1
|
Khan FU, Khongorzul P, Gris D, Amrani A. Role of USP7 in the regulation of tolerogenic dendritic cell function in type 1 diabetes. Cell Mol Biol Lett 2025; 30:47. [PMID: 40247205 PMCID: PMC12004606 DOI: 10.1186/s11658-025-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Tolerogenic dendritic cells (toDCs) are critical for maintaining immune homeostasis and preventing autoimmune disease development, such as type 1 diabetes (T1D). We have previously shown that DCs of non-obese diabetic (NOD) mice expressing active Stat5b (Stat5b-CA.DCs) acquire toDCs signature and protect against diabetes. However, the mechanisms involved in reprogramming DCs to adopt tolerogenic or immunogenic signatures are not fully known. This study investigates for the first time the role of USP7 in DC-mediated immune regulation in T1D using a transgenic NOD mouse model expressing an active form of Stat5b (NOD.Stat5b-CA). METHODS Splenic DCs were purified from diabetes-prone NOD mice and diabetes-resistant NOD.Stat5b-CA transgenic mice and their tolerogenic and immunogenic phenotypes were analyzed by FACS. Their pro-and anti-inflammatory cytokine patterns, IRF4, IRF8, de-ubiquitin ligase USP7, and methyltransferase Ezh2 expression were assessed by FACS and Western blot. Moreover, the impact of USP7 inhibition in DCs on Th1/Th2/Th17 and Treg and diabetes onset was assessed using an in vivo DC-based transfer model. RESULTS In this study, we found that splenic Stat5b-CA.DCs expressed high levels of USP7, Ezh2, and PD-L-1/2 and contained a higher proportion of tolerogenic conventional DC2 (cDC2) subsets than immunogenic cDC1 compared to NOD mice DCs. We also found that the USP7 blockade increased Stat5b-CA.DCs maturation and proinflammatory cytokines production while decreasing anti-inflammatory cytokines and PD-L1 and PD-L2 expressions. Mechanistically, USP7 blockade in Stat5-CA.DCs promoted cDC1 over cDC2 subsets by increasing IRF8 expression in an Ezh2-dependent manner and decreasing IRF4 expression independently of Ezh2. USP7 blockade also increased Stat5b-CA.DC capacity to promote Th17 and to restrain Th2 and Treg cells. Importantly, the capacity of Stat5b-CA.DCs to protect NOD mice from diabetes were lost when treated with USP7 inhibitor. CONCLUSIONS Our findings underscore the role of the USP7/Ezh2 axis in maintaining tolerogenic DC functions that are required to tailor adaptive immune response and diabetes protection in NOD mice.
Collapse
Affiliation(s)
- Farhan Ullah Khan
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Puregmaa Khongorzul
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Denis Gris
- Department of Phamacology-Physiology, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Abdelaziz Amrani
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada.
| |
Collapse
|
2
|
Umamoto K, Bouchi R, Ihana‐Sugiyama N, Kodani N, Ohsugi M, Hojo M, Ueki K, Kajio H. A case of type 2 diabetes mellitus with weight gain and worsening of glycemic management after tezepelumab administration for severe bronchial asthma. J Diabetes Investig 2024; 15:388-390. [PMID: 38064175 PMCID: PMC10906019 DOI: 10.1111/jdi.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Some cases of bronchial asthma are refractory to conventional therapies. As the pathogenesis of bronchial asthma has been clarified, new treatments, such as bronchial thermoplasty and biological drugs, have been developed. Tezepelumab, an anti-thymic stromal lymphopoietin antibody, has been reported to inhibit the exacerbation of severe asthma; however, its adverse effects on glucose metabolism have not yet been reported. We encountered a case of weight gain and worsening glycemic management in a patient with type 2 diabetes and refractory bronchial asthma after the initiation of tezepelumab treatment. It has been reported that the overexpression of thymic stromal lymphopoietin in mice resulted in an enhanced release of free fatty acids from adipose tissues and the liver; thus, the administration of anti-thymic stromal lymphopoietin antibodies in the present case might have caused obesity, fatty liver and lower glucose tolerance.
Collapse
Affiliation(s)
- Kotaro Umamoto
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
| | - Ryotaro Bouchi
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
- Diabetes and Metabolism Information Center, Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Noriko Ihana‐Sugiyama
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
- Diabetes and Metabolism Information Center, Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Noriko Kodani
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
| | - Mitsuru Ohsugi
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
- Diabetes and Metabolism Information Center, Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Masayuki Hojo
- Department of Respiratory Medicine, Center HospitalNational Center for Global Health and MedicineTokyoJapan
| | - Kohjiro Ueki
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
- Diabetes Research Center, Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology and Metabolism, Center HospitalNational Center for Global Health and MedicineTokyoJapan
| |
Collapse
|
3
|
Stakišaitis D, Kapočius L, Kilimaitė E, Gečys D, Šlekienė L, Balnytė I, Palubinskienė J, Lesauskaitė V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023; 15:2715. [PMID: 38140056 PMCID: PMC10747708 DOI: 10.3390/pharmaceutics15122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Dovydas Gečys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| |
Collapse
|
4
|
Selective induction of thymic stromal lymphopoietin expression by novel nitrogen-containing steroid compounds in PAM-212 cells. J Transl Autoimmun 2022; 6:100186. [PMID: 36684807 PMCID: PMC9852564 DOI: 10.1016/j.jtauto.2022.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) has been shown to be able to amplify Tregs. Thus, TSLP induction has the potential to induce endogenous Tregs and control autoimmunity. In the previous research, we found that a new compound named 02F04 can induce TSLP production while simultaneously activating the liver X receptor (LXR). Because LXR activation leads to a decrease in Treg, we attempted to find a 02F04-derivative, druggable lead compound with a basic skeleton that induces TSLP production without activating LXR. As the results, we found HA-7 and HA-19 and, in this study, examined the molecular mechanisms in TSLP production. Methods A murine keratinocyte cell line PAM 212 was stimulated with HA-7 and HA-19, and then the expressions of cytokines were examined via ELISA and real-time fluorescence quantitative PCR. Results HA-7 and HA-19 induced TSLP production but almost not the expression of TNF-α, IL-13, IL-25, and IL-33 in PAM212 cells. These compounds inhibited LXR activities. The TSLP expression induced by HA-7 and HA-19 was inhibited by the Gq/11 inhibitor YM-254890, ROCK inhibitor Y-27632, and ERK inhibitor U0126. HA-7 and HA-19 also induced the formation of stress fiber and ERK phosphorylation, which were inhibited by YM-254890 and Y-27632. Conclusions Our findings indicated that HA-7 and HA-19 selectively induced TSLP production in PAM212 via Gq/11, Rho/ROCK and ERK pathways. Our findings also indicated that TSLP expression was differentially regulated from other cytokines, and the selective expression could be induced with low-molecular-weight compounds such as HA-7 and HA-19.
Collapse
|
5
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
6
|
Role of IL-37- and IL-37-Treated Dendritic Cells in Acute Coronary Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6454177. [PMID: 34471467 PMCID: PMC8405329 DOI: 10.1155/2021/6454177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
As a chronic inflammatory disease, atherosclerosis is a leading cause of morbidity and mortality in most countries. Inflammation is responsible for plaque instability and the subsequent onset of acute coronary syndrome (ACS), which is one of the leading causes of hospitalization. Therefore, exploring the potential mechanism underlying ACS is of considerable concern, and searching for alternative therapeutic targets is very urgent. Interleukin-37 (IL-37) inhibits the production of proinflammatory chemokines and cytokines and acts as a natural inhibitor of innate and adaptive immunity. Interestingly, our previous study with murine models showed that IL-37 alleviated cardiac remodeling and myocardial ischemia/reperfusion injury. Of note, our clinical study revealed that IL-37 is elevated and plays a beneficial role in patients with ACS. Moreover, dendritic cells (DCs) orchestrate both immunity and tolerance, and tolerogenic DCs (tDCs) are characterized by more secretion of immunosuppressive cytokines. As expected, IL-37-treated DCs are tolerogenic. Hence, we speculate that IL-37- or IL-37-treated DCs is a novel therapeutic possibility for ACS, and the precise mechanism of IL-37 requires further study.
