1
|
Lee YH, Lim H, Kim G, Jang G, Kuk MU, Park JH, Yoon JH, Lee YJ, Kim D, So B, Kim M, Kwon HW, Byun Y, Park JT. Elucidating the Role and Mechanism of Alpha-Enolase in Senescent Amelioration via Metabolic Reprogramming. Cell Prolif 2025:e70049. [PMID: 40289552 DOI: 10.1111/cpr.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Senescent cells are characterised by increased glycolysis dependence. Normalisation of glycolysis metabolism is essential for senescence amelioration. However, the mechanism of proteins involved in cellular glycolysis metabolism has not been fully elucidated. Here, we identified a candidate compound, an oxazole analogue (KB2764), that can improve senescence. To elucidate the mechanism of the KB2764, we investigated the interacting proteins. KB2764 interacted with alpha-enolase (ENO1) and pyruvate kinase M (PKM), ultimately allowing PKM to phosphorylate ENO1. KB2764 consequently increased mitochondrial ATP production and reduced reliance on glycolysis. Knockdown of the ENO1 experiment in senescent cells demonstrates that regulation of ENO1 activity is a prerequisite for recovery of mitochondrial function. Furthermore, the action of KB2764 extends its application to extend the lifespan of Caenorhabditis elegans. Taken together, our findings reveal a novel mechanism by which senescence is ameliorated through metabolic reprogramming and mitochondrial functional recovery via KB2764-mediated regulation of ENO1 protein activity.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyunwoong Lim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Gyungmin Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Geonhee Jang
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Duyeol Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Byeonghyeon So
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Minseon Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
2
|
Sánchez-Quintero MJ, Iboleón A, Martín Chaves L, Pozo Vilumbrales B, Carmona-Segovia ADM, Martínez López P, Romero-Cuevas M, Rodríguez-Capitán J, Becerra-Muñoz VM, Pavón-Morón FJ, Murri M. Circulating PGC-1α and MOTS-c Peptide as Potential Mitochondrial Biomarkers in Patients Undergoing Aortic Valve Replacement. Biologics 2025; 19:87-96. [PMID: 40104672 PMCID: PMC11914779 DOI: 10.2147/btt.s504289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Purpose Aortic valve disease (AVD) is a common condition that leads to pressure and/or volume overload in the left ventricle. Aortic valve replacement is the standard treatment, as no pharmacological therapies are currently available. The incidence of AVD is increasing in developed countries, making the discovery of new biomarkers for early detection crucial. The importance of mitochondria in heart function is well established, and various cardiovascular pathologies are associated with mitochondrial dysfunction. In this cross-sectional study, we evaluated for the first time the role of mitochondria in AVD, aiming to identify new pathways involved in the disease and discover potential biomarkers. Patients and Methods We recruited 17 patients diagnosed with AVD and scheduled for aortic valve replacement, and 22 healthy controls. Plasma levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and mitochondrial open reading frame of the 12S rRNA type-c peptide (MOTS-c) were measured by ELISA. Results We observed significantly reduced levels of both proteins in patients, suggesting that substantial mitochondrial dysfunction occurs in AVD patients, independent of sex or age, but directly related to the disease. Conclusion Mitochondria may represent a promising target for studying new pathways involved in AVD. We propose PGC1α and MOTS-c as potential plasma biomarkers for AVD detection. Further studies, including early-stage patients, are necessary to confirm the significance of our findings.
Collapse
Affiliation(s)
- María J Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Iboleón
- Unidad Docente Multiprofesional de Atención Familiar y Comunitaria. Distrito de Atención Primaria Málaga-Guadalhorce, Málaga, Spain
| | - Laura Martín Chaves
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Bárbara Pozo Vilumbrales
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Department of Animal Biology, University of Málaga, Málaga, Spain
| | - Ada D M Carmona-Segovia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martínez López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica de Cuidados Críticos y Urgencias, Medicina Intensiva. Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Miguel Romero-Cuevas
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Rodríguez-Capitán
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor M Becerra-Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mora Murri
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Motanova E, Pirazzini M, Negro S, Rossetto O, Narici M. Impact of ageing and disuse on neuromuscular junction and mitochondrial function and morphology: Current evidence and controversies. Ageing Res Rev 2024; 102:102586. [PMID: 39557298 DOI: 10.1016/j.arr.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Inactivity and ageing can have a detrimental impact on skeletal muscle and the neuromuscular junction (NMJ). Decreased physical activity results in muscle atrophy, impaired mitochondrial function, and NMJ instability. Ageing is associated with a progressive decrease in muscle mass, deterioration of mitochondrial function in the motor axon terminals and in myofibres, NMJ instability and loss of motor units. Focusing on the impact of inactivity and ageing, this review examines the consequences on NMJ stability and the role of mitochondrial dysfunction, delving into their complex relationship with ageing and disuse. Evidence suggests that mitochondrial dysfunction can be a pathogenic driver for NMJ alterations, with studies revealing the role of mitochondrial defects in motor neuron degeneration and NMJ instability. Two perspectives behind NMJ instability are discussed: one is that mitochondrial dysfunction in skeletal muscle triggers NMJ deterioration, the other envisages dysfunction of motor terminal mitochondria as a primary contributor to NMJ instability. While evidence from these studies supports both perspectives on the relationship between NMJ dysfunction and mitochondrial impairment, gaps persist in the understanding of how mitochondrial dysfunction can cause NMJ deterioration. Further research, both in humans and in animal models, is essential for unravelling the mechanisms and potential interventions for age- and inactivity-related neuromuscular and mitochondrial alterations.
Collapse
Affiliation(s)
- Evgeniia Motanova
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Via U. Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
4
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
5
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024; 16:AD.2024.0306. [PMID: 38502585 PMCID: PMC11745433 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
7
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
8
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Mahmood S, Bhattarai P, Khan NR, Subhan Z, Razaque G, Albarqi HA, Alqahtani AA, Alasiri A, Zhu L. An Investigation for Skin Tissue Regeneration Enhancement/Augmentation by Curcumin-Loaded Self-Emulsifying Drug Delivery System (SEDDS). Polymers (Basel) 2022; 14:2904. [PMID: 35890680 PMCID: PMC9315559 DOI: 10.3390/polym14142904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes, one of the global metabolic disorders, is often associated with delayed wound healing due to the elevated level of free radicals at the wound site, which hampers skin regeneration. This study aimed at developing a curcumin-loaded self-emulsifying drug delivery system (SEDDS) for diabetic wound healing and skin tissue regeneration. For this purpose, various curcumin-loaded SEDDS formulations were prepared and optimized. Then, the SEDDS formulations were characterized by the emulsion droplet size, surface charge, drug content/entrapment efficiency, drug release, and stability. In vitro, the formulations were assessed for the cellular uptake, cytotoxicity, cell migration, and inhibition of the intracellular ROS production in the NIH3T3 fibroblasts. In vivo, the formulations' wound healing and skin regeneration potential were evaluated on the induced diabetic rats. The results indicated that, after being dispersed in the aqueous medium, the optimized SEDDS formulation was readily emulsified and formed a homogenous dispersion with a droplet size of 37.29 ± 3.47 nm, surface charge of -20.75 ± 0.07 mV, and PDI value of less than 0.3. The drug content in the optimized formulation was found to be 70.51% ± 2.31%, with an encapsulation efficiency of 87.36% ± 0.61%. The SEDDS showed a delayed drug release pattern compared to the pure drug solution, and the drug release rate followed the Fickian diffusion kinetically. In the cell culture, the formulations showed lower cytotoxicity, higher cellular uptake, and increased ROS production inhibition, and promoted the cell migration in the scratch assay compared to the pure drug. The in vivo data indicated that the curcumin-loaded SEDDS-treated diabetic rats had significantly faster-wound healing and re-epithelialization compared with the untreated and pure drug-treated groups. Our findings in this work suggest that the curcumin-loaded SEDDS might have great potential in facilitating diabetic wound healing and skin tissue regeneration.
