1
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
2
|
Azizi L, Otani Y, Mykuliak VV, Goult BT, Hytönen VP, Turkki P. Talin-1 variants associated with spontaneous coronary artery dissection (SCAD) highlight how even subtle changes in multi-functional scaffold proteins can manifest in disease. Hum Mol Genet 2024; 33:1846-1857. [PMID: 39163585 PMCID: PMC11540920 DOI: 10.1093/hmg/ddae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Variants of talin-1 (TLN1) have recently been linked with spontaneous coronary artery dissection (SCAD) a condition where a tear can form in the wall of a heart artery necessitating immediate medical care. One talin-1 variant, A2013T, has an extensive familial pedigree of SCAD, which led to the screening for, and identification of, further talin-1 variants in SCAD patients. Here we evaluated these variants with commonly used pathogenicity prediction tools and found it challenging to reliably classify SCAD-associated variants, even A2013T where the evidence of a causal role is strong. Using biochemical and cell biological methods, we show that SCAD-associated variants in talin-1, which would typically be classified as non-pathogenic, still cause a measurable impact on protein structure and cell behaviour, including cell movement and wound healing capacity. Together, this indicates that even subtle variants in central mechanosensitive adapter proteins, can give rise to significant health impacts at the individual level, suggesting the need for a possible re-evaluation of the scoring criteria for pathogenicity prediction for talin variants.
Collapse
Affiliation(s)
- Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
| | - Yasumi Otani
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United States
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
| | - Benjamin T Goult
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United States
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| |
Collapse
|
3
|
Zhu S, Xu Y, Li Y, Wang L, Huang Y, Wan J. Biomimetic Hydrogels Promote Pseudoislet Formation to Improve Glycemic Control in Diabetic Mice. ACS Biomater Sci Eng 2024; 10:2486-2497. [PMID: 38445596 DOI: 10.1021/acsbiomaterials.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Islet or β-cell transplantation is currently considered to be the ideal treatment for diabetes, and three-dimensional (3D) bioprinting of a bionic pancreas with physiological stiffness is considered to be promising for the encapsulation and transplantation of β-cells. In this study, a 5%GelMA/2%AlgMA hybrid hydrogel with pancreatic physiological stiffness was constructed and used for β-cell encapsulation, 3D bioprinting, and in vivo transplantation to evaluate glycemic control in diabetic mice. The hybrid hydrogel had good cytocompatibility and could induce insulin-producing cells (IPCs) to form pseudoislet structures and improve insulin secretion. Furthermore, we validated the importance of betacellulin (BTC) in IPCs differentiation and confirmed that IPCs self-regulation was achieved by altering the nuclear and cytoplasmic distributions of BTC expression. In vivo transplantation of diabetic mice quickly restored blood glucose levels. In the future, 3D bioprinting of β-cells using biomimetic hydrogels will provide a promising platform for clinical islet transplantation for the treatment of diabetes.
Collapse
Affiliation(s)
- Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Yang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200000, China
| | - Yuxi Li
- Medical School of Nantong University, Nantong 226000, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China
| |
Collapse
|
4
|
Nguyen JP, Arthur TD, Fujita K, Salgado BM, Donovan MKR, Matsui H, Kim JH, D'Antonio-Chronowska A, D'Antonio M, Frazer KA. eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk. Nat Commun 2023; 14:6928. [PMID: 37903777 PMCID: PMC10616100 DOI: 10.1038/s41467-023-42560-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
The impact of genetic regulatory variation active in early pancreatic development on adult pancreatic disease and traits is not well understood. Here, we generate a panel of 107 fetal-like iPSC-derived pancreatic progenitor cells (iPSC-PPCs) from whole genome-sequenced individuals and identify 4065 genes and 4016 isoforms whose expression and/or alternative splicing are affected by regulatory variation. We integrate eQTLs identified in adult islets and whole pancreas samples, which reveal 1805 eQTL associations that are unique to the fetal-like iPSC-PPCs and 1043 eQTLs that exhibit regulatory plasticity across the fetal-like and adult pancreas tissues. Colocalization with GWAS risk loci for pancreatic diseases and traits show that some putative causal regulatory variants are active only in the fetal-like iPSC-PPCs and likely influence disease by modulating expression of disease-associated genes in early development, while others with regulatory plasticity likely exert their effects in both the fetal and adult pancreas by modulating expression of different disease genes in the two developmental stages.
Collapse
Affiliation(s)
- Jennifer P Nguyen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bianca M Salgado
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Ji Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, South Korea
| | | | - Matteo D'Antonio
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Lofrumento DD, Miraglia A, La Pesa V, Treglia AS, Chieppa M, De Nuccio F, Nicolardi G, Miele C, Beguinot F, Garbi C, Di Jeso B. Increased hexosamine biosynthetic pathway flux alters cell-cell adhesion in INS-1E cells and murine islets. Endocrine 2023; 81:492-502. [PMID: 37306934 PMCID: PMC10403402 DOI: 10.1007/s12020-023-03412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE In type 2 Diabetes, β-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of β-cell physiology, that is β-cell-β-cell homotypic interactions. METHODS We used INS-1E cells and murine islets. The expression and cellular distribution of E-cadherin and β-catenin was evaluated by immunofluorescence, immunohistochemistry and western blot. Cell-cell adhesion was examined by the hanging-drop aggregation assay, islet architecture by isolation and microscopic observation. RESULTS E-cadherin expression was not changed by increased hexosamine biosynthetic pathway flux, however, there was a decrease of cell surface, and an increase in intracellular E-cadherin. Moreover, intracellular E-cadherin delocalized, at least in part, from the Golgi complex to the endoplasmic reticulum. Beta-catenin was found to parallel the E-cadherin redistribution, showing a dislocation from the plasmamembrane to the cytosol. These changes had as a phenotypic consequence a decreased ability of INS-1E to aggregate. Finally, in ex vivo experiments, glucosamine was able to alter islet structure and to decrease surface abundandance of E-cadherin and β-catenin. CONCLUSION Increased hexosamine biosynthetic pathway flux alters E-cadherin cellular localization both in INS-1E cells and murine islets and affects cell-cell adhesion and islet morphology. These changes are likely caused by alterations of E-cadherin function, highlighting a new potential target to counteract the consequences of glucotoxicity on β-cells.
Collapse
Affiliation(s)
| | - Alessandro Miraglia
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Velia La Pesa
- Institute of Experimental Neurology and Division of Neuroscience, Neuropathology Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Marcello Chieppa
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Francesco De Nuccio
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Giuseppe Nicolardi
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy
| | - Claudia Miele
- CNR, IEOS and DiSMeT, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Francesco Beguinot
- CNR, IEOS and DiSMeT, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Corrado Garbi
- Dip. Medicina Molecolare e Biotecnologie Mediche, Via S. Pansini 5, University "Federico II", Naples, Italy
| | - Bruno Di Jeso
- DiSTeBA, Centro Ecotekne, Strada Monteroni, University of Salento, 73100, Lecce, Italy.
| |
Collapse
|
6
|
Kanai N, Inagaki A, Nakamura Y, Imura T, Mitsugashira H, Saito R, Miyagi S, Watanabe K, Kamei T, Unno M, Tabata Y, Goto M. A gelatin hydrogel nonwoven fabric improves outcomes of subcutaneous islet transplantation. Sci Rep 2023; 13:11968. [PMID: 37488155 PMCID: PMC10366205 DOI: 10.1038/s41598-023-39212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously reported that a recombinant peptide (RCP) enhances subcutaneous islet engraftment. However, it is impractical for clinical use because RCP must be removed when transplanting islets. We herein investigated whether a novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) could improve subcutaneous islet engraftment. A silicon spacer with or without GHNF was implanted into the subcutaneous space of diabetic mice. Syngeneic islets were transplanted into the pretreated space or intraportally (Ipo group). Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, CT angiography and gene expression were evaluated. The cure rate and glucose tolerance of the GHNF group were significantly better than in the control and Ipo groups (p < 0.01, p < 0.05, respectively). In the GHNF group, a limited increase of vWF-positive vessels was detected in the islet capsule, whereas laminin (p < 0.05), collagen III and IV were considerably enhanced. TaqMan arrays revealed a significant upregulation of 19 target genes (including insulin-like growth factor-2) in the pretreated space. GHNF markedly improved the subcutaneous islet transplantation outcomes, likely due to ECM compensation and protection of islet function by various growth factors, rather than enhanced neovascularization.