Collapse
|
7
|
Laan M, Salumets A, Klein A, Reintamm K, Bichele R, Peterson H, Peterson P. Post-Aire Medullary Thymic Epithelial Cells and Hassall's Corpuscles as Inducers of Tonic Pro-Inflammatory Microenvironment. Front Immunol 2021; 12:635569. [PMID: 33868260 PMCID: PMC8050345 DOI: 10.3389/fimmu.2021.635569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
While there is convincing evidence on the role of Aire-positive medullary thymic epithelial cells (mTEC) in the induction of central tolerance, the nature and function of post-Aire mTECs and Hassall's corpuscles have remained enigmatic. Here we summarize the existing data on these late stages of mTEC differentiation with special focus on their potential to contribute to central tolerance induction by triggering the unique pro-inflammatory microenvironment in the thymus. In order to complement the existing evidence that has been obtained from mouse models, we performed proteomic analysis on microdissected samples from human thymic medullary areas at different differentiation stages. The analysis confirms that at the post-Aire stages, the mTECs lose their nuclei but maintain machinery required for translation and exocytosis and also upregulate proteins specific to keratinocyte differentiation and cornification. In addition, at the late stages of differentiation, the human mTECs display a distinct pro-inflammatory signature, including upregulation of the potent endogenous TLR4 agonist S100A8/S100A9. Collectively, the study suggests a novel mechanism by which the post-Aire mTECs and Hassall's corpuscles contribute to the thymic microenvironment with potential cues on the induction of central tolerance.
Collapse
Affiliation(s)
- Martti Laan
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ahto Salumets
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Annabel Klein
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kerli Reintamm
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rudolf Bichele
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Sands RW, Verbeke CS, Ouhara K, Silva EA, Hsiong S, Kawai T, Mooney D. Tuning cytokines enriches dendritic cells and regulatory T cells in the periodontium. J Periodontol 2020; 91:1475-1485. [PMID: 32150760 PMCID: PMC7483931 DOI: 10.1002/jper.19-0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontal disease results from the pathogenic interactions between the tissue, immune system, and microbiota; however, standard therapy fails to address the cellular mechanism underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T cell fate, and biomaterials that recruit and program DC locally can direct T cell effector responses. We hypothesized that a biomaterial that recruited and programmed DC toward a tolerogenic phenotype could enrich regulatory T cells within periodontal tissue, with the eventual goal of attenuating T cell mediated pathology. METHODS The interaction of previously identified factors that could induce tolerance, granulocyte-macrophage colony stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP), with the periodontitis network was confirmed in silico. The effect of the cytokines on DC migration was explored in vitro using time-lapse imaging. Finally, regulatory T cell enrichment in the dermis and periodontal tissue in response to alginate hydrogels delivering TSLP and GM-CSF was examinedin vivo in mice using immunohistochemistry and live-animal imaging. RESULTS The GM-CSF and TSLP interactome connects to the periodontitis network. GM-CSF enhances DC migration in vitro. An intradermal injection of an alginate hydrogel releasing GM-CSF enhanced DC numbers and the addition of TSLP enriched FOXP3+ regulatory T cells locally. Injection of a hydrogel with GM-CSF and TSLP into the periodontal tissue in mice increased DC and FOXP3+ cell numbers in the tissue, FOXP3+ cells in the lymph node, and IL-10 in the tissue. CONCLUSION Local biomaterial-mediated delivery of GM-CSF and TSLP can enrich DC and FOXP3+ cells and holds promise for treating the pathologic inflammation of periodontal disease.
Collapse
Affiliation(s)
- R. Warren Sands
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
- University of Pittsburgh Medical Center, Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Pittsburgh, PA
| | - Catia S. Verbeke
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
| | - Kazuhisa Ouhara
- Hiroshima University, Department of Periodontal Medicine, Hiroshima, Japan
- Forsyth Institute, Boston, MA
| | - Eduardo A. Silva
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
- University of California, Davis, Department of Biomedical Engineering, Davis, CA
| | - Susan Hsiong
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
| | - Toshihisa Kawai
- Forsyth Institute, Boston, MA
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL
| | - David Mooney
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
| |
Collapse
|
9
|
Eslami-Kaliji F, Sarafbidabad M, Rajadas J, Mohammadi MR. Dendritic Cells as Targets for Biomaterial-Based Immunomodulation. ACS Biomater Sci Eng 2020; 6:2726-2739. [PMID: 33463292 DOI: 10.1021/acsbiomaterials.9b01987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Various subtypes of immunocytes react against implanted biomaterials to eliminate the foreign body object from the host's body. Among these cells, dendritic cells (DCs) play a key role in early immune response, later engaging lymphocytes through antigens presentation. Due to their capability to induce tolerogenic or immunogenic responses, DCs have been considered as key therapeutic targets for immunomodulatory products. For instance, tolerogenic DCs are applied in the treatment of autoimmune diseases, rejection of allograft transplantation, and implanted biomaterial. Due to the emerging importance of DCs in immunomodulatory biomaterials, this Review summarizes DCs' responses-such as adhesion, migration, and maturation-to biomaterials. We also review some examples of key molecules and their applications in DCs' immunoengineering. These evaluations would pave the way for designing advanced biomaterials and nanomaterials to modulate the immune system, applicable in tissue engineering, transplantation, and drug delivery technologies.
Collapse
Affiliation(s)
- Farshid Eslami-Kaliji
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mohsen Sarafbidabad
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco School of Pharmacy, San Francisco, California 94158, United States
| | - M Rezaa Mohammadi
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
10
|
Yu G, Zhang Y, Wang X, Sai L, Bo C, Yeo AJ, Lavin MF, Peng C, Jia Q, Shao H. Thymic stromal lymphopoietin (TSLP) and Toluene-diisocyanate-induced airway inflammation: Alleviation by TSLP neutralizing antibody. Toxicol Lett 2019; 317:59-67. [PMID: 31577921 DOI: 10.1016/j.toxlet.2019.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Toluene-diisocyanate (TDI) is mainly used in the manufacturing process of polyurethane foams, and is a potent inducer of occupational asthma characterized by airway inflammation and airway hyperreactivity. Thymic stromal lymphopoietin (TSLP) plays an important role in the development of asthma, and correlating with the differentiation of Th2 and Th17 cells. However, the role of TSLP in TDI-induced asthma remains unclear. In this study, 96 TDI-exposed workers as well as a mouse model of TDI-induced asthma were investigated. The air exposure assessment result of TDI in the workplace showed that workers were exposed to inhalation of a very high concentration of TDI, approximately 8 times the recommended level, leading to a decrease in pulmonary function and an increase in inflammatory cells, as well as TSLP and IgE levels in the supernatant of sputum obtained from exposed workers. In order to further investigate the role of TSLP in the pathogenesis of TDI-induced asthma, a mouse model of TDI-induced asthma was also employed. Histopathological analysis of mouse lung and bronchus showed an obvious infiltration of inflammatory cells around the bronchus. The levels of inflammatory cells, IFN-γ, IL-4 and IL-17 in bronchoalveolar lavage fluid (BALF), the expression levels of TSLP protein and ROR-γt and IL-17 mRNA in mouse lung tissues were also significantly increased. However, after treatment with TSLP neutralizing antibody (TSLP-Ab), the degree of pulmonary and bronchial inflammation in mice was significantly alleviated, and the levels of inflammatory cells, IFN-γ, IL-4 and IL-17 in BALF, and the expression levels of ROR-γt and IL-17 mRNA in lung tissue were significantly decreased. Our data shows that TSLP plays an important role in the pathogenesis of TDI-induced asthma, and that TSLP-Ab can effectively alleviate TDI-induced airway inflammation of asthma.
