1
|
Zhou W, Bandara SR, Ko K, Akinrotimi O, Hernández-Saavedra D, Richter E, Brauer N, Woodward TJ, Bradshaw HB, Leal C, Anakk S. Deleting adipose FXR exacerbates metabolic defects and induces endocannabinoid lipid, 2-oleoyl glycerol, in obesity. J Lipid Res 2025; 66:100754. [PMID: 39938865 PMCID: PMC11946508 DOI: 10.1016/j.jlr.2025.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
The nutrient sensor farnesoid X receptor (FXR) transcriptionally regulates whole-body lipid and glucose homeostasis. Several studies examined targeting FXR as a modality to treat obesity with varying conflicting results, emphasizing the need to study tissue-specific roles of FXR. We show that deletion of adipocyte Fxr results in increased adipocyte hypertrophy and suppression of several metabolic genes that is akin to some of the changes noted in high-fat diet (HFD)-fed control mice. Moreover, upon HFD challenge, these effects are worsened in adipocyte-specific Fxr knockout mice. We uncover that FXR regulates fatty acid amide hydrolase (Faah) such that its deletion lowers Faah expression. Conversely, FXR activation by its ligand, chenodeoxycholic acid, induces Faah transcription. Notably, HFD results in the reduction of adipose Faah expression in control mice and that Faah inhibition or deletion is linked to obesity. We report that the adipocyte FXR-Faah axis controls local 2-oleoyl glycerol and systemic N-acyl ethanolamine levels. Taken together, these findings show that loss of adipose FXR may contribute to the pathogenesis of obesity and subsequent metabolic defects.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sarith R Bandara
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kyungwon Ko
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Oludemilade Akinrotimi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Emily Richter
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Noah Brauer
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Taylor J Woodward
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
3
|
Igwe JK, Alaribe U. Cannabis use associated with lower mortality among hospitalized Covid-19 patients using the national inpatient sample: an epidemiological study. J Cannabis Res 2024; 6:18. [PMID: 38582889 PMCID: PMC10998318 DOI: 10.1186/s42238-024-00228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Prior reports indicate that modulation of the endocannabinoid system (ECS) may have a protective benefit for Covid-19 patients. However, associations between cannabis use (CU) or CU not in remission (active cannabis use (ACU)), and Covid-19-related outcomes among hospitalized patients is unknown. METHODS In this multicenter retrospective observational cohort analysis of adults (≥ 18 years-old) identified from 2020 National Inpatient Sample database, we utilize multivariable regression analyses and propensity score matching analysis (PSM) to analyze trends and outcomes among Covid-19-related hospitalizations with CU and without CU (N-CU) for primary outcome of interest: Covid-19-related mortality; and secondary outcomes: Covid-19-related hospitalization, mechanical ventilation (MV), and acute pulmonary embolism (PE) compared to all-cause admissions; for CU vs N-CU; and for ACU vs N-ACU. RESULTS There were 1,698,560 Covid-19-related hospitalizations which were associated with higher mortality (13.44% vs 2.53%, p ≤ 0.001) and worse secondary outcomes generally. Among all-cause hospitalizations, 1.56% of CU and 6.29% of N-CU were hospitalized with Covid-19 (p ≤ 0.001). ACU was associated with lower odds of MV, PE, and death among the Covid-19 population. On PSM, ACU(N(unweighted) = 2,382) was associated with 83.97% lower odds of death compared to others(N(unweighted) = 282,085) (2.77% vs 3.95%, respectively; aOR:0.16, [0.10-0.25], p ≤ 0.001). CONCLUSIONS These findings suggest that the ECS may represent a viable target for modulation of Covid-19. Additional studies are needed to further explore these findings.
Collapse
Affiliation(s)
- Joseph-Kevin Igwe
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Ugo Alaribe
- Caribbean Medical University School of Medicine, 5600 N River Rd Suite 800, Rosemont, IL, 60018, USA
| |
Collapse
|
4
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
5
|
Pekkarinen L, Kantonen T, Oikonen V, Haaparanta-Solin M, Aarnio R, Dickens AM, von Eyken A, Latva-Rasku A, Dadson P, Kirjavainen AK, Rajander J, Kalliokoski K, Rönnemaa T, Nummenmaa L, Nuutila P. Lower abdominal adipose tissue cannabinoid type 1 receptor availability in young men with overweight. Obesity (Silver Spring) 2023; 31:1844-1858. [PMID: 37368516 DOI: 10.1002/oby.23770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Cannabinoid type 1 receptors (CB1R) modulate feeding behavior and energy homeostasis, and the CB1R tone is dysgulated in obesity. This study aimed to investigate CB1R availability in peripheral tissue and brain in young men with overweight versus lean men. METHODS Healthy males with high (HR, n = 16) or low (LR, n = 20) obesity risk were studied with fluoride 18-labeled FMPEP-d2 positron emission tomography to quantify CB1R availability in abdominal adipose tissue, brown adipose tissue, muscle, and brain. Obesity risk was assessed by BMI, physical exercise habits, and familial obesity risk, including parental overweight, obesity, and type 2 diabetes. To assess insulin sensitivity, fluoro-[18 F]-deoxy-2-D-glucose positron emission tomography during hyperinsulinemic-euglycemic clamp was performed. Serum endocannabinoids were analyzed. RESULTS CB1R availability in abdominal adipose tissue was lower in the HR than in the LR group, whereas no difference was found in other tissues. CB1R availability of abdominal adipose tissue and brain correlated positively with insulin sensitivity and negatively with unfavorable lipid profile, BMI, body adiposity, and inflammatory markers. Serum arachidonoyl glycerol concentration was associated with lower CB1R availability of the whole brain, unfavorable lipid profile, and higher serum inflammatory markers. CONCLUSIONS The results suggest endocannabinoid dysregulation already in the preobesity state.
Collapse
Affiliation(s)
- Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland
- Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | - Alex M Dickens
- Turku Bioscience Centre, University of Turku, Turku, Finland
- Åbo Akademi University, Turku, Finland
| | - Annie von Eyken
- Turku Bioscience Centre, University of Turku, Turku, Finland
- Åbo Akademi University, Turku, Finland
| | | | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Johan Rajander
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Tapani Rönnemaa
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
GPCR in Adipose Tissue Function-Focus on Lipolysis. Biomedicines 2023; 11:biomedicines11020588. [PMID: 36831123 PMCID: PMC9953751 DOI: 10.3390/biomedicines11020588] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue can be divided anatomically, histologically, and functionally into two major entities white and brown adipose tissues (WAT and BAT, respectively). WAT is the primary energy depot, storing most of the bioavailable triacylglycerol molecules of the body, whereas BAT is designed for dissipating energy in the form of heat, a process also known as non-shivering thermogenesis as a defense against a cold environment. Importantly, BAT-dependent energy dissipation directly correlates with cardiometabolic health and has been postulated as an intriguing target for anti-obesity therapies. In general, adipose tissue (AT) lipid content is defined by lipid uptake and lipogenesis on one side, and, on the other side, it is defined by the breakdown of lipids and the release of fatty acids by lipolysis. The equilibrium between lipogenesis and lipolysis is important for adipocyte and general metabolic homeostasis. Overloading adipocytes with lipids causes cell stress, leading to the recruitment of immune cells and adipose tissue inflammation, which can affect the whole organism (metaflammation). The most important consequence of energy and lipid overload is obesity and associated pathophysiologies, including insulin resistance, type 2 diabetes, and cardiovascular disease. The fate of lipolysis products (fatty acids and glycerol) largely differs between AT: WAT releases fatty acids into the blood to deliver energy to other tissues (e.g., muscle). Activation of BAT, instead, liberates fatty acids that are used within brown adipocyte mitochondria for thermogenesis. The enzymes involved in lipolysis are tightly regulated by the second messenger cyclic adenosine monophosphate (cAMP), which is activated or inhibited by G protein-coupled receptors (GPCRs) that interact with heterotrimeric G proteins (G proteins). Thus, GPCRs are the upstream regulators of the equilibrium between lipogenesis and lipolysis. Moreover, GPCRs are of special pharmacological interest because about one third of the approved drugs target GPCRs. Here, we will discuss the effects of some of most studied as well as "novel" GPCRs and their ligands. We will review different facets of in vitro, ex vivo, and in vivo studies, obtained with both pharmacological and genetic approaches. Finally, we will report some possible therapeutic strategies to treat obesity employing GPCRs as primary target.