Collapse
Affiliation(s)
- Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Graduate School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan.
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
7
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
8
|
Amin ML, Deng K, Tran HA, Singh R, Rnjak-Kovacina J, Thorn P. Glucose-Dependent Insulin Secretion from β Cell Spheroids Is Enhanced by Embedding into Softer Alginate Hydrogels Functionalised with RGD Peptide. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120722. [PMID: 36550929 PMCID: PMC9774350 DOI: 10.3390/bioengineering9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Type 1 diabetes results from the loss of pancreatic β cells, reduced insulin secretion and dysregulated blood glucose levels. Replacement of these lost β cells with stem cell-derived β cells, and protecting these cells within macro-device implants is a promising approach to restore glucose homeostasis. However, to achieve this goal of restoration of glucose balance requires work to optimise β cell function within implants. We know that native β cell function is enhanced by cell-cell and cell-extracellular matrix interactions within the islets of Langerhans. Reproducing these interactions in 2D, such as culture on matrix proteins, does enhance insulin secretion. However, the impact of matrix proteins on the 3D organoids that would be in implants has not been widely studied. Here, we use native β cells that are dispersed from islets and reaggregated into small spheroids. We show these β cell spheroids have enhanced glucose-dependent insulin secretion when embedded into softer alginate hydrogels conjugated with RGD peptide (a common motif in extracellular matrix proteins). Embedding into alginate-RGD causes activation of integrin responses and repositioning of liprin, a protein that controls insulin secretion. We conclude that insulin secretion from β cell spheroids can be enhanced through manipulation of the surrounding environment.
Collapse
Affiliation(s)
- Md Lutful Amin
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Kylie Deng
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Hien A. Tran
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Reena Singh
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter Thorn
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
9
|
Desmoglein-2 is important for islet function and β-cell survival. Cell Death Dis 2022; 13:911. [PMID: 36309486 PMCID: PMC9617887 DOI: 10.1038/s41419-022-05326-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022]
Abstract
Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic β-cells. Although β-cell targeted autoimmune processes and β-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports β-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing β-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced β-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine β-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of β-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.
Collapse
|
10
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Wang D, Guo Y, Zhu J, Liu F, Xue Y, Huang Y, Zhu B, Wu D, Pan H, Gong T, Lu Y, Yang Y, Wang Z. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater 2022:S1742-7061(22)00375-0. [PMID: 35803504 DOI: 10.1016/j.actbio.2022.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Islet transplantation has poor long-term efficacy because of the lack of extracellular matrix support and neovascularization; this limits its wide application in diabetes research. In this study, we develop a 3D-printed islet organoid by combining a pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) as specific bioinks. The HAMA/pECM hydrogel was validated in vitro to maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, which helps improve islet function and activity. Further, in vivo experiments confirmed that the 3D-printed islet-encapsulated HAMA/pECM hydrogel increases insulin levels in diabetic mice, maintains blood glucose levels within a normal range for 90 days, and rapidly secretes insulin in response to blood glucose stimulation. In addition, the HAMA/pECM hydrogel can facilitate the attachment and growth of new blood vessels and increase the density of new vessels. Meanwhile, the designed 3D-printed structure was conducive to the formation of vascular networks and it promoted the construction of 3D-printed islet organoids. In conclusion, our experiments optimized the HAMA/pECM bioink composition and 3D-printed structure of islet organoids with promising therapeutic effects compared with the HAMA hydrogel group that can be potentially used in clinical applications to improve the effectiveness and safety of islet transplantation in vivo. STATEMENT OF SIGNIFICANCE: The extraction process of pancreatic islets can easily cause damage to the extracellular matrix and vascular system, resulting in poor islet transplantation efficiency. We developed a new tissue-specific bioink by combining pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA). The islet organoids constructed by 3D printing can mimic the microenvironment of the pancreas and maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, thereby improving islet function and activity. In addition, the 3D-printed structures we designed are favorable for the formation of new blood vessel networks, bringing hope for the long-term efficacy of islet transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Jiacheng Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Fang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Yan Xue
- Department of Internal Medicine, Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Haopeng Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
12
|
Harvey KE, LaVigne EK, Dar MS, Salyer AE, Pratt EPS, Sample PA, Aryal UK, Gowher H, Hockerman GH. RyR2/IRBIT regulates insulin gene transcript, insulin content, and secretion in the insulinoma cell line INS-1. Sci Rep 2022; 12:7713. [PMID: 35562179 PMCID: PMC9095623 DOI: 10.1038/s41598-022-11276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
The role of ER Ca2+ release via ryanodine receptors (RyR) in pancreatic β-cell function is not well defined. Deletion of RyR2 from the rat insulinoma INS-1 (RyR2KO) enhanced IP3 receptor activity stimulated by 7.5 mM glucose, coincident with reduced levels of the protein IP3 Receptor Binding protein released with Inositol 1,4,5 Trisphosphate (IRBIT). Insulin content, basal (2.5 mM glucose) and 7.5 mM glucose-stimulated insulin secretion were reduced in RyR2KO and IRBITKO cells compared to controls. INS2 mRNA levels were reduced in both RyR2KO and IRBITKO cells, but INS1 mRNA levels were specifically decreased in RyR2KO cells. Nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in RyR2KO and IRBITKO cells. DNA methylation of the INS1 and INS2 gene promotor regions was very low, and not different among RyR2KO, IRBITKO, and controls, but exon 2 of the INS1 and INS2 genes was more extensively methylated in RyR2KO and IRBITKO cells. Exploratory proteomic analysis revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. These results suggest that RyR2 regulates IRBIT levels and activity in INS-1 cells, and together maintain insulin content and secretion, and regulate the proteome, perhaps via DNA methylation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Amy E Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Paxton A Sample
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
13
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Collares-Buzato CB, Carvalho CP. Is type 2 diabetes mellitus another intercellular junction-related disorder? Exp Biol Med (Maywood) 2022; 247:743-755. [PMID: 35466731 DOI: 10.1177/15353702221090464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is nowadays a worldwide epidemic and has become a major challenge for health systems around the world. It is a multifactorial disorder, characterized by a chronic state of hyperglycemia caused by defects in the production as well as in the peripheral action of insulin. This minireview highlights the experimental and clinical evidence that supports the novel idea that intercellular junctions (IJs)-mediated cell-cell contacts play a role in the pathogenesis of T2D. It focuses on IJs repercussion for endocrine pancreas, intestinal barrier, and kidney dysfunctions that contribute to the onset and evolution of this metabolic disorder.
Collapse
Affiliation(s)
- Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil
| | - Carolina Pf Carvalho
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, CEP 11015-020, Brazil
| |
Collapse
|
15
|
Diagnostic and Prognostic Protein Biomarkers of β-Cell Function in Type 2 Diabetes and Their Modulation with Glucose Normalization. Metabolites 2022; 12:metabo12030196. [PMID: 35323639 PMCID: PMC8950787 DOI: 10.3390/metabo12030196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Development of type-2 diabetes(T2D) is preceded by β-cell dysfunction and loss. However, accurate measurement of β-cell function remains elusive. Biomarkers have been reported to predict β-cell functional decline but require validation. Therefore, we determined whether reported protein biomarkers could distinguish patients with T2D (onset < 10-years) from controls. A prospective, parallel study in T2D (n = 23) and controls (n = 23) was undertaken. In T2D subjects, insulin-induced blood glucose normalization from baseline 7.6 ± 0.4 mmol/L (136.8 ± 7.2 mg/dL) to 4.5 ± 0.07 mmol/L (81 ± 1.2 mg/dL) was maintained for 1-h. Controls were maintained at 4.9 ± 0.1 mmol/L (88.2 ± 1.8 mg/dL). Slow Off-rate Modified Aptamer (SOMA) -scan plasma protein measurement determined a 43-protein panel reported as diagnostic and/or prognostic for T2D. At baseline, 9 proteins were altered in T2D. Three of 13 prognostic/diagnostic proteins were lower in T2D: Adiponectin (p < 0.0001), Endocan (p < 0.05) and Mast/stem cell growth factor receptor-Kit (KIT) (p < 0.01). Two of 14 prognostic proteins [Cathepsin-D (p < 0.05) and Cadherin-E (p < 0.005)], and four of 16 diagnostic proteins [Kallikrein-4 (p = 0.001), Aminoacylase-1 (p = 0.001), Insulin-like growth factor-binding protein-4 (IGFBP4) (p < 0.05) and Reticulon-4 receptor (RTN4R) (p < 0.001)] were higher in T2D. Protein levels were unchanged following glucose normalization in T2D. Our results suggest that a focused biomarker panel may be useful for assessing β-cell dysfunction and may complement clinical decision-making on insulin therapy. Unchanged post-glucose normalization levels indicate these are not acute-phase proteins or affected by glucose variability.