Collapse
Affiliation(s)
- Saima Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan;
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Prapanna Bhattarai
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| | - Nauman Rahim Khan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, KPK, Pakistan
| | - Zakia Subhan
- Institute of Medical Sciences, Khyber Medical University, Kohat 26000, KPK, Pakistan;
| | - Ghulam Razaque
- Faculty of Pharmacy, University of Baluchistan, Quetta 87300, Baluchistan, Pakistan;
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Ali Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia; (H.A.A.); (A.A.A.); (A.A.)
| | - Lin Zhu
- Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
10
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Cassano V, Miceli S, Armentaro G, Mannino GC, Fiorentino VT, Perticone M, Succurro E, Hribal ML, Andreozzi F, Perticone F, Sesti G, Sciacqua A. Oxidative Stress and Left Ventricular Performance in Patients with Different Glycometabolic Phenotypes. Nutrients 2022; 14:nu14061299. [PMID: 35334956 PMCID: PMC8950717 DOI: 10.3390/nu14061299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to evaluate the possible correlation between oxidative stress and subclinical myocardial damage, assessed with speckle tracking echocardiography (STE), in normal glucose tolerance (NGT) patients with one-hour plasma glucose values ≥ 155 mg/dL (NGT ≥ 155), comparing them to NGT < 155 subjects, impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) newly diagnosed patients. We enrolled 100 Caucasian patients. All subjects underwent OGTT. The serum values of oxidative stress markers (8-isoprostane and Nox-2) were assessed with an ELISA test. Echocardiographic recordings were performed using an E-95 Pro ultrasound system. We observed significant differences, among the four groups, for fasting plasma glucose (p < 0.0001), one-hour postload (p < 0.0001), and two-hour postload plasma glucose (p < 0.0001). As compared with NGT < 155, NGT ≥ 155 exhibited significantly worse insulin sensitivity and higher values of hs-CRP. No significant differences were observed between NGT ≥ 155 and IGT patients. There was a significant increase in 8-isoprostane (p < 0.0001) and Nox-2 (p < 0.0001), from the first to fourth group, indicating an increase in oxidative stress with the worsening of the metabolic status. Serum levels of 8-isoprostane and Nox-2 were significantly increased in NGT ≥ 155 compared to the NGT < 155 group, but similar to IGT. The global longitudinal strain (GLS) appeared progressively lower proceeding from the NGT < 155 to T2DM group (p < 0.0001). For similar values of left ventricular ejection fraction (LVEF), NGT ≥ 155 exhibited reduced GLS compared to NGT < 155 (p = 0.001), but similar to IGT patients. Our study demonstrated that NGT ≥ 155 subjects exhibit early functional impairment of myocardial contractile fibres, these alterations are correlated with increased oxidative stress.
Collapse
Affiliation(s)
- Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Vanessa Teresa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University Rome-Sapienza, 00185 Roma, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694103; Fax: +39-0961-3647192
| |
Collapse
|
12
|
From the Bench to the Bedside: Branched Amino Acid and Micronutrient Strategies to Improve Mitochondrial Dysfunction Leading to Sarcopenia. Nutrients 2022; 14:nu14030483. [PMID: 35276842 PMCID: PMC8838610 DOI: 10.3390/nu14030483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
With extended life expectancy, the older population is constantly increasing, and consequently, so too is the prevalence of age-related disorders. Sarcopenia, the pathological age-related loss of muscle mass and function; and malnutrition, the imbalance in nutrient intake and resultant energy production, are both commonly occurring conditions in old adults. Altered nutrition plays a crucial role in the onset of sarcopenia, and both these disorders are associated with detrimental consequences for patients (e.g., frailty, morbidity, and mortality) and society (e.g., healthcare costs). Importantly, sarcopenia and malnutrition also share critical molecular alterations, such as mitochondrial dysfunction, increased oxidative stress, and a chronic state of low grade and sterile inflammation, defined as inflammageing. Given the connection between malnutrition and sarcopenia, nutritional interventions capable of affecting mitochondrial health and correcting inflammageing are emerging as possible strategies to target sarcopenia. Here, we discuss mitochondrial dysfunction, oxidative stress, and inflammageing as key features leading to sarcopenia. Moreover, we examine the effects of some branched amino acids, omega-3 PUFA, and selected micronutrients on these pathways, and their potential role in modulating sarcopenia, warranting further clinical investigation.
Collapse
|
13
|
Aoki K, Konno M, Tokinoya K, Honda K, Abe T, Nagata T, Takehara M, Sugasawa T, Takekoshi K, Ohmori H. Long-Term Habitual Exercise and Combination of β-Hydroxy-β-Methylbutyrate plus Black Ginger Alter the Autophagy and Mitochondria Related Genes in SAMP8 Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:39-46. [PMID: 35228494 DOI: 10.3177/jnsv.68.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Muscle mass and strength decrease with aging; however, habitual exercise can maintain muscle health. β-Hydroxy-β-methyl butyrate calcium (HMB) and black ginger (BG) improve muscle protein metabolism and energy production. Combining these two molecules, which have similar effects, may have a synergistic effect. Senescence-accelerated mouse-prone 8 (SAMP8) is a useful model of muscle aging. Therefore, we explored how the combination of habitual exercise, HMB, and BG affected muscle aging. We used 28-wk-old (28w) SAMP8 mice divided into six groups: 28 wk (28w), 44 wk (44w, Con), exercise (Ex), Ex+BG, Ex+HMB, and Ex+BG+HMB (Ex+Comb). Mice were required to run on a treadmill for 16 wk for 5 d per week. In 28w and 44w mice, grip strength tests and dissection were conducted. Muscle weight was measured, and qPCR and immunoblotting were conducted. Muscle mass and strength were declined in the 44w group. Exercise with HMB or BG alone had no effect, whereas muscle mass and strength were augmented in the Ex+Comb group. Similarly, levels of mitochondrial function- and biogenesis-related genes were increased. Autophagy-related protein (Atg3, 7, 16L1 and Beclin1) were altered in the Ex+Comb group. These results suggest that Ex+Comb affects autophagy. Overall, the combination of habitual exercise and HMB+BG may enhance muscle mass and strength by affecting the mitochondrial and autophagy systems in SAMP8.