Collapse
|
7
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
8
|
Dysregulation of endocannabinoid concentrations in human subcutaneous adipose tissue in obesity and modulation by omega-3 polyunsaturated fatty acids. Clin Sci (Lond) 2021; 135:185-200. [PMID: 33393630 DOI: 10.1042/cs20201060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Obesity is believed to be associated with a dysregulated endocannabinoid system which may reflect enhanced inflammation. However, reports of this in human white adipose tissue (WAT) are limited and inconclusive. Marine long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and therefore may improve obesity-associated adipose tissue inflammation. Therefore, fatty acid (FA) concentrations, endocannabinoid concentrations, and gene expression were assessed in subcutaneous WAT (scWAT) biopsies from healthy normal weight individuals (BMI 18.5-25 kg/m2) and individuals living with metabolically healthy obesity (BMI 30-40 kg/m2) prior to and following a 12-week intervention with 3 g fish oil/day (1.1 g eicosapentaenoic acid (EPA) + 0.8 g DHA) or 3 g corn oil/day (placebo). WAT from individuals living with metabolically healthy obesity had higher n-6 PUFAs and EPA, higher concentrations of two endocannabinoids (anandamide (AEA) and eicosapentaenoyl ethanolamide (EPEA)), higher expression of phospholipase A2 Group IID (PLA2G2D) and phospholipase A2 Group IVA (PLA2G4A), and lower expression of CNR1. In response to fish oil intervention, WAT EPA increased to a similar extent in both BMI groups, and WAT DHA increased by a greater extent in normal weight individuals. WAT EPEA and docosahexaenoyl ethanolamide (DHEA) increased in normal weight individuals only and WAT 2-arachidonyl glycerol (2-AG) decreased in individuals living with metabolically healthy obesity only. Altered WAT fatty acid, endocannabinoid, and gene expression profiles in metabolically healthy obesity at baseline may be linked. WAT incorporates n-3 PUFAs when their intake is increased which affects the endocannabinoid system; however, effects appear greater in normal weight individuals than in those living with metabolically healthy obesity.
Collapse
|
9
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
10
|
Buch C, Muller T, Leemput J, Passilly-Degrace P, Ortega-Deballon P, Pais de Barros JP, Vergès B, Jourdan T, Demizieux L, Degrace P. Endocannabinoids Produced by White Adipose Tissue Modulate Lipolysis in Lean but Not in Obese Rodent and Human. Front Endocrinol (Lausanne) 2021; 12:716431. [PMID: 34434170 PMCID: PMC8382141 DOI: 10.3389/fendo.2021.716431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (WAT) possesses the endocannabinoid system (ECS) machinery and produces the two major endocannabinoids (ECs), arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). Accumulating evidence indicates that WAT cannabinoid 1 receptors (CB1R) are involved in the regulation of fat storage, tissue remodeling and secretory functions but their role in controlling lipid mobilization is unclear. In the present study, we used different strategies to acutely increase ECS activity in WAT and tested the consequences on glycerol production as a marker of lipolysis. Treating lean mice or rat WAT explants with JLZ195, which inhibits ECs degrading enzymes, induced an increase in 2-AG tissue contents that was associated with a CB1R-dependent decrease in lipolysis. Direct treatment of rat WAT explants with AEA also inhibited glycerol production while mechanistic studies revealed it could result from the stimulation of Akt-signaling pathway. Interestingly, AEA treatment decreased lipolysis both in visceral and subcutaneous WAT collected on lean subjects suggesting that ECS also reduces fat store mobilization in Human. In obese mice, WAT content and secretion rate of ECs were higher than in control while glycerol production was reduced suggesting that over-produced ECs may inhibit lipolysis activating local CB1R. Strikingly, our data also reveal that acute CB1R blockade with Rimonabant did not modify lipolysis in vitro in obese mice and human explants nor in vivo in obese mice. Taken together, these data provide physiological evidence that activation of ECS in WAT, by limiting fat mobilization, may participate in the progressive tissue remodeling that could finally lead to organ dysfunction. The present findings also indicate that acute CB1R blockade is inefficient in regulating lipolysis in obese WAT and raise the possibility of an alteration of CB1R signaling in conditions of obesity.
Collapse
Affiliation(s)
- Chloé Buch
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tania Muller
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julia Leemput
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pablo Ortega-Deballon
- Department of Digestive, Thoracic and Surgical Oncology, University Hospital, Dijon, France
| | | | - Bruno Vergès
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
- Department of Endocrinology-Diabetology, University Hospital, Dijon, France
| | - Tony Jourdan
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, Université de Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Pascal Degrace,
| |
Collapse
|
11
|
Le Bacquer O, Lanchais K, Combe K, Van Den Berghe L, Walrand S. Acute rimonabant treatment promotes protein synthesis in C2C12 myotubes through a CB1-independent mechanism. J Cell Physiol 2020; 236:2669-2683. [PMID: 32885412 DOI: 10.1002/jcp.30034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Sarcopenia is an age-related loss of muscle mass associated with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance; changes that are also commonly described in obesity. Activation of the endocannabinoid system is associated with the development of obesity and insulin resistance, and with the perturbed skeletal muscle development. Taken together this suggests that endocannabinoids could be regulators of skeletal muscle protein homeostasis. Here we report that rimonabant, an antagonist for the CB1 receptor, can prevent dexamethasone-induced C2C12 myotube atrophy without affecting the mRNA expression of atrogin-1/MAFbx (a marker of proteolysis), which suggests it is involved in the control of protein synthesis. Rimonabant alone stimulates protein synthesis in a time- and dose-dependent manner through mTOR- and intracellular calcium-dependent mechanisms. CB1 agonists are unable to modulate protein synthesis or prevent the effect of rimonabant. Using C2C12 cells stably expressing an shRNA directed against CB1, or HEK293 cells overexpressing HA-tagged CB1, we demonstrated that the effect of rimonabant is unaffected by CB1 expression level. In summary, rimonabant can stimulate protein synthesis in C2C12 myotubes through a CB1-independent mechanism. These results highlight the need to identify non-CB1 receptor(s) mediating the pro-anabolic effect of rimonabant as potential targets for the treatment of sarcopenia, and to design new side-effect-free molecules that consolidate the effect of rimonabant on skeletal muscle protein synthesis.