Collapse
|
16
|
Martinez C, Maschio DA, de Fontes CC, Vanzela EC, Benfato ID, Gazarini ML, Carneiro EM, de Oliveira CA, Collares-Buzato CB, de F. Carvalho CP. EARLY DECREASE IN CX36 IS ASSOCIATED WITH INCREASED CELL ADHESION MOLECULES (CAMs) JUNCTIONAL CONTENT IN MOUSE PANCREATIC ISLETS AFTER SHORT-TERM HIGH-FAT DIET FEEDING. Ann Anat 2022; 241:151891. [DOI: 10.1016/j.aanat.2022.151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
17
|
Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication 2021; 13. [PMID: 34075893 DOI: 10.1088/1758-5090/ac00c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
In vitroresearch for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1Eβ-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generateβ-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producingβ-cells, representing a suitable technique to generateβ-cell clusters to study pancreatic islet function.
Collapse
Affiliation(s)
- Ferran Velasco-Mallorquí
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Sanavia T, Huang C, Manduchi E, Xu Y, Dadi PK, Potter LA, Jacobson DA, Di Camillo B, Magnuson MA, Stoeckert CJ, Gu G. Temporal Transcriptome Analysis Reveals Dynamic Gene Expression Patterns Driving β-Cell Maturation. Front Cell Dev Biol 2021; 9:648791. [PMID: 34017831 PMCID: PMC8129579 DOI: 10.3389/fcell.2021.648791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Newly differentiated pancreatic β cells lack proper insulin secretion profiles of mature functional β cells. The global gene expression differences between paired immature and mature β cells have been studied, but the dynamics of transcriptional events, correlating with temporal development of glucose-stimulated insulin secretion (GSIS), remain to be fully defined. This aspect is important to identify which genes and pathways are necessary for β-cell development or for maturation, as defective insulin secretion is linked with diseases such as diabetes. In this study, we assayed through RNA sequencing the global gene expression across six β-cell developmental stages in mice, spanning from β-cell progenitor to mature β cells. A computational pipeline then selected genes differentially expressed with respect to progenitors and clustered them into groups with distinct temporal patterns associated with biological functions and pathways. These patterns were finally correlated with experimental GSIS, calcium influx, and insulin granule formation data. Gene expression temporal profiling revealed the timing of important biological processes across β-cell maturation, such as the deregulation of β-cell developmental pathways and the activation of molecular machineries for vesicle biosynthesis and transport, signal transduction of transmembrane receptors, and glucose-induced Ca2+ influx, which were established over a week before β-cell maturation completes. In particular, β cells developed robust insulin secretion at high glucose several days after birth, coincident with the establishment of glucose-induced calcium influx. Yet the neonatal β cells displayed high basal insulin secretion, which decreased to the low levels found in mature β cells only a week later. Different genes associated with calcium-mediated processes, whose alterations are linked with insulin resistance and deregulation of glucose homeostasis, showed increased expression across β-cell stages, in accordance with the temporal acquisition of proper GSIS. Our temporal gene expression pattern analysis provided a comprehensive database of the underlying molecular components and biological mechanisms driving β-cell maturation at different temporal stages, which are fundamental for better control of the in vitro production of functional β cells from human embryonic stem/induced pluripotent cell for transplantation-based type 1 diabetes therapy.
Collapse
Affiliation(s)
- Tiziana Sanavia
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Chen Huang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Elisabetta Manduchi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yanwen Xu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leah A Potter
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mark A Magnuson
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christian J Stoeckert
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
19
|
Friedlander MSH, Nguyen VM, Kim SK, Bevacqua RJ. Pancreatic Pseudoislets: An Organoid Archetype for Metabolism Research. Diabetes 2021; 70:1051-1060. [PMID: 33947722 PMCID: PMC8343609 DOI: 10.2337/db20-1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/20/2021] [Indexed: 01/08/2023]
Abstract
Pancreatic islets are vital endocrine regulators of systemic metabolism, and recent investigations have increasingly focused on understanding human islet biology. Studies of isolated human islets have advanced understanding of the development, function, and regulation of cells comprising islets, especially pancreatic α- and β-cells. However, the multicellularity of the intact islet has stymied specific experimental approaches-particularly in genetics and cell signaling interrogation. This barrier has been circumvented by the observation that islet cells can survive dispersion and reaggregate to form "pseudoislets," organoids that retain crucial physiological functions, including regulated insulin and glucagon secretion. Recently, exciting advances in the use of pseudoislets for genetics, genomics, islet cell transplantation, and studies of intraislet signaling and islet cell interactions have been reported by investigators worldwide. Here we review molecular and cellular mechanisms thought to promote islet cell reaggregation, summarize methods that optimize pseudoislet development, and detail recent insights about human islet biology from genetic and transplantation-based pseudoislet experiments. Owing to robust, international programs for procuring primary human pancreata, pseudoislets should serve as both a durable paradigm for primary organoid studies and as an engine of discovery for islet biology, diabetes, and metabolism research.
Collapse
Affiliation(s)
- Mollie S H Friedlander
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Vy M Nguyen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
20
|
Weitz J, Menegaz D, Caicedo A. Deciphering the Complex Communication Networks That Orchestrate Pancreatic Islet Function. Diabetes 2021; 70:17-26. [PMID: 33355306 PMCID: PMC7881851 DOI: 10.2337/dbi19-0033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Pancreatic islets are clusters of hormone-secreting endocrine cells that rely on intricate cell-cell communication mechanisms for proper function. The importance of multicellular cooperation in islet cell physiology was first noted nearly 30 years ago in seminal studies showing that hormone secretion from endocrine cell types is diminished when these cells are dispersed. These studies showed that reestablishing cellular contacts in so-called pseudoislets caused endocrine cells to regain hormone secretory function. This not only demonstrated that cooperation between islet cells is highly synergistic but also gave birth to the field of pancreatic islet organoids. Here we review recent advances related to the mechanisms of islet cell cross talk. We first describe new developments that revise current notions about purinergic and GABA signaling in islets. Then we comment on novel multicellular imaging studies that are revealing emergent properties of islet communication networks. We finish by highlighting and discussing recent synthetic approaches that use islet organoids of varied cellular composition to interrogate intraislet signaling mechanisms. This reverse engineering of islets not only will shed light on the mechanisms of intraislet signaling and define communication networks but also may guide efforts aimed at restoring islet function and β-cell mass in diabetes.
Collapse
Affiliation(s)
- Jonathan Weitz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Danusa Menegaz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Leonard M. Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Leonard M. Miller School of Medicine, Miami, FL
| |
Collapse
|
21
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
22
|
Singh R, Cottle L, Loudovaris T, Xiao D, Yang P, Thomas HE, Kebede MA, Thorn P. Enhanced structure and function of human pluripotent stem cell-derived beta-cells cultured on extracellular matrix. Stem Cells Transl Med 2020; 10:492-505. [PMID: 33145960 PMCID: PMC7900592 DOI: 10.1002/sctm.20-0224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
The differentiation of human stem cells into insulin secreting beta‐like cells holds great promise to treat diabetes. Current protocols drive stem cells through stages of directed differentiation and maturation and produce cells that secrete insulin in response to glucose. Further refinements are now needed to faithfully phenocopy the responses of normal beta cells. A critical factor in normal beta cell behavior is the islet microenvironment which plays a central role in beta cell survival, proliferation, gene expression and secretion. One important influence on native cell responses is the capillary basement membrane. In adult islets, each beta cell makes a point of contact with basement membrane protein secreted by vascular endothelial cells resulting in structural and functional polarization. Interaction with basement membrane proteins triggers local activation of focal adhesions, cell orientation, and targeting of insulin secretion. This study aims to identifying the role of basement membrane proteins on the structure and function of human embryonic stem cell and induced pluripotent stem cell‐derived beta cells. Here, we show that differentiated human stem cells‐derived spheroids do contain basement membrane proteins as a diffuse web‐like structure. However, the beta‐like cells within the spheroid do not polarize in response to this basement membrane. We demonstrate that 2D culture of the differentiated beta cells on to basement membrane proteins enforces cell polarity and favorably alters glucose dependent insulin secretion.