Collapse
Affiliation(s)
- Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; School of Public Health, Shandong University, Ji'nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiaoqun Wang
- Pathology Department, New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Abrey J Yeo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Australia, Brisbane, Queensland, Australia
| | - Martin F Lavin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Australia, Brisbane, Queensland, Australia
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, Queensland, Australia
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| |
Collapse
|
11
|
Liu D, Guo M, Zhou P, Xiao J, Ji X. TSLP promote M2 macrophages polarization and cardiac healing after myocardial infarction. Biochem Biophys Res Commun 2019; 516:437-444. [PMID: 31227217 DOI: 10.1016/j.bbrc.2019.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/17/2023]
Abstract
Macrophages play an important role in inflammation and cardiac remodeling in response to myocardial infarction (MI). Earlier shift of inflammtory M1 macrophages to reparative M2 macrophages has demonstrated significant improvements in MI wound modeling and cardiac function. Here, we reported that TSLP could promote M1 to M2 macrophage polarization, and AngII skewed the macrophage phenotype towards M2 by inducing TSLP expression in vitro. Meanwhile, AngII could inhibit the expression of MMP2 and MMP9 in macrophages, which are engaged in ECM degradation and cardiac remodeling. In post-MI mice, TSLP expression were up-regulated in cardiac tissue and serum, probably induced by renin-angiotensin system activation and AngII level up-regulation following MI. Our study mapped the continuum of changes that occured in cardiac macrophages over the first week of MI, and found that rTSLP treatment promoted earlier phenotype shift of M1 to M2 macrophages, improving cardiac healing and ventricular function recovery. Taken together, this work identified a very promising therapeutic opportunity to manage macrophage phenotype and enhance resolution of inflammation in the post-MI heart.
Collapse
Affiliation(s)
- Debin Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China; Department of Emergency, Linyi people's Hospital, Linyi, Shandong, People's Republic of China
| | - Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Peng Zhou
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jie Xiao
- Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Funda DP, Palová-Jelínková L, Goliáš J, Kroulíková Z, Fajstová A, Hudcovic T, Špíšek R. Optimal Tolerogenic Dendritic Cells in Type 1 Diabetes (T1D) Therapy: What Can We Learn From Non-obese Diabetic (NOD) Mouse Models? Front Immunol 2019; 10:967. [PMID: 31139178 PMCID: PMC6527741 DOI: 10.3389/fimmu.2019.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Zuzana Kroulíková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Alena Fajstová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
13
|
Guindi C, Cloutier A, Gaudreau S, Zerif E, McDonald PP, Tatsiy O, Asselin C, Dupuis G, Gris D, Amrani AA. Role of the p38 MAPK/C/EBPβ Pathway in the Regulation of Phenotype and IL-10 and IL-12 Production by Tolerogenic Bone Marrow-Derived Dendritic Cells. Cells 2018; 7:cells7120256. [PMID: 30544623 PMCID: PMC6316502 DOI: 10.3390/cells7120256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) play a major role in innate and adaptive immunity and self-immune tolerance. Immunogenic versus tolerogenic DC functions are dictated by their levels of costimulatory molecules and their cytokine expression profile. The transcription factor C/EBPβ regulates the expression of several inflammatory genes in many cell types including macrophages. However, little is known regarding the role of C/EBPβ in tolerogenic versus immunogenic DCs functions. We have previously reported that bone marrow-derived DCs generated with GM-CSF (GM/DCs) acquire the signature of semi-mature tolerogenic IL-10-producing DCs as opposed to immunogenic DCs generated with GM-CSF and IL-4 (IL-4/DCs). Here, we show that tolerogenic GM/DCs exhibit higher levels of phosphorylation and enhanced DNA binding activity of C/EBPβ and CREB than immunogenic IL-4/DCs. We also show that the p38 MAPK/CREB axis and GSK3 play an important role in regulating C/EBPβ phosphorylation and DNA binding activity. Inhibition of p38 MAPK in GM/DCs resulted in a drastic decrease of C/EBPβ and CREB DNA binding activities, a reduction of their IL-10 production and an increase of their IL-12p70 production, a characteristic of immunogenic IL-4/DCs. We also present evidence that GSK3 inhibition in GM/DCs reduced C/EBPβ DNA binding activity and increased expression of costimulatory molecules in GM/DCs and their production of IL-10. Analysis of GM/DCs of C/EBPβ-/- mice showed that C/EBPβ was essential to maintain the semimature phenotype and the production of IL-10 as well as low CD4⁺ T cell proliferation. Our results highlight the importance of the p38MAPK-C/EBPβ pathway in regulating phenotype and function of tolerogenic GM/DCs.
Collapse
Affiliation(s)
- Chantal Guindi
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Alexandre Cloutier
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Simon Gaudreau
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Echarki Zerif
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Patrick P McDonald
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Olga Tatsiy
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Claude Asselin
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Gilles Dupuis
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - And Abdelaziz Amrani
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
14
|
Abstract
Dendritic cells (DCs) are a heterogeneous population playing a pivotal role in immune responses and tolerance. DCs promote immune tolerance by participating in the negative selection of autoreactive T cells in the thymus. Furthermore, to eliminate autoreactive T cells that have escaped thymic deletion, DCs also induce immune tolerance in the periphery through various mechanisms. Breakdown of these functions leads to autoimmune diseases. Moreover, DCs play a critical role in maintenance of homeostasis in body organs, especially the skin and intestine. In this review, we focus on recent developments in our understanding of the mechanisms of tolerance induction by DCs in the body.
Collapse
Affiliation(s)
- Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
15
|
Yu X, Peng Y, Liang H, Fu K, Zhao Z, Xie C, Zhou L, Zhang K. TSLP/TSLPR promote angiogenesis following ischemic stroke via activation of the PI3K/AKT pathway. Mol Med Rep 2017; 17:3411-3417. [PMID: 29257253 DOI: 10.3892/mmr.2017.8217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The current study aimed to investigate the effects of the thymic stromal lymphopoietin (TSLP)/TSLP receptor (TSLPR) on angiogenesis following ischemic stroke in vivo and in vitro. Furthermore, whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway mediates the effects of TSLP/TSLPR on angiogenesis was explored. A rat middle cerebral artery occlusion (MCAO) model was established, and it was demonstrated that the expression levels of TSLP and TSLPR were significantly increased in the infarct area between 12 and 72 h after MCAO, as determined by ELISA and western blot analyses. TSLP injection was revealed to upregulate vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang‑2) expression levels in the infarct area following MCAO, as determined by western blot analysis. An in vitro MCAO model was constructed by exposing human umbilical vein endothelial cells (HUVECs) to oxygen‑glucose deprivation (OGD). It was revealed that the expression levels of TSLP and TSLPR were significantly increased in HUVECs subjected to OGD. TSLP treatment was revealed to induce in vitro angiogenesis by promoting cell proliferation and migration, and increasing tube length of OGD‑treated HUVECs, as determined by MTT, Transwell‑migration and tube formation assays, respectively. Furthermore, it was demonstrated that the PI3K/AKT pathway was activated by TSLP treatment. However, it was revealed that PI3K inhibitor, LY294002, could attenuate the effects of TSLP on in vitro angiogenesis of OGD‑treated HUVECs. In conclusion, to the best of our knowledge, this study demonstrated for the first time that TSLP/TSLPR promote angiogenesis following ischemic stroke in vivo and in vitro. Furthermore, it was demonstrated that the effects of TSLP/TSLPR on angiogenesis were, at least partially, mediated via activation of the PI3K/AKT pathway. TSLP/TSLPR may serve as a potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Yi Peng
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Hui Liang
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Ke Fu
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Zhihong Zhao
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Chun Xie
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Lin Zhou
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Kangnan Zhang
- Department of Internal Neurology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
16