Collapse
Affiliation(s)
- Olivier Le Bacquer
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France
| | - Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France
| | - Kristell Combe
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France
| | | | - Stéphane Walrand
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service de Nutrition Clinique, Hôpital Gabriel Montpied, Clermont-Ferrand, France
| |
Collapse
|
12
|
Xhakaza L, Abrahams-October Z, Pearce B, Masilela CM, Adeniyi OV, Johnson R, Ongole JJ, Benjeddou M. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther 2020; 35:/j/dmdi.ahead-of-print/dmdi-2020-0111/dmdi-2020-0111.xml. [PMID: 32609649 DOI: 10.1515/dmdi-2020-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Objectives Type 2 Diabetes mellitus is a progressive metabolic disease characterized by relative insulin insufficiency and insulin resistance resulting in hyperglycemia. Despite the widespread use of metformin, there is considerable variation in treatment response; with approximately one-third of patients failing to achieve adequate glycemic control. Studies have reported the involvement of single nucleotide polymorphisms and their interactions in genetic pathways i.e., pharmacodynamics and pharmacokinetics. This study aims to investigate the association between 19 pharmacogenetics biomarkers and response to metformin treatment. Methods MassARRAY panels were designed and optimized by Inqaba Biotechnical Industries, to genotype 19 biomarkers for 140 type 2 diabetic outpatients. Results The CT genotype of the rs12752688 polymorphism was significantly associated with increased response to metformin therapy after correction (OR=0.33, 95% CI [0.16-0.68], p-value=0.006). An association was also found between the GA genotype of SLC47A2 rs12943590 and a decreased response to metformin therapy after correction (OR=2.29, 95% CI [1.01-5.21], p-value=0.01). Conclusions This is the first study investigating the association between genetic variants and responsiveness to medication for diabetic patients from the indigenous Nguni population in South Africa. It is suggested that rs12752688 and rs12943590 be included in pharmacogenomics profiling systems to individualize metformin therapy for diabetic patients from African populations.
Collapse
Affiliation(s)
- Lettilia Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Charity Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Rabia Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
13
|
Xhakaza L, Abrahams-October Z, Pearce B, Masilela CM, Adeniyi OV, Johnson R, Ongole JJ, Benjeddou M. Evaluation of the suitability of 19 pharmacogenomics biomarkers for individualized metformin therapy for type 2 diabetes patients. Drug Metab Pers Ther 2020; 35:/j/dmdi.2020.35.issue-2/dmpt-2020-0111/dmpt-2020-0111.xml. [PMID: 32681778 DOI: 10.1515/dmpt-2020-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/15/2022]
Abstract
Objectives Type 2 Diabetes mellitus is a progressive metabolic disease characterized by relative insulin insufficiency and insulin resistance resulting in hyperglycemia. Despite the widespread use of metformin, there is considerable variation in treatment response; with approximately one-third of patients failing to achieve adequate glycemic control. Studies have reported the involvement of single nucleotide polymorphisms and their interactions in genetic pathways i.e., pharmacodynamics and pharmacokinetics. This study aims to investigate the association between 19 pharmacogenetics biomarkers and response to metformin treatment. Methods MassARRAY panels were designed and optimized by Inqaba Biotechnical Industries, to genotype 19 biomarkers for 140 type 2 diabetic outpatients. Results The CT genotype of the rs12752688 polymorphism was significantly associated with increased response to metformin therapy after correction (OR=0.33, 95% CI [0.16-0.68], p-value=0.006). An association was also found between the GA genotype of SLC47A2 rs12943590 and a decreased response to metformin therapy after correction (OR=2.29, 95% CI [1.01-5.21], p-value=0.01). Conclusions This is the first study investigating the association between genetic variants and responsiveness to medication for diabetic patients from the indigenous Nguni population in South Africa. It is suggested that rs12752688 and rs12943590 be included in pharmacogenomics profiling systems to individualize metformin therapy for diabetic patients from African populations.
Collapse
Affiliation(s)
- Lettilia Xhakaza
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Charity Mandisa Masilela
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Rabia Johnson
- South African Medical Research Council, Parow, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Joven Jebio Ongole
- Department of Family Medicine, Center for Teaching and Learning, Piet Retief Hospital, Mkhondo, Mpumalanga, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
14
|
Ijaz MU, Ahmad MI, Hussain M, Khan IA, Zhao D, Li C. Meat Protein in High-Fat Diet Induces Adipogensis and Dyslipidemia by Altering Gut Microbiota and Endocannabinoid Dysregulation in the Adipose Tissue of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3933-3946. [PMID: 32148030 DOI: 10.1021/acs.jafc.0c00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endocannabinoids modulate insulin and adipokine expression in adipocytes through cannabinoid receptors and their levels are elevated during hyperglycemia and obesity, but little is known about how diets affect them. We assessed the effects of dietary casein, chicken, beef, and pork proteins in a high-fat diet mode, on endocannabinoids, adipogenesis, and biomarkers associated with dyslipemdia. A high-fat beef or chicken diet upregulated cannabinoid 1 receptor, N-acyl phosphatidylethanolamine-selective phospholipase-D and diacylglycerol lipase α in adipose tissue and reduced the immunoreactivity of mitochondrial uncoupling protein 1 in brown adipose tissue. In addition, the high-fat diets with beef and chicken protein had a significant impact on adipocyte differentiation and mitochondrial biogenesis in obese mice. A 16S rRNA gene sequencing indicated that high-fat diets, regardless of the protein source, significantly enhanced the ratio of Firmicutes to Bacteroidetes in colon. Meat proteins in a high-fat diet significantly decreased the relative abundances of Akkermansia and Bifidobacteria but enhanced the lipopolysaccharides level in the serum, which promoted the adipogenesis process by causing dysregulation in the endocannabinoid receptors. Consumption of meat protein with high-fat-induced adiposity, visceral obesity, and dyslipidemia reduced the thermogenesis and had a distinctive effect on the mitochondrial biogenesis compared with casein protein.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Iftikhar Ali Khan
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Meat Processing, MARA, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, 210095 Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
- International Joint Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, 210095 Nanjing, China
- National Center for International Research on Animal Gut Nutrition, MOST, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
15
|
Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int J Mol Sci 2020; 21:ijms21051554. [PMID: 32106469 PMCID: PMC7084914 DOI: 10.3390/ijms21051554] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus regulates energy homeostasis by integrating environmental and internal signals to produce behavioral responses to start or stop eating. Many satiation signals are mediated by microbiota-derived metabolites coming from the gastrointestinal tract and acting also in the brain through a complex bidirectional communication system, the microbiota–gut–brain axis. In recent years, the intestinal microbiota has emerged as a critical regulator of hypothalamic appetite-related neuronal networks. Obesogenic high-fat diets (HFDs) enhance endocannabinoid levels, both in the brain and peripheral tissues. HFDs change the gut microbiota composition by altering the Firmicutes:Bacteroidetes ratio and causing endotoxemia mainly by rising the levels of lipopolysaccharide (LPS), the most potent immunogenic component of Gram-negative bacteria. Endotoxemia induces the collapse of the gut and brain barriers, interleukin 1β (IL1β)- and tumor necrosis factor α (TNFα)-mediated neuroinflammatory responses and gliosis, which alter the appetite-regulatory circuits of the brain mediobasal hypothalamic area delimited by the median eminence. This review summarizes the emerging state-of-the-art evidence on the function of the “expanded endocannabinoid (eCB) system” or endocannabinoidome at the crossroads between intestinal microbiota, gut-brain communication and host metabolism; and highlights the critical role of this intersection in the onset of obesity.