Collapse
Affiliation(s)
- Reena Singh
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Louise Cottle
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Di Xiao
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Helen E Thomas
- St Vincent's Institute, Fitzroy, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Peter Thorn
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
23
|
Wassmer CH, Lebreton F, Bellofatto K, Bosco D, Berney T, Berishvili E. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int 2020; 33:1577-1588. [PMID: 32852858 PMCID: PMC7756715 DOI: 10.1111/tri.13721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a major health issue of increasing prevalence. ß‐cell replacement, by pancreas or islet transplantation, is the only long‐term curative option for patients with insulin‐dependent diabetes. Despite good functional results, pancreas transplantation remains a major surgery with potentially severe complications. Islet transplantation is a minimally invasive alternative that can widen the indications in view of its lower morbidity. However, the islet isolation procedure disrupts their vasculature and connection to the surrounding extracellular matrix, exposing them to ischemia and anoikis. Implanted islets are also the target of innate and adaptive immune attacks, thus preventing robust engraftment and prolonged full function. Generation of organoids, defined as functional 3D structures assembled with cell types from different sources, is a strategy increasingly used in regenerative medicine for tissue replacement or repair, in a variety of inflammatory or degenerative disorders. Applied to ß‐cell replacement, it offers the possibility to control the size and composition of islet‐like structures (pseudo‐islets), and to include cells with anti‐inflammatory or immunomodulatory properties. In this review, we will present approaches to generate islet cell organoids and discuss how these strategies can be applied to the generation of a bioartificial pancreas for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
24
|
Ljubicic S, Cottet-Dumoulin D, Bosco D. Loss of cell-cell and cell-substrate contacts in single pancreatic β-cells divert insulin release to intracellular vesicular compartments. Biol Cell 2020; 112:427-438. [PMID: 32857433 DOI: 10.1111/boc.202000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Cell-cell or cell-substrate interactions are lost when cells are dissociated in culture, or during pathophysiological breakdowns, therefore impairing their structure and polarity, and affecting their function. We show that single rat β-cells, cultured under non-adhesive conditions, form intracytoplasmic vacuoles increasing in number and size over time. We characterized these structures and their implication in β-cell function. RESULTS Ultrastructurally, the vacuoles resemble vesicular apical compartments and are delimited by a membrane, containing microvilli and expressing markers of the plasma membrane, including glucose transporter 2 and actin. When insulin secretion is stimulated, insulin accumulates in the lumen of the vacuoles. By contrast, when the cells are incubated under low calcium levels, the hormone is undetectable in vesicular compartments. Insulin release studies from single cells revealed that vacuole-containing cells release less insulin as compared to control cells. When added to the medium, a non-permeant fluid phase marker becomes trapped within vacuoles. Inhibition of vesicular trafficking and exocytosis as well as dynamin-dependent endocytosis changed the percentage of vacuole-containing cells, suggesting that both endocytic and exocytic track contribute to their formation. CONCLUSIONS These results suggest that loss of cell-cell and cell-substrate contacts in isolated β-cells affect normal vesicular trafficking and redirects insulin secretion to intracellular vesicular compartments. SIGNIFICANCE Our study reveals for the first time that single β-cells develop vacuolar compartments when cultured in suspension and redirect their insulin secretion to these vacuoles. This may underlie a compensatory process for cultured cells who lost their interactions with adhesive substrates or neighbouring cells.
Collapse
Affiliation(s)
- Sanda Ljubicic
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva, University Hospitals and University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David Cottet-Dumoulin
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva, University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva, University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
α-catenin isoforms are regulated by glucose and involved in regulating insulin secretion in rat clonal β-cell models. Biochem J 2020; 477:763-772. [PMID: 32003420 PMCID: PMC7036346 DOI: 10.1042/bcj20190832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
The recent finding that β-catenin levels play an important rate-limiting role in processes regulating insulin secretion lead us to investigate whether its binding partner α-catenin also plays a role in this process. We find that levels of both α-E-catenin and α-N-catenin are rapidly up-regulated as levels of glucose are increased in rat clonal β-cell models INS-1E and INS-832/3. Lowering in levels of either α-catenin isoform using siRNA resulted in significant increases in glucose stimulated insulin secretion (GSIS) and this effect was attenuated when β-catenin levels were lowered indicating these proteins have opposing effects on insulin release. This effect of α-catenin knockdown on GSIS was not due to increases in insulin expression but was associated with increases in calcium influx into cells. Moreover, simultaneous depletion of α-E catenin and α-N catenin decreased the actin polymerisation to a similar degree as latrunculin treatment and inhibition of ARP 2/3 mediated actin branching with CK666 attenuated the α-catenin depletion effect on GSIS. This suggests α-catenin mediated actin remodelling may be involved in the regulation of insulin secretion. Together this indicates that α-catenin and β-catenin can play opposing roles in regulating insulin secretion, with some degree of functional redundancy in roles of α-E-catenin and α-N-catenin. The finding that, at least in β-cell models, the levels of each can be regulated in the longer term by glucose also provides a potential mechanism by which sustained changes in glucose levels might impact on the magnitude of GSIS.
Collapse
|
26
|
Kolnes AJ, Øystese KAB, Olarescu NC, Ringstad G, Berg-Johnsen J, Casar-Borota O, Bollerslev J, Jørgensen AP. FSH Levels Are Related to E-cadherin Expression and Subcellular Location in Nonfunctioning Pituitary Tumors. J Clin Endocrinol Metab 2020; 105:5839824. [PMID: 32421791 PMCID: PMC7758833 DOI: 10.1210/clinem/dgaa281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Gonadotroph pituitary neuroendocrine tumors (PitNETs) can express follicle-stimulating hormone (FSH) and luteinizing hormone (LH) or be hormone negative, but they rarely secrete hormones. During tumor development, epithelial cells develop a mesenchymal phenotype. This process is characterized by decreased membranous E-cadherin and translocation of E-cadherin to the nucleus. Estrogen receptors (ERs) regulate both E-cadherin and FSH expression and secretion. Whether the hormone status of patients with gonadotroph PitNETs is regulated by epithelial-to-mesenchymal transition (EMT) and ERs is unknown. OBJECTIVES To study the effect of EMT on hormone expression in gonadotroph nonfunctioning (NF)-PitNETs. DESIGN Molecular and clinical analyses of 105 gonadotroph PitNETs. Immunohistochemical studies and real-time quantitative polymerase chain reaction were performed for FSH, LH, E-cadherin, and ERα. Further analyses included blood samples, clinical data, and radiological images. SETTING All patients were operated on in the same tertiary referral center. RESULTS NF-PitNET with high FSH expression had decreased immunohistochemical staining for membranous E-cadherin (P < .0001) and increased staining for nuclear E-cadherin (P < .0001). Furthermore, high FSH expression was associated with increased ERα staining (P = .0002) and ERα mRNA (P = .0039). Circulating levels of plasma-FSH (P-FSH) correlated with FSH staining in gonadotroph NF-PitNET (P = .0025). Tumor size and invasiveness was not related to FSH staining, E-cadherin, or ERα. LH expression was not associated with E-cadherin or ERα. CONCLUSION In gonadotroph PitNETs, FSH staining is related to E-cadherin, ERα expression, and circulating levels of P-FSH. There was no association between FSH staining and invasiveness. The clinical significance of these findings will be investigated in ongoing prospective studies.
