DM, we studied the effect of HSD on the tissue levels of antioxidants and the extent of oxidative injuries in these animals in comparison with the regular outbred strain of nondiabetic Sabra rats. The specific aims were to investigate, at the onset of HSD-induced DM, (1) the extent of oxidative injury, as reflected by levels of malondialdehyde and protein carbonyl groups; (2) the overall antioxidant capacities to cope with increased oxidative stress; and (3) the modification of oxidative damage biomarkers in various tissues of CDr, CDs, and Sabra rats. Female CDs, CDr, and Sabra rats were fed regular diet or HSD for 4 to 5 weeks; and several parameters of oxidative injuries and antioxidant levels were determined. Changes in the levels of nonenzymatic low-molecular weight antioxidants (LMWAs) were measured by cyclic voltammetry and oxygen radical absorbance capacity. The activities of the antioxidant enzymes superoxide dismutase and catalase were measured. Oxidative damage was evaluated by measuring lipid peroxidation and protein oxidation. (1) In all animals fed HSD, the levels of LMWAs were decreased in most organs, although not plasma. (2) A significant difference was consistently found in antioxidant enzymes' activities in the pancreas of HSD-fed CDs rats, but not in other tissues. (3) The activities of superoxide dismutase and catalase and the levels of malondialdehyde and protein carbonyl group increased, whereas the levels of LMWAs decreased, in the pancreas of HSD-fed CDs rats. In the CD rats that develop DM when fed HSD, the pancreas showed susceptibility to oxidative stress-induced injuries. Thus, enhanced oxidative stress seems to play a role in the pathogenesis of DM in this strain.
Collapse
Affiliation(s)
- Seonghun Ryu
- Department of Anatomy and Cell Biology, Laboratory of Teratology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
43
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Abstract
The pathology of islets from patients with Type 2 diabetes displays an inflammatory process characterized by the presence of immune cell infiltration, cytokines, apoptotic cells, amyloid deposits and, eventually, fibrosis. Indeed, analysis of β-cells from patients with Type 2 diabetes displays increased IL-1β (interleukin 1β) expression. Furthermore, increased islet-associated macrophages are observed in human Type 2 diabetic patients and in most animal models of diabetes. Importantly, increased numbers of macrophages are detectable very early in high-fat-fed mice islets, before the onset of diabetes. These immune cells are probably attracted by islet-derived chemokines, produced in response to metabolic stress, and under the control of IL-1β. It follows that modulation of intra-islet inflammatory mediators, particularly interleukin-1β, may prevent islet inflammation in Type 2 diabetes and therefore presents itself as a promising therapeutic approach.
Collapse
|