Collapse
Affiliation(s)
- Kai Aoki
- Faculty of Medicine, University of Tsukuba
| | - Masaki Konno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Katsuyuki Tokinoya
- Japan Society for the Promotion of Science
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University
| | - Katsunari Honda
- School of Physical Education, Health and Sport Sciences, University of Tsukuba
| | - Takuya Abe
- Market and Product Development Department, Zenyaku Hanbai Co., Ltd
| | - Takeshi Nagata
- Pharmacology, Department of Drug Discovery, R&D Center. Zenyaku Kogyo Co., Ltd
| | | | | | | | - Hajime Ohmori
- Faculty of Health and Sport Sciences, University of Tsukuba
| |
Collapse
|
14
|
Sahenk Z, Ozes B, Murrey D, Myers M, Moss K, Yalvac ME, Ridgley A, Chen L, Mendell JR. Systemic delivery of AAVrh74.tMCK.hCAPN3 rescues the phenotype in a mouse model for LGMD2A/R1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:401-414. [PMID: 34514031 PMCID: PMC8413669 DOI: 10.1016/j.omtm.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) 2A/R1, caused by mutations in the CAPN3 gene and CAPN3 loss of function, is known to play a role in disease pathogenicity. In this study, AAVrh74.tMCK.CAPN3 was delivered systemically to two different age groups of CAPN3 knockout (KO) mice; each group included two treatment cohorts receiving low (1.17 × 1014 vg/kg) and high (2.35 × 1014 vg/kg) doses of the vector and untreated controls. Treatment efficacy was tested 20 weeks after gene delivery using functional (treadmill), physiological (in vivo muscle contractility assay), and histopathological outcomes. AAV.CAPN3 gene therapy resulted in significant, robust improvements in functional outcomes and muscle physiology at low and high doses in both age groups. Histological analyses of skeletal muscle showed remodeling of muscle, a switch to fatigue-resistant oxidative fibers in females, and fiber size increases in both sexes. Safety studies revealed no organ tissue abnormalities; specifically, there was no histopathological evidence of cardiotoxicity. These results show that CAPN3 gene replacement therapy improved the phenotype in the CAPN3 KO mouse model at both doses independent of age at the time of vector administration. The improvements were supported by an absence of cardiotoxicity, showing the efficacy and safety of the AAV.CAPN3 vector as a potential gene therapy for LGMDR1.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Darren Murrey
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Lei Chen
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
15
|
Flensted-Jensen M, Gram M, Dela F, Helge JW, Larsen S. Six weeks of high intensity cycle training reduces H 2O 2 emission and increases antioxidant protein levels in obese adults with risk factors for type 2 diabetes. Free Radic Biol Med 2021; 173:1-6. [PMID: 34273538 DOI: 10.1016/j.freeradbiomed.2021.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Obesity has been associated with increased production of reactive oxygen species (ROS), which may be involved in the development of cardiovascular disease and type 2 diabetes (T2D). Endurance exercise lowers ROS production and increases antioxidant capacity in muscle cells, but it is currently unknown whether high intensity interval training (HIT) elicits the same effects. Twelve sedentary obese subjects at risk of developing T2D took part in a six-week intervention, performing three HIT sessions per week (five 1-min sets of high-intensity cycling (125% of VO2peak), with 90 s recovery in between sets). Muscle biopsies were obtained for assessment of ROS production (H2O2 emission), mitochondrial respiratory capacity, and antioxidant protein levels before and after the intervention. H2O2 emission decreased 60.4% after the intervention (Succinate 3 mmol・l-1), concurrent with a 35.1% increase in protein levels of the antioxidant manganese superoxide dismutase (MnSOD) and a trend towards increased levels of the antioxidant catalase (p = 0.06, 72.9%). These findings were accompanied by a 19% increased mitochondrial respiratory capacity (CI + II), a 6.9% increased VO2peak and a 1.7% lower body fat percentage. These effects were achieved after just 15 min of high-intensity work and 40 min of total time spent per week. Overall, this suggests that a relatively small amount of HIT is sufficient to induce beneficial effects on ROS production and antioxidant status in muscle cells, which may lower oxidative stress and potentially protect against the development of cardiovascular disease.
Collapse
Affiliation(s)
- Mathias Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark.
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
16
|
Zhang RN, Shen F, Pan Q, Cao HX, Chen GY, Fan JG. PPARGC1A rs8192678 G>A polymorphism affects the severity of hepatic histological features and nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. World J Gastroenterol 2021; 27:3863-3876. [PMID: 34321850 PMCID: PMC8291025 DOI: 10.3748/wjg.v27.i25.3863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association between PPARGC1A rs8192678 and nonalcoholic fatty liver disease (NAFLD) requires further confirmation. In addition, it is still unknown whether PPARGC1A rs8192678 is associated with hepatic histological features in NAFLD in the Chinese population. AIM To investigate the interaction between PPARGC1A rs8192678 and nonalcoholic steatohepatitis (NASH), and whether this polymorphism is associated with hepatic histological features. METHODS Fifty-nine patients with liver biopsy-proven NAFLD and 93 healthy controls were recruited to a cohort representing the Chinese Han population. The SAF (steatosis, activity, and fibrosis) scoring system was used for hepatic histopathological evaluation. The polymorphisms of PPARGC1A rs8192678 and patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 were genotyped. The intrahepatic mRNA expression of PPARGC1A was evaluated by real-time polymerase chain reaction. RESULTS Thirty-seven patients with NAFLD had NASH, of which 12 were nonobese. The PPARGC1A rs8192678 risk A allele (carrying GA and AA genotypes) had the lowest P value in the dominant model; the odds ratio (OR) for NAFLD was 2.321 [95% confidence interval (CI): 1.121-4.806]. After adjusting for age, sex, and the PNPLA3 rs738409 risk G allele, the PPARGC1A rs8192678 A allele was a risk factor for NAFLD (OR 2.202, 95%CI: 1.030-4.705, P = 0.042). The genetic analysis showed that patients with NAFLD, moderate-to-severe steatosis (S2-3), and Activity 2-4 (A ≥ 2) were more likely to carry A in PPARGC1A rs8192678 (OR 5.000, 95%CI: 1.343-18.620, P = 0.012; and OR 4.071, 95%CI: 1.076-15.402, P = 0.031). The multivariate logistic regression analysis showed that PPARGC1A rs8192678 risk A allele was also independently associated with S2-3, A ≥ 2, and NASH (OR 6.190, 95%CI: 1.508-25.410, P = 0.011; OR 4.506, 95%CI 1.070-18.978, P = 0.040; and OR 6.337, 95%CI: 1.135-35.392, P = 0.035, respectively) after adjusting for age, sex, body mass index, and PNPLA3 rs738409 risk G allele. The results also showed that this polymorphism was associated with nonobese NASH (OR 22.000, 95%CI: 1.540-314.292, P = 0.021). The intrahepatic expression of PPARGC1A mRNA was significantly lower in the group of patients who carried the risk A allele (P = 0.014). CONCLUSION The PPARGC1A rs8192678 risk A allele is associated with NAFLD, and with S2-3, A ≥ 2 and NASH in NAFLD patients, independent of PNPLA3 rs738409, and may be associated with nonobese NASH.
Collapse
Affiliation(s)
- Rui-Nan Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai-Xia Cao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guang-Yu Chen
- Clinical Epidemiology Research Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
17
|
Liu Y, Guo C, Liu S, Zhang S, Mao Y, Fang L. Eight Weeks of High-Intensity Interval Static Strength Training Improves Skeletal Muscle Atrophy and Motor Function in Aged Rats via the PGC-1α/FNDC5/UCP1 Pathway. Clin Interv Aging 2021; 16:811-821. [PMID: 34040358 PMCID: PMC8139720 DOI: 10.2147/cia.s308893] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Background Sarcopenia is a syndrome characterized by the loss of skeletal muscle mass and strength. Most studies have focused on dynamic resistance exercises for preventing muscular decline and maintaining the muscle strength of older individuals. However, this training mode is impractical for older people with osteoarthritis and a limited range of motion. The static strength training mode is more suitable for older people. Therefore, a determination of the effect and mechanism of static strength training on sarcopenia is critical. Methods In this study, we developed a training device designed to collect training data and evaluate the effects of static training on the upper limbs of rats. The expression of PGC-1α was locally blocked by injecting a siRNA at the midpoint of the biceps to determine whether PGC-1α signal transduction participates in the effects of high-intensity interval static training on muscle strength. Then, the rat’s motor capacity was measured after static strength training. Immunohistochemistry and Western blotting were applied to determine PGC-1α/FNDC5/UCP1 expression levels in the muscle and adipose tissue. The serum irisin level was also detected using an enzyme-linked immunosorbent assay (ELISA). Results Increased levels of serum irisin and local expression of FNDC5, PGC-1α, and UCP1 were observed in the biceps brachii and surrounding fatty tissue after static strength training. Static strength training showed an advantage in reducing body weight and white fat accumulation while increasing the muscle fiber volume, which resulted in a longer training time and shorter rest time. Conclusion Overall, these results indicated that high-intensity interval static training prevents skeletal muscle atrophy and improves the motor function of aged rats through the PGC-1α/FNDC5/UCP1 signaling pathway.