Collapse
|
16
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
17
|
Kuipers EN, Kantae V, Maarse BCE, van den Berg SM, van Eenige R, Nahon KJ, Reifel-Miller A, Coskun T, de Winther MPJ, Lutgens E, Kooijman S, Harms AC, Hankemeier T, van der Stelt M, Rensen PCN, Boon MR. High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue. Front Physiol 2019; 9:1913. [PMID: 30687125 PMCID: PMC6335353 DOI: 10.3389/fphys.2018.01913] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid system (ECS) controls energy balance by regulating both energy intake and energy expenditure. Endocannabinoid levels are elevated in obesity suggesting a potential causal relationship. This study aimed to elucidate the rate of dysregulation of the ECS, and the metabolic organs involved, in diet-induced obesity. Eight groups of age-matched male C57Bl/6J mice were randomized to receive a chow diet (control) or receive a high fat diet (HFD, 45% of calories derived from fat) ranging from 1 day up to 18 weeks before euthanasia. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (N-arachidonoylethanolamine, AEA), and related N-acylethanolamines, were quantified by UPLC-MS/MS and gene expression of components of the ECS was determined in liver, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) during the course of diet-induced obesity development. HFD feeding gradually increased 2-AG (+132% within 4 weeks, P < 0.05), accompanied by upregulated expression of its synthesizing enzymes Daglα and β in WAT and BAT. HFD also rapidly increased AEA (+81% within 1 week, P < 0.01), accompanied by increased expression of its synthesizing enzyme Nape-pld, specifically in BAT. Interestingly, Nape-pld expression in BAT correlated with plasma AEA levels (R 2 = 0.171, β = 0.276, P < 0.001). We conclude that a HFD rapidly activates adipose tissue depots to increase the synthesis pathways of endocannabinoids that may aggravate the development of HFD-induced obesity.
Collapse
Affiliation(s)
- Eline N Kuipers
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Vasudev Kantae
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Boukje C Eveleens Maarse
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Susan M van den Berg
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, Netherlands
| | - Robin van Eenige
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberly J Nahon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Anne Reifel-Miller
- Department of Diabetes/Endocrine, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Tamer Coskun
- Department of Diabetes/Endocrine, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, United States
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Amy C Harms
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
van Eenige R, van der Stelt M, Rensen PCN, Kooijman S. Regulation of Adipose Tissue Metabolism by the Endocannabinoid System. Trends Endocrinol Metab 2018; 29:326-337. [PMID: 29588112 DOI: 10.1016/j.tem.2018.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
White adipose tissue (WAT) stores excess energy as triglycerides, and brown adipose tissue (BAT) is specialized in dissipating energy as heat. The endocannabinoid system (ECS) is involved in a broad range of physiological processes and is increasingly recognized as a key player in adipose tissue metabolism. High ECS tonus in the fed state is associated with a disadvantageous metabolic phenotype, and this has led to a search for pharmacological strategies to inhibit the ECS. In this review we present recent developments that cast light on the regulation of adipose tissue metabolism by the ECS, and we discuss novel treatment options including the modulation of endocannabinoid synthesis and breakdown enzymes.
Collapse
Affiliation(s)
- Robin van Eenige
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
20
|
Bordalo Tonucci L, Dos Santos KMO, De Luces Fortes Ferreira CL, Ribeiro SMR, De Oliveira LL, Martino HSD. Gut microbiota and probiotics: Focus on diabetes mellitus. Crit Rev Food Sci Nutr 2017; 57:2296-2309. [PMID: 26499995 DOI: 10.1080/10408398.2014.934438] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The characterization of gut microbiota has become an important area of research in several clinical conditions, including type 2 diabetes (T2DM). Changes in the composition and/or metabolic activity of the gut microbiota can contribute to human health. Thus, this review discusses the effects of probiotics and gut microbiota on metabolic control in these individuals. Relevant studies were obtained from electronic databases such as PubMed/Medline and ISI Web of Science. The main probiotics used in these studies belonged to the genera Lactobacillus and Bifidobacterium. The authors found seven randomized placebo-controlled clinical trials and 13 experimental studies directly related to the effect of probiotics on metabolic control in the context of T2DM. The hypothesis that gut microbiota plays a role in the development of diabetes indicates an important beginning, and the potential of probiotics to prevent and reduce the severity of T2DM is better observed in animal studies. In clinical trials, the use of probiotics in glycemic control presented conflicting results, and only few studies have attempted to evaluate factors that justify metabolic changes, such as markers of oxidative stress, inflammation, and incretins. Thus, further research is needed to assess the effects of probiotics in the metabolism of diabetic individuals, as well as the main mechanisms involved in this complex relationship.
Collapse
Affiliation(s)
- Livia Bordalo Tonucci
- a Department of Health and Nutrition , Federal University of Viçosa , Viçosa , Minas Gerais , Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Carta G, Melis M, Pintus S, Pintus P, Piras CA, Muredda L, Demurtas D, Di Marzo V, Banni S, Barbarossa IT. Participants with Normal Weight or with Obesity Show Different Relationships of 6-n-Propylthiouracil (PROP) Taster Status with BMI and Plasma Endocannabinoids. Sci Rep 2017; 7:1361. [PMID: 28465539 PMCID: PMC5431007 DOI: 10.1038/s41598-017-01562-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/31/2017] [Indexed: 01/10/2023] Open
Abstract
Reduced taste sensitivity to 6-n-propylthiouracil (PROP), a genetic trait regarded as a general index for oral chemosensory perception, has been associated with a calorie-rich food preference and lower circulating endocannabinoid levels in participants with normal weight (NW), which suggests an adaptive mechanism to maintain a lean phenotype. In this study, we assessed whether participants with obesity (OB) show different patterns of plasma endocannabinoids and lipid metabolism biomarkers from those of NW, with further categorization based on their PROP sensitivity. NW and OB were classified by their PROP taster status as non-tasters (NT), medium-tasters (MT) and supertasters (ST). The blood samples were analysed for plasma endocannabinoids, nonesterified fatty acids (NEFA) and retinol, which have been associated to metabolic syndrome. In OB, we found a higher BMI and lower circulating endocannabinoids in ST vs. OB NT. However, OB ST showed lower circulating NEFA and retinol levels, which suggested a more favourable lipid metabolism and body fat distribution than those of OB NT. We confirmed lower plasma endocannabinoid levels in NW NT than in NW ST. These data suggest that PROP taste sensitivity determines metabolic changes and ultimately body mass composition differently in OB and NW.
Collapse
Affiliation(s)
- Gianfranca Carta
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Melania Melis
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Stefano Pintus
- Center for Metabolic Diseases, Internal Medicine Department-A.O., Brotzu, Cagliari, Italy
| | - Paolo Pintus
- Center for Metabolic Diseases, Internal Medicine Department-A.O., Brotzu, Cagliari, Italy
| | - Carla A Piras
- Center for Metabolic Diseases, Internal Medicine Department-A.O., Brotzu, Cagliari, Italy
| | - Laura Muredda
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Daniela Demurtas
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, NA, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy.
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, Monserrato, CA, Italy.
| |
Collapse
|
22
|
Olmstead KI, La Frano MR, Fahrmann J, Grapov D, Viscarra JA, Newman JW, Fiehn O, Crocker DE, Filipp FV, Ortiz RM. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance. Metabolomics 2017; 13:60. [PMID: 28757815 PMCID: PMC5526460 DOI: 10.1007/s11306-017-1186-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. OBJECTIVE To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. METHODS We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. RESULTS In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. CONCLUSION Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance.
Collapse
Affiliation(s)
- Keedrian I. Olmstead
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California, Merced
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, USA
| | - Michael R. La Frano
- NIH West Coast Metabolomics Center, University of California, Davis
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, University of California, Davis, USA
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, USA
| | - Johannes Fahrmann
- NIH West Coast Metabolomics Center, University of California, Davis
- Cancer Treatment Center, UT MD Anderson, Houston, USA
| | - Dmitry Grapov
- NIH West Coast Metabolomics Center, University of California, Davis
| | - Jose A. Viscarra
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, USA
| | - John W. Newman
- NIH West Coast Metabolomics Center, University of California, Davis
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, University of California, Davis, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Fabian V. Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California, Merced
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, USA
- NIH West Coast Metabolomics Center, University of California, Davis
| | - Rudy M. Ortiz
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, USA
| |
Collapse
|
23
|
Exercise training and high-fat diet elicit endocannabinoid system modifications in the rat hypothalamus and hippocampus. J Physiol Biochem 2017; 73:335-347. [PMID: 28283967 DOI: 10.1007/s13105-017-0557-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023]
Abstract
The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.