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Leichner TM, Satake A, Harrison VS, Tanaka Y, Archambault AS, Kim BS, Siracusa MC, Leonard WJ, Naji A, Wu GF, Artis D, Kambayashi T. Skin-derived TSLP systemically expands regulatory T cells. J Autoimmun 2017; 79:39-52. [PMID: 28126203 PMCID: PMC5386815 DOI: 10.1016/j.jaut.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/16/2022]
Abstract
Regulatory T cells (Tregs) are a subset of CD4+ T cells with suppressive function and are critical for limiting inappropriate activation of T cells. Hence, the expansion of Tregs is an attractive strategy for the treatment of autoimmune diseases. Here, we demonstrate that the skin possesses the remarkable capacity to systemically expand Treg numbers by producing thymic stromal lymphopoietin (TSLP) in response to vitamin D receptor stimulation. An ∼2-fold increase in the proportion and absolute number of Tregs was observed in mice treated topically but not systemically with the Vitamin D3 analog MC903. This expansion of Tregs was dependent on TSLP receptor signaling but not on VDR signaling in hematopoietic cells. However, TSLP receptor expression by Tregs was not required for their proliferation. Rather, skin-derived TSLP promoted Treg expansion through dendritic cells. Importantly, treatment of skin with MC903 significantly lowered the incidence of autoimmune diabetes in non-obese diabetic mice and attenuated disease score in experimental autoimmune encephalomyelitis. Together, these data demonstrate that the skin has the remarkable potential to control systemic immune responses and that Vitamin D-mediated stimulation of skin could serve as a novel strategy to therapeutically modulate the systemic immune system for the treatment of autoimmunity.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cholecalciferol/analogs & derivatives
- Cholecalciferol/pharmacology
- Cytokines/metabolism
- Cytokines/pharmacology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Signal Transduction/drug effects
- Skin/immunology
- Skin/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymic Stromal Lymphopoietin
Collapse
Affiliation(s)
- Theresa M Leichner
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, United States
| | - Atsushi Satake
- First Department of Internal Medicine, Kansai Medical University, Japan
| | | | - Yukinori Tanaka
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, United States
| | - Angela S Archambault
- Department of Neurology, Washington University School of Medicine, United States
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Department of Anesthesiology, Department of Pathology and Immunology, Center for the Study of Itch, United States
| | - Mark C Siracusa
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, United States
| | | | - Ali Naji
- Department of Surgery, University of Pennsylvania, United States
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, United States
| | - David Artis
- Department of Medicine, Weill Cornell Medical College, United States
| | - Taku Kambayashi
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, United States.
| |
Collapse
|
18
|
Zerif E, Maalem A, Gaudreau S, Guindi C, Ramzan M, Véroneau S, Gris D, Stankova J, Rola-Pleszczynski M, Mourad W, Dupuis G, Amrani A. Constitutively active Stat5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. J Autoimmun 2017; 76:63-74. [DOI: 10.1016/j.jaut.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022]
|
19
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Kim DW, Eun KM, Jin HR, Cho SH, Kim DK. Prolonged allergen exposure is associated with increased thymic stromal lymphopoietin expression and Th2-skewing in mouse models of chronic rhinosinusitis. Laryngoscope 2016; 126:E265-72. [PMID: 27107152 DOI: 10.1002/lary.26004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/11/2016] [Accepted: 03/09/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS Chronic rhinosinusitis (CRS) is characterized by a dysfunctional host-environment interaction at the nasal mucosa. Contributions of host susceptibility factors such as atopy and aspirin sensitivity to CRS pathophysiology are well established. However, clinical studies on the effects of environmental factors are limited. This study investigates the histological and immunological effects of allergen exposure duration in animal models. STUDY DESIGN Animal study. METHODS A murine model for CRS with nasal polypoid lesions was induced by instilling ovalbumin/staphylococcal enterotoxin B (SEB) into murine nasal cavities for 12 (short term) or 24 weeks (long term). Histopathological changes were observed. Interleukin (IL)-4, IL-17A, IL-10, and interferon (INF)-γ levels from nasal lavage fluid were measured using enzyme-linked immunosorbent assay. Gene expressions of IL-25, thymic stromal lymphopoietin (TSLP), IL-4, IL-5, INF-γ, C-C motif chemokine ligand (CCL)-11, CCL-24, C-X-C motif chemokine ligand (CXCL)-1, CXCL-2, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, matrix metallopeptidase (MMP)-7, and tissue inhibitor of metalloproteinase (TIMP)-3 were analyzed from the nasal mucosa. RESULTS Long-term CRS models exhibited increased polypoid lesions, edematous mucosal thickness, and eosinophil infiltration compared with short-term models and showed a higher IL-10 level but lower IFN-γ and IL-17A protein levels. Moreover, CCL-24 and MMP-7 gene expressions increased whereas TIMP-3 expression decreased in long-term models compared to controls and short-term models. IL-25 and TSLP expressions were upregulated at mRNA and protein levels in short-term and long-term CRS models, respectively. Furthermore, TSLP mRNA expression was positively associated with IL-5 (r = 0.8754) and inversely correlated to IFN-γ (r = -0.7212) in CRS models. CONCLUSIONS Prolonged allergen exposure in ovalbumin/SEB-induced CRS models maintains Th2 inflammation and reduces Th1 inflammation, which was associated with upregulation of TSLP. LEVEL OF EVIDENCE NA Laryngoscope, 126:E265-E272, 2016.
Collapse
Affiliation(s)
- Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hong Ryul Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy-Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, U.S.A
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital and Nano-Bio Regenerative Medical Institute, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
21
|
Watanabe J, Saito H, Miyatani K, Ikeguchi M, Umekita Y. TSLP Expression and High Serum TSLP Level Indicate a Poor Prognosis in Gastric Cancer Patients. Yonago Acta Med 2015; 58:137-143. [PMID: 26538800 PMCID: PMC4626360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) plays an important role in promoting tumor survival, by manipulating the immune response and angiogenesis. However, the clinical significance of TSLP in gastric cancer is unclear. METHODS Immunohistochemistry was used to investigate TSLP expression in non-cancerous gastric mucosa and gastric cancer tissue from patients with gastric cancer. Serum TSLP levels were measured using an enzyme-linked immunosorbent assay. RESULTS Tumors with TSLP expression were significantly larger than those without TSLP expression. TSLP expression was observed more frequently in advanced (T2/T3/T4) than in early (T1) gastric cancer and in stage 3/4 than in stage 1/2. Lymph node metastasis, liver metastasis, positive peritoneal lavage cytology, lymphatic invasion, and vascular invasion occurred significantly more often in TSLP-expressing than in non-expressing tumors. The prognosis of patients with TSLP-positive tumors was significantly worse than that of patients with TSLP-negative tumors. Patients with high serum TSLP concentrations also had a significantly worse prognosis than those with low concentrations. Multivariate analysis identified serum TSLP level as an independent prognostic indicator. CONCLUSION TSLP is closely related to the progression of gastric cancer and may predict survival in these patients.
Collapse
Affiliation(s)
- Joji Watanabe
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Hiroaki Saito
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Kozo Miyatani
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Masahide Ikeguchi
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshihisa Umekita
- †Division of Organ Pathology, Department of Pathology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
22
|
Hillen MR, Radstake TRDJ, Hack CE, van Roon JAG. Thymic stromal lymphopoietin as a novel mediator amplifying immunopathology in rheumatic disease: Fig. 1. Rheumatology (Oxford) 2015; 54:1771-9. [DOI: 10.1093/rheumatology/kev241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/14/2022] Open
|
23
|
Lo Kuan E, Ziegler SF. Thymic stromal lymphopoietin and cancer. THE JOURNAL OF IMMUNOLOGY 2015; 193:4283-8. [PMID: 25326546 DOI: 10.4049/jimmunol.1400864] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Originally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging effects on both hematopoietic and nonhematopoietic cell lineages. These include dendritic cells, basophils, mast cells, B cells, epithelial cells, and CD4(+), CD8(+), and NK T cells. Although TSLP's role in the promotion of Th2 responses has been studied extensively in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems. This review highlights recent advances in the understanding of the surprising role of TSLP in the control of a variety of cancers, both solid tumors and leukemia, in which the TSLP/TSLP receptor axis was shown to be an important regulator.