Collapse
Affiliation(s)
- Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Correspondence and Reprint Requests: Anders Jensen Kolnes, Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway, E-mail:
| | - Kristin A B Øystese
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nicoleta C Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Jon Berg-Johnsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders P Jørgensen
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Wang Q, Henry TAN, Pronin AN, Jang GF, Lubaczeuski C, Crabb JW, Bernal-Mizrachi E, Slepak VZ. The regulatory G protein signaling complex, Gβ5-R7, promotes glucose- and extracellular signal-stimulated insulin secretion. J Biol Chem 2020; 295:7213-7223. [PMID: 32229584 PMCID: PMC7247291 DOI: 10.1074/jbc.ra119.011534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5-R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M-stimulated glucose-stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5-/- islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gβ5-R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gβ5-R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Taylor A N Henry
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Camila Lubaczeuski
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - John W Crabb
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136.
| |
Collapse
|
28
|
Camunas-Soler J, Dai XQ, Hang Y, Bautista A, Lyon J, Suzuki K, Kim SK, Quake SR, MacDonald PE. Patch-Seq Links Single-Cell Transcriptomes to Human Islet Dysfunction in Diabetes. Cell Metab 2020; 31:1017-1031.e4. [PMID: 32302527 PMCID: PMC7398125 DOI: 10.1016/j.cmet.2020.04.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Impaired function of pancreatic islet cells is a major cause of metabolic dysregulation and disease in humans. Despite this, it remains challenging to directly link physiological dysfunction in islet cells to precise changes in gene expression. Here we show that single-cell RNA sequencing combined with electrophysiological measurements of exocytosis and channel activity (patch-seq) can be used to link endocrine physiology and transcriptomes at the single-cell level. We collected 1,369 patch-seq cells from the pancreata of 34 human donors with and without diabetes. An analysis of function and gene expression networks identified a gene set associated with functional heterogeneity in β cells that can be used to predict electrophysiology. We also report transcriptional programs underlying dysfunction in type 2 diabetes and extend this approach to cryopreserved cells from donors with type 1 diabetes, generating a valuable resource for understanding islet cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
29
|
Pfeiffer S, Sánchez-Lechuga B, Donovan P, Halang L, Prehn JHM, Campos-Caro A, Byrne MM, López-Tinoco C. Circulating miR-330-3p in Late Pregnancy is Associated with Pregnancy Outcomes Among Lean Women with GDM. Sci Rep 2020; 10:908. [PMID: 31969632 PMCID: PMC6976655 DOI: 10.1038/s41598-020-57838-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is characterised by insulin resistance accompanied by reduced beta-cell compensation to increased insulin demand, typically observed in the second and third trimester and associated with adverse pregnancy outcomes. There is a need for a biomarker that can accurately monitor status and predict outcome in GDM, reducing foetal-maternal morbidity and mortality risks. To this end, circulating microRNAs (miRNAs) present themselves as promising candidates, stably expressed in serum and known to play crucial roles in regulation of glucose metabolism. We analysed circulating miRNA profiles in a cohort of GDM patients (n = 31) and nondiabetic controls (n = 29) during the third trimester for miRNA associated with insulin-secretory defects and glucose homeostasis. We identified miR-330-3p as being significantly upregulated in lean women with GDM compared to nondiabetic controls. Furthermore, increased levels of miR-330-3p were associated with better response to treatment (diet vs. insulin), with lower levels associated with exogenous insulin requirement. We observed miR-330-3p to be significantly related to the percentage of caesarean deliveries, with miR-330-3p expression significantly higher in spontaneously delivered GDM patients. We report this strong novel association of circulating miR-330-3p with risk of primary caesarean delivery as a pregnancy outcome linked with poor maternal glycaemic control, strengthening the growing body of evidence for roles of diabetes-associated miRNAs in glucose homeostasis and adaptation to the complex changes related to pregnancy.
Collapse
Affiliation(s)
- Shona Pfeiffer
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Begoña Sánchez-Lechuga
- Servicio de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Paul Donovan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland
| | - Antonio Campos-Caro
- Servicio de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Maria M Byrne
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, 2, Ireland.,Department of Endocrinology, Mater Misericordiae University Hospital, Eccles Street, Dublin, 7, Ireland
| | - Cristina López-Tinoco
- Servicio de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| |
Collapse
|
30
|
Gan WJ, Do OH, Cottle L, Ma W, Kosobrodova E, Cooper-White J, Bilek M, Thorn P. Local Integrin Activation in Pancreatic β Cells Targets Insulin Secretion to the Vasculature. Cell Rep 2019; 24:2819-2826.e3. [PMID: 30208309 DOI: 10.1016/j.celrep.2018.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extracellular matrix (ECM) critically affects β cell functions via integrin activation. But whether these ECM actions drive the spatial organization of β cells, as they do in epithelial cells, is unknown. Here, we show that within islets of Langerhans, focal adhesion activation in β cells occurs exclusively where they contact the capillary ECM (vascular face). In cultured β cells, 3D mapping shows enriched insulin granule fusion where the cells contact ECM-coated coverslips, which depends on β1 integrin receptor activation. Culture on micro-contact printed stripes of E-cadherin and fibronectin shows that β cell contact at the fibronectin stripe selectively activates focal adhesions and enriches exocytic machinery and insulin granule fusion. Culture of cells in high glucose, as a model of glucotoxicity, abolishes granule targeting. We conclude that local integrin activation targets insulin secretion to the islet capillaries. This mechanism might be important for islet function and may change in disease.
Collapse
Affiliation(s)
- Wan Jun Gan
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Oanh Hoang Do
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Louise Cottle
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei Ma
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Elena Kosobrodova
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Camperdown, NSW 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nanoscience Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter Thorn
- Department of Physiology, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
31
|
Lammert E, Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol 2019; 432:1407-1418. [PMID: 31711959 DOI: 10.1016/j.jmb.2019.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The islets of Langerhans or pancreatic islets are pivotal in the control of blood glucose and are complex microorgans embedded within the larger volume of the exocrine pancreas. Humans can have ~3.2 million islets [1] which, to our current knowledge, function in a similar manner to sense circulating blood glucose levels and respond with the secretion of a mix of different hormones that act to maintain glucose concentrations around a specific set point [2]. At a cellular level, the control of hormone secretion by glucose and other secretagogues is well-understood [3]. The key signal cascades have been identified and many details of the secretory process are known. However, if we shift focus from single cells and consider cells within intact islets, we do not have a comprehensive model as to how the islet environment influences cell function and how the islets work as a whole. This is important because there is overwhelming evidence that the structure and function of the individual endocrine cells are dramatically affected by the islet environment [4,5]. Uncovering the influence of this islet niche might drive future progress in treatments for Type 2 diabetes [6] and cell replacement therapies for Type 1 diabetes [7]. In this review, we focus on the insulin secreting beta cells and their interactions with the immediate environment that surrounds them including endocrine-endocrine interactions and contacts with capillaries.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
32
|
Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10:4491. [PMID: 31582751 PMCID: PMC6776618 DOI: 10.1038/s41467-019-12472-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells. Islet transplantation is a feasible approach to treat type I diabetes, however inflammation and poor vascularisation impair long-term engraftment. Here the authors show that incorporating human amniotic epithelial cells into islet organoids improves engraftment and function of organoids, through enhanced revascularisation.
Collapse
|
33
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
34
|
Olaniru OE, Persaud SJ. Identifying novel therapeutic targets for diabetes through improved understanding of islet adhesion receptors. Curr Opin Pharmacol 2018; 43:27-33. [DOI: 10.1016/j.coph.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
|
35
|
Yulis M, Kusters DHM, Nusrat A. Cadherins: cellular adhesive molecules serving as signalling mediators. J Physiol 2018; 596:3883-3898. [PMID: 29968384 PMCID: PMC6117591 DOI: 10.1113/jp275328] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
The single pass, transmembrane proteins of the cadherin family have been appreciated as important proteins that regulate intercellular adhesion. In addition to this critical function, cadherins contribute to important signalling events that control cellular homeostasis. Many examples exist of classical, desmosomal and atypical cadherins participating in the regulation of signalling events that control homeostatic functions in cells. Much of the work on cadherin mediated signalling focuses on classical cadherins or on specific disease states such as pemphigus vulgaris. Cadherin mediated signalling has been shown to play critical roles during development, in proliferation, apoptosis, disease pathobiology and beyond. It is becoming increasingly clear that cadherins operate through a range of molecular mechanisms. The diversity of pathways and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of the roles that these versatile proteins play in signalling and cellular function.