Collapse
|
24
|
Abstract
Cannabis sativa has long been used for medicinal purposes. To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids. Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain. More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection. The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear. In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects. This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.
Collapse
Affiliation(s)
- Yan Lu
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Hope D Anderson
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.,c Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
25
|
Beg M, Srivastava A, Shankar K, Varshney S, Rajan S, Gupta A, Kumar D, Gaikwad AN. PPP2R5B, a regulatory subunit of PP2A, contributes to adipocyte insulin resistance. Mol Cell Endocrinol 2016; 437:97-107. [PMID: 27521959 DOI: 10.1016/j.mce.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Insulin resistance is associated with deregulation of insulin signaling owing to the chronic exposure of insulin (hyperinsulinemia) to the tissues. Phosphorylation and dephosphorylation events in insulin signaling pathway play an essential role in signal transduction and glucose uptake. Amongst all, Akt protein is considered to be central to the overall insulin signaling proteins. In glucose responsive tissues like adipose and muscles, activation of Akt is responsible for triggering GLUT4 translocation and glucose transport. Several phosphatases such as PTEN, PP2A have been reported to be involved in dephosphorylation and inactivation of Akt protein. We have identified increased PP2A activity during state of chronic hyperinsulinemia exposure along-with development of adipocyte insulin resistance. This increased phosphatase activity leads activation of cAMP/PKA axis, which in turn increased cAMP levels in insulin resistant (IR) adipocytes. Okadaic acid, an inhibitor of PP2A restored and increased insulin stimulated glucose uptake in insulin resistant (IR) and insulin sensitive (IS) adipocytes respectively. In IS adipocyte, chemical activation of PP2A through MG132 and FTY720 showed decreased insulin sensitivity corroborated with decreased Akt phosphorylation and glucose uptake. We also observed an increased expression of PP2A-B (regulatory) subunit in IR adipocytes. We found PPP2R5B, a regulatory subunit of PP2A is responsible for the dephosphorylation and inactivation of Akt protein. Increased expression of PPP2R5B was also confirmed in white adipose tissue of high fat diet induced IR mice model. Overexpression and suppression strategies confirmed the role of PPP2R5B in regulating insulin signaling. Thus, we conclude that PPP2R5B, a B subunit of PP2A is a negative regulator of Akt phosphorylation contributing partly to the chronic hyperinsulinemia induced insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, CSIR-CDRI, India.
| |
Collapse
|
26
|
Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res 2016. [DOI: 10.1089/can.2016.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Isabelle Matias
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Ilaria Belluomo
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| | - Daniela Cota
- Neurocentre Magendie, Physiophatologie de la Plasticité Neuronale, U1215, INSERM, Bordeaux, France
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, University of Bordeaux, Bordeaux, France
| |
Collapse
|
27
|
Demizieux L, Piscitelli F, Troy-Fioramonti S, Iannotti FA, Borrino S, Gresti J, Muller T, Bellenger J, Silvestri C, Di Marzo V, Degrace P. Early Low-Fat Diet Enriched With Linolenic Acid Reduces Liver Endocannabinoid Tone and Improves Late Glycemic Control After a High-Fat Diet Challenge in Mice. Diabetes 2016; 65:1824-37. [PMID: 27207550 DOI: 10.2337/db15-1279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/28/2016] [Indexed: 11/13/2022]
Abstract
Evidence suggests that alterations of glucose and lipid homeostasis induced by obesity are associated with the elevation of endocannabinoid tone. The biosynthesis of the two main endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoyl-glycerol, which derive from arachidonic acid, is influenced by dietary fatty acids (FAs). We investigated whether exposure to n-3 FA at a young age may decrease tissue endocannabinoid levels and prevent metabolic disorders induced by a later high-fat diet (HFD) challenge. Three-week-old mice received a 5% lipid diet containing lard, lard plus safflower oil, or lard plus linseed oil for 10 weeks. Then, mice were challenged with a 30% lard diet for 10 additional weeks. A low n-6/n-3 FA ratio in the early diet induces a marked decrease in liver endocannabinoid levels. A similar reduction was observed in transgenic Fat-1 mice, which exhibit high tissue levels of n-3 FA compared with wild-type mice. Hepatic expression of key enzymes involved in carbohydrate and lipid metabolism was concomitantly changed. Interestingly, some gene modifications persisted after HFD challenge and were associated with improved glycemic control. These findings indicate that early dietary interventions based on n-3 FA may represent an alternative strategy to drugs for reducing endocannabinoid tone and improving metabolic parameters in the metabolic syndrome.
Collapse
Affiliation(s)
- Laurent Demizieux
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR866 "Lipides, Nutrition, Cancer," Université de Bourgogne Franche-Comté, Dijon, France
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Stephanie Troy-Fioramonti
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR866 "Lipides, Nutrition, Cancer," Université de Bourgogne Franche-Comté, Dijon, France
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Simona Borrino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Joseph Gresti
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR866 "Lipides, Nutrition, Cancer," Université de Bourgogne Franche-Comté, Dijon, France
| | - Tania Muller
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR866 "Lipides, Nutrition, Cancer," Université de Bourgogne Franche-Comté, Dijon, France
| | - Jerome Bellenger
- Team Lipid Transfer Proteins and Lipoprotein Metabolism, Faculty of Sciences Gabriel, INSERM UMR866 "Lipides, Nutrition, Cancer," Université de Bourgogne Franche-Comté, Dijon, France
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR866 "Lipides, Nutrition, Cancer," Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
28
|
Vähätalo LH, Ruohonen ST, Ailanen L, Savontaus E. Neuropeptide Y in noradrenergic neurons induces obesity in transgenic mouse models. Neuropeptides 2016; 55:31-7. [PMID: 26681068 DOI: 10.1016/j.npep.2015.11.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) in noradrenergic neurons plays an important role in modulating the release and effects of catecholamines in a prolonged stress response. Among other functions, it controls energy metabolism. Transgenic expression of Npy in noradrenergic neurons in mice allowed showing that it is critical for diet- and stress-induced gain in fat mass. When overexpressed, NPY in noradrenergic neurons increases adiposity in gene-dose-dependent fashion, and leads to metabolic disorders such as impaired glucose tolerance. However, the mechanisms of obesity seem to be different in mice heterozygous and homozygous for the Npy transgene. While in heterozygous mice the adipogenic effect of NPY is important, in homozygous mice inhibition of sympathetic tone leading to decreased lipolytic activity and impaired brown fat function, as well as increased endocannabinoid levels contribute to obesity. The mouse model provides novel insight to the mechanisms of human diseases with increased NPY due to chronic stress or gain-of-function gene variants, and a tool for development of novel therapeutics.
Collapse
Affiliation(s)
- Laura H Vähätalo
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Liisa Ailanen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland; Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland; Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
29
|
Martins CJDM, Genelhu V, Pimentel MMG, Celoria BMJ, Mangia RF, Aveta T, Silvestri C, Di Marzo V, Francischetti EA. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture. PLoS One 2015; 10:e0142728. [PMID: 26561012 PMCID: PMC4641669 DOI: 10.1371/journal.pone.0142728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023] Open
Abstract
The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity.