Collapse
Affiliation(s)
- Yijie Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Chaoyang Guo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuting Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuai Zhang
- Department of Orthopaedics, Shanghai Pudong New District Hospital of Traditional Chinese Medicine, Shanghai, 201200, People's Republic of China
| | - Yun Mao
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201803, People's Republic of China
| | - Lei Fang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
18
|
Bellanti F, Lo Buglio A, Vendemiale G. Mitochondrial Impairment in Sarcopenia. BIOLOGY 2021; 10:31. [PMID: 33418869 PMCID: PMC7825073 DOI: 10.3390/biology10010031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined by the age-related loss of skeletal muscle quality, which relies on mitochondrial homeostasis. During aging, several mitochondrial features such as bioenergetics, dynamics, biogenesis, and selective autophagy (mitophagy) are altered and impinge on protein homeostasis, resulting in loss of muscle mass and function. Thus, mitochondrial dysfunction contributes significantly to the complex pathogenesis of sarcopenia, and mitochondria are indicated as potential targets to prevent and treat this age-related condition. After a concise presentation of the age-related modifications in skeletal muscle quality and mitochondrial homeostasis, the present review summarizes the most relevant findings related to mitochondrial alterations in sarcopenia.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, viale Pinto 1, 71122 Foggia, Italy; (A.L.B.); (G.V.)
| | | | | |
Collapse
|
19
|
Petrocelli JJ, Drummond MJ. PGC-1α-Targeted Therapeutic Approaches to Enhance Muscle Recovery in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228650. [PMID: 33233350 PMCID: PMC7700690 DOI: 10.3390/ijerph17228650] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Impaired muscle recovery (size and strength) following a disuse period commonly occurs in older adults. Many of these individuals are not able to adequately exercise due to pain and logistic barriers. Thus, nutritional and pharmacological therapeutics, that are translatable, are needed to promote muscle recovery following disuse in older individuals. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may be a suitable therapeutic target due to pleiotropic regulation of skeletal muscle. This review focuses on nutritional and pharmacological interventions that target PGC-1α and related Sirtuin 1 (SIRT1) and 5' AMP-activated protein kinase (AMPKα) signaling in muscle and thus may be rapidly translated to prevent muscle disuse atrophy and promote recovery. In this review, we present several therapeutics that target PGC-1α in skeletal muscle such as leucine, β-hydroxy-β-methylbuyrate (HMB), arginine, resveratrol, metformin and combination therapies that may have future application to conditions of disuse and recovery in humans.
Collapse
|
20
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
21
|
Effect of Aerobic Exercise Training and Deconditioning on Oxidative Capacity and Muscle Mitochondrial Enzyme Machinery in Young and Elderly Individuals. J Clin Med 2020; 9:jcm9103113. [PMID: 32993104 PMCID: PMC7601902 DOI: 10.3390/jcm9103113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is thought to be involved in age-related loss of muscle mass and function (sarcopenia). Since the degree of physical activity is vital for skeletal muscle mitochondrial function and content, the aim of this study was to investigate the effect of 6 weeks of aerobic exercise training and 8 weeks of deconditioning on functional parameters of aerobic capacity and markers of muscle mitochondrial function in elderly compared to young individuals. In 11 healthy, elderly (80 ± 4 years old) and 10 healthy, young (24 ± 3 years old) volunteers, aerobic training improved maximal oxygen consumption rate by 13%, maximal workload by 34%, endurance capacity by 2.4-fold and exercise economy by 12% in the elderly to the same extent as in young individuals. This evidence was accompanied by a similar training-induced increase in muscle citrate synthase (CS) (31%) and mitochondrial complex I–IV activities (51–163%) in elderly and young individuals. After 8 weeks of deconditioning, endurance capacity (−20%), and enzyme activity of CS (−18%) and complex I (−40%), III (−25%), and IV (−26%) decreased in the elderly to a larger extent than in young individuals. In conclusion, we found that elderly have a physiological normal ability to improve aerobic capacity and mitochondrial function with aerobic training compared to young individuals, but had a faster decline in endurance performance and muscle mitochondrial enzyme activity after deconditioning, suggesting an age-related issue in maintaining oxidative metabolism.
Collapse
|
22
|
Aas V, Thoresen GH, Rustan AC, Lund J. Substrate oxidation in primary human skeletal muscle cells is influenced by donor age. Cell Tissue Res 2020; 382:599-608. [PMID: 32897419 PMCID: PMC7683494 DOI: 10.1007/s00441-020-03275-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.e., musculus vastus lateralis, musculus obliquus internus abdominis, and musculi interspinales, and cellular energy metabolism was evaluated. Multiple linear regression analyses showed that donor age had a significant effect on glucose and oleic acid oxidation after correcting for gender, BMI, and muscle of origin. Donor BMI was the only significant contributor to cellular oleic acid uptake, whereas cellular glucose uptake did not rely on any of the variables examined. Despite the effect of age on substrate oxidation, cellular mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PPARGC1A) did not correlate with donor age. In conclusion, donor age significantly impacts substrate oxidation in cultured human myotubes, whereas donor BMI affects cellular oleic acid uptake.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| |
Collapse
|
23
|
Aoki K, Konno M, Honda K, Abe T, Nagata T, Takehara M, Sugasawa T, Takekoshi K, Ohmori H. Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model. Geriatrics (Basel) 2020; 5:E48. [PMID: 32916898 PMCID: PMC7555272 DOI: 10.3390/geriatrics5030048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
Loss of muscle mass and strength are progressing with aging. Exercise is a beneficial method to prevent physical dysfunction, and habitual exercise can improve the muscle quality. Therefore, we evaluated the effects of long-term habitual exercise's impact on sarcopenia utilizing the senescence-accelerated mice prone8 (SAMP8) model. Notably, 27 w SAMP8 were used in this study. Mice were classified into 28 (28 w) and 44 weeks old. The 44-week group was divided into the sedentary group (44 w) and a group exercising for 16 weeks (44 w + Ex). The 44 w + Ex performed habitual exercise from 28 to 44 weeks. Additionally, grip strength tests were performed with mice aged 28 and 44 weeks. Muscles were harvested and measured muscle weight at 44 w. Gastrocnemius decreased in 44 w, but was unchanged in 44 w + Ex. There was a trend for lower muscle grip strength in the 44 w group, but there was no change in 44 w + Ex. The phosphorylation levels of Akt and p70S6K as a protein synthesis marker were decreased in 44 w. Cytochrome c oxidase subunit IV (CoxIV) mRNA and protein levels decreased in 44 w. These results suggested that long-term habitual exercise attenuates muscle mass and strength decline, possibly through maintenance of muscle protein synthesis and mitochondrial maintenance.