Collapse
Affiliation(s)
- Mark Yulis
- Department of PathologyThe University of MichiganAnn ArborMI 48109USA
| | | | - Asma Nusrat
- Department of PathologyThe University of MichiganAnn ArborMI 48109USA
| |
Collapse
|
36
|
Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans. Sci Rep 2018; 8:9979. [PMID: 29967323 PMCID: PMC6028636 DOI: 10.1038/s41598-018-28019-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ex vivo expansion and differentiation of human pancreatic β-cell are enabling steps of paramount importance for accelerating the development of therapies for diabetes. The success of regenerative strategies depends on their ability to reproduce the chemical and biophysical properties of the microenvironment in which β-cells develop, proliferate and function. In this paper we focus on the biophysical properties of the extracellular environment and exploit the cluster-assembled zirconia substrates with tailored roughness to mimic the nanotopography of the extracellular matrix. We demonstrate that β-cells can perceive nanoscale features of the substrate and can convert these stimuli into mechanotransductive processes which promote long-term in vitro human islet culture, thus preserving β-cell differentiation and function. Proteomic and quantitative immunofluorescence analyses demonstrate that the process is driven by nanoscale topography, via remodelling of the actin cytoskeleton and nuclear architecture. These modifications activate a transcriptional program which stimulates an adaptive metabolic glucose response. Engineered cluster-assembled substrates coupled with proteomic approaches may provide a useful strategy for identifying novel molecular targets for treating diabetes mellitus and for enhancing tissue engineering in order to improve the efficacy of islet cell transplantation therapies.
Collapse
|
37
|
The role of adherens junction proteins in the regulation of insulin secretion. Biosci Rep 2018; 38:BSR20170989. [PMID: 29459424 PMCID: PMC5861323 DOI: 10.1042/bsr20170989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
In healthy individuals, any rise in blood glucose levels is rapidly countered by the release of insulin from the β-cells of the pancreas which in turn promotes the uptake and storage of the glucose in peripheral tissues. The β-cells possess exquisite mechanisms regulating the secretion of insulin to ensure that the correct amount of insulin is released. These mechanisms involve tight control of the movement of insulin containing secretory vesicles within the β-cells, initially preventing most vesicles being able to move to the plasma membrane. Elevated glucose levels trigger an influx of Ca2+ that allows fusion of the small number of insulin containing vesicles that are pre-docked at the plasma membrane but glucose also stimulates processes that allow other insulin containing vesicles located further in the cell to move to and fuse with the plasma membrane. The mechanisms controlling these processes are complex and not fully understood but it is clear that the interaction of the β-cells with other β-cells in the islets is very important for their ability to develop the appropriate machinery for proper regulation of insulin secretion. Emerging evidence indicates one factor that is key for this is the formation of homotypic cadherin mediated adherens junctions between β-cells. Here, we review the evidence for this and discuss the mechanisms by which these adherens junctions might regulate insulin vesicle trafficking as well as the implications this has for understanding the dysregulation of insulin secretion seen in pathogenic states.
Collapse
|
38
|
Mitok KA, Freiberger EC, Schueler KL, Rabaglia ME, Stapleton DS, Kwiecien NW, Malec PA, Hebert AS, Broman AT, Kennedy RT, Keller MP, Coon JJ, Attie AD. Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. J Biol Chem 2018; 293:5860-5877. [PMID: 29496998 DOI: 10.1074/jbc.ra117.001102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The mouse is a critical model in diabetes research, but most research in mice has been limited to a small number of mouse strains and limited genetic variation. Using the eight founder strains and both sexes of the Collaborative Cross (C57BL/6J (B6), A/J, 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), PWK/PhJ (PWK), WSB/EiJ (WSB), and CAST/EiJ (CAST)), we investigated the genetic dependence of diabetes-related metabolic phenotypes and insulin secretion. We found that strain background is associated with an extraordinary range in body weight, plasma glucose, insulin, triglycerides, and insulin secretion. Our whole-islet proteomic analysis of the eight mouse strains demonstrates that genetic background exerts a strong influence on the islet proteome that can be linked to the differences in diabetes-related metabolic phenotypes and insulin secretion. We computed protein modules consisting of highly correlated proteins that enrich for biological pathways and provide a searchable database of the islet protein expression profiles. To validate the data resource, we identified tyrosine hydroxylase (Th), a key enzyme in catecholamine synthesis, as a protein that is highly expressed in β-cells of PWK and CAST islets. We show that CAST islets synthesize elevated levels of dopamine, which suppresses insulin secretion. Prior studies, using only the B6 strain, concluded that adult mouse islets do not synthesize l-3,4-dihydroxyphenylalanine (l-DOPA), the product of Th and precursor of dopamine. Thus, the choice of the CAST strain, guided by our islet proteomic survey, was crucial for these discoveries. In summary, we provide a valuable data resource to the research community, and show that proteomic analysis identified a strain-specific pathway by which dopamine synthesized in β-cells inhibits insulin secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paige A Malec
- the Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109
| | - Alexander S Hebert
- the Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | | - Robert T Kennedy
- the Department of Chemistry, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109
| | | | - Joshua J Coon
- Chemistry, and .,the Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | |
Collapse
|
39
|
Bowers DT, Olingy CE, Chhabra P, Langman L, Merrill PH, Linhart RS, Tanes ML, Lin D, Brayman KL, Botchwey EA. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J Biomed Mater Res B Appl Biomater 2018; 106:555-568. [PMID: 28240814 PMCID: PMC5572559 DOI: 10.1002/jbm.b.33862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/28/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Macroencapsulation is a powerful approach to increase the efficiency of extrahepatic pancreatic islet transplant. FTY720, a small molecule that activates signaling through sphingosine-1-phosphate receptors, is immunomodulatory and pro-angiogenic upon sustained delivery from biomaterials. While FTY720 (fingolimod, Gilenya) has been explored for organ transplantation, in the present work the effect of locally released FTY720 from novel nanofiber-based macroencapsulation membranes is explored for islet transplantation. We screened islet viability during culture with FTY720 and various biodegradable polymers. Islet viability is significantly reduced by the addition of high doses (≥500 ng/mL) of soluble FTY720. Among the polymers screened, islets have the highest viability when cultured with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Therefore, PHBV was blended with polycaprolactone (PCL) for mechanical stability and electrospun into nanofibers. Islets had no detectable function ex vivo following 5 days or 12 h of subcutaneous implantation within our engineered device. Subsequently, we explored a preconditioning scheme in which islets are transplanted 2 weeks after FTY720-loaded nanofibers are implanted. This allows FTY720 to orchestrate a local regenerative milieu while preventing premature transplantation into avascular sites that contain high concentrations of FTY720. These results provide a foundation and motivation for further investigation into the use of FTY720 in preconditioning sites for efficacious islet transplantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 555-568, 2018.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Claire E Olingy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332-0363
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Linda Langman
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Parker H Merrill
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Ritu S Linhart
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Michael L Tanes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Dan Lin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Kenneth L Brayman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
- Department of Surgery, University of Virginia, Charlottesville, Virginia, 22903
| | - Edward A Botchwey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332-0363
| |
Collapse
|
40
|
Kosobrodova E, Gan WJ, Kondyurin A, Thorn P, Bilek MMM. Improved Multiprotein Microcontact Printing on Plasma Immersion Ion Implanted Polystyrene. ACS APPLIED MATERIALS & INTERFACES 2018; 10:227-237. [PMID: 29211435 DOI: 10.1021/acsami.7b15545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multiprotein micropatterning allows the creation of complex, controlled microenvironments for single cells that can be used for the study of the localized effects of various proteins and signals on cell survival, development, and functions. To enable analysis of cell interactions with microprinted proteins, the multiprotein micropattern must have low cross-contamination and high long-term stability in a cell culture medium. To achieve this, we employed an optimized plasma ion immersion implantation (PIII) treatment to provide polystyrene (PS) with the ability to covalently immobilize proteins on contact while retaining sufficient transparency and suitable surface properties for contact printing and retention of protein activity. The quality and long-term stability of the micropatterns on untreated and PIII treated PS were compared with those on glass using confocal microscopy. The protein micropattern on the PIII treated PS was more uniform and had a significantly higher contrast that was not affected by long-term incubation in cell culture media because the proteins were covalently bonded to PIII treated PS. The immunostaining of mouse pancreatic β cells interacting with E-cadherin and fibronectin striped surfaces showed phosphorylated paxillin concentrated on cell edges over the fibronectin stripes. This indicates that multiprotein micropatterns printed on PIII treated PS can be used for high-resolution studies of local influence on cell morphology and protein production.