Collapse
Affiliation(s)
- Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Virginia Genelhu
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Pro-Rector for Research and Postgraduate Education, UNIGRANRIO, Duque de Caxias, RJ, Brazil
| | | | - Bruno Miguel Jorge Celoria
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Rogerio Fabris Mangia
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Teresa Aveta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli NA, Italy
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli NA, Italy
| | - Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Pro-Rector for Research and Postgraduate Education, UNIGRANRIO, Duque de Caxias, RJ, Brazil
- * E-mail:
| |
Collapse
|
30
|
Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends Endocrinol Metab 2015; 26:524-537. [PMID: 26412154 DOI: 10.1016/j.tem.2015.07.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.
Collapse
Affiliation(s)
- Wilfrid Mazier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Nicolas Saucisse
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Blandine Gatta-Cherifi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; Endocrinology Department, Haut-Lévêque Hospital, 33604 Pessac, France
| | - Daniela Cota
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France.
| |
Collapse
|
31
|
Rajaraman G, Simcocks A, Hryciw DH, Hutchinson DS, McAinch AJ. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Mol Nutr Food Res 2015; 60:92-102. [PMID: 26337420 DOI: 10.1002/mnfr.201500449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 02/06/2023]
Abstract
Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.
Collapse
Affiliation(s)
- Gayathri Rajaraman
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Anna Simcocks
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Gatta-Cherifi B, Cota D. New insights on the role of the endocannabinoid system in the regulation of energy balance. Int J Obes (Lond) 2015; 40:210-9. [PMID: 26374449 DOI: 10.1038/ijo.2015.179] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/26/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022]
Abstract
Within the past 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, as it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories. An overactive endocannabinoid cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders. However, because of the psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as antiobesity treatment were removed from the European market in late 2008. Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders. These aspects will be especially highlighted in this review.
Collapse
Affiliation(s)
- B Gatta-Cherifi
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, Pessac, France
| | - D Cota
- INSERM, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux, France
| |
Collapse
|
33
|
Ahn S, Yi S, Seo WJ, Lee MJ, Song YK, Baek SY, Yu J, Hong SH, Lee J, Shin DW, Jeong LS, Noh M. A cannabinoid receptor agonist N-arachidonoyl dopamine inhibits adipocyte differentiation in human mesenchymal stem cells. Biomol Ther (Seoul) 2015; 23:218-24. [PMID: 25995819 PMCID: PMC4428713 DOI: 10.4062/biomolther.2014.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor γ (PPARγ). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARγ. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARγ transactivation. AEA can directly activate PPARγ. The effect of AEA on PPARγ in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARγ activity in the PPARγ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARγ activity inhibit adipogenesis in hBM-MSCs.
Collapse
Affiliation(s)
- Seyeon Ahn
- Collge of Pharmacy ; Natural Products Research Institute, Seoul National University, Seoul 151-742
| | - Sodam Yi
- Seoul Science High School, Seoul, 110-530
| | | | | | | | | | | | - Soo Hyun Hong
- Collge of Pharmacy ; Natural Products Research Institute, Seoul National University, Seoul 151-742
| | - Jinyoung Lee
- Collge of Pharmacy ; Natural Products Research Institute, Seoul National University, Seoul 151-742
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin 446-729, Republic of Korea
| | | | - Minsoo Noh
- Collge of Pharmacy ; Natural Products Research Institute, Seoul National University, Seoul 151-742
| |
Collapse
|
34
|
Vähätalo LH, Ruohonen ST, Mäkelä S, Ailanen L, Penttinen AM, Stormi T, Kauko T, Piscitelli F, Silvestri C, Savontaus E, Di Marzo V. Role of the endocannabinoid system in obesity induced by neuropeptide Y overexpression in noradrenergic neurons. Nutr Diabetes 2015; 5:e151. [PMID: 25915740 PMCID: PMC4423197 DOI: 10.1038/nutd.2015.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Objective: Endocannabinoids and neuropeptide Y (NPY) promote energy storage via central and peripheral mechanisms. In the hypothalamus, the two systems were suggested to interact. To investigate such interplay also in non-hypothalamic tissues, we evaluated endocannabinoid levels in obese OE-NPYDβH mice, which overexpress NPY in the noradrenergic neurons in the sympathetic nervous system and the brain. Methods: The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were measured in key regulatory tissues, that is, hypothalamus, pancreas, epididymal white adipose tissue (WAT), liver and soleus muscle, over the development of metabolic dysfunctions in OE-NPYDβH mice. The effects of a 5-week treatment with the CB1 receptor inverse agonist AM251 on adiposity and glucose metabolism were studied. Results: 2-AG levels were increased in the hypothalamus and epididymal WAT of pre-obese and obese OE-NPYDβH mice. Anandamide levels in adipose tissue and pancreas were increased at 4 months concomitantly with higher fat mass and impaired glucose tolerance. CB1 receptor blockage reduced body weight gain and glucose intolerance in OE-NPYDβH to the level of vehicle-treated wild-type mice. Conclusions: Altered endocannabinoid tone may underlie some of the metabolic dysfunctions in OE-NPYDβH mice, which can be attenuated with CB1 inverse agonism suggesting interactions between endocannabinoids and NPY also in the periphery. CB1 receptors may offer a target for the pharmacological treatment of the metabolic syndrome with altered NPY levels.
Collapse
Affiliation(s)
- L H Vähätalo
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - S T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S Mäkelä
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Ailanen
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - A-M Penttinen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - T Stormi
- Department of Biostatistics, University of Turku, Turku, Finland
| | - T Kauko
- Department of Biostatistics, University of Turku, Turku, Finland
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - C Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - E Savontaus
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| |
Collapse
|
35
|
Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, Plovier H, Castel J, Denis RGP, Bergiers M, Druart C, Alhouayek M, Delzenne NM, Muccioli GG, Demoulin JB, Luquet S, Cani PD. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6:6495. [PMID: 25757720 PMCID: PMC4382707 DOI: 10.1038/ncomms7495] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. Endocannabinoids are bioactive lipid molecules produced in the body. Here, Geurts et al. create mice lacking the endocannabinoid-producing enzyme NAPE-PLD in adipocytes and report defects in adipose-induced browning, which are mediated by alterations in the gut microbiome.
Collapse
Affiliation(s)
- Lucie Geurts
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Thibaut Duparc
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Sébastien Matamoros
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Raphael G P Denis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Marie Bergiers
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
36
|
Mallipedhi A, Prior SL, Dunseath G, Bracken RM, Barry J, Caplin S, Eyre N, Morgan J, Baxter JN, O'Sullivan SE, Sarmad S, Barrett DA, Bain SC, Luzio SD, Stephens JW. Changes in plasma levels of N-arachidonoyl ethanolamine and N-palmitoylethanolamine following bariatric surgery in morbidly obese females with impaired glucose homeostasis. J Diabetes Res 2015; 2015:680867. [PMID: 25874237 PMCID: PMC4385619 DOI: 10.1155/2015/680867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023] Open
Abstract
AIM We examined endocannabinoids (ECs) in relation to bariatric surgery and the association between plasma ECs and markers of insulin resistance. METHODS A study of 20 participants undergoing bariatric surgery. Fasting and 2-hour plasma glucose, lipids, insulin, and C-peptide were recorded preoperatively and 6 months postoperatively with plasma ECs (AEA, 2-AG) and endocannabinoid-related lipids (PEA, OEA). RESULTS Gender-specific analysis showed differences in AEA, OEA, and PEA preoperatively with reductions in AEA and PEA in females postoperatively. Preoperatively, AEA was correlated with 2-hour glucose (r = 0.55, P = 0.01), HOMA-IR (r = 0.61, P = 0.009), and HOMA %S (r = -0.71, P = 0.002). OEA was correlated with weight (r = 0.49, P = 0.03), waist circumference (r = 0.52, P = 0.02), fasting insulin (r = 0.49, P = 0.04), and HOMA-IR (r = 0.48, P = 0.05). PEA was correlated with fasting insulin (r = 0.49, P = 0.04). 2-AG had a negative correlation with fasting glucose (r = -0.59, P = 0.04). CONCLUSION Gender differences exist in circulating ECs in obese subjects. Females show changes in AEA and PEA after bariatric surgery. Specific correlations exist between different ECs and markers of obesity and insulin and glucose homeostasis.