Collapse
Affiliation(s)
- Kai Aoki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 1-1-1, Tennodai 305-8577, Japan; (K.A.); (M.K.)
| | - Masaki Konno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 1-1-1, Tennodai 305-8577, Japan; (K.A.); (M.K.)
| | - Katsunari Honda
- School of Physical Education, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan;
| | - Takuya Abe
- Zenyaku Hanbai Co., Ltd., Market and Product Development Department. 22-14, Higashiikebukuro 3-Chome, Toshima-Ku, Tokyo 170-0013, Japan;
| | - Takeshi Nagata
- Zenyaku Kogyo Co., Ltd., Healthcare Research Department of Drug Discovery, R&D Center. 33-7, Ohizumi-machi 2-Chome, Nerima-Ku, Tokyo 178-0062, Japan;
| | - Masaaki Takehara
- Zenyaku Kogyo Co., Ltd., Consumer Product Planning Department. 6-15, Otsuka 5-Chome, Bunkyo-Ku, Tokyo 112-8650, Japan;
| | - Takehito Sugasawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan; (T.S.); (K.T.)
| | - Kazuhiro Takekoshi
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan; (T.S.); (K.T.)
| | - Hajime Ohmori
- School of Physical Education, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan;
| |
Collapse
|
24
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
25
|
El Assar M, Angulo J, Rodríguez-Mañas L. Frailty as a phenotypic manifestation of underlying oxidative stress. Free Radic Biol Med 2020; 149:72-77. [PMID: 31422077 DOI: 10.1016/j.freeradbiomed.2019.08.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 02/08/2023]
Abstract
Oxidative stress plays a key role in the aging process. Lifestyle behaviours including low physical activity and inadequate nutritional habits in addition to genetic susceptibility and some chronic diseases compromise physiological response to free radicals and promote oxidative damage. Reduced resilience (referred to the ability to respond to stressors or adverse conditions) or functional reserve in isolated organs or systems determines clinical manifestations as the age-related chronic diseases while multisystemic dysfunction results in the frailty phenotype. In older adults, frailty, but not age, is associated with elevation of oxidative stress markers and reduction of antioxidant parameters. Mitochondrial dysfunction related to oxidative stress plays a prominent role in this process affecting not only skeletal muscle but also other potential tissues and organs. Increasing endogenous antioxidant capacity in different systems by exercise outstand among therapeutic interventions with potential ability to prevent or delay frailty phenotype and to promote healthy aging.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
26
|
Targeting Age-Dependent Functional and Metabolic Decline of Human Skeletal Muscle: The Geroprotective Role of Exercise, Myokine IL-6, and Vitamin D. Int J Mol Sci 2020; 21:ijms21031010. [PMID: 32033000 PMCID: PMC7037081 DOI: 10.3390/ijms21031010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the elderly, whole-body health largely relies on healthy skeletal muscle, which controls body stability, locomotion, and metabolic homeostasis. Age-related skeletal muscle structural/functional deterioration is associated with a higher risk of severe comorbid conditions and poorer outcomes, demanding major socioeconomic costs. Thus, the need for efficient so-called geroprotective strategies to improve resilience and ensure a good quality of life in older subjects is urgent. Skeletal muscle senescence and metabolic dysregulation share common cellular/intracellular mechanisms, potentially representing targets for intervention to preserve muscle integrity. Many factors converge in aging, and multifaceted approaches have been proposed as interventions, although they have often been inconclusive. Physical exercise can counteract aging and metabolic deficits, not only in maintaining tissue mass, but also by preserving tissue secretory function. Indeed, skeletal muscle is currently considered a proper secretory organ controlling distant organ functions through immunoactive regulatory small peptides called myokines. This review provides a current perspective on the main biomolecular mechanisms underlying age-dependent and metabolic deterioration of skeletal muscle, herein discussed as a secretory organ, the functional integrity of which largely depends on exercise and myokine release. In particular, muscle-derived interleukin (IL)-6 is discussed as a nutrient-level biosensor. Overall, exercise and vitamin D are addressed as optimal geroprotective strategies in view of their multi-target effects.
Collapse
|
27
|
Lee H, Kim J, Weber JA, Chung O, Cho YS, Jho S, Jun J, Kim HM, Lim J, Choi JP, Jeon S, Blazyte A, Edwards JS, Paek WK, Bhak J. Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. Mol Cells 2020; 43:86-95. [PMID: 31940721 PMCID: PMC6999708 DOI: 10.14348/molcells.2019.0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified redcrowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH , RPA1, PHAX, HNMT , HS2ST1 , PPCDC , PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species.
Collapse
Affiliation(s)
- HyeJin Lee
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | - Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | - Jessica A. Weber
- Department of Genetics, Harvard Medical School, Boston, MA 02115,
USA
| | | | | | - Sungwoong Jho
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | | | - Hak-Min Kim
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Jeongheui Lim
- National Science Museum, Ministry of Science and ICT, Daejeon 34143,
Korea
| | - Jae-Pil Choi
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | - Sungwon Jeon
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Asta Blazyte
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Jeremy S. Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,
USA
| | - Woon Kee Paek
- National Science Museum, Ministry of Science and ICT, Daejeon 34143,
Korea
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
- Clinomics, Ulsan 44919,
Korea
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| |
Collapse
|
28
|
Sabbah HN. Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl Sci 2020; 5:88-106. [PMID: 32043022 PMCID: PMC7000886 DOI: 10.1016/j.jacbts.2019.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Abstract
The burden of heart failure (HF) in terms of health care expenditures, hospitalizations, and mortality is substantial and growing. The failing heart has been described as "energy-deprived" and mitochondrial dysfunction is a driving force associated with this energy supply-demand imbalance. Existing HF therapies provide symptomatic and longevity benefit by reducing cardiac workload through heart rate reduction and reduction of preload and afterload but do not address the underlying causes of abnormal myocardial energetic nor directly target mitochondrial abnormalities. Numerous studies in animal models of HF as well as myocardial tissue from explanted failed human hearts have shown that the failing heart manifests abnormalities of mitochondrial structure, dynamics, and function that lead to a marked increase in the formation of damaging reactive oxygen species and a marked reduction in on demand adenosine triphosphate synthesis. Correcting mitochondrial dysfunction therefore offers considerable potential as a new therapeutic approach to improve overall cardiac function, quality of life, and survival for patients with HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CI (to V), complex I (to V)
- Drp, dynamin-related protein
- ETC, electron transport chain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LV, left ventricular
- MPTP, mitochondrial permeability transition pore
- Mfn, mitofusin
- OPA, optic atrophy
- PGC, peroxisome proliferator-activated receptor coactivator
- PINK, phosphatase and tensin homolog–inducible kinase
- ROS, reactive oxygen species
- TAZ, tafazzin
- cardiolipin
- heart failure
- mitochondria
- mtDNA, mitochondrial deoxyribonucleic acid
- myocardial energetics
- oxidative phosphorylation
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
29
|
Meng S, Xia W, Pan M, Jia Y, He Z, Ge W. Proteomics profiling and pathway analysis of hippocampal aging in rhesus monkeys. BMC Neurosci 2020; 21:2. [PMID: 31941443 PMCID: PMC6964096 DOI: 10.1186/s12868-020-0550-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Aged rhesus monkeys exhibit deficits in memory mediated by the hippocampus. Although extensive research has been carried out on the characteristics of human hippocampal aging, there is still very little scientific understanding of the changes associated with hippocampal aging in rhesus monkeys. To explore the proteomics profiling and pathway-related changes in the rhesus hippocampus during the aging process, we conducted a high throughput quantitative proteomics analysis of hippocampal samples from two groups of rhesus macaques aged 6 years and 20 years, using 2-plex tandem mass tag (TMT) labeling. In addition, we used a comprehensive bioinformatics analysis approach to investigate the enriched signaling pathways of differentially expressed proteins (the ratios of 20-years vs. 6-years, ≥ 1.20 or ≤ 0.83). Results In total, 3260 proteins were identified with a high level of confidence in rhesus hippocampus. We found 367 differentially expressed proteins related to rhesus hippocampus aging. Based on biological pathway analysis, we found these aging-related proteins were predominantly enriched in the electron transport chain, NRF2 pathway, focal adhesion–PI3K–AKT–mTOR signaling pathway and cytoplasmic ribosome proteins. Data are available via ProteomeXchange with identifier PXD011398. Conclusion This study provides a detail description of the proteomics profile related to rhesus hippocampal aging. These findings should make an important contribution to further mechanistic studies, marker selection and drug development for the prevention and treatment of aging or age-related neurodegeneration.