Collapse
Affiliation(s)
- Emma Lo Kuan
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| |
Collapse
|
24
|
Abstract
Intestinal epithelial cells are fundamental to maintain barrier integrity and to participate in food degradation and absorption, but they can also decipher signals coming from the outside world and 'educate' the immune system accordingly. In particular, they interact with dendritic cells (DCs) and other intraepithelial immune cells to drive tolerogenic responses under steady state, but they can also release immune mediators to recruit inflammatory cells and to elicit immunity to infectious agents. When these interactions are deregulated, immune disorders can develop. In this review, we discuss some important features of epithelial cells and DCs and their fruitful interactions.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
25
|
Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, Uchino M, Ando Y, Nagafuchi S, Nishimura Y, Senju S. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS One 2014; 9:e115198. [PMID: 25522369 PMCID: PMC4270741 DOI: 10.1371/journal.pone.0115198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022] Open
Abstract
We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs) using two models of autoimmune disease, namely non-obese diabetic (NOD) mice and experimental autoimmune encephalomyelitis (EAE). Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Tokunori Ikeda
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan
- * E-mail:
| | - Shinya Hirata
- Department of Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Koutaro Takamatsu
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Miwa Haruta
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | - Yukio Ando
- Department of Neurology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Seiho Nagafuchi
- Department of Medical Science and Technology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| |
Collapse
|
26
|
Ramirez O, Garza KM. Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells. Int Immunol 2014; 26:627-36. [PMID: 24966213 DOI: 10.1093/intimm/dxu067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lep(ob)) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lep(ob) sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lep(ob) sDC was similar to controls. However, Lep(ob) sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lep(ob) sDC activation of T cells in vivo, Lep(ob) and control mice were infected systemically with Mycobacterium avium. Lep(ob) mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lep(ob) mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting.
Collapse
Affiliation(s)
- Oscar Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Kristine M Garza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
27
|
Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W. Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol 2014; 5:7. [PMID: 24550907 PMCID: PMC3907717 DOI: 10.3389/fimmu.2014.00007] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
We recognize well the abilities of dendritic cells to activate effector T cell (Teff cell) responses to an array of antigens and think of these cells in this context as pre-eminent antigen-presenting cells, but dendritic cells are also critical to the induction of immunologic tolerance. Herein, we review our knowledge on the different kinds of tolerogenic or regulatory dendritic cells that are present or can be induced in experimental settings and humans, how they operate, and the diseases in which they are effective, from allergic to autoimmune diseases and transplant tolerance. The primary conclusions that arise from these cumulative studies clearly indicate that the agent(s) used to induce the tolerogenic phenotype and the status of the dendritic cell at the time of induction influence not only the phenotype of the dendritic cell, but also that of the regulatory T cell responses that they in turn mobilize. For example, while many, if not most, types of induced regulatory dendritic cells lead CD4+ naïve or Teff cells to adopt a CD25+Foxp3+ Treg phenotype, exposure of Langerhans cells or dermal dendritic cells to vitamin D leads in one case to the downstream induction of CD25+Foxp3+ regulatory T cell responses, while in the other to Foxp3− type 1 regulatory T cells (Tr1) responses. Similarly, exposure of human immature versus semi-mature dendritic cells to IL-10 leads to distinct regulatory T cell outcomes. Thus, it should be possible to shape our dendritic cell immunotherapy approaches for selective induction of different types of T cell tolerance or to simultaneously induce multiple types of regulatory T cell responses. This may prove to be an important option as we target diseases in different anatomic compartments or with divergent pathologies in the clinic. Finally, we provide an overview of the use and potential use of these cells clinically, highlighting their potential as tools in an array of settings.
Collapse
Affiliation(s)
- John R Gordon
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Yanna Ma
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Laura Churchman
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Sara A Gordon
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| | - Wojciech Dawicki
- Department of Medicine, University of Saskatchewan , Saskatoon, SK , Canada
| |
Collapse
|
28
|
Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013; 2013:986789. [PMID: 24454481 PMCID: PMC3886602 DOI: 10.1155/2013/986789] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
Th17 and IL-17 play important roles in the clearance of extracellular bacterial and fungal infections. However, strong evidence also implicates the Th17 lineage in several autoimmune disorders including multiple sclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. The Th17 subset has also been connected with type I diabetes, although whether it plays a role in the pathogenicity of or protection from the disease remains a controversial issue. In this review we have provided a comprehensive overview of Th17 pathogenicity and function, including novel evidence for a protective role of Th17 cells in conjunction with the microbiota gut flora in T1D onset and progression.
Collapse
|
29
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
30
|
Tuna H, Avdiushko RG, Sindhava VJ, Wedlund L, Kaetzel CS, Kaplan AM, Bondada S, Cohen DA. Regulation of the mucosal phenotype in dendritic cells by PPARγ: role of tissue microenvironment. J Leukoc Biol 2013; 95:471-85. [PMID: 24295831 DOI: 10.1189/jlb.0713408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mucosal DCs play a critical role in tissue homeostasis. Several stimuli can induce a mucosal phenotype; however, molecular pathways that regulate development of mucosal DC function are relatively unknown. This study sought to determine whether PPARγ contributes to the development of the "mucosal" phenotype in mouse DCs. Experiments demonstrated that PPARγ activation in BMDCs induced an immunosuppressive phenotype in which BMDCs had reduced expression of MHC class II and costimulatory molecules, increased IL-10 secretion, and reduced the ability to induce CD4 T cell proliferation. Activation of PPARγ enhanced the ability of BMDC to polarize CD4 T cells toward iTregs and to induce T cell expression of the mucosal homing receptor, CCR9. Activation of PPARγ increased the ability of BMDCs to induce T cell-independent IgA production in B cells. BMDCs from PPARγ(ΔDC) mice displayed enhanced expression of costimulatory molecules, enhanced proinflammatory cytokine production, and decreased IL-10 synthesis. Contrary to the inflammatory BMDC phenotype in vitro, PPARγ(ΔDC) mice showed no change in the frequency or phenotype of mDC in the colon. In contrast, mDCs in the lungs were increased significantly in PPARγ(ΔDC) mice. A modest increase in colitis severity was observed in DSS-treated PPARγ(ΔDC) mice compared with control. These results indicate that PPARγ activation induces a mucosal phenotype in mDCs and that loss of PPARγ promotes an inflammatory phenotype. However, the intestinal microenvironment in vivo can maintain the mucosal DC phenotype of via PPARγ-independent mechanisms.