Collapse
Affiliation(s)
- Akhila Mallipedhi
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
- Department of Diabetes & Endocrinology, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
| | - Sarah L. Prior
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - Gareth Dunseath
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - Richard M. Bracken
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - Jonathan Barry
- Welsh Institute of Metabolic and Obesity Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
| | - Scott Caplin
- Welsh Institute of Metabolic and Obesity Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
| | - Nia Eyre
- Welsh Institute of Metabolic and Obesity Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
| | - James Morgan
- Welsh Institute of Metabolic and Obesity Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
| | - John N. Baxter
- Welsh Institute of Metabolic and Obesity Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
| | - Saoirse E. O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sarir Sarmad
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen C. Bain
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - Steve D. Luzio
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - Jeffrey W. Stephens
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
- Department of Diabetes & Endocrinology, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
- Welsh Institute of Metabolic and Obesity Surgery, Morriston Hospital, ABM University Health Board, Swansea SA6 6NL, UK
- *Jeffrey W. Stephens:
| |
Collapse
|
37
|
Abstract
The endocannabinoid system (ECS) is known to exert regulatory control on essentially every aspect related to the search for, and the intake, metabolism and storage of calories, and consequently it represents a potential pharmacotherapeutic target for obesity, diabetes and eating disorders. While the clinical use of the first generation of cannabinoid type 1 (CB(1)) receptor blockers has been halted due to the psychiatric side effects that their use occasioned, recent research in animals and humans has provided new knowledge on the mechanisms of actions of the ECS in the regulation of eating behavior, energy balance, and metabolism. In this review, we discuss these recent advances and how they may allow targeting the ECS in a more specific and selective manner for the future development of therapies against obesity, metabolic syndrome, and eating disorders.
Collapse
Affiliation(s)
- Blandine Gatta-Cherifi
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
- Endocrinology Department, Haut-Lévêque Hospital, 33607, Pessac, France.
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, 33000, Bordeaux, France.
| |
Collapse
|
38
|
Masoodi M, Kuda O, Rossmeisl M, Flachs P, Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:503-18. [PMID: 25311170 DOI: 10.1016/j.bbalip.2014.09.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 02/08/2023]
Abstract
Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment H, 1015 Lausanne, Switzerland.
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Pavel Flachs
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
39
|
Engeli S, Lehmann AC, Kaminski J, Haas V, Janke J, Zoerner AA, Luft FC, Tsikas D, Jordan J. Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects. Obesity (Silver Spring) 2014; 22:E70-6. [PMID: 24616451 DOI: 10.1002/oby.20728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Endocannabinoid system (ECS) activation promotes obesity-associated metabolic disease. Increased dietary fat intake increases blood endocannabinoids and alters adipose and skeletal muscle ECS gene expression in human. METHODS Two weeks isocaloric low- (LFD) and high-fat diets (HFD) in obese (n = 12) and normal-weight (n = 17) subjects in a randomized cross-over study were compared. Blood endocannabinoids were measured in the fasting condition and after food intake using mass spectrometry. Adipose and skeletal muscle gene expression was determined using real-time RT-PCR. RESULTS Baseline fasting plasma endocannabinoids were similar with both diets. Anandamide decreased similarly with high- or low-fat test meals in both groups. Baseline arachidonoylglycerol plasma concentrations were similar between groups and diets, and unresponsive to eating. In subcutaneous adipose tissue, DAGL-α mRNA was upregulated and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) mRNAs were down-regulated in obese subjects, but the diets had no influence. In contrast, the HFD produced pronounced reductions in skeletal muscle CB1-R and MAGL mRNA expression, whereas obesity did not affect muscular gene expression. CONCLUSIONS Weight-neutral changes in dietary fat intake cannot explain excessive endocannabinoid availability in human obesity. Obesity and dietary fat intake affect ECS gene expression in a tissue-specific manner.
Collapse
MESH Headings
- Adolescent
- Adult
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Arachidonic Acids/blood
- Blood Glucose
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cross-Over Studies
- Diet, High-Fat
- Dietary Fats/administration & dosage
- Down-Regulation
- Endocannabinoids/blood
- Fasting
- Female
- Humans
- Lipoprotein Lipase/genetics
- Lipoprotein Lipase/metabolism
- Male
- Middle Aged
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Polyunsaturated Alkamides/blood
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Subcutaneous Fat/metabolism
- Thinness/metabolism
- Triglycerides/blood
- Up-Regulation
- Young Adult
Collapse
Affiliation(s)
- Stefan Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Park M, Lee JH, Choi JK, Hong YD, Bae IH, Lim KM, Park YH, Ha H. 18β-glycyrrhetinic acid attenuates anandamide-induced adiposity and high-fat diet induced obesity. Mol Nutr Food Res 2014; 58:1436-46. [PMID: 24687644 DOI: 10.1002/mnfr.201300763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/17/2022]
Abstract
SCOPE Previous reports suggest that licorice extract has various metabolically beneficial effects and may help to alleviate adiposity and hyperlipidemia. However, underlying anti-obesity mechanisms still remain elusive. Moreover, it is unknown which single ingredient in licorice extract would mediate such effects. We aimed to demonstrate that licorice extract and its active ingredients can inhibit adipocyte differentiation and fat accumulation. METHODS AND RESULTS 18β-glycyrrhetinic acid (18β-GA) alleviated the effects of CB1R agonist, anandamide (AEA) on CB1R signaling in a concentration-dependent manner. Consistently, 18β-GA suppressed AEA-induced adipocyte differentiation in 3T3-L1 cells through the downregulation of AEA-induced MAPK activation and expression of adipogenic genes including C/EBP-α and PPAR-γ. The protein levels of fatty acid synthase and stearoyl-CoA desaturase 1 were also decreased and the phosphorylation of acetyl-CoA carboxylase was increased in 18β-GA pretreated cells. The supplementation of 18β-GA significantly lowered body weight, fat weight, and plasma lipids levels in obese animal models. CONCLUSION These results may provide a novel insight into the molecular mechanism involved in anti-adipogenic and anti-obesity effects of 18β-GA by suppressing the activation of CB1R induced by AEA. Thus, 18β-GA may exert beneficial effects against obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Miyoung Park
- Medical Beauty Research Institute, Amorepacific Corporation R&D Center, Yongin, Korea; Departments of Pharmaceutical Science, College of Pharmacy, Global Top 5 Program, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cani PD, Geurts L, Matamoros S, Plovier H, Duparc T. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond. DIABETES & METABOLISM 2014; 40:246-57. [PMID: 24631413 DOI: 10.1016/j.diabet.2014.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/25/2022]
Abstract
The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D.
Collapse
Affiliation(s)
- P D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium.
| | - L Geurts
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - S Matamoros
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - H Plovier
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - T Duparc
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
42
|
Abdulnour J, Yasari S, Rabasa-Lhoret R, Faraj M, Petrosino S, Piscitelli F, Prud' Homme D, Di Marzo V. Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study. Obesity (Silver Spring) 2014; 22:211-6. [PMID: 23616305 DOI: 10.1002/oby.20498] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women. DESIGN AND METHODS The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry. RESULTS IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05). CONCLUSIONS This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand.