Collapse
Affiliation(s)
- E Kosobrodova
- The School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - W J Gan
- Department of Physiology, Sydney Medical School, Charles Perkins Centre, University of Sydney , Sydney, New South Wales 2006, Australia
| | - A Kondyurin
- The School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - P Thorn
- Department of Physiology, Sydney Medical School, Charles Perkins Centre, University of Sydney , Sydney, New South Wales 2006, Australia
| | - M M M Bilek
- The School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
- Department of Physiology, Sydney Medical School, Charles Perkins Centre, University of Sydney , Sydney, New South Wales 2006, Australia
- The School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney , Sydney, New South Wales 2006, Australia
- The Australian Institute of Nanoscale Science and Technology, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
41
|
Lee G, Jun Y, Jang H, Yoon J, Lee J, Hong M, Chung S, Kim DH, Lee S. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Acta Biomater 2018; 65:185-196. [PMID: 29101017 DOI: 10.1016/j.actbio.2017.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. STATEMENT OF SIGNIFICANCE In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems.
Collapse
|
42
|
Montanari E, Meier RPH, Mahou R, Seebach JD, Wandrey C, Gerber-Lemaire S, Buhler LH, Gonelle-Gispert C. Multipotent mesenchymal stromal cells enhance insulin secretion from human islets via N-cadherin interaction and prolong function of transplanted encapsulated islets in mice. Stem Cell Res Ther 2017; 8:199. [PMID: 28962589 PMCID: PMC5622460 DOI: 10.1186/s13287-017-0646-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSC) enhance viability and function of islets of Langerhans. We aimed to examine the interactions between human MSC and human islets of Langerhans that influence the function of islets. METHODS Human MSC and human islets (or pseudoislets, obtained after digestion and reaggregation of islet cells) were cocultured with or without cellular contact and glucose-stimulated insulin secretion assays were performed to assess cell function. The expression of several adhesion molecules, notably ICAM-1 and N-cadherin on islets and MSC, was investigated by qPCR. The role of N-cadherin was analyzed by adding an anti-N-cadherin antibody in islets cultured with or without MSC for 24 h followed by insulin measurements in static incubation assays. Islets and MSC were coencapsulated in new hydrogel microspheres composed of calcium alginate and covalently crosslinked polyethylene glycol. Encapsulated cells were transplanted intraperitoneally in streptozotocin-induced diabetic mice and glycemia was monitored. Islet function was evaluated by the intraperitoneal glucose tolerance test. RESULTS In vitro, free islets and pseudoislets cocultured in contact with MSC showed a significantly increased insulin secretion when compared to islets or pseudoislets cultured alone or cocultured without cell-to-cell contact with MSC (p < 0.05). The expression of ICAM-1 and N-cadherin was present on islets and MSC. Blocking N-cadherin prevented the enhanced insulin secretion by islets cultured in contact with MSC whereas it did not affect insulin secretion by islets cultured alone. Upon transplantation in diabetic mice, islets microencapsulated together with MSC showed significantly prolonged normoglycemia when compared with islets alone (median 69 and 39 days, respectively, p < 0.01). The intraperitoneal glucose tolerance test revealed an improved glycemic response in mice treated with islets microencapsulated together with MSC compared to mice transplanted with islets alone (p < 0.001). CONCLUSIONS MSC improve survival and function of islets of Langerhans by cell-to-cell contact mediated by the adhesion molecule N-cadherin.
Collapse
Affiliation(s)
- Elisa Montanari
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Raphael P H Meier
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Redouan Mahou
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergy, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Christine Wandrey
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Leo H Buhler
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Department of Surgery, Geneva University Hospitals and Medical Faculty, 1211, Geneva, Switzerland.
| |
Collapse
|
43
|
Chang HY, Chen SL, Shen MR, Kung ML, Chuang LM, Chen YW. Selective serotonin reuptake inhibitor, fluoxetine, impairs E-cadherin-mediated cell adhesion and alters calcium homeostasis in pancreatic beta cells. Sci Rep 2017; 7:3515. [PMID: 28615694 PMCID: PMC5471211 DOI: 10.1038/s41598-017-03747-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed drugs for mood disorders. Long term use of SSRIs is associated with an increased risk of diabetes, but the underlying mechanism(s) remains elusive. E-cadherin-mediated cell-cell adhesion and elevated [Ca2+]i are important for insulin release and pancreatic β cell functions. This study aims to investigate whether a SSRI, fluoxetine (Prozac), induces pancreatic β cell dysfunction through affecting E-cadherin and/or [Ca2+]i. Here we show that fluoxetine significantly reduces glucose stimulated insulin secretion (GSIS). MIN6 cells, an established murine immortalized β cell line, form smaller colonies of loosely packed cells with reduced cell-cell contact after fluoxetine treatment. Immunofluorescence staining reveals that fluoxetine increases cytoplasmic accumulation of E-cadherin and reduces the membrane-localized E-cadherin probably due to increase of its endocytosis. Fluoxetine inhibits spreading of β cells on E-cad/Fc coated slides and also disrupts E-cadherin-mediated actin filaments. Additionally, fluoxetine significantly suppresses endoplasmic reticulum (ER) calcium release and store-operated calcium entry (SOCE) activation, probably through reduction of ER calcium storage and inhibition of stromal interaction molecule 1 (STIM1) trafficking. These data suggest that exposure to fluoxetine results in impaired β cell functions, occurring in concert with reduction of E-cadherin-dependent cell adhesion and alterations of calcium homeostasis.
Collapse
Affiliation(s)
- Huang-Yu Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ling Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Advanced Optoelectronic Technology Center, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Lang Kung
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medicine, National Taiwan University Medical College, Taipei, Taiwan
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
44
|
A method for high-throughput functional imaging of single cells within heterogeneous cell preparations. Sci Rep 2016; 6:39319. [PMID: 27982116 PMCID: PMC5159830 DOI: 10.1038/srep39319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/17/2016] [Indexed: 01/25/2023] Open
Abstract
Functional characterization of individual cells within heterogeneous tissue preparations is challenging. Here, we report the development of a versatile imaging method that assesses single cell responses of various endpoints in real time, while identifying the individual cell types. Endpoints that can be measured include (but are not limited to) ionic flux (calcium, sodium, potassium and hydrogen), metabolic responsiveness (NAD(P)H, mitochondrial membrane potential), and signal transduction (H2O2 and cAMP). Subsequent to fluorescent imaging, identification of cell types using immunohistochemistry allows for mapping of cell type to their respective functional real time responses. To validate the utility of this method, NAD(P)H responses to glucose of islet alpha versus beta cells generated from dispersed pancreatic islets, followed by the construction of frequency distributions characterizing the variability in the magnitude of each individual cell responses were compared. As expected, no overlap between the glucose response frequency distributions for beta cells versus alpha cells was observed, thereby establishing both the high degree of fidelity and low rate of both false-negatives and false-positives in this approach. This novel method has the ability not only to resolve single cell level functional differences between cell types, but also to characterize functional heterogeneity within a given cell type.
Collapse
|
45
|
Sorrenson B, Cognard E, Lee KL, Dissanayake WC, Fu Y, Han W, Hughes WE, Shepherd PR. A Critical Role for β-Catenin in Modulating Levels of Insulin Secretion from β-Cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization. J Biol Chem 2016; 291:25888-25900. [PMID: 27777306 DOI: 10.1074/jbc.m116.758516] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
The processes regulating glucose-stimulated insulin secretion (GSIS) and its modulation by incretins in pancreatic β-cells are only partly understood. Here we investigate the involvement of β-catenin in these processes. Reducing β-catenin levels using siRNA knockdown attenuated GSIS in a range of β-cell models and blocked the ability of GLP-1 agonists and the depolarizing agent KCl to potentiate this. This could be mimicked in both β-cell models and isolated islets by short-term exposure to the β-catenin inhibitory drug pyrvinium. In addition, short-term treatment with a drug that increases β-catenin levels results in an increase in insulin secretion. The timing of these effects suggests that β-catenin is required for the processes regulating trafficking and/or release of pre-existing insulin granules rather than for those regulated by gene expression. This was supported by the finding that the overexpression of the transcriptional co-activator of β-catenin, transcription factor 7-like 2 (TCF7L2), attenuated insulin secretion, consistent with the extra TCF7L2 translocating β-catenin from the plasma membrane pool to the nucleus. We show that β-catenin depletion disrupts the intracellular actin cytoskeleton, and by using total internal reflectance fluorescence (TIRF) microscopy, we found that β-catenin is required for the glucose- and incretin-induced depletion of insulin vesicles from near the plasma membrane. In conclusion, we find that β-catenin levels modulate Ca2+-dependent insulin exocytosis under conditions of glucose, GLP-1, or KCl stimulation through a role in modulating insulin secretory vesicle localization and/or fusion via actin remodeling. These findings also provide insights as to how the overexpression of TCF7L2 may attenuate insulin secretion.