Collapse
Affiliation(s)
- Halide Tuna
- 1.Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., Room MS419, Lexington, KY 40536-0298, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu K, Zhu P, Dong Q, Zhong Y, Zhu Z, Lin Y, Huang Y, Meng K, Ji Q, Yi G, Zhang W, Wu B, Mao Y, Cheng P, Zhao X, Mao X, Zeng Q. Thymic stromal lymphopoietin attenuates the development of atherosclerosis in ApoE-/- mice. J Am Heart Assoc 2013; 2:e000391. [PMID: 23985377 PMCID: PMC3835250 DOI: 10.1161/jaha.113.000391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a cytokine with multiple effects on the body. For one thing, TSLP induces Th2 immunoreaction and facilitates allergic reaction; for another, it promotes the differentiation of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTregs) and maintains immune tolerance. However, the exact role of TSLP in atherosclerosis remains unknown. Methods and Results In vitro, we examined the phenotype of TSLP‐conditioned bone marrow dendritic cells (TSLP‐DCs) of apolipoprotein E–deficient (ApoE−/−) mice and their capacity to induce the differentiation of Tregs. Our results indicated that TSLP‐DCs obtained the characteristics of tolerogenic dendritic cells and increased a generation of CD4+ latency‐associated peptide (LAP)+ Tregs and nTregs when cocultured with naive T cells. In addition, the functional relevance of TSLP and TSLP‐DCs in the development of atherosclerosis was also determined. Interestingly, we found that TSLP was almost absent in cardiovascular tissue of ApoE−/− mice, and TSLP administration increased the levels of antioxidized low‐density lipoprotein IgM and IgG1, but decreased the levels of IgG2a in plasma. Furthermore, mice treated with TSLP and TSLP‐DCs developed significantly fewer (32.6% and 28.2%, respectively) atherosclerotic plaques in the aortic root compared with controls, along with increased numbers of CD4+LAP+ Tregs and nTregs in the spleen and decreased inflammation in the aorta, which could be abrogated by anti‐TGF‐β antibody. Conclusions Our results revealed a protective role for TSLP in atherosclerosis that is possibly mediated by reestablishing a tolerogenic immune response, which may represent a novel possibility for treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). ADVANCES IN PHARMACOLOGY 2013; 66:129-55. [PMID: 23433457 DOI: 10.1016/b978-0-12-404717-4.00004-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Originally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging impacts on both hematopoietic and nonhematopoietic cell lineages, including dendritic cells, basophils, eosinophils, mast cells, CD4⁺, CD8⁺ and natural killer T cells, B cells and epithelial cells. While TSLP's role in the promotion of TH2 responses has been extensively studied in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This chapter will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity and cancer. Importantly, these insights into TSLP's multifaceted roles could potentially allow for novel therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Jang S, Morris S, Lukacs NW. TSLP promotes induction of Th2 differentiation but is not necessary during established allergen-induced pulmonary disease. PLoS One 2013; 8:e56433. [PMID: 23437132 PMCID: PMC3577905 DOI: 10.1371/journal.pone.0056433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/09/2013] [Indexed: 01/22/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) has been implicated in the development of allergic inflammation by promoting Th2-type responses and has become a potential therapeutic target. Using in vitro T cell differentiation cultures we were able to validate that TSLP played a more critical role in the early development of Th2 immune responses with less significant enhancement of already developed Th2 responses. Adoptive transfer of naive DO11.10 ovalbumin-specific T cells followed by airway exposure to ovalbumin showed an early impairment of Th2 immune response in TSLP−/− mice compared to wild type mice during the development of a Th2 response. In contrast, transfer of already differentiated Th2 cells into TSLP−/− mice did not change lung pathology or Th2 cytokine production upon ovalbumin challenge compared to transfer into wild type mice. An allergen-induced Th2 airway model demonstrated that there was only a difference in gob5 expression (a mucus-associated gene) between wild type and TSLP−/− mice. Furthermore, when allergic animals with established disease were treated with a neutralizing anti-TSLP antibody there was no change in airway hyperreponsiveness (AHR) or Th2 cytokine production compared to the control antibody treated animals, whereas a change in gob5 gene expression was also observed similar to the TSLP−/− mouse studies. In contrast, when animals were treated with anti-TSLP during the initial stages of allergen sensitization there was a significant change in Th2 cytokines during the final allergen challenge. Collectively, these studies suggest that in mice TSLP has an important role during the early development of Th2 immune responses, whereas its role at later stages of allergic disease may not be as critical for maintaining the Th2-driven allergic disease.
Collapse
Affiliation(s)
- Sihyug Jang
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan Morris
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas W. Lukacs
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine expressed mainly by epithelial cells. Current studies provide compelling evidence that TSLP is capable of activating dendritic cells to promote T helper (Th) 2 immune responses. TSLP has also been shown to directly promote Th2 differentiation of naïve CD4(+) T cell and activate natural killer T cells, basophils and other innate immune cells at the initial stage of inflammation. In addition, TSLP affects B cell maturation and activation and can also influence regulatory T (Treg) cell differentiation and development. TSLP-induced Th2 responses are associated with the pathogenesis of allergic inflammatory diseases, including atopic dermatitis, asthma, and rhinitis. Based on recent findings in humans and mouse models, TSLP might also be involved in the pathogenesis of inflammatory bowel disease and progression of cancer. In this review, we will summarize our current understanding of the biology of TSLP and highlight the important issues for future investigations.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
35
|
Ziegler SF. Thymic stromal lymphopoietin and allergic disease. J Allergy Clin Immunol 2012; 130:845-52. [PMID: 22939755 DOI: 10.1016/j.jaci.2012.07.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 12/19/2022]
Abstract
The importance of the epithelium in initiating and controlling immune responses is becoming more appreciated. For example, allergen contact first occurs at mucosal sites exposed to the external environment, such as the skin, airways, and gastrointestinal tract. This exposure leads to the production of a variety of cytokines and chemokines that are involved in driving allergic inflammatory responses. One such product is thymic stromal lymphopoietin (TSLP). Recent studies in both human subjects and murine models have implicated TSLP in the development and progression of allergic diseases. This review will highlight recent advances in the understanding of the role of TSLP in these inflammatory diseases. Importantly, these insights into TSLP's multifaceted role could potentially allow for novel therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
36
|
IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A 2012; 109:12668-73. [PMID: 22733744 DOI: 10.1073/pnas.1203692109] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To protect the organism against autoimmunity, self-reactive effector/memory T cells (T(E/M)) are controlled by cell-intrinsic and -extrinsic regulatory mechanisms. However, how some T(E/M) cells escape regulation and cause autoimmune disease is currently not understood. Here we show that blocking IL-7 receptor-α (IL-7Rα) with monoclonal antibodies in nonobese diabetic (NOD) mice prevented autoimmune diabetes and, importantly, reversed disease in new-onset diabetic mice. Surprisingly, IL-7-deprived diabetogenic T(E/M) cells remained present in the treated animals but showed increased expression of the inhibitory receptor Programmed Death 1 (PD-1) and reduced IFN-γ production. Conversely, IL-7 suppressed PD-1 expression on activated T cells in vitro. Adoptive transfer experiments revealed that T(E/M) cells from anti-IL-7Rα-treated mice had lost their pathogenic potential, indicating that absence of IL-7 signals induces cell-intrinsic tolerance. In addition to this mechanism, IL-7Rα blockade altered the balance of regulatory T cells and T(E/M) cells, hence promoting cell-extrinsic regulation and further increasing the threshold for diabetogenic T-cell activation. Our data demonstrate that IL-7 contributes to the pathogenesis of autoimmune diabetes by enabling T(E/M) cells to remain in a functionally competent state and suggest IL-7Rα blockade as a therapy for established T-cell-dependent autoimmune diseases.
Collapse
|
37
|
Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H, Ziegler SF. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol 2012; 91:877-86. [PMID: 22442496 DOI: 10.1189/jlb.1211622] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Originally shown to promote the growth and activation of B cells, TSLP is now known to have wide-ranging impacts on hematopoietic and nonhematopoietic cell lineages, including DCs, basophils, eosinophils, mast cells, CD4(+), CD8(+), and NK T cells, B cells, and epithelial cells. Whereas the role of TSLP in the promotion of TH2 responses has been studied extensively in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This review will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity, and cancer. Importantly, these insights into the multifaceted roles of TSLP could potentially allow for novel, therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Florence Roan
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
In an immune system, dendritic cells (DCs) are professional antigen-presenting cells (APCs) as well as powerful sensors of danger signals. When DCs receive signals from infection and tissue stress, they immediately activate and instruct the initiation of appropriate immune responses to T cells. However, it has remained unclear how the tissue microenvironment in a steady state shapes the function of DCs. Recent many works on thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine that has the strong ability to activate DCs, provide evidence that TSLP mediates crosstalk between epithelial cells and DCs, involving in DC-mediated immune homeostasis. Here, we review recent progress made on how TSLP expressed within the thymus and peripheral lymphoid and non-lymphoid tissues regulates DC-mediated T-cell development in the thymus and T-cell homeostasis in the periphery.