Collapse
Affiliation(s)
- Joseph Abdulnour
- School of Human Kinetics Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada; Behavioural and Metabolic Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kola B, Wittman G, Bodnár I, Amin F, Lim CT, Oláh M, Christ-Crain M, Lolli F, van Thuijl H, Leontiou CA, Füzesi T, Dalino P, Isidori AM, Harvey-White J, Kunos G, Nagy GM, Grossman AB, Fekete C, Korbonits M. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release. FASEB J 2013; 27:5112-21. [PMID: 23982145 DOI: 10.1096/fj.13-232918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.
Collapse
Affiliation(s)
- Blerina Kola
- 1Márta Korbonits, Dept. of Endocrinology, Barts and the London School of Medicine and Dentistry, Charterhouse Sq., London EC1M 6BQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Silvestri C, Martella A, Poloso NJ, Piscitelli F, Capasso R, Izzo A, Woodward DF, Di Marzo V. Anandamide-derived prostamide F2α negatively regulates adipogenesis. J Biol Chem 2013; 288:23307-21. [PMID: 23801328 DOI: 10.1074/jbc.m113.489906] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipid mediators variedly affect adipocyte differentiation. Anandamide stimulates adipogenesis via CB1 receptors and peroxisome proliferator-activated receptor γ. Anandamide may be converted by PTGS2 (COX2) and prostaglandin F synthases, such as prostamide/prostaglandin F synthase, to prostaglandin F2α ethanolamide (PGF2αEA), of which bimatoprost is a potent synthetic analog. PGF2αEA/bimatoprost act via prostaglandin F2αFP receptor/FP alt4 splicing variant heterodimers. We investigated whether prostamide signaling occurs in preadipocytes and controls adipogenesis. Exposure of mouse 3T3-L1 or human preadipocytes to PGF2αEA/bimatoprost during early differentiation inhibits adipogenesis. PGF2αEA is produced from anandamide in preadipocytes and much less so in differentiating adipocytes, which express much less PTGS2, FP, and its alt4 splicing variant. Selective antagonism of PGF2αEA receptors counteracts prostamide effects on adipogenesis, as does inhibition of ERK1/2 phosphorylation. Selective inhibition of PGF2αEA versus prostaglandin F2α biosynthesis accelerates adipogenesis. PGF2αEA levels are reduced in the white adipose tissue of high fat diet-fed mice where there is a high requirement for new adipocytes. Prostamides also inhibit zebrafish larval adipogenesis in vivo. We propose that prostamide signaling in preadipocytes is a novel anandamide-derived antiadipogenic mechanism.
Collapse
Affiliation(s)
- Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Endocannabinoids and cannabinoid CB1 receptors are known to play a generalized role in energy homeostasis. However, clinical trials with the first generation of CB1 blockers, now discontinued due to psychiatric side effects, were originally designed to reduce food intake and body weight rather than the metabolic risk factors associated with obesity. In this review, we discuss how, in addition to promoting energy intake, endocannabinoids control lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in skeletal muscle and pancreas are also emerging. This knowledge may help in the design of future therapies for the metabolic syndrome.
Collapse
|
46
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol 2013; 2013:361895. [PMID: 23762050 PMCID: PMC3677644 DOI: 10.1155/2013/361895] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
Endocannabinoids and their G-protein coupled receptors (GPCR) are a current research focus in the area of obesity due to the system's role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β -oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.
Collapse
Affiliation(s)
- Shaan S. Naughton
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Michael L. Mathai
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Deanne H. Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew J. McAinch
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- *Andrew J. McAinch:
| |
Collapse
|
47
|
Alvheim AR, Malde MK, Osei-Hyiaman D, Hong Lin Y, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 2012; 20:1984-94. [PMID: 22334255 PMCID: PMC3458187 DOI: 10.1038/oby.2012.38] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.
Collapse
Affiliation(s)
- Anita R. Alvheim
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marian K. Malde
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Douglas Osei-Hyiaman
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- CardioMetabolic Disease Research, Department of Molecular & Cellular Biology, Nippon Boehringer-Ingelheim, Kobe, Japan
- RIKEN Center for Molecular Imaging Sciences, Kobe, Japan
| | - Yu Hong Lin
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robert J. Pawlosky
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Joseph R. Hibbeln
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- ()
| |
Collapse
|
48
|
Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012; 3:279-88. [PMID: 22572877 PMCID: PMC3463487 DOI: 10.4161/gmic.19625] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with metabolic alterations related to glucose homeostasis and cardiovascular risk factors. These metabolic alterations are associated with low-grade inflammation that contributes to the onset of these diseases. We and others have provided evidence that gut microbiota participates in whole-body metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders. Recently, we defined gut microbiota-derived lipopolysaccharide (LPS) (and metabolic endotoxemia) as a factor involved in the onset and progression of inflammation and metabolic diseases. In this review, we discuss mechanisms involved in the development of metabolic endotoxemia such as the gut permeability. We also discuss our latest discoveries demonstrating a link between the gut microbiota, endocannabinoid system tone, leptin resistance, gut peptides (glucagon-like peptide-1 and -2), and metabolic features. Finally, we will introduce the role of the gut microbiota in specific dietary treatments (prebiotics and probiotics) and surgical interventions (gastric bypass).
Collapse
|
49
|
Kleiner D, Ditrói K. [The potential use of cannabidiol in the therapy of metabolic syndrome]. Orv Hetil 2012; 153:499-504. [PMID: 22430005 DOI: 10.1556/oh.2012.29308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cannabidiol, a cannabinoid and serotonin receptor antagonist, may alleviate hyperphagia without the side effects of rimonabant (for example depression and reduced insulin sensitivity). Similar to the peroxisome proliferator-activated receptor-gamma agonists, it may also help the differentation of adipocytes. Cannabidiol has an immunomodulating effect, as well, that helps lessen the progression of atherosclerosis induced by high glucose level. It may also be effective in fighting ischaemic diseases, the most harmful complications of metabolic syndrome. However, it can only be administered as an adjuvant therapy because of its low binding potency, and its inhibiting effect of cytochrome P450 enzymes should also be considered. Nevertheless, it may be beneficially used in adjuvant therapy because of its few side effects.
Collapse
Affiliation(s)
- Dénes Kleiner
- Semmelweis Egyetem, Gyógyszerésztudományi Kar Farmakognóziai Intézet Budapest Üllői út 26. 1085.
| | | |
Collapse
|
50
|
Abstract
The human gut harbors a highly diverse microbial ecosystem of approximately 400 different species, which is characterized by a high interindividual variability. The intestinal microbiota has recently been suggested to contribute to the development of obesity and the metabolic syndrome. Transplantation of gut microbiota from obese mice to nonobese, germ-free mice resulted in transfer of metabolic syndrome-associated features from the donor to the recipient. Proposed mechanisms for the role of gut microbiota include the provision of additional energy by the conversion of dietary fiber to short-chain fatty acids, effects on gut-hormone production, and increased intestinal permeability causing elevated systemic levels of lipopolysaccharides (LPS). This metabolic endotoxemia is suggested to contribute to low-grade inflammation, a characteristic trait of obesity and the metabolic syndrome. Finally, activation of the endocannabinoid system by LPS and/or high-fat diets is discussed as another causal factor. In conclusion, there is ample evidence for a role of gut microbiota in the development of obesity in rodents. However, the magnitude of its contribution to human obesity is still unknown.
Collapse
Affiliation(s)
- Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | | |
Collapse
|