Collapse
Affiliation(s)
- Shu Meng
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao 5# Dongcheng District, Beijing, 100005, China
| | - Wenchao Xia
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao 5# Dongcheng District, Beijing, 100005, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao 5# Dongcheng District, Beijing, 100005, China
| | - Yangjie Jia
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao 5# Dongcheng District, Beijing, 100005, China
| | - Zhanlong He
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Dongdan Santiao 5# Dongcheng District, Beijing, 100005, China. .,Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, China.
| |
Collapse
|
30
|
Constitutive PGC-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis. Sci Rep 2019; 9:12320. [PMID: 31444397 PMCID: PMC6707251 DOI: 10.1038/s41598-019-48795-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/29/2019] [Indexed: 01/26/2023] Open
Abstract
Aerobic exercise prevents age-dependent decline in cognition and hippocampal neurogenesis. The transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) mediates many of the exercise-induced benefits in skeletal muscle, including the release of factors into the circulation with neurotrophic effects. We use a transgenic mouse model with muscle-specific overexpression of PGC-1α to study the contribution of chronic muscle activation on exercise-induced effects on hippocampal neurogenesis in aging. Young and old transgenic and wild type animals of both sexes displayed a robust age-related reduction in newborn BrdU+-cells, immature neurons (DCX+-cells) and new mature BrdU+/NeuN+-neurons in the dentate gyrus. No differences were detected between genotypes or sexes. Analysis of serum proteins showed a tendency towards increased levels of myokines and reduced levels of pro-inflammatory cytokines for transgenic animals, but only musclin was found to be significantly up-regulated in transgenic animals. We conclude that constitutive muscular overexpression of PGC-1α, despite potent systemic changes, is insufficient for mimicking exercise-induced effects on hippocampal neurogenesis in aging. Continued studies are required to investigate the complex molecular mechanisms by which circulating signals could mediate exercise-induced effects on the central nervous system in disease and aging, with the aim of discovering new therapeutic possibilities for patients.
Collapse
|
31
|
Balan E, Schwalm C, Naslain D, Nielens H, Francaux M, Deldicque L. Regular Endurance Exercise Promotes Fission, Mitophagy, and Oxidative Phosphorylation in Human Skeletal Muscle Independently of Age. Front Physiol 2019; 10:1088. [PMID: 31507451 PMCID: PMC6713923 DOI: 10.3389/fphys.2019.01088] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated whether regular endurance exercise maintains basal mitophagy and mitochondrial function during aging. Mitochondrial proteins and total mRNA were isolated from vastus lateralis biopsies (n = 33) of young sedentary (YS), old sedentary (OS), young active (YA), and old active (OA) men. Markers for mitophagy, fission, fusion, mitogenesis, and mitochondrial metabolism were assessed using qRT-PCR, Western blot, and immunofluorescence staining. Independently of age, fission protein Fis1 was higher in active vs. sedentary subjects (+80%; P < 0.05). Mitophagy protein PARKIN was more elevated in OA than in OS (+145%; P = 0.0026). mRNA expression of Beclin1 and Gabarap, involved in autophagosomes synthesis, were lower in OS compared to YS and OA (P < 0.05). Fusion and oxidative phosphorylation proteins were globally more elevated in the active groups (P < 0.05), while COx activity was only higher in OA than in OS (P = 0.032). Transcriptional regulation of mitogenesis did not vary with age or exercise. In conclusion, physically active lifestyle seems to participate in the maintenance of lifelong mitochondrial quality control by increasing fission and mitophagy.
Collapse
Affiliation(s)
- Estelle Balan
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Céline Schwalm
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Damien Naslain
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Henri Nielens
- Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
32
|
Di Meo S, Napolitano G, Venditti P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int J Mol Sci 2019; 20:E3024. [PMID: 31226872 PMCID: PMC6627449 DOI: 10.3390/ijms20123024] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Unaccustomed and/or exhaustive exercise generates excessive free radicals and reactive oxygen and nitrogen species leading to muscle oxidative stress-related damage and impaired contractility. Conversely, a moderate level of free radicals induces the body's adaptive responses. Thus, a low oxidant level in resting muscle is essential for normal force production, and the production of oxidants during each session of physical training increases the body's antioxidant defenses. Mitochondria, NADPH oxidases and xanthine oxidases have been identified as sources of free radicals during muscle contraction, but the exact mechanisms underlying exercise-induced harmful or beneficial effects yet remain elusive. However, it is clear that redox signaling influences numerous transcriptional activators, which regulate the expression of genes involved in changes in muscle phenotype. The mitogen-activated protein kinase family is one of the main links between cellular oxidant levels and skeletal muscle adaptation. The family components phosphorylate and modulate the activities of hundreds of substrates, including transcription factors involved in cell response to oxidative stress elicited by exercise in skeletal muscle. To elucidate the complex role of ROS in exercise, here we reviewed the literature dealing on sources of ROS production and concerning the most important redox signaling pathways, including MAPKs that are involved in the responses to acute and chronic exercise in the muscle, particularly those involved in the induction of antioxidant enzymes.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.
| | - Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I-80133 Napoli, Italy.
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.
| |
Collapse
|
33
|
Ross M, Lithgow H, Hayes L, Florida-James G. Potential Cellular and Biochemical Mechanisms of Exercise and Physical Activity on the Ageing Process. Subcell Biochem 2019; 91:311-338. [PMID: 30888658 DOI: 10.1007/978-981-13-3681-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise in young adults has been consistently shown to improve various aspects of physiological and psychological health but we are now realising the potential benefits of exercise with advancing age. Specifically, exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes and conditions in an ageing population, and how physical activity affects our vasculature, skeletal muscle function, our immune system, and cardiometabolic risk in older adults.
Collapse
Affiliation(s)
- Mark Ross
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | - Hannah Lithgow
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Lawrence Hayes
- Active Ageing Research Group, University of Cumbria, Lancaster, UK
| | | |
Collapse
|
34
|
Szeto HH, Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch Biochem Biophys 2018; 660:137-148. [DOI: 10.1016/j.abb.2018.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
|
35
|
Fealy CE, Mulya A, Axelrod CL, Kirwan JP. Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res 2018; 202:69-82. [PMID: 30153426 DOI: 10.1016/j.trsl.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
The traditional view of mitochondria as isolated, spherical, energy producing organelles, is undergoing a revolutionary change. Emerging data show that mitochondria form a dynamic reticulum that is regulated by cycles of fission and fusion. The discovery of proteins that modulate these activities has led to important advances in understanding human disease. Here, we review the latest evidence that connects the emerging field of mitochondrial dynamics to skeletal muscle insulin resistance and propose some potential mechanisms that may explain the long debated link between mitochondria and the development of type 2 diabetes.