Collapse
Affiliation(s)
- Brie Sorrenson
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,the Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kathryn L Lee
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Waruni C Dissanayake
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yanyun Fu
- the Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| | - Weiping Han
- the Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| | - William E Hughes
- the Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney, New South Wales 2010, Australia, and.,the Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Peter R Shepherd
- From the Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, .,the Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
46
|
Chen W, Zhang Q, Luk BT, Fang RH, Liu Y, Gao W, Zhang L. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. NANOSCALE 2016; 8:10364-70. [PMID: 27139582 PMCID: PMC4866884 DOI: 10.1039/c6nr00535g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.
Collapse
Affiliation(s)
- Wansong Chen
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol 2016; 146:13-31. [PMID: 27020567 DOI: 10.1007/s00418-016-1428-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
Abstract
Intercellular junctions play a role in regulating islet cytoarchitecture, insulin biosynthesis and secretion. In this study, we investigated the animal metabolic state as well as islet histology and cellular distribution/expression of CAMs and F-actin in the endocrine pancreas of C57BL/6/JUnib mice fed a high-fat diet (HFd) for a prolonged time period (8 months). Mice fed a HFd became obese and type 2 diabetic, displaying significant peripheral insulin resistance, hyperglycemia and moderate hyperinsulinemia. Isolated islets of HFd-fed mice displayed a significant impairment of glucose-induced insulin secretion associated with a diminished frequency of intracellular calcium oscillations compared with control islets. No marked change in islet morphology and cytoarchitecture was observed; however, HFd-fed mice showed higher beta cell relative area in comparison with controls. As shown by immunohistochemistry, ZO-1, E-, N-cadherins, α- and β-catenins were expressed at the intercellular contact site of endocrine cells, while VE-cadherin, as well as ZO-1, was found at islet vascular compartment. Redistribution of N-, E-cadherins and α-catenin (from the contact region to the cytoplasm in endocrine cells) associated with increased submembranous F-actin cell level as well as increased VE-cadherin islet immunolabeling was observed in diabetic mice. Increased gene expression of VE-cadherin and ZO-1, but no change for the other proteins, was observed in islets of diabetic mice. Only in the case of VE-cadherin, a significant increase in islet content of this CAM was detected by immunoblotting in diabetic mice. In conclusion, CAMs are expressed by endocrine and endothelial cells of pancreatic islets. The distribution/expression of N-, E- and VE-cadherins as well as α-catenin and F-actin is significantly altered in islet cells of obese and diabetic mice.
Collapse
|
48
|
Wang X, Xie B, Qi Y, Wallerman O, Vasylovska S, Andersson L, Kozlova EN, Welsh N. Knock-down of ZBED6 in insulin-producing cells promotes N-cadherin junctions between beta-cells and neural crest stem cells in vitro. Sci Rep 2016; 6:19006. [PMID: 26750727 PMCID: PMC4707466 DOI: 10.1038/srep19006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022] Open
Abstract
The role of the novel transcription factor ZBED6 for the adhesion/clustering of insulin-producing mouse MIN6 and βTC6 cells was investigated. Zbed6-silencing in the insulin producing cells resulted in increased three-dimensional cell-cell clustering and decreased adhesion to mouse laminin and human laminin 511. This was paralleled by a weaker focal adhesion kinase phosphorylation at laminin binding sites. Zbed6-silenced cells expressed less E-cadherin and more N-cadherin at cell-to-cell junctions. A strong ZBED6-binding site close to the N-cadherin gene transcription start site was observed. Three-dimensional clustering in Zbed6-silenced cells was prevented by an N-cadherin neutralizing antibody and by N-cadherin knockdown. Co-culture of neural crest stem cells (NCSCs) with Zbed6-silenced cells, but not with control cells, stimulated the outgrowth of NCSC processes. The cell-to-cell junctions between NCSCs and βTC6 cells stained more intensely for N-cadherin when Zbed6-silenced cells were co-cultured with NCSCs. We conclude that ZBED6 decreases the ratio between N- and E-cadherin. A lower N- to E-cadherin ratio may hamper the formation of three-dimensional beta-cell clusters and cell-to-cell junctions with NCSC, and instead promote efficient attachment to a laminin support and monolayer growth. Thus, by controlling beta-cell adhesion and cell-to-cell junctions, ZBED6 might play an important role in beta-cell differentiation, proliferation and survival.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Beichen Xie
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yu Qi
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | | | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
49
|
Vercollone JR, Balzar M, Litvinov SV, Yang W, Cirulli V. MMTV/LTR Promoter-Driven Transgenic Expression of EpCAM Leads to the Development of Large Pancreatic Islets. J Histochem Cytochem 2015. [PMID: 26216137 DOI: 10.1369/0022155415583876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous work demonstrated an important role of EpCAM in the regulation of pancreatic cell adhesion, growth and differentiation. Here we investigated the consequences of human EpCAM (hEpCAM) overexpression under the control of the MMTV-LTR promoter, known to drive robust gene expression in a number of ductal epithelia, including the pancreas. In this animal model (MMTV-hEpCAM) we uncovered a striking pancreatic phenotype exhibiting a 12-fold increase in the islet cell mass, with normal expression patterns of insulin and the transcription factor PDX-1. Intriguingly, these large islet clusters revealed an altered architectural organization of α- and δ-cells that appeared interspersed with β-cells in the islet cores. This suggests an effect of the hEpCAM transgene on the function of other cell adhesion molecules that we have previously shown to regulate islet cell type segregation. Consistent with this finding, we show that the pancreatic epithelium in MMTV-hEpCAM transgenic mice exhibits a redistribution of β-catenin, a known regulator of E-cadherin-mediated adhesions. Collectively, these results provide an important in vivo validation of hEpCAM signaling properties in normal epithelia and offer unique opportunities to further explore the function of this glycoprotein in select pancreatic cell lineages to elicit islet cell expansion, and/or regeneration in diabetes.
Collapse
Affiliation(s)
- Jeffrey R Vercollone
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| | - Maarten Balzar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands (MB, SVL)
| | - Sergey V Litvinov
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands (MB, SVL)
| | - Wendy Yang
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| | - Vincenzo Cirulli
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| |
Collapse
|
50
|
Arous C, Halban PA. The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. Am J Physiol Endocrinol Metab 2015; 309:E611-20. [PMID: 26286869 DOI: 10.1152/ajpendo.00268.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
Abstract
Over the last few decades, biomedical research has considered not only the function of single cells but also the importance of the physical environment within a whole tissue, including cell-cell and cell-extracellular matrix interactions. Cytoskeleton organization and focal adhesions are crucial sensors for cells that enable them to rapidly communicate with the physical extracellular environment in response to extracellular stimuli, ensuring proper function and adaptation. The involvement of the microtubular-microfilamentous cytoskeleton in secretion mechanisms was proposed almost 50 years ago, since when the evolution of ever more sensitive and sophisticated methods in microscopy and in cell and molecular biology have led us to become aware of the importance of cytoskeleton remodeling for cell shape regulation and its crucial link with signaling pathways leading to β-cell function. Emerging evidence suggests that dysfunction of cytoskeletal components or extracellular matrix modification influences a number of disorders through potential actin cytoskeleton disruption that could be involved in the initiation of multiple cellular functions. Perturbation of β-cell actin cytoskeleton remodeling could arise secondarily to islet inflammation and fibrosis, possibly accounting in part for impaired β-cell function in type 2 diabetes. This review focuses on the role of actin remodeling in insulin secretion mechanisms and its close relationship with focal adhesions and myosin II.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland
| | - Philippe A Halban
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland
| |
Collapse
|