Collapse
Affiliation(s)
- Shino Hanabuchi
- Department of Immunology, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, TX 77004, USA.
| | | | | |
Collapse
|
39
|
Caramalho I, Rodrigues-Duarte L, Perez A, Zelenay S, Penha-Gonçalves C, Demengeot J. Regulatory T cells contribute to diabetes protection in lipopolysaccharide-treated non-obese diabetic mice. Scand J Immunol 2011; 74:585-95. [PMID: 21916921 DOI: 10.1111/j.1365-3083.2011.02627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well established that viral, parasitic or bacterial infections can prevent type 1 diabetes (T1D) occurrence in non-obese diabetic (NOD) mice. On the other hand, defects in CD4(+) Regulatory T cell (Treg) numbers and/or function contribute to T1D aetiology in NOD mice and in humans. In this work, we formally tested whether the protective role of the bacterial product lipopolysaccharide (LPS) on diabetes incidence results from enhanced Treg activity. We first report that weekly administration of LPS to young prediabetic NOD mice, presenting or not insulitis at the time of treatment, afforded full protection from diabetes. Taking advantage from the high but incomplete penetrance of diabetes in NOD mice raised in specific pathogen free (SPF) conditions we compared untreated disease-free old animals with gender- and age-matched LPS-treated mice. Histological and flow cytometry analysis indicated that LPS treatment did not prevent islet infiltration or priming of diabetogenic T cells but increased Foxp3(+) and CD103(+) Treg frequency and numbers. By performing adoptive transfer experiments into alymphoid NOD/SCID recipients, we further demonstrated that CD25(+) cells from LPS-treated NOD mice, but not from naturally protected animals, maintained diabetogenic cells at check. Our study suggests that T cell regulation represents a cellular mechanism to explain the 'hygiene hypothesis' and reinforces the notion that immune activity consolidates dominant tolerance.
Collapse
Affiliation(s)
- I Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
40
|
Guindi C, Ménard M, Cloutier A, Gaudreau S, Besin G, Larivée P, McDonald PP, Dupuis G, Amrani A. Differential role of NF-κB, ERK1/2 and AP-1 in modulating the immunoregulatory functions of bone marrow-derived dendritic cells from NOD mice. Cell Immunol 2011; 272:259-68. [PMID: 22070873 DOI: 10.1016/j.cellimm.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Tolerogenic dendritic cells represent a promising immunotherapy in autoimmunity. However, the molecular mechanisms that drive tolerogenic DCs functions are not well understood. We used GM-CSF or GM-CSF+IL-4 to generate tolerogenic (GM/DCs) and immunogenic (IL-4/DCs) BMDCs from NOD mice, respectively. GM/DCs were resistant to maturation, produced large amounts of IL-10 but not IL-12p70. GM/DCs displayed a reduced capacity to activate diabetogenic CD8(+) T-cells and were efficient to induce Tregs expansion and conversion. LPS stimulation triggered ERK1/2 activation that was sustained in GM/DCs but not in IL-4/DCs. ERK1/2 and AP-1 were involved in IL-10 production in GM/DCs but not in their resistance to maturation. Supershift analysis showed that NF-κB DNA binding complex contains p52 and p65 in GM/DCs, whereas it contains p52, p65 and RelB in IL-4/DCs. ChIP experiments revealed that p65 was recruited to IL-10 promoter following LPS stimulation of GM/DCs whereas its binding to IL-12p35 promoter was abolished. Our results suggest that immunoregulatory functions of GM/DCs are differentially regulated by ERK1/2, AP-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Chantal Guindi
- Immunology Division, and Centre de Recherche Clinique Etienne LeBel, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The pursuit of clinical transplant tolerance has led to enhanced understanding of mechanisms underlying immune regulation, including the characterization of immune regulatory cells, in particular antigen-presenting cells (APC) and regulatory T cells (Treg), that may play key roles in promoting operational tolerance. Dendritic cells (DC) are highly efficient APC that have been studied extensively in rodents and humans, and more recently in non-human primates. Owing to their ability to regulate both innate and adaptive immune responses, DC are considered to play crucial roles in directing the alloimmune response towards transplant tolerance or rejection. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the induction of Treg, and inhibition of memory T cell responses. These properties have led to the use of tolerogenic DC as a therapeutic strategy to promote organ transplant tolerance. In rodents, infusion of donor- or recipient-derived tolerogenic DC can extensively prolong donor-specific allograft survival, in association with regulation of the host T cell response. In clinical transplantation, progress has been made in monitoring DC in relation to graft outcome, including studies in operational liver transplant tolerance. Although clinical trials involving immunotherapeutic DC for patients with cancer are ongoing, implementation of human DC therapy in clinical transplantation will require assessment of various critical issues. These include cell isolation and purification techniques, source, route and timing of administration, and combination immunosuppressive therapy. With ongoing non-human primate studies focused on DC therapy, these logistics can be investigated seeking the optimal approaches. The scientific rationale for implementation of tolerogenic DC therapy to promote clinical transplant tolerance is strong. Evaluation of technical and therapeutic logistic issues is an important next step prior to the application of tolerogenic DC in clinical organ transplantation.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same? Clin Dev Immunol 2011; 2011:432016. [PMID: 21785616 PMCID: PMC3139873 DOI: 10.1155/2011/432016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
Abstract
Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.
Collapse
|
43
|
Olkhanud PB, Rochman Y, Bodogai M, Malchinkhuu E, Wejksza K, Xu M, Gress RE, Hesdorffer C, Leonard WJ, Biragyn A. Thymic stromal lymphopoietin is a key mediator of breast cancer progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5656-62. [PMID: 21490155 PMCID: PMC3401482 DOI: 10.4049/jimmunol.1100463] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation is a double-edged sword that can promote or suppress cancer progression. In this study, we report that thymic stromal lymphopoietin (TSLP), an IL-7-like type 1 inflammatory cytokine that is often associated with the induction of Th2-type allergic responses in the lungs, is also expressed in human and murine cancers. Our studies with murine cancer cells indicate that TSLP plays an essential role in cancer escape, as its inactivation in cancer cells alone was sufficient to almost completely abrogate cancer progression and lung metastasis. The cancer-promoting activity of TSLP primarily required signaling through the TSLP receptor on CD4(+) T cells, promoting Th2-skewed immune responses and production of immunosuppressive factors such as IL-10 and IL-13. Expression of TSLP therefore may be a useful prognostic marker, and its targeting could have therapeutic potential.
Collapse
Affiliation(s)
| | - Yrina Rochman
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | - Ronald E. Gress
- Experimental Transplantation and Immunology Branch, National Institutes of Health, Bethesda, MD
| | | | - Warren J. Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Arya Biragyn
- Please address correspondence to: Arya Biragyn, Ph.D. National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, Maryland 21224. Ph. (410) 558-8680; Fax: (410) 558-8284: or Warren J. Leonard, M.D., National Heart, Lung, and Blood Institute, NIH, Bldg. 10, Rm. 7B05, Bethesda, MD 20892-1674 Ph. (301) 496-0098; Fax: (301) 402-0971:
| |
Collapse
|
44
|
Lei L, Zhang Y, Yao W, Kaplan MH, Zhou B. Thymic stromal lymphopoietin interferes with airway tolerance by suppressing the generation of antigen-specific regulatory T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2254-61. [PMID: 21242516 PMCID: PMC3125594 DOI: 10.4049/jimmunol.1002503] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an essential cytokine for the initiation and development of allergic inflammation. In this study, we have investigated the role of TSLP in the breakdown of immune tolerance and generation of inducible regulatory T cells (iTregs). Our results demonstrated that TSLP diverted airway tolerance against OVA to Th2 sensitization and inhibited the generation of OVA-specific iTregs. TSLP exerted a direct inhibitory effect on both human and mouse iTreg development in vitro. Low doses of TSLP were capable of inhibiting iTreg induction without significantly promoting Th2 development, indicating that these two functions of TSLP are separable. Moreover, the TSLP-mediated inhibition of iTreg generation was only partially dependent on IL-4 and Stat6, and was effective when TSLP was present for the first 24 h of T cell activation. These results define a novel role for TSLP in regulating the balance of airway tolerance and allergic inflammation.