Collapse
Affiliation(s)
- CiarÁn E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christopher L Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana.
| |
Collapse
|
36
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
37
|
Kudo D, Miyakoshi N, Hongo M, Kasukawa Y, Ishikawa Y, Fujii M, Shimada Y. mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator 1α, tumor necrosis factor-α, and interleukin-6 in paraspinal muscles of patients with lumbar kyphosis: a preliminary study. Clin Interv Aging 2018; 13:1633-1638. [PMID: 30233161 PMCID: PMC6135076 DOI: 10.2147/cia.s172952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Kyphosis is a spine deformity that can lead to falls and reduced quality of life. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) regulates mitochondrial biogenesis and is important for proper functioning of skeletal muscle, including the paraspinal muscles, which support and allow movement of the spine. The role of PGC-1α in paraspinal muscles in lumbar kyphosis has not been examined. We also examined the expressions of the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6. Methods We obtained paraspinal muscle specimens from 12 patients who underwent posterior lumbar surgery. RNA was isolated from these samples, and quantitative PCR was performed to compare the expression levels of PGC-1α, TNF-α, and IL-6 mRNA between patients with decreased lumbar lordosis (LL) and normal LL patients. Results TNF-α and IL-6 mRNA expressions in paraspinal muscles were significantly higher in the decreased LL group than in the normal LL group (P=0.048 for both). PGC-1α mRNA expression was slightly increased in the decreased LL group, but the difference was not significant. Age was significantly positively correlated with PGC-1α mRNA expression (P=0.010). PGC-1α mRNA expression was significantly positively correlated with TNF-α mRNA expression (P=0.022). LL was significantly negatively correlated with PGC-1α, TNF-α, and IL-6 mRNA expressions (P=0.015, 0.036, and 0.010, respectively). Conclusion TNF-α and IL-6 mRNA expressions in paraspinal muscles were significantly higher in the decreased LL group than in the normal LL group. LL was significantly negatively correlated with PGC-1α, TNF-α, and IL-6 mRNA expressions. PGC-1α mRNA expression levels in paraspinal muscles may be affected by lumbar kyphosis.
Collapse
Affiliation(s)
- Daisuke Kudo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Michio Hongo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Yoshinori Ishikawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Masashi Fujii
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| |
Collapse
|
38
|
Galle FA, Martella D, Bresciani G. [Antioxidant and anti-inflammatory modulation of exercise during aging]. Rev Esp Geriatr Gerontol 2018; 53:279-284. [PMID: 29898833 DOI: 10.1016/j.regg.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Aging is characterised by a gradual loss of the functional reserve. This, along with the fostering of sedentary habits and the increase in risk factors, causes a deterioration of antioxidant defences and an increase of the circulatory levels of inflammatory and oxidative markers, boosting a low-rate chronic inflammation, defined as inflamm-aging. This phenomenon is present in the aetiopathology of chronic diseases, as well as in cognitive deterioration cases associated with aging. The objective of this review is to describe the modulation of antioxidant and anti-inflammatory effects of physical exercise of moderate intensity and volume in the elderly. Evidence of its effectiveness as a non-pharmacological resource is presented, which decreases some deleterious effects of aging. This is mainly due to its neuroprotective action, the increase in circulating anti-inflammatory markers, and the improvement of antioxidant defence derived from its practice.
Collapse
Affiliation(s)
- Fernando Alexis Galle
- Facultad de Ciencias de la Educación, Universidad San Sebastián, Puerto Montt, Chile; Universidad Autónoma de Chile, Chile
| | | | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud (IRyS), Escuela de Educación Física, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
39
|
Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond) 2018; 132:1487-1507. [PMID: 30037837 DOI: 10.1042/cs20180276] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Overactivation of the renin-angiotensin (Ang) system (RAS) increases the classical arm (Ang-converting enzyme (ACE)/Ang II/Ang type 1 receptor (AT1R)) to the detriment of the protective arm (ACE2/Ang 1-7/Mas receptor (MasR)). The components of the RAS are present locally in white adipose tissue (WAT) and skeletal muscle, which act co-operatively, through specific mediators, in response to pathophysiological changes. In WAT, up-regulation of the classical arm promotes lipogenesis and reduces lipolysis and adipogenesis, leading to adipocyte hypertrophy and lipid storage, which are related to insulin resistance and increased inflammation. In skeletal muscle, the classical arm promotes protein degradation and increases the inflammatory status and oxidative stress, leading to muscle wasting. Conversely, the protective arm plays a counter-regulatory role by opposing the effect of Ang II. The accumulation of adipose tissue and muscle mass loss is associated with a higher risk of morbidity and mortality, which could be related, in part, to overactivation of the RAS. On the other hand, exercise training (ExT) shifts the balance of the RAS towards the protective arm, promoting the inhibition of the classical arm in parallel with the stimulation of the protective arm. Thus, fat mobilization and maintenance of muscle mass and function are facilitated. However, the mechanisms underlying exercise-induced changes in the RAS remain unclear. In this review, we present the RAS as a key mechanism of WAT and skeletal muscle metabolic dysfunction. Furthermore, we discuss the interaction between the RAS and exercise and the possible underlying mechanisms of the health-related aspects of ExT.
Collapse
|
40
|
A diferença de idade é um fator determinante na modulação do estresse oxidativo muscular induzido pelo exercício agudo. REVISTA BRASILEIRA DE CIÊNCIAS DO ESPORTE 2018. [DOI: 10.1016/j.rbce.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Multicomponent Exercise Improves Physical Functioning but Not Cognition and Hemodynamic Parameters in Elderly Osteoarthritis Patients Regardless of Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3714739. [PMID: 29721504 PMCID: PMC5867618 DOI: 10.1155/2018/3714739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/27/2017] [Accepted: 01/21/2018] [Indexed: 02/08/2023]
Abstract
The present study aimed to investigate the impact of a 6-month multicomponent exercise program (MCEP) on physical function, cognition, and hemodynamic parameters of elderly normotensive (NTS) and hypertensive (HTS) osteoarthritis patients. A total of 99 elderly osteoarthritis patients (44 NTS and 55 HTS) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. The physical exercises aggregated functional and walking exercises. Results indicate that 6 months of MCEP were able to improve one-leg stand and mobility (walking speeds) of osteoarthritis patients regardless of hypertension. On the other hand, cognitive and hemodynamic parameters were not altered after the MCEP. The findings of the present study demonstrate that 6 months of MCEP were able to improve the physical functioning (i.e., usual and maximal walking speed and balance) of osteoarthritis patients regardless of hypertensive condition.
Collapse
|
42
|
Pollock RD, O'Brien KA, Daniels LJ, Nielsen KB, Rowlerson A, Duggal NA, Lazarus NR, Lord JM, Philp A, Harridge SDR. Properties of the vastus lateralis muscle in relation to age and physiological function in master cyclists aged 55-79 years. Aging Cell 2018. [PMID: 29517834 PMCID: PMC5847860 DOI: 10.1111/acel.12735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, results are reported from the analyses of vastus lateralis muscle biopsy samples obtained from a subset (n = 90) of 125 previously phenotyped, highly active male and female cyclists aged 55–79 years in regard to age. We then subsequently attempted to uncover associations between the findings in muscle and in vivo physiological functions. Muscle fibre type and composition (ATPase histochemistry), size (morphometry), capillary density (immunohistochemistry) and mitochondrial protein content (Western blot) in relation to age were determined in the biopsy specimens. Aside from an age‐related change in capillary density in males (r = −.299; p = .02), no other parameter measured in the muscle samples showed an association with age. However, in males type I fibres and capillarity (p < .05) were significantly associated with training volume, maximal oxygen uptake, oxygen uptake kinetics and ventilatory threshold. In females, the only association observed was between capillarity and training volume (p < .05). In males, both type II fibre proportion and area (p < .05) were associated with peak power during sprint cycling and with maximal rate of torque development during a maximal voluntary isometric contraction. Mitochondrial protein content was not associated with any cardiorespiratory parameter in either males or females (p > .05). We conclude in this highly active cohort, selected to mitigate most of the effects of inactivity, that there is little evidence of age‐related changes in the properties of VL muscle across the age range studied. By contrast, some of these muscle characteristics were correlated with in vivo physiological indices.
Collapse
Affiliation(s)
- Ross D. Pollock
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Katie A. O'Brien
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Lorna J. Daniels
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Kathrine B. Nielsen
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Anthea Rowlerson
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Niharika A. Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research; Institute of Inflammation and Ageing; University of Birmingham; Birmingham UK
| | - Norman R. Lazarus
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Janet M. Lord
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research; Institute of Inflammation and Ageing; University of Birmingham; Birmingham UK
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
- Diabetes and Metabolism Division; Garvan Institute of Medical Research; Darlinghurst Australia
| | | |
Collapse
|
43
|
Centner C, Zdzieblik D, Dressler P, Fink B, Gollhofer A, König D. Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects. Free Radic Res 2018; 52:446-454. [DOI: 10.1080/10715762.2018.1440293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christoph Centner
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Denise Zdzieblik
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Patrick Dressler
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Bruno Fink
- Noxygen Science Transfer & Diagnostics GmbH, Elzach, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Daniel König
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Abstract
Changes in mitochondrial capacity and quality play a critical role in skeletal and cardiac muscle dysfunction. In vivo measurements of mitochondrial capacity provide a clear link between physical activity and mitochondrial function in aging and heart failure, although the cause and effect relationship remains unclear. Age-related decline in mitochondrial quality leads to mitochondrial defects that affect redox, calcium, and energy-sensitive signaling by altering the cellular environment that can result in skeletal muscle dysfunction independent of reduced mitochondrial capacity. This reduced mitochondrial quality with age is also likely to sensitize skeletal muscle mitochondria to elevated angiotensin or beta-adrenergic signaling associated with heart failure. This synergy between aging and heart failure could further disrupt cell energy and redox homeostasis and contribute to exercise intolerance in this patient population. Therefore, the interaction between aging and heart failure, particularly with respect to mitochondrial dysfunction, should be a consideration when developing strategies to improve quality of life in heart failure patients. Given the central role of the mitochondria in skeletal and cardiac muscle dysfunction, mitochondrial quality may provide a common link for targeted interventions in these populations.
Collapse
Affiliation(s)
- Sophia Z Liu
- Department of Radiology, University of Washington, Box 358050, Seattle, WA, 98109, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Box 358050, Seattle, WA, 98109, USA. .,Department of Pathology, University of Washington, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
45
|
Di Martino S, Tramonti C, Unti E, Del Gamba C, Bonuccelli U, Rossi B, Ceravolo R, Chisari C. Aerobic rehabilitation program for improving muscle function in Parkinson’s disease. Restor Neurol Neurosci 2018; 36:13-20. [DOI: 10.3233/rnn-170738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Siria Di Martino
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Caterina Tramonti
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Elisa Unti
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Bruno Rossi
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Gill JF, Santos G, Schnyder S, Handschin C. PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell 2018; 17. [PMID: 29067788 PMCID: PMC5770876 DOI: 10.1111/acel.12697] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 02/06/2023] Open
Abstract
The age-related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age-associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC-1α in the therapeutic effect of exercise in aging. Intriguingly, PGC-1α muscle-specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging-related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC-1α modulation. Surprisingly, we discovered that muscle PGC-1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC-1α.
Collapse
Affiliation(s)
| | - Gesa Santos
- Biozentrum; University of Basel; Basel Switzerland
| | | | | |
Collapse
|
47
|
Vandenbeek R, Khan NP, Estall JL. Linking Metabolic Disease With the PGC-1α Gly482Ser Polymorphism. Endocrinology 2018; 159:853-865. [PMID: 29186342 DOI: 10.1210/en.2017-00872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is a highly conserved transcriptional coactivator enriched in metabolically active tissues including liver, adipose, pancreas, and muscle. It plays a role in regulating whole body energy metabolism and its deregulation has been implicated in type 2 diabetes (T2D). A single nucleotide variant of the PPARGC1A gene (rs8192678) is associated with T2D susceptibility, relative risk of obesity and insulin resistance, and lower indices of β cell function. This common polymorphism is within a highly conserved region of the bioactive protein and leads to a single amino acid substitution (glycine 482 to serine). Its prevalence and effects on metabolic parameters appear to vary depending on factors including ethnicity and sex, suggesting important interactions between genetics and cultural/environmental factors and associated disease risk. Interestingly, carriers of the serine allele respond better to some T2D interventions, illustrating the importance of understanding functional impacts of genetic variance on PGC-1α when targeting this pathway for personalized medicine. This review summarizes a growing body of literature surrounding possible links between the PGC-1α Gly482Ser single nucleotide polymorphism and diabetes, with focus on key clinical findings, affected metabolic systems, potential molecular mechanisms, and the influence of geographical or ethnic background on associated risk.
Collapse
Affiliation(s)
- Roxanne Vandenbeek
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Naveen P Khan
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
48
|
Dhillon RS, Denu JM. Using comparative biology to understand how aging affects mitochondrial metabolism. Mol Cell Endocrinol 2017; 455:54-61. [PMID: 28025033 DOI: 10.1016/j.mce.2016.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/24/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Lifespan varies considerably among even closely related species, as exemplified by rodents and primates. Despite these disparities in lifespan, most studies have focused on intra-specific aging pathologies, primarily within a select few systems. While mice have provided much insight into aging biology, it is unclear if such a short-lived species lack defences against senescence that may have evolved in related longevous species. Many age-related diseases have been linked to mitochondrial dysfunction that are measured by decreased energy generation, structural damage to cellular components, and even cell death. Post translational modifications (PTMs) orchestrate many of the pathways associated with cellular metabolism, and are thought to be a key regulator in biological senescence. We propose hyperacylation as one such modification that may be implicated in numerous mitochondrial impairments affecting energy metabolism.
Collapse
Affiliation(s)
- Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin- Madison, Madison, WI 53715, USA.
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin- Madison, Madison, WI 53715, USA
| |
Collapse
|
49
|
Wang X, Ackermann M, Neufurth M, Wang S, Li Q, Feng Q, Schröder HC, Müller WEG. Restoration of Impaired Metabolic Energy Balance (ATP Pool) and Tube Formation Potential of Endothelial Cells under "high glucose", Diabetic Conditions by the Bioinorganic Polymer Polyphosphate. Polymers (Basel) 2017; 9:575. [PMID: 30965879 PMCID: PMC6418735 DOI: 10.3390/polym9110575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Micro-vascularization is a fast, energy-dependent process that is compromised by elevated glucose concentrations such as in diabetes mellitus disease. Here, we studied the effect of the physiological bioinorganic polymer, polyphosphate (polyP), on the reduced ATP content and impaired function of endothelial cells cultivated under "high glucose" (35 mM diabetes mellitus conditions) concentrations. This high-energy biopolymer has been shown to provide a source of metabolic energy, stored in its phosphoanhydride bonds. We show that exposure of human umbilical vein endothelial cells (HUVEC cells) to "high glucose" levels results in reduced cell viability, increased apoptotic cell death, and a decline in intracellular ATP level. As a consequence, the ability of HUVEC cells to form tube-like structures in the in vitro cell tube formation assay was almost completely abolished under "high glucose" conditions. Those cells were grown onto a physiological collagen scaffold (collagen/basement membrane extract). We demonstrate that these adverse effects of increased glucose levels can be reversed by administration of polyP to almost normal values. Using Na-polyP, complexed in a stoichiometric (molar) ratio to Ca2+ ions and in the physiological concentration range between 30 and 300 µM, an almost complete restoration of the reduced ATP pool of cells exposed to "high glucose" was found, as well as a normalization of the number of apoptotic cells and energy-dependent tube formation. It is concluded that the adverse effects on endothelial cells caused by the metabolic energy imbalance at elevated glucose concentrations can be counterbalanced by polyP, potentially opening new strategies for treatment of the micro-vascular complications in diabetic patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, D-55099 Mainz, Germany.
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Qiang Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, No. 50, Qixing Road, Guilin 541004, China.
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
50
|
Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 2017; 8:20428-20440. [PMID: 28099900 PMCID: PMC5386774 DOI: 10.18632/oncotarget.14670] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Luana Urbano Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo Luiz Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Aline Regina Ruiz Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|