Collapse
Affiliation(s)
- Liying Lei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yanlu Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Weiguo Yao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Baohua Zhou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
45
|
Abstract
The widely used nonobese diabetic (NOD) mouse model of autoimmune (Type 1) diabetes mellitus shares multiple characteristics with the human disease, and studies employing this model continue to yield clinically relevant and important information. Here, we review some of the recent key findings obtained from NOD mouse investigations that have both advanced our understanding of disease pathogenesis and suggested new therapeutic targets and approaches. Areas discussed include antigen discovery, identification of genes and pathways contributing to disease susceptibility, development of strategies to image islet inflammation and the testing of therapeutics. We also review recent technical advances that, combined with an improved understanding of the NOD mouse model's limitations, should work to ensure its popularity, utility and relevance in the years ahead.
Collapse
Affiliation(s)
- Rodolfo José Chaparro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
46
|
Drab SR. Incretin-based therapies for type 2 diabetes mellitus: current status and future prospects. Pharmacotherapy 2010; 30:609-24. [PMID: 20500049 DOI: 10.1592/phco.30.6.609] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Incretin-based therapies encompass two new classes of antidiabetic drugs: glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., liraglutide, exenatide, and exenatide long-acting release), which are structurally related to GLP-1, and the dipeptidyl peptidase-4 (DPP-4) inhibitors (e.g., sitagliptin and saxagliptin), which limit the breakdown of endogenous GLP-1. To evaluate the safety and effectiveness of incretin-based therapies for the treatment of type 2 diabetes mellitus and the role of these therapies in clinical practice, a MEDLINE search (January 1985-November 2009) was conducted. Relevant references from the publications identified were also reviewed. Of 28 studies identified, 22 were randomized controlled trials. Data show that these therapies affect insulin secretion in a glucose-dependent manner, achieving clinically meaningful reductions in hemoglobin A(1c) levels, with very low rates of hypoglycemia. In addition, reductions in body weight have been observed with GLP-1 receptor agonists, which also exert a pronounced effect on systolic blood pressure. Various human and animal studies show that GLP-1 improves beta-cell function and increases beta-cell proliferation in vitro, which may slow disease progression. Thus, incretin-based therapies represent a promising addition to the available treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Scott R Drab
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
47
|
Creusot RJ, Chang P, Healey DG, Tcherepanova IY, Nicolette CA, Fathman CG. A short pulse of IL-4 delivered by DCs electroporated with modified mRNA can both prevent and treat autoimmune diabetes in NOD mice. Mol Ther 2010; 18:2112-20. [PMID: 20628358 DOI: 10.1038/mt.2010.146] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone marrow-derived dendritic cells (DCs) are cells of the immune system that have been used as a tool to boost, modulate, or dampen immune responses. In the context of autoimmunity, DCs can be modified to express immunoregulatory products encoded by transgenes, and used therapeutically in adoptive cellular therapy. DCs that were lentivirally transduced (lt) to express interleukin 4 (IL-4) can significantly delay or prevent the onset of autoimmune diabetes in nonobese diabetic (NOD) mice. However, modifying cells using viral vectors carries the dual risk of oncogenicity or immunogenicity. This study demonstrates that NOD DCs, electroporated with "translationally enhanced" IL-4 mRNA (eDC/IL-4), can be equally efficient therapeutically, despite the reduced amount and shorter duration of IL-4 secretion. Moreover, a single injection of eDC/IL-4 in NOD mice shortly after the onset of hyperglycemia was able to maintain stable glycemia for up to several months in a significant fraction of treated mice. Treatment with eDC/IL-4 boosted regulatory T (Tregs) cell functions and modulated T helper responses to reduce pathogenicity. Thus, treatment with DCs, electroporated with modified IL-4 mRNA to express IL-4 for up to 24 hours, constitutes a viable cellular therapy approach for the regulation of autoimmune diabetes, as a preferred alternative to the use of viral vectors.
Collapse
Affiliation(s)
- Rémi J Creusot
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305-5166, USA
| | | | | | | | | | | |
Collapse
|
48
|
Phillips B, Giannoukakis N, Trucco M. Dendritic cell-based therapy in Type 1 diabetes mellitus. Expert Rev Clin Immunol 2010; 5:325-39. [PMID: 20477010 DOI: 10.1586/eci.09.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) immunotherapy is a clinical reality. Despite two decades of considerable data demonstrating the feasibility of using DCs to prolong transplant allograft survival and to prevent autoimmunity, only now are these cells entering clinical trials in humans. Type 1 diabetes is the first autoimmune disorder to be targeted for treatment in humans using autologous-engineered DCs. This review will highlight the role of DCs in autoimmunity and the manner in which they have been engineered to treat these disorders in rodent models, either via the induction of immune hyporesponsiveness, which may be cell- and/or antigen-specific, or indirectly by upregulation of other immune cell networks.
Collapse
Affiliation(s)
- Brett Phillips
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Immunogenetics, Children's Hospital of Pittsburgh, Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA.
| | | | | |
Collapse
|
49
|
Zhang W, Jin H, Hu Y, Yu Y, Li X, Ding Z, Kang Y, Wang B. Protective response against type 1 diabetes in nonobese diabetic mice after coimmunization with insulin and DNA encoding proinsulin. Hum Gene Ther 2010; 21:171-8. [PMID: 19788384 DOI: 10.1089/hum.2009.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is a T cell-mediated autoimmune disease characterized by lymphocytic infiltration of pancreatic islets with subsequent destruction of the insulin-producing cells. The T regulatory (Treg) cell has been suggested to play an important role in controlling T cell-mediated inflammatory T1D. We previously demonstrated that induction of antigen-specific Treg cells in vivo by co-immunization with a DNA vaccine and its encoded protein can effectively inhibit T cell-mediated inflammatory diseases. To further demonstrate the potential of this strategy, we show here that co-immunization of NOD mice twice with DNA encoding proinsulin plus insulin protein prevents the onset of T1D and induces the impairment of antigen-specific T cell responses in a dose-dependent manner. We further show that the inhibitory function is due to the induction of TGF-beta-producing CD4(+)CD25(-) islet-specific iTreg cells against the onset of T1D in NOD mice. Induced iTreg cells were observed only in the co-immunization group, but derived neither from the DNA vaccine nor the protein alone, suggesting that a biased helper T cell type 1 response plays no inhibitory role. A strategy based on co-immunization to induce a protective response against the onset of diabetes in NOD mice may lead to the development of an immunotherapeutic/preventive protocol against T1D in humans.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Agro-Biotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Although well-recognized for their sentinel role and, when activated, their immunostimulatory function, bone marrow-derived dendritic cells (DC) possess inherent tolerogenic (tol) ability. Under quiescent conditions, these cells maintain central and peripheral self tolerance. When appropriately conditioned, in vitro or in vivo, they inhibit innate and adaptive immunity to foreign antigens, including memory T-cell responses. This suppressive function is mediated by various mechanisms, including the expansion and induction of antigen-specific regulatory T cells. Extensive experience in rodent models and recent work in nonhuman primates, indicate the potential of pharmacologically-modified, tol DC (tolDC) to regulate alloimmunity in vivo and to promote lasting, alloantigen-specific T-cell unresponsiveness and transplant survival. While there are many questions yet to be addressed concerning the functional biology of tolDC in humans, these cells offer considerable potential as natural, safe and antigen-specific regulators for long-term control of the outcome of organ and hematopoietic cell transplantation. This minireview surveys recent findings that enhance understanding of the functional biology and therapeutic application of tolDC, with special reference to transplantation.
Collapse
Affiliation(s)
- A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|